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We know that the gradient method proceeds as

x(k+1) = x(k) + αkd
(k)

where d(k) is a descent direction (often chosen as a function of g(k)).

However, x(k+1) is not necessarily in the feasible set Ω.

Hence the projected gradient (PG) method proceeds as

x(k+1) = Π(x(k) + αkd
(k))

in order that x(k) ∈ Ω for all k. Here Π(x) is the projection of x onto Ω.
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Definition. The projection Π onto Ω is defined by

Π(z) = arg min
x∈Ω

‖x− z‖

Namely, Π(x) is the “closest point” in Ω to x.

Note that Π(x) is itself an optimization problem, which may not have closed-
form or be easy to solve in most cases.
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Example. Find the projection operators Π(x) for the following sets Ω:

1. Ω = {x ∈ Rn : ‖x‖∞ ≤ 1}

2. Ω = {x ∈ Rn : ai ≤ xi ≤ bi, ∀ i}

3. Ω = {x ∈ Rn : ‖x‖ ≤ 1}

4. Ω = {x ∈ Rn : ‖x‖ = 1}

5. Ω = {x ∈ Rn : ‖x‖1 ≤ 1}

6. Ω = {x ∈ Rn : Ax = 0} where A ∈ Rm×n with m ≤ n is full rank.
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Example. Consider the constrained optimization problem:

minimize
1

2
x>Qx

subject to ‖x‖2 = 1

where Q � 0. Apply the PG method with a fixed step size α > 0 to this
problem. Specifically:

• Write down the explicit formula of x(k+1) in terms of x(k) (assume never
projecting 0).

• Is it possible to ensure convergence when α is sufficiently small?

• Show that if α ∈ (0, 1
λmax

) and x(0) is not orthogonal to the smallest

eigenvector corresponding to λmin, then x(k) converges. Here λmax (λmin)
is the largest (smallest) eigenvalue of Q.
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Solution. We can see that the solution should be a unit eigenvector corre-
sponding to λmin.

Recall that Π(x) = x
‖x‖ for all x 6= 0.

We also know ∇f(x) = Qx, and x(k) − α∇f(x(k)) = (I − αQ)x(k).

Therefore, PG with step size α is given by

x(k+1) = βk(I − αQ)x(k), where βk =
1

‖(I − αQ)x(k)‖

Note that, if x(0) is an eigenvector of Q corresponding to eigenvalue λ, then

x(1) = β0(I − αQ)x(0) = β0(1− αλ)x(0) = x(0)

and hence x(k) = x(0) for all k.
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Solution (cont.) Denote λ1 ≤ · · · ≤ λn the eigenvalues of Q, and v1, . . . ,vn
the corresponding eigenvectors.

Now assume that

x(k) = y
(k)
1 v1 + · · ·+ y

(k)
n vn

Then we have

x(k+1) = Π((I−αQ)x(k)) = βky
(k)
1 (1−αλ1)v1+· · ·+βky

(k)
n (1−αλn)vn

Denote β(k) =
∏k−1
j=0 βj, then

y
(k)
i = βk−1y

(k−1)
i (1− αλi) = · · · = β(k)y

(0)
i (1− αλi)k
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Solution (cont.) Therefore, we have

x(k) =
n∑
i=1

y
(k)
i vi = y

(k)
1

v1 +
n∑
i=2

y
(k)
i

y
(k)
1

vi


Furthermore,

y
(k)
i

y
(k)
1

=
β(k)y

(0)
i (1− αλi)k

β(k)y
(0)
1 (1− αλ1)k

=
y

(0)
i

y
(0)
1

(
1− αλi
1− αλ1

)k

Note that y(0)
1 6= 0 (since x(0) is not orthogonal to the eigenvector corre-

sponding to λ1). As 0 < α < 1
λn

, we have

0 <
1− αλi
1− αλ1

< 1 ⇒
(

1− αλi
1− αλ1

)k
→ 0 as k →∞

for all λi > λ1. Hence x(k) → v1.
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Projected gradient (PG) method for optimization with linear constraint:

minimize f(x)

subject to Ax = b

Then PG is given by

x(k+1) = Π(x(k) − αk∇f(x(k)))

where Π is the projection onto Ω := {x ∈ Rn : Ax = b}.
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We first consider the orthogonal projection onto the hyperplane Ψ = {x ∈
Rn : Ax = 0}:

