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Constrained optimization problems are formulated as

minimize f(x)

subject to gj(x) ≤ 0, j = 1, . . . , p,

hi(x) = 0, i = 1, . . . ,m,

where gj, hi : Rn → R are inequality and equality constraint functions, re-
spectively.

We can summarize them into vector-valued functions g and h:

g(x) =

g1(x)
...

gp(x)

 and h(x) =

h1(x)
...

hm(x)


so the constraints can be written as g(x) ≤ 0 and h(x) = 0, respectively.

Note that g : Rn → Rp and h : Rn → Rm.
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We can write the constrained optimization concisely as

minimize f(x)

subject to g(x) ≤ 0

h(x) = 0

The feasible set is Ω := {x ∈ Rn : g(x) ≤ 0,h(x) = 0}.

Exmaple. LP (standard form) is a constrained optimization with f(x) = c>x,
g(x) = −x and h(x) = Ax− b.
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We now focus on constrained optimization problems with equality constraints
only, i.e.,

minimize f(x)

subject to h(x) = 0

and the feasible set is Ω = {x ∈ Rn : h(x) = 0}.
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Some equality-constrained optimization problem can be converted into uncon-
strained ones.

Example.

• Consider the constrained optimization problem

minimize x2
1 + 2x1x2 + 3x2

2 + 4x1 + 5x2 + 6x3

subject to x1 + 2x2 = 3

4x1 + 5x3 = 6

The constraints imply that x2 = 1
2(3− x1) and x3 = 1

5(6− x1). Substi-
tute x2 and x3 in the objective function to get an unconstrained minimiza-
tion of x1 only.
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Example.

• Consider the constrained optimization problem

maximize x1x2

subject to x2
1 + 4x2

2 = 1

It is equivalent to maximizing x2
1x

2
2 then substitute x2

1 by 1 − 4x2
2 to get

an unconstrained problem of x2.

Another way to solving this is using 1 = x2
1 + (2x2)2 ≥ 4x1x2 where

the equality holds when x1 = 2x2.So x1 =
√

2/2 and x2 =
√

2/4.

However, not all equality-constrained problems can be easily converted into
unconstrained ones.
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We need general theory to solve constrained optimization problems with equal-
ity constraints:

minimize f(x)

subject to h(x) = 0

and the feasible set is Ω = {x ∈ Rn : h(x) = 0}.

Recall that h : Rn → Rm (m ≤ n) has Jacobian matrix

Dh(x) =

∇h1(x)>
...

∇hm(x)>

 ∈ Rm×n

Definition. We say a point x ∈ Ω is a regular point if rank(Dh(x)) = m,
i.e., the Jacobian matrix has full row rank.
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Example. Let n = 3 and m = 1. Define h1(x) = x2 − x2
3 be the only

constraint. Then the Jacobian matrix is

Dh(x) = [∇h1(x)>] = [0,1,−2x3]

Note that Dh(x) 6= 0 and hence rank(Dh(x)) = 1 everywhere.

The feasible set Ω is a “surface” in R3 with dimension n−m = 3− 1 = 2.
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Example. Let n = 3 and m = 2. Define h1(x) = x1 and h2(x) = x2− x2
3.

The Jacobian is

Dh(x) =

[
1 0 0
0 1 −2x3

]

with rank(Dh(x)) = 2 everywhere, and the feasible set Ω is a line in R3 with
dimension n−m = 3− 2 = 1.
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Tangent space and normal space

Defintion. We say x : (a, b) → Rn, a curve in Rn, is differentiable if x′i(t)
exists for all t ∈ (a, b). The derivative is defined by

x′(t) =

x′1(t)
...

x′n(t)


We say x is twice differentiable if x′′i (t) exists for all t ∈ (a, b), and

x′′(t) =

x′′1(t)
...

x′′n(t)
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Defintion. The tangent space of Ω = {x ∈ Rn : h(x) = 0} at x∗ is the set

T (x∗) = {y ∈ Rn : Dh(x∗)y = 0}.

