MATH 4211/6211 – Optimization Convex Optimization Problems

Xiaojing Ye Department of Mathematics & Statistics Georgia State University

Definition. A set $\Omega \subset \mathbb{R}^n$ is called *convex* if for any $x, y \in \Omega$, there is $\alpha x + (1 - \alpha)y \in \Omega$ for all $\alpha \in [0, 1]$

Definition. A function $f : \Omega \to \mathbb{R}$, where Ω is a convex set, is called *convex* if for any $x, y \in \Omega$ and $\alpha \in [0, 1]$, there is

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y).$$

Moreover, f is called *strictly convex* if for any distinct $x, y \in \Omega$ and $\alpha \in (0, 1)$, there is

$$f(\alpha x + (1 - \alpha)y) < \alpha f(x) + (1 - \alpha)f(y)$$

A function f is called (strictly) concave if -f is (strictly) convex.

There is an alternative definition based on the convexity of the epigraph of f.

Definition. The graph of $f : \Omega \to \mathbb{R}$ is defined by

$$\{[x;f(x)]\in \mathbb{R}^{n+1}:x\in \Omega\}$$

Definition. The *epigraph* of $f : \Omega \to \mathbb{R}$ is defined by

$$\operatorname{epi}(f) := \{ [x; \beta] \in \mathbb{R}^{n+1} : x \in \Omega, \beta \ge f(x) \}$$

Definition. A function $f : \Omega \to \mathbb{R}$, where Ω is a convex set, is called *convex* if epi(f) is a convex set.

Example. Let $f(x) = x_1x_2$ be defined on $\Omega := \{x : x \ge 0\}$. Is f convex?

Solution. *f* is *not* convex. The set $\Omega \subset \mathbb{R}^2$ is convex. But if we choose x = [1; 2] and y = [2; 1], then

$$\alpha x + (1 - \alpha)y = [2 - \alpha; 1 + \alpha].$$

On the one hand

$$f(\alpha x + (1 - \alpha)y) = 2 + \alpha - \alpha^2.$$

On the other hand,

$$\alpha f(\boldsymbol{x}) + (1 - \alpha)f(\boldsymbol{y}) = 2.$$

Choosing $\alpha = 1/2$ yields

$$f(\alpha x + (1 - \alpha)y) > \alpha f(x) + (1 - \alpha)f(y)$$

which means that f is not convex.

There are several *sufficient and necessary* conditions for the convexity of f.

Theorem. If $f : \mathbb{R}^n \to \mathbb{R}$ is C^1 and Ω is convex, then f is convex on Ω iff for all $x, y \in \Omega$,

$$f(\boldsymbol{y}) \geq f(\boldsymbol{x}) +
abla f(\boldsymbol{x})^{ op} (\boldsymbol{y} - \boldsymbol{x})$$

Proof. (\Rightarrow) Suppose *f* is convex, then for any $x, y \in \Omega$ and $\alpha \in (0, 1]$,

$$f((1-\alpha)x + \alpha y) \le (1-\alpha)f(x) + \alpha f(y)$$

Rearrange terms to obtain

$$\frac{f(\boldsymbol{x} + \alpha(\boldsymbol{y} - \boldsymbol{x})) - f(\boldsymbol{x})}{\alpha} \leq f(\boldsymbol{y}) - f(\boldsymbol{x})$$

Taking the limit as $\alpha \rightarrow 0$ yields

$$f(\boldsymbol{y}) \geq f(\boldsymbol{x}) + \nabla f(\boldsymbol{x})^{\top} (\boldsymbol{y} - \boldsymbol{x})$$

Proof (cont.) (\Leftarrow) For any $x, y \in \Omega$ and $\alpha \in [0, 1]$, define $x_{\alpha} = \alpha x + (1 - \alpha)y$. Then

$$egin{aligned} f(oldsymbol{x}) &\geq f(oldsymbol{x}_lpha) +
abla f(oldsymbol{x}_lpha)^ op (oldsymbol{x}_lpha - oldsymbol{x}) \ f(oldsymbol{y}) &\geq f(oldsymbol{x}_lpha) +
abla f(oldsymbol{x}_lpha)^ op (oldsymbol{x}_lpha - oldsymbol{y}) \end{aligned}$$

Multiplying the two inequalities by α and $1 - \alpha$ respectively, and adding together yields

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y)$$

Theorem. Let $f : \mathbb{R}^n \to \mathbb{R}$ be C^2 and Ω be convex, then f is convex on Ω iff $\nabla^2 f(x) \succeq 0$ for all $x \in \Omega$.

