MATH 4211/6211 - Optimization Algorithms for Constrained Optimization

Xiaojing Ye
Department of Mathematics \& Statistics
Georgia State University

We know that the gradient method proceeds as

$$
\boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(k)}+\alpha_{k} \boldsymbol{d}^{(k)}
$$

where $\boldsymbol{d}^{(k)}$ is a descent direction (often chosen as a function of $\boldsymbol{g}^{(k)}$).
However, $\boldsymbol{x}^{(k+1)}$ is not necessarily in the feasible set Ω.
Hence the projected gradient (PG) method proceeds as

$$
\boldsymbol{x}^{(k+1)}=\Pi\left(\boldsymbol{x}^{(k)}+\alpha_{k} \boldsymbol{d}^{(k)}\right)
$$

in order that $x^{(k)} \in \Omega$ for all k. Here $\Pi(x)$ is the projection of x onto Ω.

Definition. The projection Π onto Ω is defined by

$$
\Pi(z)=\underset{x \in \Omega}{\arg \min }\|x-z\|
$$

Namely, $\Pi(x)$ is the "closest point" in Ω to x.

Note that $\Pi(x)$ is itself an optimization problem, which may not have closedform or be easy to solve in most cases.

Example. Find the projection operators $\Pi(x)$ for the following sets Ω :

1. $\Omega=\left\{x \in \mathbb{R}^{n}:\|x\|_{\infty} \leq 1\right\}$
2. $\Omega=\left\{x \in \mathbb{R}^{n}: a_{i} \leq x_{i} \leq b_{i}, \forall i\right\}$
3. $\Omega=\left\{x \in \mathbb{R}^{n}:\|x\| \leq 1\right\}$
4. $\Omega=\left\{x \in \mathbb{R}^{n}:\|x\|=1\right\}$
5. $\Omega=\left\{x \in \mathbb{R}^{n}:\|x\|_{1} \leq 1\right\}$
6. $\Omega=\left\{x \in \mathbb{R}^{n}: \boldsymbol{A} \boldsymbol{x}=0\right\}$ where $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ with $m \leq n$ is full rank.

Example. Consider the constrained optimization problem:

$$
\begin{aligned}
\text { minimize } & \frac{1}{2} \boldsymbol{x}^{\top} \boldsymbol{Q} \boldsymbol{x} \\
\text { subject to } & \|\boldsymbol{x}\|^{2}=1
\end{aligned}
$$

where $Q \succ 0$. Apply the PG method with a fixed step size $\alpha>0$ to this problem. Specifically:

- Write down the explicit formula of $\boldsymbol{x}^{(k+1)}$ in terms of $\boldsymbol{x}^{(k)}$ (assume never projecting 0).
- Is it possible to ensure convergence when α is sufficiently small?
- Show that if $\alpha \in\left(0, \frac{1}{\lambda_{\text {max }}}\right)$ and $\boldsymbol{x}^{(0)}$ is not orthogonal to the smallest eigenvector corresponding to $\lambda_{\text {min }}$, then $\boldsymbol{x}^{(k)}$ converges. Here $\lambda_{\max }\left(\lambda_{\min }\right)$ is the largest (smallest) eigenvalue of Q.

Solution. We can see that the solution should be a unit eigenvector corresponding to $\lambda_{\text {min }}$.

Recall that $\Pi(x)=\frac{x}{\|x\|}$ for all $x \neq 0$.
We also know $\nabla f(\boldsymbol{x})=\boldsymbol{Q} \boldsymbol{x}$, and $\boldsymbol{x}^{(k)}-\alpha \nabla f\left(\boldsymbol{x}^{(k)}\right)=(\boldsymbol{I}-\alpha \boldsymbol{Q}) \boldsymbol{x}^{(k)}$.
Therefore, PG with step size α is given by

$$
\boldsymbol{x}^{(k+1)}=\beta_{k}(\boldsymbol{I}-\alpha \boldsymbol{Q}) \boldsymbol{x}^{(k)}, \quad \text { where } \beta_{k}=\frac{1}{\left\|(\boldsymbol{I}-\alpha \boldsymbol{Q}) \boldsymbol{x}^{(k)}\right\|}
$$

Note that, if $\boldsymbol{x}^{(0)}$ is an eigenvector of \boldsymbol{Q} corresponding to eigenvalue λ, then

$$
\boldsymbol{x}^{(1)}=\beta_{0}(\boldsymbol{I}-\alpha \boldsymbol{Q}) \boldsymbol{x}^{(0)}=\beta_{0}(1-\alpha \lambda) \boldsymbol{x}^{(0)}=\boldsymbol{x}^{(0)}
$$

and hence $\boldsymbol{x}^{(k)}=\boldsymbol{x}^{(0)}$ for all k.

Solution (cont.) Denote $\lambda_{1} \leq \cdots \leq \lambda_{n}$ the eigenvalues of \boldsymbol{Q}, and $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}$ the corresponding eigenvectors.

Now assume that

$$
\boldsymbol{x}^{(k)}=y_{1}^{(k)} \boldsymbol{v}_{1}+\cdots+y_{n}^{(k)} \boldsymbol{v}_{n}
$$

Then we have
$\boldsymbol{x}^{(k+1)}=\Pi\left((\boldsymbol{I}-\alpha \boldsymbol{Q}) \boldsymbol{x}^{(k)}\right)=\beta_{k} y_{1}^{(k)}\left(1-\alpha \lambda_{1}\right) \boldsymbol{v}_{1}+\cdots+\beta_{k} y_{n}^{(k)}\left(1-\alpha \lambda_{n}\right) \boldsymbol{v}_{n}$ Denote $\beta^{(k)}=\prod_{j=0}^{k-1} \beta_{j}$, then

$$
y_{i}^{(k)}=\beta_{k-1} y_{i}^{(k-1)}\left(1-\alpha \lambda_{i}\right)=\cdots=\beta^{(k)} y_{i}^{(0)}\left(1-\alpha \lambda_{i}\right)^{k}
$$

Solution (cont.) Therefore, we have

$$
\boldsymbol{x}^{(k)}=\sum_{i=1}^{n} y_{i}^{(k)} \boldsymbol{v}_{i}=y_{1}^{(k)}\left(\boldsymbol{v}_{1}+\sum_{i=2}^{n} \frac{y_{i}^{(k)}}{y_{1}^{(k)}} \boldsymbol{v}_{i}\right)
$$

Furthermore,

$$
\frac{y_{i}^{(k)}}{y_{1}^{(k)}}=\frac{\beta^{(k)} y_{i}^{(0)}\left(1-\alpha \lambda_{i}\right)^{k}}{\beta^{(k)} y_{1}^{(0)}\left(1-\alpha \lambda_{1}\right)^{k}}=\frac{y_{i}^{(0)}}{y_{1}^{(0)}}\left(\frac{1-\alpha \lambda_{i}}{1-\alpha \lambda_{1}}\right)^{k}
$$

Note that $y_{1}^{(0)} \neq 0$ (since $x^{(0)}$ is not orthogonal to the eigenvector corresponding to λ_{1}). As $0<\alpha<\frac{1}{\lambda_{n}}$, we have

$$
0<\frac{1-\alpha \lambda_{i}}{1-\alpha \lambda_{1}}<1 \Rightarrow\left(\frac{1-\alpha \lambda_{i}}{1-\alpha \lambda_{1}}\right)^{k} \rightarrow 0 \text { as } k \rightarrow \infty
$$

for all $\lambda_{i}>\lambda_{1}$. Hence $\boldsymbol{x}^{(k)} \rightarrow \boldsymbol{v}_{1}$.