For any v ∈ Rn, the projection onto Ψ is the solution to

minimize
1

2
‖x− v‖2

subject to Ax = 0

Let P : Rn → Rn denote this projector, i.e., Pv is the point on Ψ closest to v.
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The Lagrange function is

l(x,λ) =
1

2
‖x− v‖2 + λ>Ax

Hence the Lagrange (KKT) condition is

(x− v) +A>λ = 0

Ax = 0

Left-multiplying the first equation by A and using Ax = 0, we obtain

λ = (AA>)−1Av

x = (I −A>(AA>)−1A)v

Denote the projector onto Ψ by

P = I −A>(AA>)−1A

Thus, the projection of v onto Ψ is Pv.
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Proposition. The projector P has the following properties:

1. P = P>

2. P 2 = P .

3. Pv = 0 iff ∃λ ∈ Rm s.t. v = A>λ. Namely N (P ) = R(A>).

Proof. Items 1 and 2 are easy to verify.

For item 3: (⇒) If Pv = 0, then v = A>(AA>)−1Av. Letting λ =

(AA>)−1Av yields v = A>λ.

(⇐) Suppose v = A>λ, then

Pv = (I −A>(AA>)−1A)A>λ = A>λ−A>λ = 0.
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Similar to the derivation of P , we can obtain the projection onto Ω:

minimize
1

2
‖x− v‖2

subject to Ax = b

(Write down the Lagrange function and KKT condition, and solve for (x,λ).)

The projection Π of v onto Ω is

Π(v) = Pv −A>(AA>)−1b
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Proposition. Let x∗ ∈ Rn be feasible (i.e., Ax∗ = b), then P∇f(x∗) = 0 iff
x∗ satisfies the Lagrange condition.

Proof. We have

P∇f(x∗) = 0 ⇐⇒ ∇f(x∗) ∈ N (P )

⇐⇒ ∇f(x∗) ∈ R(A>)

⇐⇒ ∇f(x∗) = −A>λ∗ for some λ∗ ∈ Rm
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Now we are ready to write down explicitly the PG:

x(k+1) = Π(x(k) − αk∇f(x(k))) (∵ PG definition)

= P (x(k) − αk∇f(x(k)))−A>(AA>)−1b (∵ Relation of Π and P )

= Px(k) −A>(AA>)−1b− Pαk∇f(x(k))

= Π(x(k))− αkP∇f(x(k)) (∵ Relation of Π and P )

= x(k) − αkP∇f(x(k)) (∵ x(k) ∈ Ω)

The only difference from standard gradient method is the additional P .

Note that if x(0) ∈ Ω, then x(k) ∈ Ω for all k.
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Now we can consider the choice of αk. For example, we can use the projected
steepest descent (PSD) method:

αk = arg min
α>0

f(x(k) − αP∇f(x(k)))
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Theorem. Let x(k) be generated by PSD. IfP∇f(x(k)) 6= 0, then f(x(k+1)) <

f(x(k)).

Proof. For such x(k), consider the line search function

φ(α) := f(x(k) − αP∇f(x(k))).

Then we have

φ′(α) = −∇f(x(k) − αP∇f(x(k)))>P∇f(x(k)).

Hence

φ′(0) = −∇f(x(k))>P∇f(x(k))

= −∇f(x(k))>P 2∇f(x(k))

= −‖P∇f(x(k))‖2 < 0,

and therefore φ(αk) < φ(0), i.e., f(x(k+1)) < f(x(k)).
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P∇f(x∗) = 0 is sufficient for global optimality if f is convex:

Theorem. Let f be convex and x∗ be feasible. Then P∇f(x∗) = 0 iff x∗ is
a global minimizer.

Proof. From the previous proposition and convexity of f , we know

P∇f(x∗) = 0 ⇐⇒ x∗ satisfies the Lagrange condition

⇐⇒ x∗ is a global minimizer
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Lagrange algorithm

We first consider the Lagrange algorithm for equality-constrained optimization:

minimize f(x)

subject to h(x) = 0

where f,h ∈ C2.

Recall the Lagrange function l : Rn+m → R is

l(x,λ) = f(x) + h(x)>λ.

We denote its Hessian with respect to x by

∇2
xl(x,λ) = ∇2

xf(x) +D2
xh(x)>λ ∈ Rn×n
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Recall the Lagrange condition is

∇f(x) +Dh(x)>λ = 0 ∈ Rn

h(x) = 0 ∈ Rm

The Lagrange algorithm is given by

x(k+1) = x(k) − αk(∇f(x(k)) +Dh(x(k))>λ(k))

λ(k+1) = λ(k) + βkh(x(k))

which is like “gradient descent for x” and “gradient ascent for λ” of l.

