MATH 4211/6211 – Optimization Constrained Optimization

Xiaojing Ye Department of Mathematics & Statistics Georgia State University

Constrained optimization problems are formulated as

minimize
$$f(x)$$

subject to $g_j(x) \le 0, \quad j = 1, \dots, p,$
 $h_i(x) = 0, \quad i = 1, \dots, m,$

where $g_j, h_i : \mathbb{R}^n \to \mathbb{R}$ are **inequality** and **equality** constraint functions, respectively.

We can summarize them into vector-valued functions g and h:

$$g(x) = egin{bmatrix} g_1(x) \ dots \ g_p(x) \end{bmatrix} ext{ and } h(x) = egin{bmatrix} h_1(x) \ dots \ h_m(x) \end{bmatrix}$$

so the constraints can be written as $g(x) \leq 0$ and h(x) = 0, respectively.

Note that $g : \mathbb{R}^n \to \mathbb{R}^p$ and $h : \mathbb{R}^n \to \mathbb{R}^m$.

We can write the constrained optimization concisely as

The feasible set is $\Omega := \{x \in \mathbb{R}^n : g(x) \leq 0, h(x) = 0\}.$

Exmaple. LP (standard form) is a constrained optimization with $f(x) = c^{\top}x$, g(x) = -x and h(x) = Ax - b.

We now focus on constrained optimization problems with equality constraints only, i.e.,

minimize f(x)subject to h(x) = 0

and the feasible set is $\Omega = \{x \in \mathbb{R}^n : h(x) = 0\}.$

Some equality-constrained optimization problem can be converted into unconstrained ones.

Example.

• Consider the constrained optimization problem

minimize
$$x_1^2 + 2x_1x_2 + 3x_2^2 + 4x_1 + 5x_2 + 6x_3$$

subject to $x_1 + 2x_2 = 3$
 $4x_1 + 5x_3 = 6$

The constraints imply that $x_2 = \frac{1}{2}(3 - x_1)$ and $x_3 = \frac{1}{5}(6 - x_1)$. Substitute x_2 and x_3 in the objective function to get an unconstrained minimization of x_1 only.

Example.

• Consider the constrained optimization problem

maximize x_1x_2 subject to $x_1^2 + 4x_2^2 = 1$

It is equivalent to maximizing $x_1^2 x_2^2$ then substitute x_1^2 by $1 - 4x_2^2$ to get an unconstrained problem of x_2 .

Another way to solving this is using $1 = x_1^2 + (2x_2)^2 \ge 4x_1x_2$ where the equality holds when $x_1 = 2x_2$. So $x_1 = \sqrt{2}/2$ and $x_2 = \sqrt{2}/4$.

However, not all equality-constrained problems can be easily converted into unconstrained ones.

We need general theory to solve constrained optimization problems with equality constraints:

> minimize f(x)subject to h(x) = 0

and the feasible set is $\Omega = \{x \in \mathbb{R}^n : h(x) = 0\}.$

Recall that $h : \mathbb{R}^n \to \mathbb{R}^m$ $(m \le n)$ has Jacobian matrix

$$Dm{h}(m{x}) = egin{bmatrix}
abla h_1(m{x})^{ op} \ howperform \
abla \
abla \
abla h_m(m{x})^{ op} \end{bmatrix} \in \mathbb{R}^{m imes n}$$

Definition. We say a point $x \in \Omega$ is a **regular point** if rank(Dh(x)) = m, i.e., the Jacobian matrix has full row rank.

Example. Let n = 3 and m = 1. Define $h_1(x) = x_2 - x_3^2$ be the only constraint. Then the Jacobian matrix is

$$Dh(x) = [\nabla h_1(x)^{\top}] = [0, 1, -2x_3]$$

Note that $Dh(x) \neq 0$ and hence rank(Dh(x)) = 1 everywhere.

The feasible set Ω is a "surface" in \mathbb{R}^3 with dimension n - m = 3 - 1 = 2.

