MATH 4211/6211 - Optimization Constrained Optimization

Xiaojing Ye
Department of Mathematics \& Statistics
Georgia State University

Constrained optimization problems are formulated as

$$
\begin{aligned}
\operatorname{minimize} & f(\boldsymbol{x}) \\
\text { subject to } & g_{j}(\boldsymbol{x}) \leq 0, \quad j=1, \ldots, p \\
& h_{i}(\boldsymbol{x})=0, \quad i=1, \ldots, m
\end{aligned}
$$

where $g_{j}, h_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are inequality and equality constraint functions, respectively.

We can summarize them into vector-valued functions g and h :

$$
\boldsymbol{g}(\boldsymbol{x})=\left[\begin{array}{c}
g_{1}(\boldsymbol{x}) \\
\vdots \\
g_{p}(\boldsymbol{x})
\end{array}\right] \quad \text { and } \quad \boldsymbol{h}(\boldsymbol{x})=\left[\begin{array}{c}
h_{1}(\boldsymbol{x}) \\
\vdots \\
h_{m}(\boldsymbol{x})
\end{array}\right]
$$

so the constraints can be written as $g(x) \leq 0$ and $h(x)=0$, respectively.

Note that $\boldsymbol{g}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ and $h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.

We can write the constrained optimization concisely as

$$
\begin{aligned}
\text { minimize } & f(\boldsymbol{x}) \\
\text { subject to } & \boldsymbol{g}(\boldsymbol{x}) \leq 0 \\
& \boldsymbol{h}(\boldsymbol{x})=0
\end{aligned}
$$

The feasible set is $\Omega:=\left\{\boldsymbol{x} \in \mathbb{R}^{n}: \boldsymbol{g}(\boldsymbol{x}) \leq 0, \boldsymbol{h}(\boldsymbol{x})=0\right\}$.

Exmaple. LP (standard form) is a constrained optimization with $f(\boldsymbol{x})=\boldsymbol{c}^{\top} \boldsymbol{x}$, $g(x)=-x$ and $h(x)=A x-b$.

We now focus on constrained optimization problems with equality constraints only, i.e.,

$$
\begin{aligned}
\text { minimize } & f(x) \\
\text { subject to } & h(x)=0
\end{aligned}
$$

and the feasible set is $\Omega=\left\{\boldsymbol{x} \in \mathbb{R}^{n}: \boldsymbol{h}(\boldsymbol{x})=0\right\}$.

Some equality-constrained optimization problem can be converted into unconstrained ones.

Example.

- Consider the constrained optimization problem

$$
\begin{aligned}
\operatorname{minimize} & x_{1}^{2}+2 x_{1} x_{2}+3 x_{2}^{2}+4 x_{1}+5 x_{2}+6 x_{3} \\
\text { subject to } & x_{1}+2 x_{2}=3 \\
& 4 x_{1}+5 x_{3}=6
\end{aligned}
$$

The constraints imply that $x_{2}=\frac{1}{2}\left(3-x_{1}\right)$ and $x_{3}=\frac{1}{5}\left(6-x_{1}\right)$. Substitute x_{2} and x_{3} in the objective function to get an unconstrained minimization of x_{1} only.

Example.

- Consider the constrained optimization problem

$$
\begin{array}{ll}
\operatorname{maximize} & x_{1} x_{2} \\
\text { subject to } & x_{1}^{2}+4 x_{2}^{2}=1
\end{array}
$$

It is equivalent to maximizing $x_{1}^{2} x_{2}^{2}$ then substitute x_{1}^{2} by $1-4 x_{2}^{2}$ to get an unconstrained problem of x_{2}.

Another way to solving this is using $1=x_{1}^{2}+\left(2 x_{2}\right)^{2} \geq 4 x_{1} x_{2}$ where the equality holds when $x_{1}=2 x_{2}$. So $x_{1}=\sqrt{2} / 2$ and $x_{2}=\sqrt{2} / 4$.

However, not all equality-constrained problems can be easily converted into unconstrained ones.

We need general theory to solve constrained optimization problems with equality constraints:

$$
\begin{aligned}
\text { minimize } & f(x) \\
\text { subject to } & h(x)=0
\end{aligned}
$$

and the feasible set is $\Omega=\left\{\boldsymbol{x} \in \mathbb{R}^{n}: \boldsymbol{h}(\boldsymbol{x})=0\right\}$.

Recall that $\boldsymbol{h}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}(m \leq n)$ has Jacobian matrix

$$
D \boldsymbol{h}(\boldsymbol{x})=\left[\begin{array}{c}
\nabla h_{1}(\boldsymbol{x})^{\top} \\
\vdots \\
\nabla h_{m}(\boldsymbol{x})^{\top}
\end{array}\right] \in \mathbb{R}^{m \times n}
$$

Definition. We say a point $x \in \Omega$ is a regular point if $\operatorname{rank}(D h(x))=m$, i.e., the Jacobian matrix has full row rank.

Example. Let $n=3$ and $m=1$. Define $h_{1}(\boldsymbol{x})=x_{2}-x_{3}^{2}$ be the only constraint. Then the Jacobian matrix is

$$
D \boldsymbol{h}(\boldsymbol{x})=\left[\nabla h_{1}(\boldsymbol{x})^{\top}\right]=\left[0,1,-2 x_{3}\right]
$$

Note that $D \boldsymbol{h}(\boldsymbol{x}) \neq 0$ and hence $\operatorname{rank}(D \boldsymbol{h}(\boldsymbol{x}))=1$ everywhere.
The feasible set Ω is a "surface" in \mathbb{R}^{3} with dimension $n-m=3-1=2$.

Example. Let $n=3$ and $m=2$. Define $h_{1}(x)=x_{1}$ and $h_{2}(x)=x_{2}-x_{3}^{2}$. The Jacobian is

$$
D h(x)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & -2 x_{3}
\end{array}\right]
$$

with $\operatorname{rank}(D \boldsymbol{h}(\boldsymbol{x}))=2$ everywhere, and the feasible set Ω is a line in \mathbb{R}^{3} with dimension $n-m=3-2=1$.

Tangent space and normal space

Defintion. We say $\boldsymbol{x}:(a, b) \rightarrow \mathbb{R}^{n}$, a curve in \mathbb{R}^{n}, is differentiable if $x_{i}^{\prime}(t)$ exists for all $t \in(a, b)$. The derivative is defined by

$$
\boldsymbol{x}^{\prime}(t)=\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
\vdots \\
x_{n}^{\prime}(t)
\end{array}\right]
$$

We say \boldsymbol{x} is twice differentiable if $x_{i}^{\prime \prime}(t)$ exists for all $t \in(a, b)$, and

$$
x^{\prime \prime}(t)=\left[\begin{array}{c}
x_{1}^{\prime \prime}(t) \\
\vdots \\
x_{n}^{\prime \prime}(t)
\end{array}\right]
$$

Defintion. The tangent space of $\Omega=\left\{x \in \mathbb{R}^{n}: h(x)=0\right\}$ at x^{*} is the set

$$
T\left(\boldsymbol{x}^{*}\right)=\left\{\boldsymbol{y} \in \mathbb{R}^{n}: D \boldsymbol{h}\left(\boldsymbol{x}^{*}\right) \boldsymbol{y}=0\right\} .
$$

In other words, $T\left(\boldsymbol{x}^{*}\right)=\mathcal{N}\left(D \boldsymbol{h}\left(\boldsymbol{x}^{*}\right)\right)$.
Remark. If \boldsymbol{x}^{*} is regular, then $\operatorname{rank}\left(\boldsymbol{h}\left(\boldsymbol{x}^{*}\right)\right)=m$, and hence $\operatorname{dim}\left(T\left(\boldsymbol{x}^{*}\right)\right)=$ $\operatorname{dim}\left(\mathcal{N}\left(D \boldsymbol{h}\left(\boldsymbol{x}^{*}\right)\right)\right)=n-m$.