In other words, T (x∗) = N (Dh(x∗)).

Remark. If x∗ is regular, then rank(Dh(x∗)) = m, and hence dim(T (x∗)) =

dim(N (Dh(x∗))) = n−m.

Remark. We sometimes draw the tangent space as a plane tangent to Ω at
x∗, that tangent plane is

TP (x∗) := x∗+ T (x∗) = {x∗+ y : y ∈ T (x∗)}
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Example. Let

Ω = {x ∈ R3 : h1(x) = x1 = 0, h2(x) = x1 − x2 = 0}

Then we have

Dh(x) =

[
∇h1(x)>

∇h2(x)>

]
=

[
1 0 0
1 −1 0

]
at any x ∈ Ω, and the tangent space at any point x is

T (x) = N (D(h(x)) =
{
y ∈ R3 :

[
1 0 0
1 −1 0

]
y = 0

}
= {[0; 0;α] ∈ R3 : α ∈ R}
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Theorem. Suppose x∗ is regular. Then y ∈ T (x∗) iff there exists curve
x : (−δ, δ)→ Ω such that x(0) = x∗ and x′(0) = y.

Proof. (⇐) Let x(t) be such a curve, then h(x(t)) = 0 for t ∈ (−δ, δ) and

Dh(x(0))x′(0) = Dh(x∗)y = 0

which implies y ∈ T (x∗).
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Proof (cont.)

(⇒) For any t, let u = u(t) ∈ Rn be determined by t s.t. it solves

h̄(t,u) := h(x∗+ ty +Dh(x∗)>u) = 0

We know u(0) = 0 is a solution at t = 0. Moreover,

Duh̄(0,u) = Dh(x∗)Dh(x∗)> � 0

as Dh(x∗) has full row rank. Hence by Implicit Function Theorem, there is
δ > 0 s.t. a unique solution u(t) to h̄(t,u) = 0 exists for t ∈ (−δ, δ). Then

x(t) = x∗+ ty +Dh(x∗)>u(t)

is the desired curve.
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Defintion. The normal space of Ω at x∗ is defined by

N(x∗) = {x ∈ Rn : x = Dh(x∗)>z for some z ∈ Rm}

In other words,

N(x∗) = C(Dh(x∗)>)

= R(Dh(x∗))

= span{∇h1(x∗), . . . ,∇hm(x∗)}

Note that dim(N(x∗)) = dim(R(Dh(x∗))) = m.
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Remark. The tangent space T (x∗) and the normal space N(x∗) form an
orthogonal decomposition of Rn:

Rn = T (x∗)⊕N(x∗) = N (Dh(x∗))⊕R(Dh(x∗))

where T (x∗) ⊥ N(x∗).

We can also write this as T (x∗)⊥ = N(x∗) or N(x∗)⊥ = T (x∗).

Hence, for any v ∈ Rn, there exist a unique pair y ∈ T (x∗) and w ∈ N(x∗),
such that

v = y +w
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Now let us see the first-order necessary conditions (FONC) for equality-constrained
minimization.

Suppose x∗ is a local minimizer of f(x) over Ω = {x : h(x) = 0}, where
f,h ∈ C1.

Then for any y ∈ T (x∗), there exists curve x : (a, b)→ Ω such that x(t) =

x∗ and x′(t) = y for some t ∈ (a, b).

Define φ(s) = f(x(s)) (note that φ : (a, b)→ R), then

φ′(s) = ∇f(x(s))>x′(s)
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In particular, due to the standard FONC, we have

φ′(t) = ∇f(x(t))>x′(t) = ∇f(x∗)>y = 0

Since y ∈ T (x∗) is arbitrary, we know ∇f(x∗) ⊥ T (x∗), i.e.,

∇f(x∗) ∈ N(x∗)

This means that ∃λ∗ ∈ Rm, such that

∇f(x∗) +Dh(x∗)>λ∗ = 0

This result is summarized below:

Theorem [Lagrange’s Theorem]. If x∗ is a local minimizer (or maximizer) of
f : Rn → R subject to h(x) = 0 ∈ Rm where m ≤ n, and x∗ is a regular
point (Dh(x∗) has full row rank), then there exists λ∗ ∈ Rm s.t.

