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Definition. A set Ω ⊂ Rn is called convex if for any x,y ∈ Ω, there is
αx+ (1− α)y ∈ Ω for all α ∈ [0,1]

Definition. A function f : Ω → R, where Ω is a convex set, is called convex
if for any x,y ∈ Ω and α ∈ [0,1], there is

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y).

Moreover, f is called strictly convex if for any distinct x,y ∈ Ω and α ∈ (0,1),
there is

f(αx+ (1− α)y) < αf(x) + (1− α)f(y)

A function f is called (strictly) concave if −f is (strictly) convex.
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There is an alternative definition based on the convexity of the epigraph of f .

Definition. The graph of f : Ω→ R is defined by

{[x; f(x)] ∈ Rn+1 : x ∈ Ω}

Definition. The epigraph of f : Ω→ R is defined by

epi(f) := {[x;β] ∈ Rn+1 : x ∈ Ω, β ≥ f(x)}

Definition. A function f : Ω → R, where Ω is a convex set, is called convex
if epi(f) is a convex set.
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Example. Let f(x) = x1x2 be defined on Ω := {x : x ≥ 0}. Is f convex?

Solution. f is not convex. The set Ω ⊂ R2 is convex. But if we choose
x = [1; 2] and y = [2; 1], then

αx+ (1− α)y = [2− α; 1 + α].

On the one hand

f(αx+ (1− α)y) = 2 + α− α2.

On the other hand,

αf(x) + (1− α)f(y) = 2.

Choosing α = 1/2 yields

f(αx+ (1− α)y) > αf(x) + (1− α)f(y)

which means that f is not convex.
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There are several sufficient and necessary conditions for the convexity of f .

Theorem. If f : Rn → R is C1 and Ω is convex, then f is convex on Ω iff for
all x,y ∈ Ω,

f(y) ≥ f(x) +∇f(x)>(y − x)

Proof. (⇒) Suppose f is convex, then for any x,y ∈ Ω and α ∈ (0,1],

f((1− α)x+ αy) ≤ (1− α)f(x) + αf(y)

Rearrange terms to obtain

f(x+ α(y − x))− f(x)

α
≤ f(y)− f(x)

Taking the limit as α→ 0 yields

f(y) ≥ f(x) +∇f(x)>(y − x)
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Proof (cont.) (⇐) For any x,y ∈ Ω and α ∈ [0,1], define xα = αx+ (1−
α)y. Then

f(x) ≥ f(xα) +∇f(xα)>(xα − x)

f(y) ≥ f(xα) +∇f(xα)>(xα − y)

Multiplying the two inequalities by α and 1 − α respectively, and adding to-
gether yields

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y)
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Theorem. Let f : Rn → R be C2 and Ω be convex, then f is convex on Ω iff
∇2f(x) � 0 for all x ∈ Ω.

Proof. (⇒) If not, then exist x ∈ Ω and d ∈ Rn, such that

d>∇2f(x)d < 0

Since ∇2f(x) is continuous, there exists s > 0 sufficiently small, such that
for y = x+ sd ∈ Ω, there is

f(y) = f(x) +∇f(x)>(y − x) +
1

2
(y − x)>∇2f(x+ td)(y − x)

< f(x) +∇f(x)>(y − x)

for some t ∈ (0, s) since (y − x)>∇2f(x+ td)(y − x) = s2d>∇2f(x+

td)d < 0. Hence f is not convex, a contradiction.
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Proof (cont.) (⇐) For any x,y ∈ Ω, there is

f(y) = f(x) +∇f(x)>(y − x) +
1

2
(y − x)>∇2f(x+ td)(y − x)

≥ f(x) +∇f(x)>(y − x)

where d := y − x and t ∈ (0,1). Note that we used the fact that ∇2f(x+

td) � 0. Hence f is convex.
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Examples. Determine if any of the following functions is convex.

f1(x) = −8x2

f2(x) = 4x2
1 + 3x2

2 + 5x2
3 + 6x1x2 + x1x3 − 3x1 − 2x2 + 15

f3(x) = 2x1x2 − x2
1 − x

2
2

Solution. f ′′1(x) = −16 < 0, so f1 is concave.