Remark. We sometimes draw the tangent space as a plane tangent to Ω at x^{*}, that tangent plane is

$$
T P\left(\boldsymbol{x}^{*}\right):=\boldsymbol{x}^{*}+T\left(\boldsymbol{x}^{*}\right)=\left\{\boldsymbol{x}^{*}+\boldsymbol{y}: \boldsymbol{y} \in T\left(\boldsymbol{x}^{*}\right)\right\}
$$

Example. Let

$$
\Omega=\left\{\boldsymbol{x} \in \mathbb{R}^{3}: h_{1}(\boldsymbol{x})=x_{1}=0, h_{2}(\boldsymbol{x})=x_{1}-x_{2}=0\right\}
$$

Then we have

$$
D \boldsymbol{h}(\boldsymbol{x})=\left[\begin{array}{c}
\nabla h_{1}(\boldsymbol{x})^{\top} \\
\nabla h_{2}(\boldsymbol{x})^{\top}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 & -1 & 0
\end{array}\right]
$$

at any $x \in \Omega$, and the tangent space at any point x is

$$
\begin{aligned}
T(\boldsymbol{x})=\mathcal{N}(D(\boldsymbol{h}(\boldsymbol{x})) & =\left\{\boldsymbol{y} \in \mathbb{R}^{3}:\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 & -1 & 0
\end{array}\right] \boldsymbol{y}=0\right\} \\
& =\left\{[0 ; 0 ; \alpha] \in \mathbb{R}^{3}: \alpha \in \mathbb{R}\right\}
\end{aligned}
$$

Theorem. Suppose \boldsymbol{x}^{*} is regular. Then $\boldsymbol{y} \in T\left(\boldsymbol{x}^{*}\right)$ iff there exists curve $x:(-\delta, \delta) \rightarrow \Omega$ such that $x(0)=x^{*}$ and $x^{\prime}(0)=y$.

Proof. (\Leftarrow) Let $\boldsymbol{x}(t)$ be such a curve, then $\boldsymbol{h}(\boldsymbol{x}(t))=0$ for $t \in(-\delta, \delta)$ and

$$
D \boldsymbol{h}(x(0)) \boldsymbol{x}^{\prime}(0)=D \boldsymbol{h}\left(\boldsymbol{x}^{*}\right) \boldsymbol{y}=0
$$

which implies $\boldsymbol{y} \in T\left(\boldsymbol{x}^{*}\right)$.

Proof (cont.)

(\Rightarrow) For any t, let $\boldsymbol{u}=\boldsymbol{u}(t) \in \mathbb{R}^{n}$ be determined by t s.t. it solves

$$
\overline{\boldsymbol{h}}(t, \boldsymbol{u}):=\boldsymbol{h}\left(\boldsymbol{x}^{*}+t \boldsymbol{y}+D \boldsymbol{h}\left(\boldsymbol{x}^{*}\right)^{\top} \boldsymbol{u}\right)=\mathbf{0}
$$

We know $\boldsymbol{u}(0)=0$ is a solution at $t=0$. Moreover,

$$
D_{\boldsymbol{u}} \overline{\boldsymbol{h}}(0, \boldsymbol{u})=D \boldsymbol{h}\left(\boldsymbol{x}^{*}\right) D \boldsymbol{h}\left(\boldsymbol{x}^{*}\right)^{\top} \succ \mathbf{0}
$$

as $D \boldsymbol{h}\left(\boldsymbol{x}^{*}\right)$ has full row rank. Hence by Implicit Function Theorem, there is $\delta>0$ s.t. a unique solution $\boldsymbol{u}(t)$ to $\overline{\boldsymbol{h}}(t, \boldsymbol{u})=0$ exists for $t \in(-\delta, \delta)$. Then

$$
\boldsymbol{x}(t)=\boldsymbol{x}^{*}+t \boldsymbol{y}+D \boldsymbol{h}\left(\boldsymbol{x}^{*}\right)^{\top} \boldsymbol{u}(t)
$$

is the desired curve.

Defintion. The normal space of Ω at x^{*} is defined by

$$
N\left(\boldsymbol{x}^{*}\right)=\left\{\boldsymbol{x} \in \mathbb{R}^{n}: \boldsymbol{x}=D \boldsymbol{h}\left(\boldsymbol{x}^{*}\right)^{\top} \boldsymbol{z} \text { for some } \boldsymbol{z} \in \mathbb{R}^{m}\right\}
$$

In other words,

$$
\begin{aligned}
N\left(\boldsymbol{x}^{*}\right) & =\mathcal{C}\left(D \boldsymbol{h}\left(\boldsymbol{x}^{*}\right)^{\top}\right) \\
& =\mathcal{R}\left(D \boldsymbol{h}\left(\boldsymbol{x}^{*}\right)\right) \\
& =\operatorname{span}\left\{\nabla h_{1}\left(\boldsymbol{x}^{*}\right), \ldots, \nabla h_{m}\left(\boldsymbol{x}^{*}\right)\right\}
\end{aligned}
$$

Note that $\operatorname{dim}\left(N\left(\boldsymbol{x}^{*}\right)\right)=\operatorname{dim}\left(\mathcal{R}\left(D \boldsymbol{h}\left(\boldsymbol{x}^{*}\right)\right)\right)=m$.

Remark. The tangent space $T\left(\boldsymbol{x}^{*}\right)$ and the normal space $N\left(\boldsymbol{x}^{*}\right)$ form an orthogonal decomposition of \mathbb{R}^{n} :

$$
\mathbb{R}^{n}=T\left(\boldsymbol{x}^{*}\right) \oplus N\left(\boldsymbol{x}^{*}\right)=\mathcal{N}\left(D \boldsymbol{h}\left(\boldsymbol{x}^{*}\right)\right) \oplus \mathcal{R}\left(D \boldsymbol{h}\left(\boldsymbol{x}^{*}\right)\right)
$$

where $T\left(\boldsymbol{x}^{*}\right) \perp N\left(\boldsymbol{x}^{*}\right)$.

We can also write this as $T\left(x^{*}\right)^{\perp}=N\left(x^{*}\right)$ or $N\left(x^{*}\right)^{\perp}=T\left(x^{*}\right)$.

Hence, for any $\boldsymbol{v} \in \mathbb{R}^{n}$, there exist a unique pair $\boldsymbol{y} \in T\left(\boldsymbol{x}^{*}\right)$ and $\boldsymbol{w} \in N\left(\boldsymbol{x}^{*}\right)$, such that

$$
v=y+w
$$

Now let us see the first-order necessary conditions (FONC) for equality-constrained minimization.

Suppose x^{*} is a local minimizer of $f(x)$ over $\Omega=\{\boldsymbol{x}: \boldsymbol{h}(\boldsymbol{x})=0\}$, where $f, \boldsymbol{h} \in C^{1}$.

Then for any $\boldsymbol{y} \in T\left(\boldsymbol{x}^{*}\right)$, there exists curve $\boldsymbol{x}:(a, b) \rightarrow \Omega$ such that $\boldsymbol{x}(t)=$ x^{*} and $x^{\prime}(t)=y$ for some $t \in(a, b)$.