∇f(x∗) +Dh(x∗)>λ∗ = 0
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Now we know if x∗ is a local minimizer of

minimize f(x)

subject to h(x) = 0

then x∗ must satisfy

∇f(x∗) +Dh(x∗)>λ∗ = 0

h(x∗) = 0

There are called the first-order necessary conditions (FNOC), or the Lagrange
condition, of the equality-constrained minimization problem. λ∗ is called the
Lagrange multiplier.

Remark. The conditions above are necessary but not sufficient to determine
x∗ to be a local minimizer—a point satisfying these conditions could be a local
maximizer or neither.
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Example. Consider the problem

minimize f(x)

subject to h(x) = 0

where f(x) = x and

h(x) =


x2 if x < 0

0 if 0 ≤ x ≤ 1

(x− 1)2 if x > 1

We can see that Ω = [0,1] and x∗ = 0 is the only local minimizer. However
f ′(x∗) = 1 and h′(x∗) = 0. The Lagrange condition fails to hold because x∗

is not a regular point.
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We introduce the Lagrange function

l(x,λ) = f(x) + h(x)>λ

Then the Lagrange condition becomes

∇xl(x∗,λ∗) = ∇f(x∗) +Dh(x∗)>λ∗ = 0

∇λl(x∗,λ∗) = h(x∗) = 0

Note that this is a system of n + m equations for [x;λ] ∈ Rn+m (which as
n+m unknowns).
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Example. Given a fixed area A of cardboard, we wish to construct a closed
cardboard box with maximum volume. Let the dimension of the box be x =

[x1;x2;x3], then the problem can be formulated as

maximize x1x2x3

subject to 2(x1x2 + x2x3 + x3x1) = A

Hence we can set

f(x) = −x1x2x3

h(x) = x1x2 + x2x3 + x3x1 −
A

2
Then the Lagrange function is

l(x, λ) = f(x) + h(x)λ = −x1x2x3 +
(
x1x2 + x2x3 + x3x1 −

A

2

)
λ
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So the Lagrange condition is

∇xl(x, λ) = 0

∇λl(x, λ) = 0

which is

x2x3 − (x2 + x3)λ = 0

x1x3 − (x1 + x3)λ = 0

x1x2 − (x1 + x2)λ = 0

x1x2 + x2x3 + x3x1 −
A

2
= 0

Then solving this system yields

x1 = x2 = x3 =

√
A

6
, λ =

1

2

√
A

6
.
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Example. Consider an equality-constrained optimization problem

minimize x2
1 + x2

2

subject to x2
1 + 2x2

2 = 1

Solution. Here f(x) = x2
1 + x2

2 and h(x) = x2
1 + 2x2

2 − 1.

The Lagrange function is

l(x,λ) = (x2
1 + x2

2) + λ(x2
1 + 2x2

2 − 1)

Then we obtain

∂x1l(x, λ) = 2x1 + 2λx1 = 0

∂x2l(x, λ) = 2x2 + 4λx2 = 0

∂λl(x, λ) = x2
1 + 2x2

2 − 1 = 0
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Solution (cont). Solving this system yieldsx1
x2
λ

 =

 0
1/
√

2
−1/2

 ,
 0
−1/
√

2
−1/2

 ,
 1

0
−1

 , and

−1
0
−1


It is easy to check that x = [0;±1/

√
2] are local minimizers, and x = [0;±1]

are local maximizers.
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Now we consider second-order conditions. We assume f,h ∈ C2.

Following the same steps as in FONC, suppose x∗ is a local minimizer, then
for any y ∈ T (x∗), there exists a curve x : (a, b) → Ω such that x(t) = x∗

and x′(t) = y for some t ∈ (a, b).