Proof. (\Rightarrow) If not, then exist $x \in \Omega$ and $d \in \mathbb{R}^n$, such that

$$d^{ op}
abla^2 f(x) d < 0$$

Since $\nabla^2 f(x)$ is continuous, there exists s > 0 sufficiently small, such that for $y = x + sd \in \Omega$, there is

$$egin{aligned} f(y) &= f(x) +
abla f(x)^{ op} (y-x) + rac{1}{2} (y-x)^{ op}
abla^2 f(x+td) (y-x) \ &< f(x) +
abla f(x)^{ op} (y-x) \end{aligned}$$

for some $t \in (0, s)$ since $(y - x)^\top \nabla^2 f(x + td)(y - x) = s^2 d^\top \nabla^2 f(x + td)d < 0$. Hence f is not convex, a contradiction.

Proof (cont.) (\Leftarrow) For any $x, y \in \Omega$, there is

$$egin{aligned} f(y) &= f(x) +
abla f(x)^ op (y-x) + rac{1}{2} (y-x)^ op
abla^2 f(x+td)(y-x) \ &\geq f(x) +
abla f(x)^ op (y-x) \end{aligned}$$

where d := y - x and $t \in (0, 1)$. Note that we used the fact that $\nabla^2 f(x + td) \succeq 0$. Hence *f* is convex.

Examples. Determine if any of the following functions is convex.

$$f_1(x) = -8x^2$$

$$f_2(x) = 4x_1^2 + 3x_2^2 + 5x_3^2 + 6x_1x_2 + x_1x_3 - 3x_1 - 2x_2 + 15$$

$$f_3(x) = 2x_1x_2 - x_1^2 - x_2^2$$

Solution. $f_1''(x) = -16 < 0$, so f_1 is concave.

For f_2 , we have

$$\nabla^2 f_2 = \begin{bmatrix} 8 & 6 & 1 \\ 6 & 6 & 0 \\ 1 & 0 & 10 \end{bmatrix}$$

whose leading principal minors are 8, 12, 114. Hence f_2 is convex.

For f_3 , we have

$$\nabla^2 f_3 = \begin{bmatrix} -2 & 2\\ 2 & -2 \end{bmatrix}$$

whose eigenvalues are -4 and 0, hence f_3 is negative semidefinite.

Theorem. Suppose $f : \Omega \to \mathbb{R}$ is convex. Then x is a global minimizer of f on Ω iff it is a local minimizer of f.

Proof. The necessity is trivial. Suppose x is a local minimizer, then $\exists r > 0$ such that $f(x) \leq f(z)$ for all $z \in B(x, r)$. If $\exists y$, such that f(x) > f(y), then let $\alpha = \frac{r}{\|y-x\|}$ and

$$x_{\alpha} = (1-\alpha)x + \alpha y = x + rac{r}{\|y-x\|}(y-x).$$

Then $x_{\alpha} \in B(x,r)$ and

$$f(\boldsymbol{x}_{\alpha}) \geq f(\boldsymbol{x}) > (1-\alpha)f(\boldsymbol{x}) + \alpha f(\boldsymbol{y}),$$

which is a contradiction. Hence x must be a global minimizer.

Lemma. Suppose $f : \Omega \to \mathbb{R}$ is convex. Then the *sub-level set* of f

$$\Gamma_c = \{x \in \Omega : f(x) \le c\}$$

is empty or convex for any $c \in \mathbb{R}$.

Proof. If $x, y \in \Gamma_c$, then $f(x), f(y) \leq c$. Since f is convex, we have $f(\alpha x + (1 - \alpha)y) \leq \alpha f(x) + (1 - \alpha)f(y) \leq c$ i.e., $\alpha x + (1 - \alpha)y \in \Gamma_c$ for all $\alpha \in [0, 1]$. Hence Γ_c is a convex set. **Corollary.** Suppose $f : \Omega \to \mathbb{R}$ is convex. Then the set of all global minimizers of f over Ω is convex.