Define $\phi(s)=f(\boldsymbol{x}(s))$ (note that $\phi:(a, b) \rightarrow \mathbb{R})$, then

$$
\phi^{\prime}(s)=\nabla f(\boldsymbol{x}(s))^{\top} \boldsymbol{x}^{\prime}(s)
$$

In particular, due to the standard FONC, we have

$$
\phi^{\prime}(t)=\nabla f(\boldsymbol{x}(t))^{\top} \boldsymbol{x}^{\prime}(t)=\nabla f\left(\boldsymbol{x}^{*}\right)^{\top} \boldsymbol{y}=0
$$

Since $\boldsymbol{y} \in T\left(\boldsymbol{x}^{*}\right)$ is arbitrary, we know $\nabla f\left(\boldsymbol{x}^{*}\right) \perp T\left(\boldsymbol{x}^{*}\right)$, i.e.,

$$
\nabla f\left(\boldsymbol{x}^{*}\right) \in N\left(\boldsymbol{x}^{*}\right)
$$

This means that $\exists \boldsymbol{\lambda}^{*} \in \mathbb{R}^{m}$, such that

$$
\nabla f\left(\boldsymbol{x}^{*}\right)+D \boldsymbol{h}\left(\boldsymbol{x}^{*}\right)^{\top} \boldsymbol{\lambda}^{*}=\mathbf{0}
$$

This result is summarized below:
Theorem [Lagrange's Theorem]. If \boldsymbol{x}^{*} is a local minimizer (or maximizer) of $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ subject to $h(\boldsymbol{x})=0 \in \mathbb{R}^{m}$ where $m \leq n$, and \boldsymbol{x}^{*} is a regular point ($D \boldsymbol{h}\left(\boldsymbol{x}^{*}\right)$ has full row rank), then there exists $\boldsymbol{\lambda}^{*} \in \mathbb{R}^{m}$ s.t.

$$
\nabla f\left(\boldsymbol{x}^{*}\right)+D \boldsymbol{h}\left(\boldsymbol{x}^{*}\right)^{\top} \boldsymbol{\lambda}^{*}=\mathbf{0}
$$

Now we know if \boldsymbol{x}^{*} is a local minimizer of

$$
\begin{aligned}
\operatorname{minimize} & f(\boldsymbol{x}) \\
\text { subject to } & h(\boldsymbol{x})=0
\end{aligned}
$$

then x^{*} must satisfy

$$
\begin{aligned}
\nabla f\left(\boldsymbol{x}^{*}\right)+D \boldsymbol{h}\left(\boldsymbol{x}^{*}\right)^{\top} \boldsymbol{\lambda}^{*} & =0 \\
\boldsymbol{h}\left(\boldsymbol{x}^{*}\right) & =0
\end{aligned}
$$

There are called the first-order necessary conditions (FNOC), or the Lagrange condition, of the equality-constrained minimization problem. λ^{*} is called the Lagrange multiplier.

Remark. The conditions above are necessary but not sufficient to determine x^{*} to be a local minimizer-a point satisfying these conditions could be a local maximizer or neither.

Example. Consider the problem

$$
\begin{aligned}
\operatorname{minimize} & f(x) \\
\text { subject to } & h(x)=0
\end{aligned}
$$

where $f(x)=x$ and

$$
h(x)= \begin{cases}x^{2} & \text { if } x<0 \\ 0 & \text { if } 0 \leq x \leq 1 \\ (x-1)^{2} & \text { if } x>1\end{cases}
$$

We can see that $\Omega=[0,1]$ and $x^{*}=0$ is the only local minimizer. However $f^{\prime}\left(x^{*}\right)=1$ and $h^{\prime}\left(x^{*}\right)=0$. The Lagrange condition fails to hold because x^{*} is not a regular point.

We introduce the Lagrange function

$$
l(x, \lambda)=f(x)+h(x)^{\top} \lambda
$$

Then the Lagrange condition becomes

$$
\begin{aligned}
& \nabla_{x} l\left(\boldsymbol{x}^{*}, \boldsymbol{\lambda}^{*}\right)=\nabla f\left(\boldsymbol{x}^{*}\right)+D \boldsymbol{h}\left(\boldsymbol{x}^{*}\right)^{\top} \lambda^{*}=0 \\
& \nabla_{\lambda} l\left(\boldsymbol{x}^{*}, \boldsymbol{\lambda}^{*}\right)=\boldsymbol{h}\left(\boldsymbol{x}^{*}\right)=0
\end{aligned}
$$

Note that this is a system of $n+m$ equations for $[x ; \lambda] \in \mathbb{R}^{n+m}$ (which as $n+m$ unknowns).

Example. Given a fixed area A of cardboard, we wish to construct a closed cardboard box with maximum volume. Let the dimension of the box be $\boldsymbol{x}=$ [$x_{1} ; x_{2} ; x_{3}$], then the problem can be formulated as

$$
\begin{array}{ll}
\operatorname{maximize} & x_{1} x_{2} x_{3} \\
\text { subject to } & 2\left(x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{1}\right)=A
\end{array}
$$

Hence we can set

$$
\begin{aligned}
& f(\boldsymbol{x})=-x_{1} x_{2} x_{3} \\
& h(\boldsymbol{x})=x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{1}-\frac{A}{2}
\end{aligned}
$$

Then the Lagrange function is

$$
l(\boldsymbol{x}, \lambda)=f(\boldsymbol{x})+h(\boldsymbol{x}) \lambda=-x_{1} x_{2} x_{3}+\left(x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{1}-\frac{A}{2}\right) \lambda
$$

So the Lagrange condition is

$$
\begin{aligned}
& \nabla_{x} l(\boldsymbol{x}, \lambda)=0 \\
& \nabla_{\lambda} l(\boldsymbol{x}, \lambda)=0
\end{aligned}
$$

which is

$$
\begin{aligned}
x_{2} x_{3}-\left(x_{2}+x_{3}\right) \lambda & =0 \\
x_{1} x_{3}-\left(x_{1}+x_{3}\right) \lambda & =0 \\
x_{1} x_{2}-\left(x_{1}+x_{2}\right) \lambda & =0 \\
x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{1}-\frac{A}{2} & =0
\end{aligned}
$$

Then solving this system yields

$$
x_{1}=x_{2}=x_{3}=\sqrt{\frac{A}{6}}, \quad \lambda=\frac{1}{2} \sqrt{\frac{A}{6}}
$$

Example. Consider an equality-constrained optimization problem

$$
\begin{array}{cl}
\text { minimize } & x_{1}^{2}+x_{2}^{2} \\
\text { subject to } & x_{1}^{2}+2 x_{2}^{2}=1
\end{array}
$$

Solution. Here $f(\boldsymbol{x})=x_{1}^{2}+x_{2}^{2}$ and $\boldsymbol{h}(\boldsymbol{x})=x_{1}^{2}+2 x_{2}^{2}-1$.
The Lagrange function is

$$
l(\boldsymbol{x}, \boldsymbol{\lambda})=\left(x_{1}^{2}+x_{2}^{2}\right)+\lambda\left(x_{1}^{2}+2 x_{2}^{2}-1\right)
$$

Then we obtain

$$
\begin{aligned}
\partial_{x_{1}} l(\boldsymbol{x}, \lambda) & =2 x_{1}+2 \lambda x_{1}=0 \\
\partial_{x_{2}} l(\boldsymbol{x}, \lambda) & =2 x_{2}+4 \lambda x_{2}=0 \\
\partial_{\lambda} l(\boldsymbol{x}, \lambda) & =x_{1}^{2}+2 x_{2}^{2}-1=0
\end{aligned}
$$

Solution (cont). Solving this system yields

$$
\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\lambda
\end{array}\right]=\left[\begin{array}{c}
0 \\
1 / \sqrt{2} \\
-1 / 2
\end{array}\right], \quad\left[\begin{array}{c}
0 \\
-1 / \sqrt{2} \\
-1 / 2
\end{array}\right], \quad\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right], \quad \text { and }\left[\begin{array}{c}
-1 \\
0 \\
-1
\end{array}\right]
$$

It is easy to check that $x=[0 ; \pm 1 / \sqrt{2}]$ are local minimizers, and $x=[0 ; \pm 1]$ are local maximizers.

Now we consider second-order conditions. We assume $f, \boldsymbol{h} \in C^{2}$.

Following the same steps as in FONC, suppose x^{*} is a local minimizer, then for any $\boldsymbol{y} \in T\left(\boldsymbol{x}^{*}\right)$, there exists a curve $\boldsymbol{x}:(a, b) \rightarrow \Omega$ such that $\boldsymbol{x}(t)=\boldsymbol{x}^{*}$ and $\boldsymbol{x}^{\prime}(t)=\boldsymbol{y}$ for some $t \in(a, b)$.