Again define φ(s) = f(x(s)), and hence φ′(s) = ∇f(x(s))>x′(s). Then
the standard second-order necessary condition (SONC) implies that at a local
minimizer there are

φ′(t) = ∇f(x(t))>x′(t) = ∇f(x∗)>y = 0

and

φ′′(t) = y>∇2f(x∗)y +∇f(x∗)>x′′(t) ≥ 0
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In addition, since ψi(s) := hi(x(s)) = 0 for all s ∈ (a, b), we have ψ′′i (t) =

0 which yields

y>∇2hi(x
∗)y +∇hi(x∗)>x′′(t) = 0

for all i = 1, . . . ,m.

According to the Lagrange condition, we know ∃λ∗ ∈ Rm such that

∇f(x∗) +Dh(x∗)>λ∗ = ∇f(x∗) +
m∑
i=1

λ∗i∇hi(x
∗) = 0

Using the results above, we can cancel the term with x′′(t) and obtain

y>
[
∇2f(x∗) +

m∑
i=1

λ∗i∇
2hi(x

∗)
]
y ≥ 0

for all y ∈ T (x∗).
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We summarize the second-order necessary condition (SONC):

Theorem (SONC). Let x∗ be a local minimizer of f : Rn → R over Ω = {x :

h(x) = 0 ∈ Rm} with m ≤ n, where f,h ∈ C2. Suppose x∗ is regular, then
∃λ∗ = [λ∗1; . . . ;λ∗m] ∈ Rm such that

1. ∇f(x∗) +Dh(x∗)>λ∗ = 0;

2. For every y ∈ T (x∗), there is

y>
[
∇2f(x∗) +

m∑
i=1

λ∗i∇
2hi(x

∗)
]
y ≥ 0.

So ∇2f(x∗) +
∑m
i=1 λ

∗
i∇

2hi(x
∗) is playing the role of “Hessian”.
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We also have the following second-order sufficient condition (SOSC):

Theorem (SOSC). Suppose x∗ ∈ Ω = {x : h(x) = 0} is regular. If ∃λ∗ =

[λ∗1; . . . ;λ∗m] ∈ Rm such that

1. ∇f(x∗) +Dh(x∗)>λ∗ = 0;

2. for every nonzero y ∈ T (x∗), there is

y>
[
∇2f(x∗) +

m∑
i=1

λ∗i∇
2hi(x

∗)
]
y > 0.

Then x∗ is a strict local minimizer of f over Ω.
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Example. Solve the following problem

maximize
x>Qx

x>Px
where Q = diag([4,1]) and P = diag([2,1]).

Solution. Note the objective function is scale-invariant (replacing x by tx for
any t 6= 0 yields the same value). This can be converted into the constrained
minimization problem

minimize − x>Qx
subject to x>Px− 1 = 0

and h(x) = x>Px− 1 ∈ R is the constraint.

Note that Dh(x) = 2Px = [4x1; 2x2].
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Solution (cont). We first write the Lagrange function

l(x, λ) = −x>Qx+ λ(x>Px− 1)

Then the Lagrange condition becomes

∇xl(x∗, λ∗) = −2(Q− λ∗P )x∗ = 0

∇λl(x∗, λ∗) = x∗>Px∗ − 1 = 0

The first equation implies P−1Qx∗ = λ∗x∗, and hence λ∗ is an eigenvalue
of P−1Q = diag([2,1]). Hence λ∗ = 2 or λ∗ = 1.
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For λ∗ = 2, we know x∗ is the corresponding eigenvector of P−1Q and
satisfies x∗>Px∗ = 1. Hence x∗ = [±1/

√
2; 0]. The tangent space is

T (x∗) = N (Dh(x∗)) = N ([±
√

2; 0]) = {[0; a] : a ∈ R}.

We also have

∇2f(x∗) + λ∗∇2h(x∗) = −2Q+ 2λ∗P =

[
0 0
0 2

]

Therefore y>[∇2f(x∗) + λ∗∇2h(x∗)]y = 2a2 > 0 for all y = [0; a] ∈
T (x∗) with a 6= 0.

Therefore x∗ = [±1/
√

2; 0] are both strict local minimizers of the constrained
optimization problem.