Proof. Let $f^* = \min_{x \in \Omega} f(x)$. Then Γ_{f^*} is the set of all global minimizers. By the lemma above, we know Γ_c is a convex set. **Lemma.** Suppose $f : \Omega \to \mathbb{R}$ is convex and \mathcal{C}^1 . Then x^* is a global minimizer of f over Ω iff

$$abla f(x^*)^ op (x-x^*) \geq 0, \quad orall \, x \in \Omega.$$

Proof. (\Rightarrow) If not, then $\exists x \in \Omega$, s.t.

$$abla f(x^*)^ op (x-x^*) < 0$$

Denote $x_{\alpha} = (1 - \alpha)x^* + \alpha x = x^* + \alpha(x - x^*)$ for $\alpha \in (0, 1)$. Since $f \in C^1$, we know there exists α small enough, s.t.

$$abla f(\boldsymbol{x}_{lpha'})^{ op}(\boldsymbol{x}-\boldsymbol{x}^*) < 0, \quad \forall \, lpha' \in (0, lpha)$$

Proof (cont.) Moreover, there exists $\alpha' \in (0, \alpha)$ s.t.

$$egin{aligned} f(x_lpha) &= f(x^*) +
abla f(x_{lpha'})^{ op} (x_lpha - x^*) \ &= f(x^*) + lpha
abla f(x_{lpha'})^{ op} (x - x^*) \ &< f(x^*) \end{aligned}$$

which contradicts to x^* being a global minimizer.

(\Leftarrow) For all $x \in \Omega$, there is $f(x) \ge f(x^*) + \nabla f(x^*)^\top (x - x^*) \ge f(x^*)$ Hence x^* is a global minimizer. **Theorem.** Suppose $f : \Omega \to \mathbb{R}$ is convex and C^1 . Then x^* is a global minimizer of f over Ω iff for any feasible direction d at x^* there is

 $d^{ op}
abla f(x^*) \geq 0.$

Proof. (\Rightarrow) Let *d* be feasible, then $\exists x \in \Omega$ s.t. $x - x^* = \alpha d$ for some $\alpha > 0$. Hence by the Lemma above, we have

$$abla f(x^*)^{ op}(x-x^*) = lpha
abla f(x^*)^{ op} d \ge 0.$$

So $abla f(x^*)^ op d \geq 0.$

(\Leftarrow) For any $x \in \Omega$, we know $x_{\alpha} = (1 - \alpha)x^* + \alpha x \in \Omega$ for all $\alpha \in (0, 1)$. Hence $d = x - x^* = (x_{\alpha} - x^*)/\alpha$ is a feasible direction. Therefore

$$\nabla f(x^*)^{\top}(x-x^*) = \nabla f(x^*)^{\top}d \ge 0.$$

As $x \in \Omega$ is arbitrary, we know x^* is a global minimizer.

Corollary. Suppose $f : \Omega \to \mathbb{R}$ is convex and \mathcal{C}^1 . If $x^* \in \Omega$ is such that

$$\nabla f(x^*) = 0,$$

then x^* is a global minimizer of f.

Proof. For any feasible d there is $\nabla f(x^*)^{\top} d = 0$. Hence x^* is a global minimizer.

Theorem. Let $f : \mathbb{R}^n \to \mathbb{R}$ and $f \in C^1$ be convex, and $\Omega = \{x \in \mathbb{R}^n : h(x) = 0\}$ where $h : \mathbb{R}^n \to \mathbb{R}^m$ such that Ω is convex. Then $x^* \in \Omega$ is a global minimizer of f over Ω iff there exists $\lambda^* \in \mathbb{R}^m$ such that

$$\nabla f(x^*) + Dh(x^*)^\top \lambda^* = 0.$$

Proof. (\Rightarrow) By the KKT condition.

 (\Leftarrow) Note that f being convex implies

$$f(\boldsymbol{x}) \geq f(\boldsymbol{x}^*) +
abla f(\boldsymbol{x}^*)^\top (\boldsymbol{x} - \boldsymbol{x}^*), \quad orall \, \boldsymbol{x} \in \Omega$$

Also note that $abla f(x^*) = -Dh(x^*)^ op \lambda^*$, we know

$$f(\boldsymbol{x}) \geq f(\boldsymbol{x}^*) - {\boldsymbol{\lambda}^*}^{ op} D \boldsymbol{h}(\boldsymbol{x}^*)(\boldsymbol{x} - \boldsymbol{x}^*)$$

Proof (cont.) For any $x \in \Omega$, we know $x^* + \alpha(x - x^*) \in \Omega$ for all $\alpha \in (0, 1)$. Hence $h(x^* + \alpha(x - x^*)) = 0$ and

$$Dh(x^*)(x - x^*) = \lim_{\alpha \to 0} \frac{h(x^* + \alpha(x - x^*)) - h(x^*)}{\alpha} = 0$$

Hence $f(x) \ge f(x^*)$ for all $x \in \Omega$. Therefore x^* is a global minimizer.