Here αk, βk ≥ 0 are step sizes. WLOG, we can assume αk = βk for all k by
scaling λ(k) properly.

It is easy to verify that, if (x(k),λ(k)) → (x∗,λ∗), then (x∗,λ∗) satisfies the
Lagrange condition.
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We denote w = [x;λ] ∈ Rn+m and

u(w) =

[
x− α(∇f(x) +Dh(x)>λ)

λ+ αh(x)

]
∈ Rn+m

Hence the Jacobian of u is

∇u(w) = I + α

[
−∇2

xl(x,λ) −Dh(x)>

Dh(x) 0

]
∈ R(n+m)×(n+m)

Note that

w∗ = [x∗;λ∗] is a KKT point ⇐⇒ w∗ = u(w∗)

We denote

M :=

[
−∇2

xl(x
∗,λ∗) −Dh(x∗)>

Dh(x∗) 0

]
and hence ∇u(w∗) = I + αM .
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Now we study the (local) convergence of the Lagrange algorithm when x∗ is
a regular point and ∇2

xl(x
∗,λ∗) � 0. For simplicity, we assume αk = α

(constant step size).

Claim 1. ‖∇u(w∗)‖ < 1 if α > 0 is sufficiently small.

Proof (Claim 1). It suffices to show real part of any eigenvalue of M is < 0.

Let λ be an eigenvalue of M and w = [x;λ] ∈ Cn+m be a corresponding
eigenvector, i.e., Mw = λw. (Note w 6= 0.)

If x = 0, then

Mw =

[
−∇2

xl(x
∗,λ∗) −Dh(x∗)>

Dh(x∗) 0

] [
0
λ

]
=

[
−Dh(x∗)>λ

0

]
= λ

[
0
λ

]
But Dh(x∗) has full row rank, so λ = 0, and hence w = 0, contradiction.
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Proof (Claim 1) cont. Therefore x 6= 0. We know ∗

<(wHMw) = <(wHλw) = <(λ)‖w‖2

On the other hand †

<(wHMw) = −<(xH∇2
xl(x

∗,λ∗)x) < 0

Equating the two yields <(λ) < 0.

As all eigenvalues of M have negative real part, we know ‖I +αM‖ < 1 for
sufficiently small α > 0.

This completes the proof of Claim 1.

∗wH is the complex conjugate of w.
†Recall that if Q � 0, then xHQx = ‖<(x)‖2

Q + ‖=(x)‖2
Q.
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Claim 2. There exist η > 0 and κ ∈ (0,1) such that

‖∇u(w)‖ ≤ κ < 1, ∀w ∈ B(w∗, η)

where B(w∗, η) = {w : ‖w −w∗‖ ≤ η}.

Proof (Claim 2). The claim follows ‖∇u(w∗)‖ < 1 in Claim 1 and the conti-
nuity of ∇u.
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Claim 3. If w(0) ∈ B(w∗, η), then for all k there is

‖w(k+1) −w∗‖ ≤ κ‖w(k) −w∗‖

Proof (Claim 3). Let G : Rn+m → R(n+m)×(n+m) be the function s.t.

u(w(k))− u(w∗) = G(w(k))(w(k) −w∗)

from the Mean Value Theorem. Hence

‖w(k+1) −w∗‖ = ‖u(w(k))− u(w∗)‖
= ‖G(w(k))(w(k) −w∗)‖
≤ ‖G(w(k))‖ · ‖w(k) −w∗‖
≤ κ‖w(k) −w∗‖

Claim 3 implies that locally w(k) → w∗ at a linear rate.
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Now consider Lagrange algorithm for inequality-constrained optimization:

minimize f(x)

subject to g(x) ≤ 0

The Lagrange function is

l(x,µ) = f(x) + g(x)>µ

The Lagrange condition is

∇f(x) +Dg(x)>µ = 0

g(x) ≤ 0

µ ≥ 0

g(x)>µ = 0

Xiaojing Ye, Math & Stat, Georgia State University 25



The Lagrange algorithm is given by

x(k+1) = x(k) − αk(∇f(x(k)) +Dg(x(k))>µ(k))

µ(k+1) = [µ(k) + βkg(x(k))]+

where [·]+ means max(·,0) componentwisely.