Going back to the original problem, any x∗ = [t; 0] with t 6= 0 is a strict local

maximizer of x
>Qx
x>Px

.
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For λ∗ = 1, we know x∗ is the corresponding eigenvector of P−1Q and
satisfies x∗>Px∗ = 1. Hence x∗ = [0;±1]. The tangent space is T (x∗) =

N (Dh(x∗)) = N ([0;±1]) = {[a; 0] : a ∈ R}.

We also have

∇2f(x∗) + λ∗∇2h(x∗) = −2Q+ 2λ∗P =

[
−4 0
0 0

]

Therefore y>[∇2f(x∗) + λ∗∇2h(x∗)]y = −4a2 < 0 for all y = [a; 0] ∈
T (x∗) with a 6= 0.

Therefore x∗ = [0;±1] are both strict local maximizers of the constrained
optimization problem.

Going back to the original problem, any x∗ = [0; t] with t 6= 0 is strict local

minimizer of x
>Qx
x>Px

.
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Now we consider a special type of constrained minimization problem with lin-
ear equality constraints (again Q � 0 and A has full row rank):

minimize
1

2
x>Qx

subject to Ax = b

We have f(x) = 1
2x
>Qx and h(x) = b−Ax.

The Lagrange function is

l(x,λ) =
1

2
x>Qx+ λ>(b−Ax).

Hence the Lagrange condition is

∇xl(x,λ) = Qx−A>λ = 0

∇λl(x,λ) = b−Ax = 0
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Now we solve the following system for [x∗;λ∗]:

∇xL(x∗,λ∗) = Qx∗ −A>λ∗ = 0

∇λL(x∗,λ∗) = b−Ax∗ = 0

The first equation implies x∗ = Q−1A>λ∗.

Plugging this into the second equation and solve for λ∗ to get

λ∗ = (AQ−1A>)−1b

Hence the solution is

x∗ = Q−1A>λ∗ = Q−1A>(AQ−1A>)−1b
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Example. Consider the problem of finding the solution of minimal norm to the
linear system Ax = b. That is

minimize ‖x‖
subject to Ax = b

Solution. The problem is equivalent to

minimize
1

2
‖x‖2 =

1

2
x>x

subject to Ax = b

which is the problem above with Q = I. Hence the solution is

x∗ = A>(AA>)−1b
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Example. Consider a discrete dynamical system

xk = axk−1 + buk

with given initial x0, where k = 1, . . . , N stand for the time point. Here xk is
the “state” and uk is the “control”.

Suppose we want to minimize the state and control at all points, then we can
formulate the problem as

minimize
1

2

N∑
k=1

(qx2
k + ru2

k)

subject to xk = axk−1 + buk, k = 1, . . . , N.

This is an example of linear quadratic regulator (LQR) in the optimal control
theory.
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To solve this, we let z = [x1; . . . ;xN ;u1; . . . ;uN ] ∈ R2N ,

Q =

[
qIN 0
0 rIN

]
∈ R(2N)×(2N)

and

A =


1 · · · 0 −b · · · 0
−a 1 ... −b ...

. . . . . . ... . . .
0 −a 1 0 · · · −b

 b =


ax0
0
...
0


Then the problem can be written as

minimize
1

2
z>Qz

subject to Az = b

and the solution is

z∗ = [x∗;u∗] = Q−1A>(AQ−1A>)−1b
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Example [Credit card holder’s dilemma]. Suppose we have a credit card
debt $10,000 which has a monthly interest rate of 2%. Now we want to make
monthly payment for 10 months to minimize the balance as well as the amount
of monthly payments.

Let xk be the balance and uk be the payment in month k. Then the problem
can be written as

minimize
1

2

10∑
k=1

(qx2
k + ru2

k)

subject to xk = 1.02xk−1 − uk, k = 1, . . . ,10, x0 = 10000.