Projected gradient (PG) method for optimization with linear constraint:

$$
\begin{aligned}
\text { minimize } & f(\boldsymbol{x}) \\
\text { subject to } & \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}
\end{aligned}
$$

Then PG is given by

$$
\boldsymbol{x}^{(k+1)}=\Pi\left(\boldsymbol{x}^{(k)}-\alpha_{k} \nabla f\left(\boldsymbol{x}^{(k)}\right)\right)
$$

where Π is the projection onto $\Omega:=\left\{\boldsymbol{x} \in \mathbb{R}^{n}: \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}\right\}$.

We first consider the orthogonal projection onto the hyperplane $\Psi=\{\boldsymbol{x} \in$ $\left.\mathbb{R}^{n}: \boldsymbol{A x}=0\right\}$:

For any $\boldsymbol{v} \in \mathbb{R}^{n}$, the projection onto Ψ is the solution to

$$
\begin{array}{cl}
\operatorname{minimize} & \frac{1}{2}\|\boldsymbol{x}-\boldsymbol{v}\|^{2} \\
\text { subject to } & \boldsymbol{A} \boldsymbol{x}=0
\end{array}
$$

Let $\boldsymbol{P}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ denote this projector, i.e., $\boldsymbol{P} \boldsymbol{v}$ is the point on ψ closest to \boldsymbol{v}.

The Lagrange function is

$$
l(\boldsymbol{x}, \boldsymbol{\lambda})=\frac{1}{2}\|\boldsymbol{x}-\boldsymbol{v}\|^{2}+\boldsymbol{\lambda}^{\top} \boldsymbol{A} \boldsymbol{x}
$$

Hence the Lagrange (KKT) condition is

$$
\begin{aligned}
(x-v)+A^{\top} \lambda & =0 \\
A x & =0
\end{aligned}
$$

Left-multiplying the first equation by \boldsymbol{A} and using $\boldsymbol{A x}=0$, we obtain

$$
\begin{aligned}
& \boldsymbol{\lambda}=\left(\boldsymbol{A} \boldsymbol{A}^{\top}\right)^{-1} \boldsymbol{A} \boldsymbol{v} \\
& \boldsymbol{x}=\left(\boldsymbol{I}-\boldsymbol{A}^{\top}\left(\boldsymbol{A} \boldsymbol{A}^{\top}\right)^{-1} \boldsymbol{A}\right) \boldsymbol{v}
\end{aligned}
$$

Denote the projector onto ψ by

$$
P=I-A^{\top}\left(A A^{\top}\right)^{-1} A
$$

Thus, the projection of \boldsymbol{v} onto ψ is $\boldsymbol{P} \boldsymbol{v}$.

Proposition. The projector \boldsymbol{P} has the following properties:

1. $P=P^{\top}$
2. $P^{2}=P$.
3. $\boldsymbol{P} \boldsymbol{v}=0$ iff $\exists \boldsymbol{\lambda} \in \mathbb{R}^{m}$ s.t. $\boldsymbol{v}=\boldsymbol{A}^{\top} \boldsymbol{\lambda}$. Namely $\mathcal{N}(\boldsymbol{P})=\mathcal{R}\left(\boldsymbol{A}^{\top}\right)$.

Proof. Items 1 and 2 are easy to verify.

For item 3: (\Rightarrow) If $\boldsymbol{P v}=\mathbf{0}$, then $\boldsymbol{v}=\boldsymbol{A}^{\top}\left(\boldsymbol{A} \boldsymbol{A}^{\top}\right)^{-1} \boldsymbol{A} \boldsymbol{v}$. Letting $\boldsymbol{\lambda}=$ $\left(A A^{\top}\right)^{-1} \boldsymbol{A} \boldsymbol{v}$ yields $\boldsymbol{v}=\boldsymbol{A}^{\top} \boldsymbol{\lambda}$.
(\Leftarrow) Suppose $\boldsymbol{v}=\boldsymbol{A}^{\top} \boldsymbol{\lambda}$, then

$$
P v=\left(I-A^{\top}\left(A A^{\top}\right)^{-1} A\right) A^{\top} \boldsymbol{\lambda}=\boldsymbol{A}^{\top} \boldsymbol{\lambda}-\boldsymbol{A}^{\top} \boldsymbol{\lambda}=0 .
$$

Similar to the derivation of \boldsymbol{P}, we can obtain the projection onto Ω :

$$
\begin{array}{cl}
\operatorname{minimize} & \frac{1}{2}\|\boldsymbol{x}-\boldsymbol{v}\|^{2} \\
\text { subject to } & \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}
\end{array}
$$

(Write down the Lagrange function and KKT condition, and solve for $(\boldsymbol{x}, \boldsymbol{\lambda})$.)

The projection Π of v onto Ω is

$$
\Pi(v)=P v-A^{\top}\left(A A^{\top}\right)^{-1} b
$$

Proposition. Let $\boldsymbol{x}^{*} \in \mathbb{R}^{n}$ be feasible (i.e., $\boldsymbol{A} \boldsymbol{x}^{*}=\boldsymbol{b}$), then $\boldsymbol{P} \nabla f\left(\boldsymbol{x}^{*}\right)=0$ iff x^{*} satisfies the Lagrange condition.

Proof. We have

$$
\begin{aligned}
\boldsymbol{P} \nabla f\left(\boldsymbol{x}^{*}\right)=0 & \Longleftrightarrow \nabla f\left(\boldsymbol{x}^{*}\right) \in \mathcal{N}(\boldsymbol{P}) \\
& \Longleftrightarrow \nabla f\left(\boldsymbol{x}^{*}\right) \in \mathcal{R}\left(\boldsymbol{A}^{\top}\right) \\
& \Longleftrightarrow \nabla f\left(\boldsymbol{x}^{*}\right)=-\boldsymbol{A}^{\top} \boldsymbol{\lambda}^{*} \text { for some } \boldsymbol{\lambda}^{*} \in \mathbb{R}^{m}
\end{aligned}
$$

Now we are ready to write down explicitly the PG:

$$
\begin{array}{rlrl}
\boldsymbol{x}^{(k+1)} & =\Pi\left(\boldsymbol{x}^{(k)}-\alpha_{k} \nabla f\left(\boldsymbol{x}^{(k)}\right)\right) & (\because \text { PG definition }) \\
& =\boldsymbol{P}\left(\boldsymbol{x}^{(k)}-\alpha_{k} \nabla f\left(\boldsymbol{x}^{(k)}\right)\right)-\boldsymbol{A}^{\top}\left(\boldsymbol{A} \boldsymbol{A}^{\top}\right)^{-1} \boldsymbol{b} & (\because \text { Relation of } \Pi \text { and } \boldsymbol{P}) \\
& =\boldsymbol{P} \boldsymbol{x}^{(k)}-\boldsymbol{A}^{\top}\left(\boldsymbol{A} \boldsymbol{A}^{\top}\right)^{-1} \boldsymbol{b}-\boldsymbol{P} \alpha_{k} \nabla f\left(\boldsymbol{x}^{(k)}\right) \\
& \left.=\Pi \boldsymbol{x}^{(k)}\right)-\alpha_{k} \boldsymbol{P} \nabla f\left(\boldsymbol{x}^{(k)}\right) & (\because \text { Relation of } \Pi \text { and } \boldsymbol{P}) \\
& =\boldsymbol{x}^{(k)}-\alpha_{k} \boldsymbol{P} \nabla f\left(\boldsymbol{x}^{(k)}\right) \quad\left(\because \boldsymbol{x}^{(k)} \in \Omega\right)
\end{array}
$$

The only difference from standard gradient method is the additional \boldsymbol{P}.
Note that if $\boldsymbol{x}^{(0)} \in \Omega$, then $\boldsymbol{x}^{(k)} \in \Omega$ for all k.