We denote w = [x;µ] ∈ Rn+p and

Π(w) =

[
x

[µ]+

]
, u(w) =

[
x− α(∇f(x) +Dg(x)>µ)

µ+ αg(x)

]

It is easy to verify that

w∗ = [x∗;µ∗] is a KKT point ⇐⇒ w∗ = Π(u(w∗))
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Let w∗ be a KKT point, and

g(w∗) =

[
gA(w∗)
gI(w

∗)

]
∈ Rp = Rp1+p2, where 0 = gA(w) ∈ Rp1

0 < gI(w) ∈ Rp2

“A” and “I” stand for “active” and “inactive”.

Similarly, denote

µ =

[
µA
µI

]
, wA =

[
x
µA

]
, uA(wA) =

[
x− α(∇f(x) +DgA(x)>µA)

µA + αgA(x)

]
and hence

∇uA(wA) = I + α

[
−∇2

xl(x,µA) −DgA(x)>

DgA(x) 0

]
∈ R(n+p1)×(n+p1)
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Now we study the (local) convergence of the Lagrange algorithm when x∗ is
a regular point and ∇2

xl(x
∗,λ∗) � 0. For simplicity, we assume αk = α

(constant step size).

We again define G such that

u(w(k))− u(w∗) = G(w(k))(w(k) −w∗)

using Mean Value Theorem. Let

M =

[
−∇2

xl(x
∗,µ∗A) −DgA(x∗)>

DgA(x∗) 0

]
∈ R(n+p1)×(n+p1)

Similar as before, we can show all eigenvalues of M have negative real part,
and hence ‖I + αM‖ < 1 for α sufficiently small.

Also note that µ∗I = 0 as it corresponds to the inactive constraints.
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Claim 1. There exist η > 0 and κA ∈ (0,1), such that

‖∇uA(wA)‖ ≤ κA
gI(x) ≤ −δe

for all w ∈ B(w∗, η).

Proof. Note that gI(w∗) < 0. Others are similar as before.

Now we set the following values:

• Let κ = max{1, ‖G(w)‖ : w ∈ B(w∗, η)} ≥ 1

• Let ε > 0 be small enough such that εκε/(αδ) ≤ η.

• Let k0 = dε/(αδ)e.

• Let w(0) ∈ B(w∗, ε).
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Claim 2. For any k ≤ k0, there is ‖w(k) −w∗‖ ≤ εκk.

Proof (Claim 2). We use induction.

First, there is ‖w(0) −w∗‖ ≤ ε = εκ0.

Assume the claim holds for k, then

‖w(k+1) −w∗‖ ≤ ‖G(w(k))‖ · ‖w(k) −w∗‖
≤ κ · ‖w(k) −w∗‖
≤ κ · (εκk)

= εκk+1

which completes the proof of the claim.

From Claim 2, we know ‖w(k) −w∗‖ ≤ η for k = 0, . . . , k0.

Xiaojing Ye, Math & Stat, Georgia State University 30



Claim 3. There is µ(0)
I ≥ · · · ≥ µ(k0)

I = 0.

Proof (Claim 3). We know gI(x(k)) ≤ −δe for k = 0, . . . , k0. Also

µ(k+1)
I = [µ(k)

I + αgI(x
(k))]+ ≤ [µ(k)

I − αδe]+ ≤ µ
(k)
I

which implies that µ(k)
I is non-increasing.

Suppose µ(k0)
i > 0 for some i ∈ I (index set of inactive constraints), then

0 < µ
(k0)
i = µ

(k0−1)
i + αgi(x

(k0−1)) = · · ·

= µ
(0)
i + α

k0−1∑
k=0

gi(x
(k)) ≤ µ(0)

i − αδk0 ≤ ε− αδk0

since µ(0)
i ≤ ‖w(0) −w∗‖ ≤ ε. But this contradicts to k0 = d εαδe ≥

ε
αδ .

Therefore, within k0 iterations, µ(k)
I = 0.
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Claim 4. For any k ≥ k0, there are

µ(k)
I = 0

‖w(k) −w∗‖ ≤ η

‖w(k+1)
A −w∗A‖ ≤ κA‖w

(k)
A −w∗A‖

Proof (Claim 4). The first two hold for k = k0 (by Claims 3 & 2 resp.), and

‖w(k0+1)
A −w∗A‖ = ‖Π(uA(w(k0)

A ))−Π(uA(w∗A))‖

≤ ‖uA(w(k0)
A )− uA(w∗A)‖

≤ ‖GA(w(k)
A )‖ · ‖w(k0)

A −w∗A‖

≤ κA · ‖w
(k0)
A −w∗A‖
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Proof (Claim 4) cont.