The more anxious we are to reduce our debt, the larger the value of q relative
to r. On the other hand, the more reluctant we are to make payments, the
larger the value of r relative to q.
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Here are two instances with different choices of q and r:

q = 1, r = 10: q = 1, r = 300:

k Balance xk Payment uk

1 7326.60 2873.40
2 5374.36 2098.77
3 3951.13 1530.72
4 2916.82 1113.34
5 2169.61 805.54
6 1635.97 577.04
7 1263.35 405.34
8 1015.08 273.53
9 866.73 168.65

10 803.70 80.37

k Balance xk Payment uk

1 9844.66 355.34
2 9725.36 316.20
3 9641.65 278.22
4 9593.23 241.25
5 9579.92 205.17
6 9601.68 169.84
7 9658.58 135.13
8 9750.83 100.92
9 9878.78 67.08

10 10042.87 33.48
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We now focus on constrained optimization problems with both equality and
inequality constraints:

minimize f(x)

subject to g(x) ≤ 0

h(x) = 0

and the feasible set is Ω = {x ∈ Rn : g(x) ≤ 0, h(x) = 0}.

Note that g(x) = [g1(x); . . . ; gp(x)] ∈ Rp and h(x) = [h1(x); . . . ;hm(x)] ∈
Rm.

Definition. We call the inequality constraint gj active at x ∈ Ω if gj(x) = 0

and inactive if gj(x) < 0.
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Definition. Denote J(x) the index set of active constraints at x:

J(x) = {j : gj(x) = 0}.

Also denote Jc(x) = {1, . . . , p} \ J(x) as its complement.

Definition. We call x a regular point in Ω if

∇hi(x), ∇gj(x), 1 ≤ i ≤ m, j ∈ J(x)

are linearly independent (total of m+ |J(x)| vectors in Rn).

Xiaojing Ye, Math & Stat, Georgia State University 41



Now we consider the first order necessary condition (FONC) for the optimiza-
tion problem with both equality and inequality constraints:

Theorem [Karush-Kahn-Tucker (KKT)]. Suppose f, g,h ∈ C1, x∗ is a reg-
ular point and local minimizer of f , then ∃ λ∗ ∈ Rm, µ∗ ∈ Rp such that

∇f(x∗)>+ λ∗>Dh(x∗) + µ∗>Dg(x∗) = 0>

h(x∗) = 0

g(x∗) ≤ 0

µ∗ ≥ 0

µ∗>g(x∗) = 0
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Remarks.

• Define Lagrange function:

l(x,λ,µ) = f(x) + λ>h(x) + µ>g(x)

then the first KKT condition is just ∇xl(x∗,λ∗,µ∗) = 0.

• The second and third KKT conditions are just the constraints.

• λ is the Lagrange multiplier and µ is the KKT multiplier.

• Since µ∗ ≥ 0 and g(x∗) ≤ 0, the last KKT condition implies µ∗jgj(x
∗) =

0 for all j = 1, . . . , p. Namely gj(x∗) < 0 implies µ∗j = 0. Hence

µ∗j = 0, ∀ j 6= J(x∗).
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Proof (KKT Theorem). We first just let µ∗j = 0 for all j ∈ Jc(x∗).

Since gj is not active at x∗ for j ∈ Jc(x∗), it’s not active in a neighbor of x∗

either. Hence x∗ is a regular point and local minimizer in Ω implies that x∗ is
a regular point and local minimizer in

Ω′ := {x ∈ Ω : h(x) = 0, gj(x) = 0, j ∈ J(x∗)}

Note Ω′ only contains equality constraints, hence the Lagrange theorem for
equality constrained problems applies, i.e., ∃λ∗, µ∗j for j ∈ J(x∗) such that

∇f(x∗) +Dh(x∗)>λ∗+Dg(x∗)>µ∗ = 0

where µ∗ = [µ∗1; . . . ;µ∗p]. We only need to show µ∗j ≥ 0 for all j ∈ J(x∗).
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Proof (cont.) If µ∗j < 0 for some j ∈ J(x∗), then define

T̂ (x∗) := {y ∈ Rn : Dh(x∗)y = 0,∇gj′(x
∗)>y = 0, j ∈ J(x∗), j′ 6= j}.