Now we can consider the choice of α_{k}. For example, we can use the projected steepest descent (PSD) method:

$$
\alpha_{k}=\underset{\alpha>0}{\arg \min } f\left(\boldsymbol{x}^{(k)}-\alpha \boldsymbol{P} \nabla f\left(\boldsymbol{x}^{(k)}\right)\right)
$$

Theorem. Let $\boldsymbol{x}^{(k)}$ be generated by PSD. If $\boldsymbol{P} \nabla f\left(\boldsymbol{x}^{(k)}\right) \neq 0$, then $f\left(\boldsymbol{x}^{(k+1)}\right)<$ $f\left(\boldsymbol{x}^{(k)}\right)$.

Proof. For such $\boldsymbol{x}^{(k)}$, consider the line search function

$$
\phi(\alpha):=f\left(\boldsymbol{x}^{(k)}-\alpha \boldsymbol{P} \nabla f\left(\boldsymbol{x}^{(k)}\right)\right) .
$$

Then we have

$$
\phi^{\prime}(\alpha)=-\nabla f\left(\boldsymbol{x}^{(k)}-\alpha \boldsymbol{P} \nabla f\left(\boldsymbol{x}^{(k)}\right)\right)^{\top} \boldsymbol{P} \nabla f\left(\boldsymbol{x}^{(k)}\right) .
$$

Hence

$$
\begin{aligned}
\phi^{\prime}(0) & =-\nabla f\left(\boldsymbol{x}^{(k)}\right)^{\top} \boldsymbol{P} \nabla f\left(\boldsymbol{x}^{(k)}\right) \\
& =-\nabla f\left(\boldsymbol{x}^{(k)}\right)^{\top} \boldsymbol{P}^{2} \nabla f\left(\boldsymbol{x}^{(k)}\right) \\
& =-\left\|\boldsymbol{P} \nabla f\left(\boldsymbol{x}^{(k)}\right)\right\|^{2}<0,
\end{aligned}
$$

and therefore $\phi\left(\alpha_{k}\right)<\phi(0)$, i.e., $f\left(\boldsymbol{x}^{(k+1)}\right)<f\left(\boldsymbol{x}^{(k)}\right)$.
$\boldsymbol{P} \nabla f\left(\boldsymbol{x}^{*}\right)=0$ is sufficient for global optimality if f is convex:
Theorem. Let f be convex and \boldsymbol{x}^{*} be feasible. Then $\boldsymbol{P} \nabla f\left(\boldsymbol{x}^{*}\right)=0$ iff \boldsymbol{x}^{*} is a global minimizer.

Proof. From the previous proposition and convexity of f, we know

$$
\begin{aligned}
P \nabla f\left(x^{*}\right)=0 & \Longleftrightarrow x^{*} \text { satisfies the Lagrange condition } \\
& \Longleftrightarrow x^{*} \text { is a global minimizer }
\end{aligned}
$$

Lagrange algorithm

We first consider the Lagrange algorithm for equality-constrained optimization:

$$
\begin{aligned}
\operatorname{minimize} & f(\boldsymbol{x}) \\
\text { subject to } & \boldsymbol{h}(\boldsymbol{x})=0
\end{aligned}
$$

where $f, \boldsymbol{h} \in \mathcal{C}^{2}$.
Recall the Lagrange function $l: \mathbb{R}^{n+m} \rightarrow \mathbb{R}$ is

$$
l(\boldsymbol{x}, \boldsymbol{\lambda})=f(\boldsymbol{x})+\boldsymbol{h}(\boldsymbol{x})^{\top} \boldsymbol{\lambda} .
$$

We denote its Hessian with respect to x by

$$
\nabla_{\boldsymbol{x}}^{2} l(\boldsymbol{x}, \boldsymbol{\lambda})=\nabla_{\boldsymbol{x}}^{2} f(\boldsymbol{x})+D_{\boldsymbol{x}}^{2} \boldsymbol{h}(\boldsymbol{x})^{\top} \boldsymbol{\lambda} \in \mathbb{R}^{n \times n}
$$

Recall the Lagrange condition is

$$
\begin{aligned}
\nabla f(\boldsymbol{x})+D \boldsymbol{h}(\boldsymbol{x})^{\top} \boldsymbol{\lambda} & =0 \in \mathbb{R}^{n} \\
\boldsymbol{h}(\boldsymbol{x}) & =0 \in \mathbb{R}^{m}
\end{aligned}
$$

The Lagrange algorithm is given by

$$
\begin{aligned}
& \boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(k)}-\alpha_{k}\left(\nabla f\left(\boldsymbol{x}^{(k)}\right)+D \boldsymbol{h}\left(\boldsymbol{x}^{(k)}\right)^{\top} \boldsymbol{\lambda}^{(k)}\right) \\
& \boldsymbol{\lambda}^{(k+1)}=\boldsymbol{\lambda}^{(k)}+\beta_{k} \boldsymbol{h}\left(\boldsymbol{x}^{(k)}\right)
\end{aligned}
$$

which is like "gradient descent for x " and "gradient ascent for λ " of l.

Here $\alpha_{k}, \beta_{k} \geq 0$ are step sizes. WLOG, we can assume $\alpha_{k}=\beta_{k}$ for all k by scaling $\boldsymbol{\lambda}^{(k)}$ properly.

It is easy to verify that, if $\left(\boldsymbol{x}^{(k)}, \boldsymbol{\lambda}^{(k)}\right) \rightarrow\left(\boldsymbol{x}^{*}, \boldsymbol{\lambda}^{*}\right)$, then $\left(\boldsymbol{x}^{*}, \boldsymbol{\lambda}^{*}\right)$ satisfies the Lagrange condition.

We denote $\boldsymbol{w}=[\boldsymbol{x} ; \boldsymbol{\lambda}] \in \mathbb{R}^{n+m}$ and

$$
\boldsymbol{u}(\boldsymbol{w})=\left[\begin{array}{c}
\boldsymbol{x}-\alpha\left(\nabla f(\boldsymbol{x})+D \boldsymbol{h}(\boldsymbol{x})^{\top} \boldsymbol{\lambda}\right) \\
\boldsymbol{\lambda}+\alpha \boldsymbol{h}(\boldsymbol{x})
\end{array}\right] \in \mathbb{R}^{n+m}
$$

Hence the Jacobian of u is

$$
\nabla \boldsymbol{u}(\boldsymbol{w})=\boldsymbol{I}+\alpha\left[\begin{array}{cc}
-\nabla_{\boldsymbol{x}}^{2} l(\boldsymbol{x}, \boldsymbol{\lambda}) & -D \boldsymbol{h}(\boldsymbol{x})^{\top} \\
D \boldsymbol{h}(\boldsymbol{x}) & \mathbf{0}
\end{array}\right] \in \mathbb{R}^{(n+m) \times(n+m)}
$$

Note that

$$
\boldsymbol{w}^{*}=\left[\boldsymbol{x}^{*} ; \lambda^{*}\right] \text { is a KKT point } \Longleftrightarrow \boldsymbol{w}^{*}=\boldsymbol{u}\left(\boldsymbol{w}^{*}\right)
$$

We denote

$$
M:=\left[\begin{array}{cc}
-\nabla_{\boldsymbol{x}}^{2} l\left(\boldsymbol{x}^{*}, \boldsymbol{\lambda}^{*}\right) & -D \boldsymbol{h}\left(\boldsymbol{x}^{*}\right)^{\top} \\
D \boldsymbol{h}\left(\boldsymbol{x}^{*}\right) & 0
\end{array}\right]
$$

and hence $\nabla \boldsymbol{u}\left(\boldsymbol{w}^{*}\right)=\boldsymbol{I}+\alpha \boldsymbol{M}$.