For f2, we have

∇2f2 =

8 6 1
6 6 0
1 0 10


whose leading principal minors are 8,12,114. Hence f2 is convex.

For f3, we have

∇2f3 =

[
−2 2

2 −2

]
whose eigenvalues are −4 and 0, hence f3 is negative semidefinite.
Xiaojing Ye, Math & Stat, Georgia State University 8



Theorem. Suppose f : Ω → R is convex. Then x is a global minimizer of f
on Ω iff it is a local minimizer of f .

Proof. The necessity is trivial. Suppose x is a local minimizer, then ∃ r > 0

such that f(x) ≤ f(z) for all z ∈ B(x, r). If ∃y, such that f(x) > f(y),
then let α = r

‖y−x‖ and

xα = (1− α)x+ αy = x+
r

‖y − x‖
(y − x).

Then xα ∈ B(x, r) and

f(xα) ≥ f(x) > (1− α)f(x) + αf(y),

which is a contradiction. Hence x must be a global minimizer.
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Lemma. Suppose f : Ω→ R is convex. Then the sub-level set of f

Γc = {x ∈ Ω : f(x) ≤ c}

is empty or convex for any c ∈ R.

Proof. If x,y ∈ Γc, then f(x), f(y) ≤ c. Since f is convex, we have

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y) ≤ c

i.e., αx+ (1− α)y ∈ Γc for all α ∈ [0,1]. Hence Γc is a convex set.
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Corollary. Suppose f : Ω → R is convex. Then the set of all global minimiz-
ers of f over Ω is convex.

Proof. Let f∗ = minx∈Ω f(x). Then Γf∗ is the set of all global minimizers.
By the lemma above, we knwo Γc is a convex set.
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Lemma. Suppose f : Ω→ R is convex and C1. Then x∗ is a global minimizer
of f over Ω iff

∇f(x∗)>(x− x∗) ≥ 0, ∀x ∈ Ω.

Proof. (⇒) If not, then ∃x ∈ Ω, s.t.

∇f(x∗)>(x− x∗) < 0

Denote xα = (1 − α)x∗ + αx = x∗ + α(x − x∗) for α ∈ (0,1). Since
f ∈ C1, we know there exists α small enough, s.t.

∇f(xα′)
>(x− x∗) < 0, ∀α′ ∈ (0, α)
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Proof (cont.) Moreover, there exists α′ ∈ (0, α) s.t.

f(xα) = f(x∗) +∇f(xα′)
>(xα − x∗)

= f(x∗) + α∇f(xα′)
>(x− x∗)

< f(x∗)

which contradicts to x∗ being a global minimizer.

(⇐) For all x ∈ Ω, there is

f(x) ≥ f(x∗) +∇f(x∗)>(x− x∗) ≥ f(x∗)

Hence x∗ is a global minimizer.
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Theorem. Suppose f : Ω → R is convex and C1. Then x∗ is a global
minimizer of f over Ω iff for any feasible direction d at x∗ there is

d>∇f(x∗) ≥ 0.

Proof. (⇒) Let d be feasible, then ∃x ∈ Ω s.t. x−x∗ = αd for some α > 0.
Hence by the Lemma above, we have

∇f(x∗)>(x− x∗) = α∇f(x∗)>d ≥ 0.

So ∇f(x∗)>d ≥ 0.

(⇐) For any x ∈ Ω, we know xα = (1 − α)x∗+ αx ∈ Ω for all α ∈ (0,1).
Hence d = x− x∗ = (xα − x∗)/α is a feasible direction. Therefore

∇f(x∗)>(x− x∗) = ∇f(x∗)>d ≥ 0.

As x ∈ Ω is arbitrary, we know x∗ is a global minimizer.
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Corollary. Suppose f : Ω→ R is convex and C1. If x∗ ∈ Ω is such that

∇f(x∗) = 0,

then x∗ is a global minimizer of f .