Again define $\phi(s)=f(\boldsymbol{x}(s))$, and hence $\phi^{\prime}(s)=\nabla f(\boldsymbol{x}(s))^{\top} \boldsymbol{x}^{\prime}(s)$. Then the standard second-order necessary condition (SONC) implies that at a local minimizer there are

$$
\phi^{\prime}(t)=\nabla f(\boldsymbol{x}(t))^{\top} \boldsymbol{x}^{\prime}(t)=\nabla f\left(\boldsymbol{x}^{*}\right)^{\top} \boldsymbol{y}=\mathbf{0}
$$

and

$$
\phi^{\prime \prime}(t)=\boldsymbol{y}^{\top} \nabla^{2} f\left(\boldsymbol{x}^{*}\right) \boldsymbol{y}+\nabla f\left(\boldsymbol{x}^{*}\right)^{\top} \boldsymbol{x}^{\prime \prime}(t) \geq 0
$$

In addition, since $\psi_{i}(s):=h_{i}(\boldsymbol{x}(s))=0$ for all $s \in(a, b)$, we have $\psi_{i}^{\prime \prime}(t)=$ 0 which yields

$$
\boldsymbol{y}^{\top} \nabla^{2} h_{i}\left(\boldsymbol{x}^{*}\right) \boldsymbol{y}+\nabla h_{i}\left(\boldsymbol{x}^{*}\right)^{\top} \boldsymbol{x}^{\prime \prime}(t)=0
$$

for all $i=1, \ldots, m$.

According to the Lagrange condition, we know $\exists \boldsymbol{\lambda}^{*} \in \mathbb{R}^{m}$ such that

$$
\nabla f\left(\boldsymbol{x}^{*}\right)+D \boldsymbol{h}\left(\boldsymbol{x}^{*}\right)^{\top} \boldsymbol{\lambda}^{*}=\nabla f\left(\boldsymbol{x}^{*}\right)+\sum_{i=1}^{m} \lambda_{i}^{*} \nabla h_{i}\left(\boldsymbol{x}^{*}\right)=\mathbf{0}
$$

Using the results above, we can cancel the term with $\boldsymbol{x}^{\prime \prime}(t)$ and obtain

$$
\boldsymbol{y}^{\top}\left[\nabla^{2} f\left(\boldsymbol{x}^{*}\right)+\sum_{i=1}^{m} \lambda_{i}^{*} \nabla^{2} h_{i}\left(\boldsymbol{x}^{*}\right)\right] \boldsymbol{y} \geq 0
$$

for all $\boldsymbol{y} \in T\left(\boldsymbol{x}^{*}\right)$.

We summarize the second-order necessary condition (SONC):

Theorem (SONC). Let x^{*} be a local minimizer of $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ over $\Omega=\{x:$ $\left.\boldsymbol{h}(\boldsymbol{x})=0 \in \mathbb{R}^{m}\right\}$ with $m \leq n$, where $f, \boldsymbol{h} \in C^{2}$. Suppose \boldsymbol{x}^{*} is regular, then $\exists \boldsymbol{\lambda}^{*}=\left[\lambda_{1}^{*} ; \ldots ; \lambda_{m}^{*}\right] \in \mathbb{R}^{m}$ such that

1. $\nabla f\left(\boldsymbol{x}^{*}\right)+D h\left(\boldsymbol{x}^{*}\right)^{\top} \boldsymbol{\lambda}^{*}=0$;
2. For every $\boldsymbol{y} \in T\left(\boldsymbol{x}^{*}\right)$, there is

$$
\boldsymbol{y}^{\top}\left[\nabla^{2} f\left(\boldsymbol{x}^{*}\right)+\sum_{i=1}^{m} \lambda_{i}^{*} \nabla^{2} h_{i}\left(\boldsymbol{x}^{*}\right)\right] \boldsymbol{y} \geq 0
$$

So $\nabla^{2} f\left(x^{*}\right)+\sum_{i=1}^{m} \lambda_{i}^{*} \nabla^{2} h_{i}\left(x^{*}\right)$ is playing the role of "Hessian".

We also have the following second-order sufficient condition (SOSC):

Theorem (SOSC). Suppose $x^{*} \in \Omega=\{x: h(x)=0\}$ is regular. If $\exists \boldsymbol{\lambda}^{*}=$ $\left[\lambda_{1}^{*} ; \ldots ; \lambda_{m}^{*}\right] \in \mathbb{R}^{m}$ such that

1. $\nabla f\left(\boldsymbol{x}^{*}\right)+D h\left(\boldsymbol{x}^{*}\right)^{\top} \boldsymbol{\lambda}^{*}=0$;
2. for every nonzero $\boldsymbol{y} \in T\left(\boldsymbol{x}^{*}\right)$, there is

$$
\boldsymbol{y}^{\top}\left[\nabla^{2} f\left(\boldsymbol{x}^{*}\right)+\sum_{i=1}^{m} \lambda_{i}^{*} \nabla^{2} h_{i}\left(\boldsymbol{x}^{*}\right)\right] \boldsymbol{y}>0 .
$$

Then x^{*} is a strict local minimizer of f over Ω.

Example. Solve the following problem

$$
\text { maximize } \frac{\boldsymbol{x}^{\top} \boldsymbol{Q} \boldsymbol{x}}{\boldsymbol{x}^{\top} \boldsymbol{P} \boldsymbol{x}}
$$

where $\boldsymbol{Q}=\operatorname{diag}([4,1])$ and $\boldsymbol{P}=\operatorname{diag}([2,1])$.

Solution. Note the objective function is scale-invariant (replacing \boldsymbol{x} by $\boldsymbol{t} \boldsymbol{x}$ for any $t \neq 0$ yields the same value). This can be converted into the constrained minimization problem

$$
\begin{aligned}
\operatorname{minimize} & -\boldsymbol{x}^{\top} \boldsymbol{Q} \boldsymbol{x} \\
\text { subject to } & \boldsymbol{x}^{\top} \boldsymbol{P} \boldsymbol{x}-1=0
\end{aligned}
$$

and $\boldsymbol{h}(\boldsymbol{x})=\boldsymbol{x}^{\top} \boldsymbol{P} \boldsymbol{x}-1 \in \mathbb{R}$ is the constraint.

Note that $D \boldsymbol{h}(\boldsymbol{x})=2 \boldsymbol{P} \boldsymbol{x}=\left[4 x_{1} ; 2 x_{2}\right]$.

Solution (cont). We first write the Lagrange function

$$
l(\boldsymbol{x}, \lambda)=-\boldsymbol{x}^{\top} \boldsymbol{Q} \boldsymbol{x}+\lambda\left(\boldsymbol{x}^{\top} \boldsymbol{P} \boldsymbol{x}-1\right)
$$

Then the Lagrange condition becomes

$$
\begin{aligned}
& \nabla_{\boldsymbol{x}} l\left(\boldsymbol{x}^{*}, \lambda^{*}\right)=-2\left(\boldsymbol{Q}-\lambda^{*} \boldsymbol{P}\right) \boldsymbol{x}^{*}=0 \\
& \nabla_{\boldsymbol{\lambda}} l\left(\boldsymbol{x}^{*}, \lambda^{*}\right)=\boldsymbol{x}^{* \top} \boldsymbol{P} \boldsymbol{x}^{*}-1=0
\end{aligned}
$$

The first equation implies $P^{-1} Q x^{*}=\lambda^{*} x^{*}$, and hence λ^{*} is an eigenvalue of $P^{-1} Q=\operatorname{diag}([2,1])$. Hence $\lambda^{*}=2$ or $\lambda^{*}=1$.

For $\lambda^{*}=2$, we know x^{*} is the corresponding eigenvector of $P^{-1} \boldsymbol{Q}$ and satisfies $\boldsymbol{x}^{* \top} \boldsymbol{P} \boldsymbol{x}^{*}=1$. Hence $\boldsymbol{x}^{*}=[\pm 1 / \sqrt{2} ; 0]$. The tangent space is $T\left(\boldsymbol{x}^{*}\right)=\mathcal{N}\left(D \boldsymbol{h}\left(\boldsymbol{x}^{*}\right)\right)=\mathcal{N}([\pm \sqrt{2} ; 0])=\{[0 ; a]: a \in \mathbb{R}\}$.