We claim that ∃y ∈ T̂ (x∗) such that ∇gj(x∗)>y 6= 0: otherwise ∇gj(x∗)
can be spanned by {∇hi(x∗),∇gj′(x∗) : 1 ≤ i ≤ m, j′ ∈ J(x∗), j′ 6= j},
which contradicts to that ∇hi(x∗),∇gj(x∗) are linearly independent (since
x∗ is regular). We choose y (or −y) so that ∇gj(x∗)>y < 0.

Now left-multiply y> to both sides of∇f(x∗)+Dh(x∗)>λ∗+Dg(x∗)>µ∗ =

0, we get (since µ∗j < 0 and ∇gj(x∗)>y < 0):

0 = y>∇f(x∗) + µ∗jy
>∇gj(x∗) > y>∇f(x∗)

Therefore there exists a curve x(t) : (a, b) → Ω such that x(t∗) = x∗ and
x′(t∗) = y for t∗ ∈ (a, b).
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Proof (cont.) Moreover, define φ(t) := f(x(t)), then

φ′(t∗) = ∇f(x(t∗))>x′(t∗) = ∇f(x∗)>y < 0

Also, define ψ(t) = gj(x(t)), then

ψ′(t∗) = ∇gj(x(t∗))>x′(t∗) = ∇gj(x∗)>y < 0

These mean that ∃ ε > 0 such that during [t∗, t∗+ ε] ⊂ (a, b), f(x(t)) and
gj(x(t)) can both decrease further, so x(t) ∈ Ω and f(x(t)) < f(x∗) for
t ∈ (t∗, t∗+ ε]. This contradicts to that x∗ is a local minimizer on Ω. Hence
µ∗j ≥ 0 for all j ∈ J(x∗).
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Example. Consider the problem

minimize f(x1, x2) = x2
1 + x2

2 + x1x2 − 3x1

subject to x1, x2 ≥ 0

The Lagrange function is

l(x,µ) = x2
1 + x2

2 + x1x2 − 3x1 − x1µ1 − x2µ2

The KKT condition is

2x1 + x2 − 3− µ1 = 0

x1 + 2x2 − µ2 = 0

x1, x2, µ1, µ2 ≥ 0

µ1x1 + µ2x2 = 0

Solving this yields

x∗1 = µ∗2 =
3

2
, x∗2 = µ∗1 = 0.
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Similar as the proof of FONC, we can show SONC.

Theorem [Second order necessary condition (SONC)]. Suppose f, g,h ∈
C2. If x∗ is a regular point and local minimizer, then ∃λ∗ ∈ Rm,µ∗ ∈ Rp+
such that

• The KKT condition for (x∗,λ∗,µ∗) holds;

• For all y ∈ T (x∗), there is

y>∇2
xl(x

∗,λ∗,µ∗)y ≥ 0

where

T (x∗) = {y ∈ Rn : Dh(x∗)y = 0,∇gj(x∗)>y = 0, ∀ j ∈ J(x∗)}

Proof. The first part follows from the KKT theorem. The second part is due
to the fact that x∗ being a local minimizer of f over Ω implies that it is a local
minimizer over Ω′.
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Theorem [Second order sufficient condition (SOSC)]. Suppose f, g,h ∈
C2. If ∃λ∗ ∈ Rm,µ∗ ∈ Rp such that

• The KKT condition of (x∗,λ∗,µ∗) holds;

• For all nonzero y ∈ T̃ (x∗,µ∗), there is

y>∇2
xl(x

∗,λ∗,µ∗)y > 0

where

T̃ (x∗,µ∗) := {y ∈ Rn : Dh(x)y = 0,∇gj(x∗)y = 0, j ∈ J̃(x∗,µ∗)}

and

J̃(x∗,µ∗) := {j ∈ J(x∗) : µ∗j > 0}

Then x∗ is a strict local minimizer.