Now we study the (local) convergence of the Lagrange algorithm when x^{*} is a regular point and $\nabla_{\boldsymbol{x}}^{2} l\left(\boldsymbol{x}^{*}, \boldsymbol{\lambda}^{*}\right) \succ \mathbf{0}$. For simplicity, we assume $\alpha_{k}=\alpha$ (constant step size).

Claim 1. $\left\|\nabla \boldsymbol{u}\left(\boldsymbol{w}^{*}\right)\right\|<1$ if $\alpha>0$ is sufficiently small.

Proof (Claim 1). It suffices to show real part of any eigenvalue of M is <0.

Let λ be an eigenvalue of M and $\boldsymbol{w}=[x ; \lambda] \in \mathbb{C}^{n+m}$ be a corresponding eigenvector, i.e., $\boldsymbol{M} \boldsymbol{w}=\lambda \boldsymbol{w}$. (Note $\boldsymbol{w} \neq 0$.)

If $x=0$, then

$$
\boldsymbol{M} \boldsymbol{w}=\left[\begin{array}{cc}
-\nabla_{\boldsymbol{x}}^{2} l\left(\boldsymbol{x}^{*}, \boldsymbol{\lambda}^{*}\right) & -D \boldsymbol{h}\left(\boldsymbol{x}^{*}\right)^{\top} \\
D \boldsymbol{h}\left(\boldsymbol{x}^{*}\right) & \mathbf{0}
\end{array}\right]\left[\begin{array}{c}
0 \\
\boldsymbol{\lambda}
\end{array}\right]=\left[\begin{array}{c}
-D \boldsymbol{h}\left(\boldsymbol{x}^{*}\right)^{\top} \boldsymbol{\lambda} \\
0
\end{array}\right]=\lambda\left[\begin{array}{c}
0 \\
\boldsymbol{\lambda}
\end{array}\right]
$$

But $D \boldsymbol{h}\left(\boldsymbol{x}^{*}\right)$ has full row rank, so $\boldsymbol{\lambda}=0$, and hence $\boldsymbol{w}=0$, contradiction.

Proof (Claim 1) cont. Therefore $x \neq 0$. We know *

$$
\Re\left(\boldsymbol{w}^{H} \boldsymbol{M} \boldsymbol{w}\right)=\Re\left(\boldsymbol{w}^{H} \lambda \boldsymbol{w}\right)=\Re(\lambda)\|\boldsymbol{w}\|^{2}
$$

On the other hand \dagger

$$
\Re\left(\boldsymbol{w}^{H} \boldsymbol{M} \boldsymbol{w}\right)=-\Re\left(\boldsymbol{x}^{H} \nabla_{\boldsymbol{x}}^{2} l\left(\boldsymbol{x}^{*}, \boldsymbol{\lambda}^{*}\right) \boldsymbol{x}\right)<0
$$

Equating the two yields $\Re(\lambda)<0$.

As all eigenvalues of M have negative real part, we know $\|\boldsymbol{I}+\alpha \boldsymbol{M}\|<1$ for sufficiently small $\alpha>0$.

This completes the proof of Claim 1.
${ }^{*} \boldsymbol{w}^{H}$ is the complex conjugate of \boldsymbol{w}.
${ }^{\dagger}$ Recall that if $Q \succ 0$, then $\boldsymbol{x}^{H} \boldsymbol{Q} \boldsymbol{x}=\|\Re(\boldsymbol{x})\|_{Q}^{2}+\|\Im(\boldsymbol{x})\|_{Q}^{2}$.

Claim 2. There exist $\eta>0$ and $\kappa \in(0,1)$ such that

$$
\|\nabla \boldsymbol{u}(\boldsymbol{w})\| \leq \kappa<1, \quad \forall \boldsymbol{w} \in B\left(\boldsymbol{w}^{*}, \eta\right)
$$

where $B\left(\boldsymbol{w}^{*}, \eta\right)=\left\{\boldsymbol{w}:\left\|\boldsymbol{w}-\boldsymbol{w}^{*}\right\| \leq \eta\right\}$.
Proof (Claim 2). The claim follows $\left\|\nabla \boldsymbol{u}\left(\boldsymbol{w}^{*}\right)\right\|<1$ in Claim 1 and the continuity of $\nabla \boldsymbol{u}$.

Claim 3. If $\boldsymbol{w}^{(0)} \in B\left(\boldsymbol{w}^{*}, \eta\right)$, then for all k there is

$$
\left\|\boldsymbol{w}^{(k+1)}-\boldsymbol{w}^{*}\right\| \leq \kappa\left\|\boldsymbol{w}^{(k)}-\boldsymbol{w}^{*}\right\|
$$

Proof (Claim 3). Let $G: \mathbb{R}^{n+m} \rightarrow \mathbb{R}^{(n+m) \times(n+m)}$ be the function s.t.

$$
\boldsymbol{u}\left(\boldsymbol{w}^{(k)}\right)-\boldsymbol{u}\left(\boldsymbol{w}^{*}\right)=\boldsymbol{G}\left(\boldsymbol{w}^{(k)}\right)\left(\boldsymbol{w}^{(k)}-\boldsymbol{w}^{*}\right)
$$

from the Mean Value Theorem. Hence

$$
\begin{aligned}
\left\|\boldsymbol{w}^{(k+1)}-\boldsymbol{w}^{*}\right\| & =\left\|\boldsymbol{u}\left(\boldsymbol{w}^{(k)}\right)-\boldsymbol{u}\left(\boldsymbol{w}^{*}\right)\right\| \\
& =\left\|\boldsymbol{G}\left(\boldsymbol{w}^{(k)}\right)\left(\boldsymbol{w}^{(k)}-\boldsymbol{w}^{*}\right)\right\| \\
& \leq\left\|\boldsymbol{G}\left(\boldsymbol{w}^{(k)}\right)\right\| \cdot\left\|\boldsymbol{w}^{(k)}-\boldsymbol{w}^{*}\right\| \\
& \leq \kappa\left\|\boldsymbol{w}^{(k)}-\boldsymbol{w}^{*}\right\|
\end{aligned}
$$

Claim 3 implies that locally $\boldsymbol{w}^{(k)} \rightarrow \boldsymbol{w}^{*}$ at a linear rate.