Assume the results hold for k ≥ k0, then from gI(w
(k)) ≤ −δe, we have

µ(k+1)
I = [µ(k)

I + αgI(x
(k))]+ ≤ [0− αδe]+ = 0

Note that this implies ‖w(k+1)
A −w∗A‖ = ‖w(k+1) −w∗‖ for all k ≥ k0.

Moreover, we have w(k+2)
A = Π(uA(w(k+1)

A )) and

‖w(k+2)
A −w∗A‖ ≤ κA · ‖w

(k+1)
A −w∗A‖ ≤ η

which completes the proof.

Remark. Claim 4 implies that locally w(k) → w∗ at a linear rate: if w(0) is
sufficiently close to w∗, then w(k) → w∗ linearly, provided that x∗ is a regular
KKT point and ∇2

xl(x
∗,λ∗) � 0.
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Penalty method

We consider constrained optimization

minimize f(x)

subject to x ∈ Ω

Note that such problem conceptually include optimization problems with equal-
ity and inequality constraints. For example, Ω = {x ∈ Rn : g(x) ≤ 0}.

Instead of the constrained problem, we consider to impose penalty if x ∈ Ω is
violated:

minimize f(x) + γP (x)

where P : Rn → R+ is the penalty function, and γ > 0 is the penalty (weight)
parameter.
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Definition. The function P : Rn → R+ is called a penalty function if

1. P is continuous.

2. P (x) ≥ 0 for all x.

3. P (x) = 0 iff x ∈ Ω.

Example. Let Ω = {x ∈ Rn : g(x) ≤ 0 ∈ Rp}, then we can choose

P (x) =
p∑

i=1

[gi(x)]+

P (x) =
p∑

i=1

([gi(x)]+)2

and so on.
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Example. Let g(x) = [g1(x); g2(x)] where g1(x) = x − 2 and g2(x) =

−(x+ 1)3. Consider the constraint set

Ω = {x ∈ R : g1(x) ≤ 0, g2(x) ≤ 0}

Then we have

[g1(x)]+ = max{0, g1(x)} =

0 if x ≤ 2

x− 2 otherwise

[g2(x)]+ = max{0, g2(x)} =

0 if x ≥ −1

−(x+ 1)3 otherwise

We can set

P (x) = [g1(x)]+ + [g2(x)]+ =


x− 2 if x > 2

0 if − 1 ≤ x ≤ 2

−(x+ 1)3 if x < −1
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Example. Consider the problem below with Q � 0:

minimize x>Qx

subject to ‖x‖2 = 1

We can set the penalty function P (x) = (‖x‖2−1)2 (which is differentiable),
and consider

minimize x>Qx+ γ(‖x‖2 − 1)2

For any fixed γ > 0, the FONC of its solution xγ is

2Qxγ + 4γ(‖xγ‖2 − 1)xγ = 0

which yields

Qxγ = 2γ(1− ‖xγ‖2)xγ = λγxγ

where λγ := 2γ(1 − ‖xγ‖2) is a scalar. This means λγ ∈ (0, λmax] is an
eigenvalue of Q, and xγ is a corresponding eigenvector. Note that

0 < 1− ‖xγ‖2 ≤
λmax

2γ
= O

(
1

γ

)
.
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We have converted constrained problem into unconstrained ones. Now define

q(γk,x) = f(x) + γkP (x)

x(k) = arg min
x∈Rn

q(γk,x)

for every k ∈ N.

The idea is to let γk increase (hence greater penalty) and apply an uncon-
strained optimization method to solve for x(k) for each k.

Then we hope that an accumulation point‡ of {x(k)} is a KKT point x∗.

‡x∗ is called an accumulation point (also called limit point) of {x(k)} if there exists a subse-
quence of x(k) that converges to x∗.
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Now let γk > 0 be increasing, we have a series of claims.

Claim 1. q(γk,x(k)) ≤ q(γk+1,x
(k+1)).