We also have

$$
\nabla^{2} f\left(\boldsymbol{x}^{*}\right)+\lambda^{*} \nabla^{2} \boldsymbol{h}\left(\boldsymbol{x}^{*}\right)=-2 \boldsymbol{Q}+2 \lambda^{*} \boldsymbol{P}=\left[\begin{array}{ll}
0 & 0 \\
0 & 2
\end{array}\right]
$$

Therefore $\boldsymbol{y}^{\top}\left[\nabla^{2} f\left(\boldsymbol{x}^{*}\right)+\lambda^{*} \nabla^{2} \boldsymbol{h}\left(\boldsymbol{x}^{*}\right)\right] \boldsymbol{y}=2 a^{2}>0$ for all $\boldsymbol{y}=[0 ; a] \in$ $T\left(x^{*}\right)$ with $a \neq 0$.

Therefore $\boldsymbol{x}^{*}=[\pm 1 / \sqrt{2} ; 0]$ are both strict local minimizers of the constrained optimization problem.

Going back to the original problem, any $x^{*}=[t ; 0]$ with $t \neq 0$ is a strict local maximizer of $\frac{x^{\top} Q x}{\boldsymbol{x}^{\top} P \boldsymbol{x}}$.

For $\lambda^{*}=1$, we know \boldsymbol{x}^{*} is the corresponding eigenvector of $P^{-1} \boldsymbol{Q}$ and satisfies $\boldsymbol{x}^{* \top} \boldsymbol{P} \boldsymbol{x}^{*}=1$. Hence $\boldsymbol{x}^{*}=[0 ; \pm 1]$. The tangent space is $T\left(\boldsymbol{x}^{*}\right)=$ $\mathcal{N}\left(D h\left(\boldsymbol{x}^{*}\right)\right)=\mathcal{N}([0 ; \pm 1])=\{[a ; 0]: a \in \mathbb{R}\}$.

We also have

$$
\nabla^{2} f\left(\boldsymbol{x}^{*}\right)+\lambda^{*} \nabla^{2} \boldsymbol{h}\left(\boldsymbol{x}^{*}\right)=-2 \boldsymbol{Q}+2 \lambda^{*} \boldsymbol{P}=\left[\begin{array}{cc}
-4 & 0 \\
0 & 0
\end{array}\right]
$$

Therefore $\boldsymbol{y}^{\top}\left[\nabla^{2} f\left(\boldsymbol{x}^{*}\right)+\lambda^{*} \nabla^{2} \boldsymbol{h}\left(\boldsymbol{x}^{*}\right)\right] \boldsymbol{y}=-4 a^{2}<0$ for all $\boldsymbol{y}=[a ; 0] \in$ $T\left(\boldsymbol{x}^{*}\right)$ with $a \neq 0$.

Therefore $x^{*}=[0 ; \pm 1]$ are both strict local maximizers of the constrained optimization problem.

Going back to the original problem, any $x^{*}=[0 ; t]$ with $t \neq 0$ is strict local minimizer of $\frac{x^{\top} Q x}{x^{\top} P x}$.

Now we consider a special type of constrained minimization problem with linear equality constraints (again $Q \succ 0$ and A has full row rank):

$$
\begin{array}{cl}
\text { minimize } & \frac{1}{2} \boldsymbol{x}^{\top} \boldsymbol{Q} \boldsymbol{x} \\
\text { subject to } & \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}
\end{array}
$$

We have $f(x)=\frac{1}{2} \boldsymbol{x}^{\top} \boldsymbol{Q} \boldsymbol{x}$ and $\boldsymbol{h}(\boldsymbol{x})=\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x}$.
The Lagrange function is

$$
l(x, \boldsymbol{\lambda})=\frac{1}{2} x^{\top} \boldsymbol{Q} x+\boldsymbol{\lambda}^{\top}(b-\boldsymbol{A} x) .
$$

Hence the Lagrange condition is

$$
\begin{aligned}
& \nabla_{x} l(\boldsymbol{x}, \boldsymbol{\lambda})=Q \boldsymbol{x}-\boldsymbol{A}^{\top} \boldsymbol{\lambda}=0 \\
& \nabla_{\boldsymbol{\lambda}} l(\boldsymbol{x}, \boldsymbol{\lambda})=b-\boldsymbol{A x}=0
\end{aligned}
$$

Now we solve the following system for $\left[\boldsymbol{x}^{*} ; \boldsymbol{\lambda}^{*}\right]$:

$$
\begin{aligned}
\nabla_{\boldsymbol{x}} L\left(\boldsymbol{x}^{*}, \boldsymbol{\lambda}^{*}\right) & =\boldsymbol{Q} \boldsymbol{x}^{*}-\boldsymbol{A}^{\top} \boldsymbol{\lambda}^{*}=\mathbf{0} \\
\nabla_{\boldsymbol{\lambda}} L\left(\boldsymbol{x}^{*}, \boldsymbol{\lambda}^{*}\right) & =\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x}^{*}=\mathbf{0}
\end{aligned}
$$

The first equation implies $x^{*}=Q^{-1} A^{\top} \boldsymbol{\lambda}^{*}$.

Plugging this into the second equation and solve for $\boldsymbol{\lambda}^{*}$ to get

$$
\lambda^{*}=\left(A Q^{-1} A^{\top}\right)^{-1} b
$$

Hence the solution is

$$
x^{*}=Q^{-1} A^{\top} \lambda^{*}=Q^{-1} A^{\top}\left(A Q^{-1} A^{\top}\right)^{-1} b
$$

Example. Consider the problem of finding the solution of minimal norm to the linear system $\boldsymbol{A x}=\boldsymbol{b}$. That is

$$
\begin{aligned}
\operatorname{minimize} & \|\boldsymbol{x}\| \\
\text { subject to } & \boldsymbol{A x}=\boldsymbol{b}
\end{aligned}
$$

Solution. The problem is equivalent to

$$
\begin{aligned}
\text { minimize } & \frac{1}{2}\|x\|^{2}=\frac{1}{2} x^{\top} x \\
\text { subject to } & \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}
\end{aligned}
$$

which is the problem above with $Q=I$. Hence the solution is

$$
\boldsymbol{x}^{*}=\boldsymbol{A}^{\top}\left(\boldsymbol{A} \boldsymbol{A}^{\top}\right)^{-1} b
$$

Example. Consider a discrete dynamical system

$$
x_{k}=a x_{k-1}+b u_{k}
$$

with given initial x_{0}, where $k=1, \ldots, N$ stand for the time point. Here x_{k} is the "state" and u_{k} is the "control".

Suppose we want to minimize the state and control at all points, then we can formulate the problem as

$$
\begin{aligned}
\operatorname{minimize} & \frac{1}{2} \sum_{k=1}^{N}\left(q x_{k}^{2}+r u_{k}^{2}\right) \\
\text { subject to } & x_{k}=a x_{k-1}+b u_{k}, \quad k=1, \ldots, N .
\end{aligned}
$$

This is an example of linear quadratic regulator (LQR) in the optimal control theory.

To solve this, we let $z=\left[x_{1} ; \ldots ; x_{N} ; u_{1} ; \ldots ; u_{N}\right] \in \mathbb{R}^{2 N}$,

$$
\boldsymbol{Q}=\left[\begin{array}{cc}
q \boldsymbol{I}_{N} & \mathbf{0} \\
\mathbf{0} & r \boldsymbol{I}_{N}
\end{array}\right] \in \mathbb{R}^{(2 N) \times(2 N)}
$$

and

$$
\boldsymbol{A}=\left[\begin{array}{cccccccc}
1 & & \cdots & 0 & -b & & \cdots & 0 \\
-a & 1 & & \vdots & & -b & & \vdots \\
& \ddots & \ddots & & : & & \ddots & \\
0 & & -a & 1 & 0 & \cdots & & -b
\end{array}\right] \quad \boldsymbol{b}=\left[\begin{array}{c}
a x_{0} \\
0 \\
\vdots \\
0
\end{array}\right]
$$

Then the problem can be written as

$$
\begin{array}{cl}
\operatorname{minimize} & \frac{1}{2} z^{\top} \boldsymbol{Q} z \\
\text { subject to } & A \boldsymbol{z}=\boldsymbol{b}
\end{array}
$$

and the solution is

$$
z^{*}=\left[x^{*} ; u^{*}\right]=Q^{-1} A^{\top}\left(A Q^{-1} A^{\top}\right)^{-1} b
$$

Example [Credit card holder's dilemma]. Suppose we have a credit card debt $\$ 10,000$ which has a monthly interest rate of 2%. Now we want to make monthly payment for 10 months to minimize the balance as well as the amount of monthly payments.