Now consider Lagrange algorithm for inequality-constrained optimization:

$$
\begin{aligned}
\operatorname{minimize} & f(\boldsymbol{x}) \\
\text { subject to } & \boldsymbol{g}(\boldsymbol{x}) \leq \mathbf{0}
\end{aligned}
$$

The Lagrange function is

$$
l(\boldsymbol{x}, \boldsymbol{\mu})=f(\boldsymbol{x})+\boldsymbol{g}(\boldsymbol{x})^{\top} \boldsymbol{\mu}
$$

The Lagrange condition is

$$
\begin{aligned}
\nabla f(\boldsymbol{x})+D \boldsymbol{g}(\boldsymbol{x})^{\top} \boldsymbol{\mu} & =\mathbf{0} \\
\boldsymbol{g}(\boldsymbol{x}) & \leq \mathbf{0} \\
\boldsymbol{\mu} & \geq \mathbf{0} \\
\boldsymbol{g}(\boldsymbol{x})^{\top} \boldsymbol{\mu} & =0
\end{aligned}
$$

The Lagrange algorithm is given by

$$
\begin{aligned}
\boldsymbol{x}^{(k+1)} & =\boldsymbol{x}^{(k)}-\alpha_{k}\left(\nabla f\left(\boldsymbol{x}^{(k)}\right)+D \boldsymbol{g}\left(\boldsymbol{x}^{(k)}\right)^{\top} \boldsymbol{\mu}^{(k)}\right) \\
\boldsymbol{\mu}^{(k+1)} & =\left[\boldsymbol{\mu}^{(k)}+\beta_{k} \boldsymbol{g}\left(\boldsymbol{x}^{(k)}\right)\right]_{+}
\end{aligned}
$$

where $[\cdot]_{+}$means $\max (\cdot, 0)$ componentwisely.
We denote $\boldsymbol{w}=[\boldsymbol{x} ; \boldsymbol{\mu}] \in \mathbb{R}^{n+p}$ and

$$
\Pi(\boldsymbol{w})=\left[\begin{array}{c}
\boldsymbol{x} \\
{[\boldsymbol{\mu}]_{+}}
\end{array}\right], \quad \boldsymbol{u}(\boldsymbol{w})=\left[\begin{array}{c}
\boldsymbol{x}-\alpha\left(\nabla f(\boldsymbol{x})+D \boldsymbol{g}(\boldsymbol{x})^{\top} \boldsymbol{\mu}\right) \\
\boldsymbol{\mu}+\alpha \boldsymbol{g}(\boldsymbol{x})
\end{array}\right]
$$

It is easy to verify that

$$
\boldsymbol{w}^{*}=\left[\boldsymbol{x}^{*} ; \boldsymbol{\mu}^{*}\right] \text { is a KKT point } \quad \Longleftrightarrow \quad \boldsymbol{w}^{*}=\Pi\left(\boldsymbol{u}\left(\boldsymbol{w}^{*}\right)\right)
$$

Let \boldsymbol{w}^{*} be a KKT point, and

$$
\boldsymbol{g}\left(\boldsymbol{w}^{*}\right)=\left[\begin{array}{c}
\boldsymbol{g}_{A}\left(\boldsymbol{w}^{*}\right) \\
\boldsymbol{g}_{I}\left(\boldsymbol{w}^{*}\right)
\end{array}\right] \in \mathbb{R}^{p}=\mathbb{R}^{p_{1}+p_{2}}, \quad \text { where } \quad \begin{aligned}
& \mathbf{0}=\boldsymbol{g}_{A}(\boldsymbol{w}) \in \mathbb{R}^{p_{1}} \\
& \mathbf{0}<\boldsymbol{g}_{I}(\boldsymbol{w}) \in \mathbb{R}^{p_{2}}
\end{aligned}
$$

" A " and " I " stand for "active" and "inactive".

Similarly, denote
$\boldsymbol{\mu}=\left[\begin{array}{c}\boldsymbol{\mu}_{A} \\ \boldsymbol{\mu}_{I}\end{array}\right], \quad \boldsymbol{w}_{A}=\left[\begin{array}{c}\boldsymbol{x} \\ \boldsymbol{\mu}_{A}\end{array}\right], \quad \boldsymbol{u}_{A}\left(\boldsymbol{w}_{A}\right)=\left[\begin{array}{c}\boldsymbol{x}-\alpha\left(\nabla f(\boldsymbol{x})+D \boldsymbol{g}_{A}(\boldsymbol{x})^{\top} \boldsymbol{\mu}_{A}\right) \\ \mu_{A}+\alpha \boldsymbol{g}_{A}(\boldsymbol{x})\end{array}\right]$
and hence

$$
\nabla \boldsymbol{u}_{A}\left(\boldsymbol{w}_{A}\right)=\boldsymbol{I}+\alpha\left[\begin{array}{cc}
-\nabla_{\boldsymbol{x}}^{2} l\left(\boldsymbol{x}, \boldsymbol{\mu}_{A}\right) & -D \boldsymbol{g}_{A}(\boldsymbol{x})^{\top} \\
D \boldsymbol{g}_{A}(\boldsymbol{x}) & \mathbf{0}
\end{array}\right] \in \mathbb{R}^{\left(n+p_{1}\right) \times\left(n+p_{1}\right)}
$$

Now we study the (local) convergence of the Lagrange algorithm when x^{*} is a regular point and $\nabla_{\boldsymbol{x}}^{2} l\left(\boldsymbol{x}^{*}, \boldsymbol{\lambda}^{*}\right) \succ 0$. For simplicity, we assume $\alpha_{k}=\alpha$ (constant step size).

We again define G such that

$$
\boldsymbol{u}\left(\boldsymbol{w}^{(k)}\right)-\boldsymbol{u}\left(\boldsymbol{w}^{*}\right)=\boldsymbol{G}\left(\boldsymbol{w}^{(k)}\right)\left(\boldsymbol{w}^{(k)}-\boldsymbol{w}^{*}\right)
$$

using Mean Value Theorem. Let

$$
\boldsymbol{M}=\left[\begin{array}{cc}
-\nabla_{\boldsymbol{x}}^{2} l\left(\boldsymbol{x}^{*}, \boldsymbol{\mu}_{A}^{*}\right) & -D \boldsymbol{g}_{A}\left(\boldsymbol{x}^{*}\right)^{\top} \\
D \boldsymbol{g}_{A}\left(\boldsymbol{x}^{*}\right) & \mathbf{0}
\end{array}\right] \in \mathbb{R}^{\left(n+p_{1}\right) \times\left(n+p_{1}\right)}
$$

Similar as before, we can show all eigenvalues of M have negative real part, and hence $\|\boldsymbol{I}+\alpha \boldsymbol{M}\|<1$ for α sufficiently small.

Also note that $\mu_{I}^{*}=0$ as it corresponds to the inactive constraints.

Claim 1. There exist $\eta>0$ and $\kappa_{A} \in(0,1)$, such that

$$
\begin{aligned}
\left\|\nabla \boldsymbol{u}_{A}\left(\boldsymbol{w}_{A}\right)\right\| & \leq \kappa_{A} \\
\boldsymbol{g}_{I}(\boldsymbol{x}) & \leq-\delta \boldsymbol{e}
\end{aligned}
$$

for all $\boldsymbol{w} \in B\left(\boldsymbol{w}^{*}, \eta\right)$.
Proof. Note that $\boldsymbol{g}_{I}\left(\boldsymbol{w}^{*}\right)<0$. Others are similar as before.

Now we set the following values:

- Let $\kappa=\max \left\{1,\|\boldsymbol{G}(\boldsymbol{w})\|: \boldsymbol{w} \in B\left(\boldsymbol{w}^{*}, \eta\right)\right\} \geq 1$
- Let $\varepsilon>0$ be small enough such that $\varepsilon \kappa^{\varepsilon /(\alpha \delta)} \leq \eta$.
- Let $k_{0}=\lceil\varepsilon /(\alpha \delta)\rceil$.
- Let $\boldsymbol{w}^{(0)} \in B\left(\boldsymbol{w}^{*}, \varepsilon\right)$.