Theorem. Let $f : \mathbb{R}^n \to \mathbb{R}$ and $f \in \mathcal{C}^1$ be convex, and

$$\Omega = \{x \in \mathbb{R}^n : h(x) = 0, \ g(x) \leq 0\}$$

where $h : \mathbb{R}^n \to \mathbb{R}^m$ and $g : \mathbb{R}^n \to \mathbb{R}^p$ are \mathcal{C}^1 and such that Ω is convex. Then $x^* \in \Omega$ is a global minimizer of f over Ω iff there exist $\lambda^* \in \mathbb{R}^m, \mu^* \in \mathbb{R}^p_+$ such that

$$abla f(x^*)^{ op} + \lambda^{*^{ op}} Dh(x^*) + \mu^{*^{ op}} Dg(x^*) = 0^{ op}, \ g(x^*)^{ op} \mu^* = 0.$$

Proof. (\Rightarrow) By the KKT condition.

Proof (cont.) (\Leftarrow) Note that *f* being convex implies

$$f(x) \ge f(x^*) + \nabla f(x^*)^\top (x - x^*), \quad \forall x \in \Omega.$$

Also note that $\nabla f(x^*) = -Dh(x^*)^\top \lambda^* - Dg(x^*)^\top \mu^*$, we know
 $f(x) \ge f(x^*) - \lambda^{*\top} Dh(x^*)(x - x^*) - \mu^{*\top} Dg(x^*)(x - x^*).$
For any $x \in \Omega$, we know $x^* + \alpha(x - x^*) \in \Omega$ for all $\alpha \in (0, 1)$. Hence

For any $x \in \Omega$, we know $x^* + \alpha(x - x^*) \in \Omega$ for all $\alpha \in (0, 1)$. Hence $h(x^* + \alpha(x - x^*)) = 0$ and

$$Dh(x^*)(x - x^*) = \lim_{\alpha \to 0} \frac{h(x^* + \alpha(x - x^*)) - h(x^*)}{\alpha} = 0.$$

Proof (cont.) Moreover $g(x^* + lpha(x - x^*)) \le 0$, and hence $\mu^* \ge 0$ implies ${\mu^*}^ op g(x^* + lpha(x - x^*)) \le 0.$

Therefore, we have

$$\mu^{*\top} D \boldsymbol{g}(\boldsymbol{x}^{*})(\boldsymbol{x}-\boldsymbol{x}^{*}) = \lim_{lpha o 0} rac{\mu^{*\top} \boldsymbol{g}(\boldsymbol{x}^{*}+lpha(\boldsymbol{x}-\boldsymbol{x}^{*})) - \mu^{*\top} \boldsymbol{g}(\boldsymbol{x}^{*})}{lpha} \leq 0$$

Hence we obtain

$$f(x) \ge f(x^*), \quad \forall x \in \Omega.$$

Therefore x^* is a global minimizer.

Example. Suppose we can deposit $x_i \ge 0$ amount of money into a bank account (with initial balance 0) at the beginning of the *i*th month for i = 1, ..., n. The monthly interest rate is r > 0. If the total amount we can deposit is D, then find the way to maximize the total balance including the interests at the end of the *n*th month.

Intuition. We should deposit all money *D* in the first month.

Solution. Define $c = -[(1 + r)^n; ...; (1 + r)] \in \mathbb{R}^n$. Then this is an LP (which is a convex program):

minimize
$$oldsymbol{c}^ op oldsymbol{x}$$

subject to $oldsymbol{e}^ op oldsymbol{x} = D$
 $oldsymbol{x} \geq oldsymbol{0}$

where $e = [1; \ldots; 1] \in \mathbb{R}^n$.

Solution (cont.) To show our intuition is correct, it suffices to show that $x^* = [D; 0; ...; 0] \in \mathbb{R}^n$ satisfies the KKT condition:

$$egin{aligned} c + \lambda^* e - \mu^* &= 0 \ e^ op x^* &= D \ x^* &\geq 0 \ \mu^* &\geq 0 \ \mu^{* op} x^* &= 0 \end{aligned}$$

for some $\lambda \in \mathbb{R}$ and $\mu^* \in \mathbb{R}^n$.

Let $\lambda^* = (1+r)^n$ and $\mu^* = c + \lambda^* e$, then it is easy to verify that (x^*, λ^*, μ^*) satisfies the KKT condition. This implies that x^* is a global minimizer.