Proof. For any feasible d there is ∇f(x∗)>d = 0. Hence x∗ is a global
minimizer.
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Theorem. Let f : Rn → R and f ∈ C1 be convex, and Ω = {x ∈ Rn :

h(x) = 0} where h : Rn → Rm such that Ω is convex. Then x∗ ∈ Ω is a
global minimizer of f over Ω iff there exists λ∗ ∈ Rm such that

∇f(x∗) +Dh(x∗)>λ∗ = 0.

Proof. (⇒) By the KKT condition.

(⇐) Note that f being convex implies

f(x) ≥ f(x∗) +∇f(x∗)>(x− x∗), ∀x ∈ Ω

Also note that ∇f(x∗) = −Dh(x∗)>λ∗, we know

f(x) ≥ f(x∗)− λ∗>Dh(x∗)(x− x∗)
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Proof (cont.) For any x ∈ Ω, we know x∗+α(x−x∗) ∈ Ω for all α ∈ (0,1).
Hence h(x∗+ α(x− x∗)) = 0 and

Dh(x∗)(x− x∗) = lim
α→0

h(x∗+ α(x− x∗))− h(x∗)

α
= 0

Hence f(x) ≥ f(x∗) for all x ∈ Ω. Therefore x∗ is a global minimizer.
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Theorem. Let f : Rn → R and f ∈ C1 be convex, and

Ω = {x ∈ Rn : h(x) = 0, g(x) ≤ 0}

where h : Rn → Rm and g : Rn → Rp are C1 and such that Ω is convex. Then
x∗ ∈ Ω is a global minimizer of f over Ω iff there exist λ∗ ∈ Rm,µ∗ ∈ Rp+
such that

∇f(x∗)>+ λ∗>Dh(x∗) + µ∗>Dg(x∗) = 0>,

g(x∗)>µ∗ = 0.

Proof. (⇒) By the KKT condition.
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Proof (cont.) (⇐) Note that f being convex implies

f(x) ≥ f(x∗) +∇f(x∗)>(x− x∗), ∀x ∈ Ω.

Also note that ∇f(x∗) = −Dh(x∗)>λ∗ −Dg(x∗)>µ∗, we know

f(x) ≥ f(x∗)− λ∗>Dh(x∗)(x− x∗)− µ∗>Dg(x∗)(x− x∗).

For any x ∈ Ω, we know x∗ + α(x − x∗) ∈ Ω for all α ∈ (0,1). Hence
h(x∗+ α(x− x∗)) = 0 and

Dh(x∗)(x− x∗) = lim
α→0

h(x∗+ α(x− x∗))− h(x∗)

α
= 0.
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Proof (cont.) Moreover g(x∗+ α(x− x∗)) ≤ 0, and hence µ∗ ≥ 0 implies

µ∗>g(x∗+ α(x− x∗)) ≤ 0.

Therefore, we have

µ∗>Dg(x∗)(x− x∗) = lim
α→0

µ∗>g(x∗+ α(x− x∗))− µ∗>g(x∗)

α
≤ 0

Hence we obtain

f(x) ≥ f(x∗), ∀x ∈ Ω.

Therefore x∗ is a global minimizer.
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Example. Suppose we can deposit xi ≥ 0 amount of money into a bank ac-
count (with initial balance 0) at the beginning of the ith month for i = 1, . . . , n.
The monthly interest rate is r > 0. If the total amount we can deposit is D,
then find the way to maximize the total balance including the interests at the
end of the nth month.

Intuition. We should deposit all money D in the first month.

Solution. Define c = −[(1 + r)n; . . . ; (1 + r)] ∈ Rn. Then this is an LP
(which is a convex program):

minimize c>x

subject to e>x = D

x ≥ 0

where e = [1; . . . ; 1] ∈ Rn.
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Solution (cont.) To show our intuition is correct, it suffices to show that x∗ =

[D; 0; . . . ; 0] ∈ Rn satisfies the KKT condition:

c+ λ∗e− µ∗ = 0

e>x∗ = D

x∗ ≥ 0

µ∗ ≥ 0

µ∗>x∗ = 0

for some λ ∈ R and µ∗ ∈ Rn.

Let λ∗ = (1+r)n and µ∗ = c+λ∗e, then it is easy to verify that (x∗, λ∗,µ∗)
satisfies the KKT condition. This implies that x∗ is a global minimizer.
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