Claim 2. For any $k \leq k_{0}$, there is $\left\|\boldsymbol{w}^{(k)}-\boldsymbol{w}^{*}\right\| \leq \varepsilon \kappa^{k}$.
Proof (Claim 2). We use induction.
First, there is $\left\|\boldsymbol{w}^{(0)}-\boldsymbol{w}^{*}\right\| \leq \varepsilon=\varepsilon \kappa^{0}$.
Assume the claim holds for k, then

$$
\begin{aligned}
\left\|\boldsymbol{w}^{(k+1)}-\boldsymbol{w}^{*}\right\| & \leq\left\|\boldsymbol{G}\left(\boldsymbol{w}^{(k)}\right)\right\| \cdot\left\|\boldsymbol{w}^{(k)}-\boldsymbol{w}^{*}\right\| \\
& \leq \kappa \cdot\left\|\boldsymbol{w}^{(k)}-\boldsymbol{w}^{*}\right\| \\
& \leq \kappa \cdot\left(\varepsilon \kappa^{k}\right) \\
& =\varepsilon \kappa^{k+1}
\end{aligned}
$$

which completes the proof of the claim.
From Claim 2, we know $\left\|\boldsymbol{w}^{(k)}-\boldsymbol{w}^{*}\right\| \leq \eta$ for $k=0, \ldots, k_{0}$.

Claim 3. There is $\mu_{I}^{(0)} \geq \cdots \geq \boldsymbol{\mu}_{I}^{\left(k_{0}\right)}=0$.
Proof (Claim 3). We know $\boldsymbol{g}_{I}\left(\boldsymbol{x}^{(k)}\right) \leq-\delta \boldsymbol{e}$ for $k=0, \ldots, k_{0}$. Also

$$
\boldsymbol{\mu}_{I}^{(k+1)}=\left[\boldsymbol{\mu}_{I}^{(k)}+\alpha \boldsymbol{g}_{I}\left(\boldsymbol{x}^{(k)}\right)\right]_{+} \leq\left[\boldsymbol{\mu}_{I}^{(k)}-\alpha \delta \boldsymbol{e}\right]_{+} \leq \boldsymbol{\mu}_{I}^{(k)}
$$

which implies that $\mu_{I}^{(k)}$ is non-increasing.
Suppose $\mu_{i}^{\left(k_{0}\right)}>0$ for some $i \in I$ (index set of inactive constraints), then

$$
\begin{aligned}
0<\mu_{i}^{\left(k_{0}\right)} & =\mu_{i}^{\left(k_{0}-1\right)}+\alpha g_{i}\left(\boldsymbol{x}^{\left(k_{0}-1\right)}\right)=\cdots \\
& =\mu_{i}^{(0)}+\alpha \sum_{k=0}^{k_{0}-1} g_{i}\left(\boldsymbol{x}^{(k)}\right) \leq \mu_{i}^{(0)}-\alpha \delta k_{0} \leq \varepsilon-\alpha \delta k_{0}
\end{aligned}
$$

since $\mu_{i}^{(0)} \leq\left\|\boldsymbol{w}^{(0)}-\boldsymbol{w}^{*}\right\| \leq \varepsilon$. But this contradicts to $k_{0}=\left\lceil\frac{\epsilon}{\alpha \delta}\right\rceil \geq \frac{\epsilon}{\alpha \delta}$.
Therefore, within k_{0} iterations, $\boldsymbol{\mu}_{I}^{(k)}=\mathbf{0}$.

Claim 4. For any $k \geq k_{0}$, there are

$$
\begin{aligned}
\boldsymbol{\mu}_{I}^{(k)} & =\mathbf{0} \\
\left\|\boldsymbol{w}^{(k)}-\boldsymbol{w}^{*}\right\| & \leq \eta \\
\left\|\boldsymbol{w}_{A}^{(k+1)}-\boldsymbol{w}_{A}^{*}\right\| & \leq \kappa_{A}\left\|\boldsymbol{w}_{A}^{(k)}-\boldsymbol{w}_{A}^{*}\right\|
\end{aligned}
$$

Proof (Claim 4). The first two hold for $k=k_{0}$ (by Claims $3 \& 2$ resp.), and

$$
\begin{aligned}
\left\|\boldsymbol{w}_{A}^{\left(k_{0}+1\right)}-\boldsymbol{w}_{A}^{*}\right\| & =\left\|\Pi\left(\boldsymbol{u}_{A}\left(\boldsymbol{w}_{A}^{\left(k_{0}\right)}\right)\right)-\Pi\left(\boldsymbol{u}_{A}\left(\boldsymbol{w}_{A}^{*}\right)\right)\right\| \\
& \leq\left\|\boldsymbol{u}_{A}\left(\boldsymbol{w}_{A}^{\left(k_{0}\right)}\right)-\boldsymbol{u}_{A}\left(\boldsymbol{w}_{A}^{*}\right)\right\| \\
& \leq\left\|\boldsymbol{G}_{A}\left(\boldsymbol{w}_{A}^{(k)}\right)\right\| \cdot\left\|\boldsymbol{w}_{A}^{\left(k_{0}\right)}-\boldsymbol{w}_{A}^{*}\right\| \\
& \leq \kappa_{A} \cdot\left\|\boldsymbol{w}_{A}^{\left(k_{0}\right)}-\boldsymbol{w}_{A}^{*}\right\|
\end{aligned}
$$

Proof (Claim 4) cont.

Assume the results hold for $k \geq k_{0}$, then from $\boldsymbol{g}_{I}\left(\boldsymbol{w}^{(k)}\right) \leq-\delta \boldsymbol{e}$, we have

$$
\boldsymbol{\mu}_{I}^{(k+1)}=\left[\boldsymbol{\mu}_{I}^{(k)}+\alpha \boldsymbol{g}_{I}\left(\boldsymbol{x}^{(k)}\right)\right]_{+} \leq[0-\alpha \delta \boldsymbol{e}]_{+}=\mathbf{0}
$$

Note that this implies $\left\|\boldsymbol{w}_{A}^{(k+1)}-\boldsymbol{w}_{A}^{*}\right\|=\left\|\boldsymbol{w}^{(k+1)}-\boldsymbol{w}^{*}\right\|$ for all $k \geq k_{0}$.
Moreover, we have $\boldsymbol{w}_{A}^{(k+2)}=\Pi\left(\boldsymbol{u}_{A}\left(\boldsymbol{w}_{A}^{(k+1)}\right)\right)$ and

$$
\left\|\boldsymbol{w}_{A}^{(k+2)}-\boldsymbol{w}_{A}^{*}\right\| \leq \kappa_{A} \cdot\left\|\boldsymbol{w}_{A}^{(k+1)}-\boldsymbol{w}_{A}^{*}\right\| \leq \eta
$$

which completes the proof.

Remark. Claim 4 implies that locally $\boldsymbol{w}^{(k)} \rightarrow \boldsymbol{w}^{*}$ at a linear rate: if $\boldsymbol{w}^{(0)}$ is sufficiently close to \boldsymbol{w}^{*}, then $\boldsymbol{w}^{(k)} \rightarrow \boldsymbol{w}^{*}$ linearly, provided that \boldsymbol{x}^{*} is a regular KKT point and $\nabla_{\boldsymbol{x}}^{2} l\left(\boldsymbol{x}^{*}, \lambda^{*}\right) \succ 0$.

Penalty method

We consider constrained optimization

$$
\begin{aligned}
\text { minimize } & f(\boldsymbol{x}) \\
\text { subject to } & \boldsymbol{x} \in \Omega
\end{aligned}
$$

Note that such problem conceptually include optimization problems with equality and inequality constraints. For example, $\Omega=\left\{\boldsymbol{x} \in \mathbb{R}^{n}: \boldsymbol{g}(\boldsymbol{x}) \leq \mathbf{0}\right\}$.

Instead of the constrained problem, we consider to impose penalty if $x \in \Omega$ is violated:

$$
\operatorname{minimize} f(\boldsymbol{x})+\gamma P(\boldsymbol{x})
$$

where $P: \mathbb{R}^{n} \rightarrow \mathbb{R}_{+}$is the penalty function, and $\gamma>0$ is the penalty (weight) parameter.