Remark. We omit the proof here. Note that T (x∗) ⊂ T̃ (x∗,µ∗).
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Example. Consider the following constrained problem:

minimize x1x
2
2

subject to x1 = x2

x1 ≥ 0

Solution. Here f(x) = x1x
2
2, h(x) = x1 − x2, and g(x) = −x1. The

Lagrange function is

l(x,λ, µ) = x1x
2
2 + λ(x1 − x2)− µx1

Then we obtain the KKT conditions:

∂x1l(x, λ, µ) = x2
2 + λ− µ = 0

∂x2l(x, λ, µ) = 2x1x2 − λ = 0

∂λl(x, λ, µ) = x1 − x2 = 0

x1 ≥ 0

µ ≥ 0

µx1 = 0
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Solution (cont.) If x∗1 = x∗2 = 0, then λ∗ = µ∗ = 0. If x∗1 = x∗2 > 0,
then µ∗ = 0 but we cannot find any valid λ∗. So only the point [x∗, λ∗, µ∗] =

[0,0,0,0] satisfies the KKT conditions.

Since µ∗ = 0, we have

T̃ (x∗, µ∗) = N (∇h(x∗)) = N ([1,−1]) = {t[1,1] : t ∈ R}

On the other hand

∇2
xl(x

∗, λ∗, µ∗) =

[
0 0
0 0

]

so y>(∇2l(x∗, λ∗, µ∗))y = 0 for all y ∈ T̃ (x∗, µ) but not strictly larger than
0. Hence SOSC does not hold. But in fact x∗ = [0,0] is the local minimum
(actually also global).
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Example. Consider the following constrained problem:

minimize x1 + 4x2
2

subject to x2
1 + 2x2

2 ≥ 4

Solution. Here f(x) = x2
1 + 4x2

2, g(x) = −(x2
1 + 2x2

2− 4). The Lagrange
function is

l(x, µ) = x2
1 + 4x2

2 − µ(x2
1 + 2x2

2 − 4).

Then we obtain the KKT conditions:

∂x1l(x, µ) = 2x1 − 2µx1 = 0

∂x2l(x, µ) = 8x2 − 4µx2 = 0

x2
1 + 2x2

2 ≥ 4

µ ≥ 0

−µ(x2
1 + 2x2

2 − 4) = 0
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Solution (cont.)

• If µ∗ = 0, then x∗1 = x∗2 = 0 which violates g(x) ≤ 0.

• If µ∗ = 1 then [x∗1, x
∗
2] = ±[2,0].

• If µ∗ = 2 then [x∗1, x
∗
2] = ±[0,

√
2].

• If µ∗ > 0 but µ 6= 1,2, then x∗1 = x∗2 = 0 which again violates g(x) ≤ 0.

Hence the following 4 points satisfy the KKT conditions:x∗1x∗2
µ∗

 =

2
0
1

 ,
−2

0
1

 ,
 0√

2
2

 ,
 0
−
√

2
2
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Solution (cont.)

For µ∗ = 1, we have

∇2
xl([±2,0,1]) =

[
0 0
0 4

]
, ∇g([±2,0]) =

[
∓4
0

]
which implies

T̃ (x∗, µ∗) = T (x∗) = {t[0,1] : t ∈ R}

Hence

y>∇2
xl([x∗1, x

∗
2, µ
∗])y = 4t2 > 0

for all y ∈ T̃ (x∗, µ∗) \ {0}.

So [x∗1, x
∗
2] = [±2,0] satisfy SOSC and are strict local minimizers.
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Solution (cont.)

For µ∗ = 2, we have

∇2
xl([0,±

√
2,2]) =

[
−2 0
0 0

]
, ∇g([0,±

√
2]) =

[
0

∓4
√

2

]
which implies

T̃ (x∗, µ∗) = T (x∗) = {t[1,0] : t ∈ R}

Hence

y>∇2
xl([x∗1, x

∗
2, µ
∗])y = −4t2 < 0

for all y ∈ T̃ (x∗, µ∗) \ {0}.

So [x∗1, x
∗
2] = [0,±

√
2] do not satisfy SOSC but are strict local maximizers.
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