Let x_{k} be the balance and u_{k} be the payment in month k. Then the problem can be written as

$$
\begin{aligned}
\operatorname{minimize} & \frac{1}{2} \sum_{k=1}^{10}\left(q x_{k}^{2}+r u_{k}^{2}\right) \\
\text { subject to } & x_{k}=1.02 x_{k-1}-u_{k}, \quad k=1, \ldots, 10, \quad x_{0}=10000 .
\end{aligned}
$$

The more anxious we are to reduce our debt, the larger the value of q relative to r. On the other hand, the more reluctant we are to make payments, the larger the value of r relative to q.

Here are two instances with different choices of q and r :

$$
q=1, r=10:
$$

k	Balance x_{k}	Payment u_{k}
1	7326.60	2873.40
2	5374.36	2098.77
3	3951.13	1530.72
4	2916.82	1113.34
5	2169.61	805.54
6	1635.97	577.04
7	1263.35	405.34
8	1015.08	273.53
9	866.73	168.65
10	803.70	80.37

$q=1, r=300:$

k	Balance x_{k}	Payment u_{k}
1	9844.66	355.34
2	9725.36	316.20
3	9641.65	278.22
4	9593.23	241.25
5	9579.92	205.17
6	9601.68	169.84
7	9658.58	135.13
8	9750.83	100.92
9	9878.78	67.08
10	10042.87	33.48

We now focus on constrained optimization problems with both equality and inequality constraints:

$$
\begin{aligned}
\operatorname{minimize} & f(\boldsymbol{x}) \\
\text { subject to } & \boldsymbol{g}(\boldsymbol{x}) \leq \mathbf{0} \\
& \boldsymbol{h}(\boldsymbol{x})=\mathbf{0}
\end{aligned}
$$

and the feasible set is $\Omega=\left\{\boldsymbol{x} \in \mathbb{R}^{n}: \boldsymbol{g}(\boldsymbol{x}) \leq \mathbf{0}, \boldsymbol{h}(\boldsymbol{x})=0\right\}$.

Note that $\boldsymbol{g}(\boldsymbol{x})=\left[g_{1}(\boldsymbol{x}) ; \ldots ; g_{p}(\boldsymbol{x})\right] \in \mathbb{R}^{p}$ and $\boldsymbol{h}(\boldsymbol{x})=\left[h_{1}(\boldsymbol{x}) ; \ldots ; h_{m}(\boldsymbol{x})\right] \in$ \mathbb{R}^{m}.

Definition. We call the inequality constraint g_{j} active at $\boldsymbol{x} \in \Omega$ if $g_{j}(\boldsymbol{x})=0$ and inactive if $g_{j}(\boldsymbol{x})<0$.

Definition. Denote $J(x)$ the index set of active constraints at x :

$$
J(\boldsymbol{x})=\left\{j: g_{j}(\boldsymbol{x})=0\right\} .
$$

Also denote $J^{c}(\boldsymbol{x})=\{1, \ldots, p\} \backslash J(\boldsymbol{x})$ as its complement.

Definition. We call x a regular point in Ω if

$$
\nabla h_{i}(\boldsymbol{x}), \quad \nabla g_{j}(\boldsymbol{x}), \quad 1 \leq i \leq m, \quad j \in J(\boldsymbol{x})
$$

are linearly independent (total of $m+|J(\boldsymbol{x})|$ vectors in \mathbb{R}^{n}).

Now we consider the first order necessary condition (FONC) for the optimization problem with both equality and inequality constraints:

Theorem [Karush-Kahn-Tucker (KKT)]. Suppose $f, \boldsymbol{g}, \boldsymbol{h} \in C^{1}, \boldsymbol{x}^{*}$ is a regular point and local minimizer of f, then $\exists \boldsymbol{\lambda}^{*} \in \mathbb{R}^{m}, \boldsymbol{\mu}^{*} \in \mathbb{R}^{p}$ such that

$$
\begin{aligned}
\nabla f\left(x^{*}\right)^{\top}+\lambda^{* \top} D \boldsymbol{h}\left(x^{*}\right)+\mu^{* \top} D \boldsymbol{g}\left(x^{*}\right) & =0^{\top} \\
\boldsymbol{h}\left(\boldsymbol{x}^{*}\right) & =0 \\
\boldsymbol{g}\left(\boldsymbol{x}^{*}\right) & \leq 0 \\
\boldsymbol{\mu}^{*} & \geq 0 \\
\boldsymbol{\mu}^{* \top} \boldsymbol{g}\left(\boldsymbol{x}^{*}\right) & =0
\end{aligned}
$$

Remarks.

- Define Lagrange function:

$$
l(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\mu})=f(\boldsymbol{x})+\boldsymbol{\lambda}^{\top} \boldsymbol{h}(\boldsymbol{x})+\boldsymbol{\mu}^{\top} \boldsymbol{g}(\boldsymbol{x})
$$

then the first KKT condition is just $\nabla_{\boldsymbol{x}} l\left(\boldsymbol{x}^{*}, \boldsymbol{\lambda}^{*}, \boldsymbol{\mu}^{*}\right)=0$.

- The second and third KKT conditions are just the constraints.
- λ is the Lagrange multiplier and μ is the KKT multiplier.
- Since $\boldsymbol{\mu}^{*} \geq \mathbf{0}$ and $\boldsymbol{g}\left(\boldsymbol{x}^{*}\right) \leq \mathbf{0}$, the last KKT condition implies $\mu_{j}^{*} g_{j}\left(\boldsymbol{x}^{*}\right)=$ 0 for all $j=1, \ldots, p$. Namely $g_{j}\left(\boldsymbol{x}^{*}\right)<0$ implies $\mu_{j}^{*}=0$. Hence

$$
\mu_{j}^{*}=0, \quad \forall j \neq J\left(x^{*}\right) .
$$

Proof (KKT Theorem). We first just let $\mu_{j}^{*}=0$ for all $j \in J^{c}\left(\boldsymbol{x}^{*}\right)$.
Since g_{j} is not active at \boldsymbol{x}^{*} for $j \in J^{c}\left(\boldsymbol{x}^{*}\right)$, it's not active in a neighbor of \boldsymbol{x}^{*} either. Hence \boldsymbol{x}^{*} is a regular point and local minimizer in Ω implies that \boldsymbol{x}^{*} is a regular point and local minimizer in

$$
\Omega^{\prime}:=\left\{\boldsymbol{x} \in \Omega: \boldsymbol{h}(\boldsymbol{x})=0, g_{j}(\boldsymbol{x})=0, j \in J\left(\boldsymbol{x}^{*}\right)\right\}
$$

Note Ω^{\prime} only contains equality constraints, hence the Lagrange theorem for equality constrained problems applies, i.e., $\exists \boldsymbol{\lambda}^{*}, \mu_{j}^{*}$ for $j \in J\left(\boldsymbol{x}^{*}\right)$ such that

$$
\nabla f\left(\boldsymbol{x}^{*}\right)+D \boldsymbol{h}\left(\boldsymbol{x}^{*}\right)^{\top} \boldsymbol{\lambda}^{*}+D \boldsymbol{g}\left(\boldsymbol{x}^{*}\right)^{\top} \boldsymbol{\mu}^{*}=\mathbf{0}
$$

where $\boldsymbol{\mu}^{*}=\left[\mu_{1}^{*} ; \ldots ; \mu_{p}^{*}\right]$. We only need to show $\mu_{j}^{*} \geq 0$ for all $j \in J\left(\boldsymbol{x}^{*}\right)$.