Proof (Claim 1). Since x(k) is optimal to q(γk,x), we know

q(γk,x
(k)) ≤ q(γk,x(k+1))

Furthermore, since γk < γk+1, we know

q(γk,x
(k+1)) = f(x(k+1)) + γkP (x(k+1))

≤ f(x(k+1)) + γk+1P (x(k+1))

≤ q(γk+1,x
(k+1))

Combining the two verifies the claim.
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Claim 2. P (x(k+1)) ≤ P (x(k)).

Proof (Claim 2). By the optimality of x(k) and x(k+1) for their own problems,
we know

q(γk,x
(k)) ≤ q(γk,x(k+1))

q(γk+1,x
(k+1)) ≤ q(γk+1,x

(k))

which are

f(x(k)) + γkP (x(k)) ≤ f(x(k+1)) + γkP (x(k+1))

f(x(k+1)) + γk+1P (x(k+1)) ≤ f(x(k)) + γk+1P (x(k))

Adding the two above yields

(γk+1 − γk)P (x(k+1)) ≤ (γk+1 − γk)P (x(k))

Recalling γk+1 − γk > 0 completes the proof.
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Claim 3. f(x(k+1)) ≥ f(x(k)).

Proof (Claim 3). Since q(γk,x(k)) ≤ q(γk,x(k+1)), we know

f(x(k)) + γkP (x(k)) ≤ f(x(k+1)) + γkP (x(k+1))

From Claim 2, we know P (x(k+1)) ≤ P (x(k)), hence

f(x(k+1)) ≥ f(x(k)) + γk(P (x(k))− P (x(k+1))) ≥ f(x(k))
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Claim 4. f(x∗) ≥ q(γk,x(k)) ≥ f(x(k)).

Proof (Claim 4). We know P (x∗) = 0, and hence

f(x∗) = q(γk,x
∗)

≥ q(γk,x(k))

= f(x(k)) + γkP (x(k))

≥ f(x(k))
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Theorem. Suppose f is continuous and γk ↑ ∞. Then any accumulation point
of {x(k)} is a solution to the constrained problem.

Proof. For simplicity, let x(k) denote the subsequence which converges to x̂.

Since f(x(k)) ≤ f(x∗) for all k (by Claim 4), we know

f(x∗) ≥ lim
k→∞

f(x(k)) = f(x̂)

Note that q(γk,x(k)) is nondecreasing in k (by Claim 1) and bounded above
by f(x∗) (by Claim 4), we know q(γk,x

(k)) ↑ q∗ for some q∗ ∈ R. Hence,

γkP (x(k)) = q(γk,x
(k))− f(x(k))→ q∗ − f(x̂)

Since γk → ∞, we know P (x(k)) → 0. Since P is continuous, we know
P (x̂) = 0, i.e., x̂ is feasible. Therefore x̂ is optimal since f(x̂) ≤ f(x∗).
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Penalty method requires solving one instance of

minimize f(x) + γP (x)

with γ = γk for every k.

Is it possible to obtain the solution with a single γ?

Definition. We call P an exact penalty if there exists γ > 0 such that the
solution x∗ of the unconstrained problem

minimize f(x) + γP (x)

is also a solution of the constrained problem

minimize f(x)

subject to x ∈ Ω
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However it turns out that it may be necessary for an exact penalty P to be
non-differentiable.

Proposition. Let Ω be convex, x∗ is on the boundary of Ω. If there exists a
feasible direction d at x∗ such that d>∇f(x∗) > 0, then an exact penalty P
must be non-differentiable.

Proof. Suppose not, then ∇P (x∗) = 0 since P (x) = 0 for all x ∈ Ω. Let
g(x) = f(x) + γP (x), then

∇g(x∗) = ∇f(x∗) + γ∇P (x∗) = ∇f(x∗)

and hence d>g(x∗) = d>∇f(x∗) > 0, which means x∗ is not a local mini-
mizer of g, contradiction.
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Example. Consider the problem

minimize 5− 3x

subject to x ∈ [0,1]

We can see x∗ = 1 which is on the boundary, and f ′(x∗) = −3 aligns with
the feasible direction d = −1 at x∗.

If we use a differentiable penalty function P , then P ′(x∗) = 0. Let

g(x) = f(x) + γP (x),

then g′(x∗) = f ′(x∗) + γP ′(x∗) = −3 6= 0, which means P cannot be an
exact penalty function.

Remark. However, if d>∇f(x∗) ≤ 0 for any feasible direction d at x, we may
still be able to find a differentiable exact penalty function P .
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