Definition. The function $P: \mathbb{R}^{n} \rightarrow \mathbb{R}_{+}$is called a penalty function if

1. P is continuous.
2. $P(\boldsymbol{x}) \geq 0$ for all \boldsymbol{x}.
3. $P(\boldsymbol{x})=0$ iff $\boldsymbol{x} \in \Omega$.

Example. Let $\Omega=\left\{\boldsymbol{x} \in \mathbb{R}^{n}: \boldsymbol{g}(\boldsymbol{x}) \leq 0 \in \mathbb{R}^{p}\right\}$, then we can choose

$$
\begin{aligned}
& P(x)=\sum_{i=1}^{p}\left[g_{i}(x)\right]_{+} \\
& P(x)=\sum_{i=1}^{p}\left(\left[g_{i}(\boldsymbol{x})\right]_{+}\right)^{2}
\end{aligned}
$$

and so on.

Example. Let $\boldsymbol{g}(x)=\left[g_{1}(x) ; g_{2}(x)\right]$ where $g_{1}(x)=x-2$ and $g_{2}(x)=$ $-(x+1)^{3}$. Consider the constraint set

$$
\Omega=\left\{x \in \mathbb{R}: g_{1}(x) \leq 0, g_{2}(x) \leq 0\right\}
$$

Then we have

$$
\begin{aligned}
& {\left[g_{1}(x)\right]_{+}=\max \left\{0, g_{1}(x)\right\}= \begin{cases}0 & \text { if } x \leq 2 \\
x-2 & \text { otherwise }\end{cases} } \\
& {\left[g_{2}(x)\right]_{+}=\max \left\{0, g_{2}(x)\right\}= \begin{cases}0 & \text { if } x \geq-1 \\
-(x+1)^{3} & \text { otherwise }\end{cases} }
\end{aligned}
$$

We can set

$$
P(x)=\left[g_{1}(x)\right]_{+}+\left[g_{2}(x)\right]_{+}= \begin{cases}x-2 & \text { if } x>2 \\ 0 & \text { if }-1 \leq x \leq 2 \\ -(x+1)^{3} & \text { if } x<-1\end{cases}
$$

Example. Consider the problem below with $Q \succ 0$:

$$
\begin{aligned}
\operatorname{minimize} & \boldsymbol{x}^{\top} \boldsymbol{Q} \boldsymbol{x} \\
\text { subject to } & \|\boldsymbol{x}\|^{2}=1
\end{aligned}
$$

We can set the penalty function $P(x)=\left(\|x\|^{2}-1\right)^{2}$ (which is differentiable), and consider

$$
\text { minimize } \quad \boldsymbol{x}^{\top} \boldsymbol{Q} \boldsymbol{x}+\gamma\left(\|\boldsymbol{x}\|^{2}-1\right)^{2}
$$

For any fixed $\gamma>0$, the FONC of its solution \boldsymbol{x}_{γ} is

$$
2 \boldsymbol{Q} \boldsymbol{x}_{\gamma}+4 \gamma\left(\left\|\boldsymbol{x}_{\gamma}\right\|^{2}-1\right) \boldsymbol{x}_{\gamma}=0
$$

which yields

$$
\boldsymbol{Q} \boldsymbol{x}_{\gamma}=2 \gamma\left(1-\left\|\boldsymbol{x}_{\gamma}\right\|^{2}\right) \boldsymbol{x}_{\gamma}=\lambda_{\gamma} \boldsymbol{x}_{\gamma}
$$

where $\lambda_{\gamma}:=2 \gamma\left(1-\left\|x_{\gamma}\right\|^{2}\right)$ is a scalar. This means $\lambda_{\gamma} \in\left(0, \lambda_{\max }\right]$ is an eigenvalue of Q, and x_{γ} is a corresponding eigenvector. Note that

$$
0<1-\left\|x_{\gamma}\right\|^{2} \leq \frac{\lambda_{\max }}{2 \gamma}=\mathcal{O}\left(\frac{1}{\gamma}\right)
$$

We have converted constrained problem into unconstrained ones. Now define

$$
\begin{aligned}
q\left(\gamma_{k}, \boldsymbol{x}\right) & =f(\boldsymbol{x})+\gamma_{k} P(\boldsymbol{x}) \\
\boldsymbol{x}^{(k)} & =\underset{\boldsymbol{x} \in \mathbb{R}^{n}}{\arg \min } q\left(\gamma_{k}, \boldsymbol{x}\right)
\end{aligned}
$$

for every $k \in \mathbb{N}$.

The idea is to let γ_{k} increase (hence greater penalty) and apply an unconstrained optimization method to solve for $\boldsymbol{x}^{(k)}$ for each k.

Then we hope that an accumulation point ${ }^{\ddagger}$ of $\left\{\boldsymbol{x}^{(k)}\right\}$ is a KKT point \boldsymbol{x}^{*}.
${ }^{\ddagger} \boldsymbol{x}^{*}$ is called an accumulation point (also called limit point) of $\left\{\boldsymbol{x}^{(k)}\right\}$ if there exists a subsequence of $x^{(k)}$ that converges to x^{*}.

Now let $\gamma_{k}>0$ be increasing, we have a series of claims.
Claim 1. $q\left(\gamma_{k}, \boldsymbol{x}^{(k)}\right) \leq q\left(\gamma_{k+1}, \boldsymbol{x}^{(k+1)}\right)$.
Proof (Claim 1). Since $\boldsymbol{x}^{(k)}$ is optimal to $q\left(\gamma_{k}, \boldsymbol{x}\right)$, we know

$$
q\left(\gamma_{k}, \boldsymbol{x}^{(k)}\right) \leq q\left(\gamma_{k}, \boldsymbol{x}^{(k+1)}\right)
$$

Furthermore, since $\gamma_{k}<\gamma_{k+1}$, we know

$$
\begin{aligned}
q\left(\gamma_{k}, \boldsymbol{x}^{(k+1)}\right) & =f\left(\boldsymbol{x}^{(k+1)}\right)+\gamma_{k} P\left(\boldsymbol{x}^{(k+1)}\right) \\
& \leq f\left(\boldsymbol{x}^{(k+1)}\right)+\gamma_{k+1} P\left(\boldsymbol{x}^{(k+1)}\right) \\
& \leq q\left(\gamma_{k+1}, \boldsymbol{x}^{(k+1)}\right)
\end{aligned}
$$

Combining the two verifies the claim.

Claim 2. $P\left(\boldsymbol{x}^{(k+1)}\right) \leq P\left(\boldsymbol{x}^{(k)}\right)$.

Proof (Claim 2). By the optimality of $\boldsymbol{x}^{(k)}$ and $\boldsymbol{x}^{(k+1)}$ for their own problems, we know

$$
\begin{aligned}
q\left(\gamma_{k}, \boldsymbol{x}^{(k)}\right) & \leq q\left(\gamma_{k}, \boldsymbol{x}^{(k+1)}\right) \\
q\left(\gamma_{k+1}, \boldsymbol{x}^{(k+1)}\right) & \leq q\left(\gamma_{k+1}, \boldsymbol{x}^{(k)}\right)
\end{aligned}
$$

which are

$$
\begin{aligned}
f\left(\boldsymbol{x}^{(k)}\right)+\gamma_{k} P\left(\boldsymbol{x}^{(k)}\right) & \leq f\left(\boldsymbol{x}^{(k+1)}\right)+\gamma_{k} P\left(\boldsymbol{x}^{(k+1)}\right) \\
f\left(\boldsymbol{x}^{(k+1)}\right)+\gamma_{k+1} P\left(\boldsymbol{x}^{(k+1)}\right) & \leq f\left(\boldsymbol{x}^{(k)}\right)+\gamma_{k+1} P\left(\boldsymbol{x}^{(k)}\right)
\end{aligned}
$$

Adding the two above yields

$$
\left(\gamma_{k+1}-\gamma_{k}\right) P\left(\boldsymbol{x}^{(k+1)}\right) \leq\left(\gamma_{k+1}-\gamma_{k}\right) P\left(\boldsymbol{x}^{(k)}\right)
$$

Recalling $\gamma_{k+1}-\gamma_{k}>0$ completes the proof.