Proof (cont.) If $\mu_{j}^{*}<0$ for some $j \in J\left(x^{*}\right)$, then define

$$
\widehat{T}\left(\boldsymbol{x}^{*}\right):=\left\{\boldsymbol{y} \in \mathbb{R}^{n}: D \boldsymbol{h}\left(\boldsymbol{x}^{*}\right) \boldsymbol{y}=0, \nabla g_{j^{\prime}}\left(\boldsymbol{x}^{*}\right)^{\top} \boldsymbol{y}=0, j \in J\left(\boldsymbol{x}^{*}\right), j^{\prime} \neq j\right\} .
$$

We claim that $\exists \boldsymbol{y} \in \widehat{T}\left(\boldsymbol{x}^{*}\right)$ such that $\nabla g_{j}\left(\boldsymbol{x}^{*}\right)^{\top} \boldsymbol{y} \neq 0$: otherwise $\nabla g_{j}\left(\boldsymbol{x}^{*}\right)$ can be spanned by $\left\{\nabla h_{i}\left(\boldsymbol{x}^{*}\right), \nabla g_{j^{\prime}}\left(\boldsymbol{x}^{*}\right): 1 \leq i \leq m, j^{\prime} \in J\left(\boldsymbol{x}^{*}\right), j^{\prime} \neq j\right\}$, which contradicts to that $\nabla h_{i}\left(\boldsymbol{x}^{*}\right), \nabla g_{j}\left(\boldsymbol{x}^{*}\right)$ are linearly independent (since \boldsymbol{x}^{*} is regular). We choose \boldsymbol{y} (or $-\boldsymbol{y}$) so that $\nabla g_{j}\left(\boldsymbol{x}^{*}\right)^{\top} \boldsymbol{y}<0$.

Now left-multiply \boldsymbol{y}^{\top} to both sides of $\nabla f\left(\boldsymbol{x}^{*}\right)+D \boldsymbol{h}\left(\boldsymbol{x}^{*}\right)^{\top} \boldsymbol{\lambda}^{*}+D \boldsymbol{g}\left(\boldsymbol{x}^{*}\right)^{\top} \boldsymbol{\mu}^{*}=$ 0 , we get (since $\mu_{j}^{*}<0$ and $\nabla g_{j}\left(\boldsymbol{x}^{*}\right)^{\top} \boldsymbol{y}<0$):

$$
0=\boldsymbol{y}^{\top} \nabla f\left(\boldsymbol{x}^{*}\right)+\mu_{j}^{*} \boldsymbol{y}^{\top} \nabla g_{j}\left(\boldsymbol{x}^{*}\right)>\boldsymbol{y}^{\top} \nabla f\left(\boldsymbol{x}^{*}\right)
$$

Therefore there exists a curve $\boldsymbol{x}(t):(a, b) \rightarrow \Omega$ such that $\boldsymbol{x}\left(t^{*}\right)=\boldsymbol{x}^{*}$ and $\boldsymbol{x}^{\prime}\left(t^{*}\right)=\boldsymbol{y}$ for $t^{*} \in(a, b)$.

Proof (cont.) Moreover, define $\phi(t):=f(x(t))$, then

$$
\phi^{\prime}\left(t^{*}\right)=\nabla f\left(\boldsymbol{x}\left(t^{*}\right)\right)^{\top} \boldsymbol{x}^{\prime}\left(t^{*}\right)=\nabla f\left(\boldsymbol{x}^{*}\right)^{\top} \boldsymbol{y}<0
$$

Also, define $\psi(t)=g_{j}(\boldsymbol{x}(t))$, then

$$
\psi^{\prime}\left(t^{*}\right)=\nabla g_{j}\left(\boldsymbol{x}\left(t^{*}\right)\right)^{\top} \boldsymbol{x}^{\prime}\left(t^{*}\right)=\nabla g_{j}\left(\boldsymbol{x}^{*}\right)^{\top} \boldsymbol{y}<0
$$

These mean that $\exists \epsilon>0$ such that during $\left[t^{*}, t^{*}+\epsilon\right] \subset(a, b), f(x(t))$ and $g_{j}(\boldsymbol{x}(t))$ can both decrease further, so $\boldsymbol{x}(t) \in \Omega$ and $f(\boldsymbol{x}(t))<f\left(\boldsymbol{x}^{*}\right)$ for $t \in\left(t^{*}, t^{*}+\epsilon\right]$. This contradicts to that \boldsymbol{x}^{*} is a local minimizer on Ω. Hence $\mu_{j}^{*} \geq 0$ for all $j \in J\left(x^{*}\right)$.

Example. Consider the problem

$$
\begin{aligned}
\operatorname{minimize} & f\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}+x_{1} x_{2}-3 x_{1} \\
\text { subject to } & x_{1}, x_{2} \geq 0
\end{aligned}
$$

The Lagrange function is

$$
l(\boldsymbol{x}, \boldsymbol{\mu})=x_{1}^{2}+x_{2}^{2}+x_{1} x_{2}-3 x_{1}-x_{1} \mu_{1}-x_{2} \mu_{2}
$$

The KKT condition is

$$
\begin{array}{r}
2 x_{1}+x_{2}-3-\mu_{1}=0 \\
x_{1}+2 x_{2}-\mu_{2}=0 \\
x_{1}, x_{2}, \mu_{1}, \mu_{2} \geq 0 \\
\mu_{1} x_{1}+\mu_{2} x_{2}=0
\end{array}
$$

Solving this yields

$$
x_{1}^{*}=\mu_{2}^{*}=\frac{3}{2}, \quad x_{2}^{*}=\mu_{1}^{*}=0 .
$$

Similar as the proof of FONC, we can show SONC.

Theorem [Second order necessary condition (SONC)]. Suppose $f, \boldsymbol{g}, \boldsymbol{h} \in$ C^{2}. If \boldsymbol{x}^{*} is a regular point and local minimizer, then $\exists \boldsymbol{\lambda}^{*} \in \mathbb{R}^{m}, \boldsymbol{\mu}^{*} \in \mathbb{R}_{+}^{p}$ such that

- The KKT condition for ($\boldsymbol{x}^{*}, \boldsymbol{\lambda}^{*}, \boldsymbol{\mu}^{*}$) holds;
- For all $\boldsymbol{y} \in T\left(\boldsymbol{x}^{*}\right)$, there is

$$
\boldsymbol{y}^{\top} \nabla_{\boldsymbol{x}}^{2} l\left(\boldsymbol{x}^{*}, \boldsymbol{\lambda}^{*}, \boldsymbol{\mu}^{*}\right) \boldsymbol{y} \geq 0
$$

where

$$
T\left(\boldsymbol{x}^{*}\right)=\left\{\boldsymbol{y} \in \mathbb{R}^{n}: D \boldsymbol{h}\left(\boldsymbol{x}^{*}\right) \boldsymbol{y}=\mathbf{0}, \nabla g_{j}\left(\boldsymbol{x}^{*}\right)^{\top} \boldsymbol{y}=0, \forall j \in J\left(\boldsymbol{x}^{*}\right)\right\}
$$

Proof. The first part follows from the KKT theorem. The second part is due to the fact that x^{*} being a local minimizer of f over Ω implies that it is a local minimizer over Ω^{\prime}.

Theorem [Second order sufficient condition (SOSC)]. Suppose $f, \boldsymbol{g}, \boldsymbol{h} \in$ C^{2}. If $\exists \boldsymbol{\lambda}^{*} \in \mathbb{R}^{m}, \boldsymbol{\mu}^{*} \in \mathbb{R}^{p}$ such that

- The KKT condition of $\left(\boldsymbol{x}^{*}, \boldsymbol{\lambda}^{*}, \boldsymbol{\mu}^{*}\right)$ holds;
- For all nonzero $\boldsymbol{y} \in \tilde{T}\left(\boldsymbol{x}^{*}, \boldsymbol{\mu}^{*}\right)$, there is

$$
\boldsymbol{y}^{\top} \nabla_{\boldsymbol{x}}^{2} l\left(\boldsymbol{x}^{*}, \boldsymbol{\lambda}^{*}, \boldsymbol{\mu}^{*}\right) \boldsymbol{y}>0
$$

where

$$
\begin{aligned}
& \tilde{T}\left(\boldsymbol{x}^{*}, \boldsymbol{\mu}^{*}\right):=\left\{\boldsymbol{y} \in \mathbb{R}^{n}: D \boldsymbol{h}(\boldsymbol{x}) \boldsymbol{y}=0, \nabla g_{j}\left(\boldsymbol{x}^{*}\right) \boldsymbol{y}=0, j \in \widetilde{J}\left(\boldsymbol{x}^{*}, \boldsymbol{\mu}^{*}\right)\right\} \\
& \text { and }
\end{aligned}
$$

$$
\tilde{J}\left(x^{*}, \mu^{*}\right):=\left\{j \in J\left(x^{*}\right): \mu_{j}^{*}>0\right\}
$$

Then x^{*} is a strict local minimizer.

Remark. We omit the proof here. Note that $T\left(\boldsymbol{x}^{*}\right) \subset \widetilde{T}\left(\boldsymbol{x}^{*}, \boldsymbol{\mu}^{*}\right)$.

Example. Consider the following constrained problem:

$$
\begin{aligned}
\operatorname{minimize} & x_{1} x_{2}^{2} \\
\text { subject to } & x_{1}=x_{2} \\
& x_{1} \geq 0
\end{aligned}
$$

Solution. Here $f(\boldsymbol{x})=x_{1} x_{2}^{2}, h(\boldsymbol{x})=x_{1}-x_{2}$, and $g(\boldsymbol{x})=-x_{1}$. The Lagrange function is

$$
l(\boldsymbol{x}, \boldsymbol{\lambda}, \mu)=x_{1} x_{2}^{2}+\lambda\left(x_{1}-x_{2}\right)-\mu x_{1}
$$

Then we obtain the KKT conditions:

$$
\begin{aligned}
\partial_{x_{1}} l(\boldsymbol{x}, \lambda, \mu)=x_{2}^{2}+\lambda-\mu & =0 \\
\partial_{x_{2}} l(\boldsymbol{x}, \lambda, \mu)=2 x_{1} x_{2}-\lambda & =0 \\
\partial_{\lambda} l(\boldsymbol{x}, \lambda, \mu)=x_{1}-x_{2} & =0 \\
x_{1} & \geq 0 \\
\mu & \geq 0 \\
\mu x_{1} & =0
\end{aligned}
$$

Solution (cont.) If $x_{1}^{*}=x_{2}^{*}=0$, then $\lambda^{*}=\mu^{*}=0$. If $x_{1}^{*}=x_{2}^{*}>0$, then $\mu^{*}=0$ but we cannot find any valid λ^{*}. So only the point $\left[x^{*}, \lambda^{*}, \mu^{*}\right]=$ $[0,0,0,0]$ satisfies the KKT conditions.

Since $\mu^{*}=0$, we have

$$
\tilde{T}\left(x^{*}, \mu^{*}\right)=\mathcal{N}\left(\nabla h\left(x^{*}\right)\right)=\mathcal{N}([1,-1])=\{t[1,1]: t \in \mathbb{R}\}
$$

On the other hand

$$
\nabla_{\boldsymbol{x}}^{2} l\left(\boldsymbol{x}^{*}, \lambda^{*}, \mu^{*}\right)=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

so $\boldsymbol{y}^{\top}\left(\nabla^{2} l\left(\boldsymbol{x}^{*}, \lambda^{*}, \mu^{*}\right)\right) \boldsymbol{y}=0$ for all $\boldsymbol{y} \in \widetilde{T}\left(\boldsymbol{x}^{*}, \mu\right)$ but not strictly larger than
0 . Hence SOSC does not hold. But in fact $x^{*}=[0,0]$ is the local minimum (actually also global).

Example. Consider the following constrained problem:

$$
\begin{array}{cl}
\text { minimize } & x_{1}+4 x_{2}^{2} \\
\text { subject to } & x_{1}^{2}+2 x_{2}^{2} \geq 4
\end{array}
$$

Solution. Here $f(x)=x_{1}^{2}+4 x_{2}^{2}, g(x)=-\left(x_{1}^{2}+2 x_{2}^{2}-4\right)$. The Lagrange function is

$$
l(\boldsymbol{x}, \mu)=x_{1}^{2}+4 x_{2}^{2}-\mu\left(x_{1}^{2}+2 x_{2}^{2}-4\right) .
$$

Then we obtain the KKT conditions:

$$
\begin{aligned}
\partial_{x_{1}} l(x, \mu)=2 x_{1}-2 \mu x_{1} & =0 \\
\partial_{x_{2}} l(x, \mu)=8 x_{2}-4 \mu x_{2} & =0 \\
x_{1}^{2}+2 x_{2}^{2} & \geq 4 \\
\mu & \geq 0 \\
-\mu\left(x_{1}^{2}+2 x_{2}^{2}-4\right) & =0
\end{aligned}
$$

Solution (cont.)

- If $\mu^{*}=0$, then $x_{1}^{*}=x_{2}^{*}=0$ which violates $g(\boldsymbol{x}) \leq 0$.
- If $\mu^{*}=1$ then $\left[x_{1}^{*}, x_{2}^{*}\right]= \pm[2,0]$.
- If $\mu^{*}=2$ then $\left[x_{1}^{*}, x_{2}^{*}\right]= \pm[0, \sqrt{2}]$.
- If $\mu^{*}>0$ but $\mu \neq 1,2$, then $x_{1}^{*}=x_{2}^{*}=0$ which again violates $g(\boldsymbol{x}) \leq 0$.

Hence the following 4 points satisfy the KKT conditions:

$$
\left[\begin{array}{l}
x_{1}^{*} \\
x_{2}^{*} \\
\mu^{*}
\end{array}\right]=\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right], \quad\left[\begin{array}{c}
-2 \\
0 \\
1
\end{array}\right], \quad\left[\begin{array}{c}
0 \\
\sqrt{2} \\
2
\end{array}\right], \quad\left[\begin{array}{c}
0 \\
-\sqrt{2} \\
2
\end{array}\right]
$$

Solution (cont.)

For $\mu^{*}=1$, we have

$$
\nabla_{x}^{2} l([\pm 2,0,1])=\left[\begin{array}{ll}
0 & 0 \\
0 & 4
\end{array}\right], \quad \nabla g([\pm 2,0])=\left[\begin{array}{c}
\mp 4 \\
0
\end{array}\right]
$$

which implies

$$
\tilde{T}\left(\boldsymbol{x}^{*}, \mu^{*}\right)=T\left(\boldsymbol{x}^{*}\right)=\{t[0,1]: t \in \mathbb{R}\}
$$

Hence

$$
\boldsymbol{y}^{\top} \nabla_{\boldsymbol{x}}^{2} l\left(\left[x_{1}^{*}, x_{2}^{*}, \mu^{*}\right]\right) \boldsymbol{y}=4 t^{2}>0
$$

for all $\boldsymbol{y} \in \tilde{T}\left(\boldsymbol{x}^{*}, \mu^{*}\right) \backslash\{\mathbf{0}\}$.

So $\left[x_{1}^{*}, x_{2}^{*}\right]=[\pm 2,0]$ satisfy SOSC and are strict local minimizers.

Solution (cont.)

For $\mu^{*}=2$, we have

$$
\nabla_{x}^{2} l([0, \pm \sqrt{2}, 2])=\left[\begin{array}{cc}
-2 & 0 \\
0 & 0
\end{array}\right], \quad \nabla g([0, \pm \sqrt{2}])=\left[\begin{array}{c}
0 \\
\mp 4 \sqrt{2}
\end{array}\right]
$$

which implies

$$
\tilde{T}\left(x^{*}, \mu^{*}\right)=T\left(x^{*}\right)=\{t[1,0]: t \in \mathbb{R}\}
$$

Hence

$$
\boldsymbol{y}^{\top} \nabla_{\boldsymbol{x}}^{2} l\left(\left[x_{1}^{*}, x_{2}^{*}, \mu^{*}\right]\right) \boldsymbol{y}=-4 t^{2}<0
$$

for all $\boldsymbol{y} \in \tilde{T}\left(\boldsymbol{x}^{*}, \mu^{*}\right) \backslash\{\mathbf{0}\}$.

So $\left[x_{1}^{*}, x_{2}^{*}\right]=[0, \pm \sqrt{2}]$ do not satisfy SOSC but are strict local maximizers.