Claim 3. $f\left(\boldsymbol{x}^{(k+1)}\right) \geq f\left(\boldsymbol{x}^{(k)}\right)$.
Proof (Claim 3). Since $q\left(\gamma_{k}, \boldsymbol{x}^{(k)}\right) \leq q\left(\gamma_{k}, \boldsymbol{x}^{(k+1)}\right)$, we know

$$
f\left(\boldsymbol{x}^{(k)}\right)+\gamma_{k} P\left(\boldsymbol{x}^{(k)}\right) \leq f\left(\boldsymbol{x}^{(k+1)}\right)+\gamma_{k} P\left(\boldsymbol{x}^{(k+1)}\right)
$$

From Claim 2, we know $P\left(\boldsymbol{x}^{(k+1)}\right) \leq P\left(\boldsymbol{x}^{(k)}\right)$, hence

$$
f\left(\boldsymbol{x}^{(k+1)}\right) \geq f\left(\boldsymbol{x}^{(k)}\right)+\gamma_{k}\left(P\left(\boldsymbol{x}^{(k)}\right)-P\left(\boldsymbol{x}^{(k+1)}\right)\right) \geq f\left(\boldsymbol{x}^{(k)}\right)
$$

Claim 4. $f\left(\boldsymbol{x}^{*}\right) \geq q\left(\gamma_{k}, \boldsymbol{x}^{(k)}\right) \geq f\left(\boldsymbol{x}^{(k)}\right)$.

Proof (Claim 4). We know $P\left(x^{*}\right)=0$, and hence

$$
\begin{aligned}
f\left(\boldsymbol{x}^{*}\right) & =q\left(\gamma_{k}, \boldsymbol{x}^{*}\right) \\
& \geq q\left(\gamma_{k}, \boldsymbol{x}^{(k)}\right) \\
& =f\left(\boldsymbol{x}^{(k)}\right)+\gamma_{k} P\left(\boldsymbol{x}^{(k)}\right) \\
& \geq f\left(\boldsymbol{x}^{(k)}\right)
\end{aligned}
$$

Theorem. Suppose f is continuous and $\gamma_{k} \uparrow \infty$. Then any accumulation point of $\left\{\boldsymbol{x}^{(k)}\right\}$ is a solution to the constrained problem.

Proof. For simplicity, let $\boldsymbol{x}^{(k)}$ denote the subsequence which converges to $\hat{\boldsymbol{x}}$.
Since $f\left(\boldsymbol{x}^{(k)}\right) \leq f\left(\boldsymbol{x}^{*}\right)$ for all k (by Claim 4), we know

$$
f\left(\boldsymbol{x}^{*}\right) \geq \lim _{k \rightarrow \infty} f\left(\boldsymbol{x}^{(k)}\right)=f(\widehat{\boldsymbol{x}})
$$

Note that $q\left(\gamma_{k}, \boldsymbol{x}^{(k)}\right)$ is nondecreasing in k (by Claim 1) and bounded above by $f\left(\boldsymbol{x}^{*}\right)$ (by Claim 4), we know $q\left(\gamma_{k}, \boldsymbol{x}^{(k)}\right) \uparrow q^{*}$ for some $q^{*} \in \mathbb{R}$. Hence,

$$
\gamma_{k} P\left(\boldsymbol{x}^{(k)}\right)=q\left(\gamma_{k}, \boldsymbol{x}^{(k)}\right)-f\left(\boldsymbol{x}^{(k)}\right) \rightarrow q^{*}-f(\widehat{\boldsymbol{x}})
$$

Since $\gamma_{k} \rightarrow \infty$, we know $P\left(\boldsymbol{x}^{(k)}\right) \rightarrow 0$. Since P is continuous, we know $P(\widehat{x})=0$, i.e., \widehat{x} is feasible. Therefore $\widehat{\boldsymbol{x}}$ is optimal since $f(\widehat{\boldsymbol{x}}) \leq f\left(\boldsymbol{x}^{*}\right)$.

Penalty method requires solving one instance of

$$
\text { minimize } f(\boldsymbol{x})+\gamma P(\boldsymbol{x})
$$

with $\gamma=\gamma_{k}$ for every k.

Is it possible to obtain the solution with a single γ ?

Definition. We call P an exact penalty if there exists $\gamma>0$ such that the solution x^{*} of the unconstrained problem

$$
\text { minimize } f(\boldsymbol{x})+\gamma P(\boldsymbol{x})
$$

is also a solution of the constrained problem

$$
\begin{aligned}
\text { minimize } & f(\boldsymbol{x}) \\
\text { subject to } & \boldsymbol{x} \in \Omega
\end{aligned}
$$

However it turns out that it may be necessary for an exact penalty P to be non-differentiable.

Proposition. Let Ω be convex, x^{*} is on the boundary of Ω. If there exists a feasible direction \boldsymbol{d} at \boldsymbol{x}^{*} such that $\boldsymbol{d}^{\top} \nabla f\left(\boldsymbol{x}^{*}\right)>0$, then an exact penalty P must be non-differentiable.

Proof. Suppose not, then $\nabla P\left(\boldsymbol{x}^{*}\right)=0$ since $P(\boldsymbol{x})=0$ for all $\boldsymbol{x} \in \Omega$. Let $g(\boldsymbol{x})=f(\boldsymbol{x})+\gamma P(\boldsymbol{x})$, then

$$
\nabla g\left(\boldsymbol{x}^{*}\right)=\nabla f\left(\boldsymbol{x}^{*}\right)+\gamma \nabla P\left(\boldsymbol{x}^{*}\right)=\nabla f\left(\boldsymbol{x}^{*}\right)
$$

and hence $\boldsymbol{d}^{\top} g\left(\boldsymbol{x}^{*}\right)=\boldsymbol{d}^{\top} \nabla f\left(\boldsymbol{x}^{*}\right)>0$, which means \boldsymbol{x}^{*} is not a local minimizer of g, contradiction.

Example. Consider the problem

$$
\begin{aligned}
\operatorname{minimize} & 5-3 x \\
\text { subject to } & x \in[0,1]
\end{aligned}
$$

We can see $x^{*}=1$ which is on the boundary, and $f^{\prime}\left(x^{*}\right)=-3$ aligns with the feasible direction $d=-1$ at x^{*}.

If we use a differentiable penalty function P, then $P^{\prime}\left(x^{*}\right)=0$. Let

$$
g(x)=f(x)+\gamma P(x)
$$

then $g^{\prime}\left(x^{*}\right)=f^{\prime}\left(x^{*}\right)+\gamma P^{\prime}\left(x^{*}\right)=-3 \neq 0$, which means P cannot be an exact penalty function.

Remark. However, if $\boldsymbol{d}^{\top} \nabla f\left(\boldsymbol{x}^{*}\right) \leq 0$ for any feasible direction \boldsymbol{d} at \boldsymbol{x}, we may still be able to find a differentiable exact penalty function P.