Example. Let n = 3 and m = 2. Define $h_1(x) = x_1$ and $h_2(x) = x_2 - x_3^2$. The Jacobian is

$$Dh(x) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -2x_3 \end{bmatrix}$$

with rank(Dh(x)) = 2 everywhere, and the feasible set Ω is a line in \mathbb{R}^3 with dimension n - m = 3 - 2 = 1.

Tangent space and normal space

Definiton. We say $x : (a, b) \to \mathbb{R}^n$, a curve in \mathbb{R}^n , is **differentiable** if $x'_i(t)$ exists for all $t \in (a, b)$. The derivative is defined by

$$x'(t) = \begin{bmatrix} x'_1(t) \\ \vdots \\ x'_n(t) \end{bmatrix}$$

We say x is twice differentiable if $x''_i(t)$ exists for all $t \in (a, b)$, and

$$x''(t) = \begin{bmatrix} x_1''(t) \\ \vdots \\ x_n''(t) \end{bmatrix}$$

Definiton. The tangent space of $\Omega = \{x \in \mathbb{R}^n : h(x) = 0\}$ at x^* is the set

$$T(x^*) = \{ y \in \mathbb{R}^n : Dh(x^*)y = 0 \}.$$

In other words, $T(x^*) = \mathcal{N}(Dh(x^*))$.

Remark. If x^* is regular, then rank $(Dh(x^*)) = m$, and hence dim $(T(x^*)) = \dim(\mathcal{N}(Dh(x^*))) = n - m$.

Remark. We sometimes draw the tangent space as a plane tangent to Ω at x^* , that tangent plane is

$$TP(x^*) := x^* + T(x^*) = \{x^* + y : y \in T(x^*)\}$$

Example. Let

$$\Omega = \{ x \in \mathbb{R}^3 : h_1(x) = x_1 = 0, \ h_2(x) = x_1 - x_2 = 0 \}$$

Then we have

$$Dh(x) = egin{bmatrix}
abla h_1(x)^{ op} \\

abla h_2(x)^{ op} \end{bmatrix} = egin{bmatrix} 1 & 0 & 0 \\
1 & -1 & 0 \end{bmatrix}$$

at any $x \in \Omega$, and the tangent space at any point x is

$$T(x) = \mathcal{N}(D(h(x))) = \left\{ y \in \mathbb{R}^3 : \begin{bmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \end{bmatrix} y = 0 \right\}$$
$$= \left\{ [0; 0; \alpha] \in \mathbb{R}^3 : \alpha \in \mathbb{R} \right\}$$

Theorem. Suppose x^* is regular. Then $y \in T(x^*)$ iff there exists curve $x : (-\delta, \delta) \to \Omega$ such that $x(0) = x^*$ and x'(0) = y.

Proof. (\Leftarrow) Let x(t) be such a curve, then h(x(t)) = 0 for $t \in (-\delta, \delta)$ and $Dh(x(0))x'(0) = Dh(x^*)y = 0$

which implies $y \in T(x^*)$.

Proof (cont.)

(\Rightarrow) For any t, let $u = u(t) \in \mathbb{R}^n$ be determined by t s.t. it solves $\overline{h}(t, u) := h(x^* + ty + Dh(x^*)^\top u) = 0$ We know u(0) = 0 is a solution at t = 0. Moreover,

$$D_{\boldsymbol{u}}\bar{\boldsymbol{h}}(0,\boldsymbol{u})=D\boldsymbol{h}(\boldsymbol{x}^*)D\boldsymbol{h}(\boldsymbol{x}^*)^{\top}\succ \boldsymbol{0}$$

as $Dh(x^*)$ has full row rank. Hence by Implicit Function Theorem, there is $\delta > 0$ s.t. a unique solution u(t) to $\bar{h}(t, u) = 0$ exists for $t \in (-\delta, \delta)$. Then

$$\boldsymbol{x}(t) = \boldsymbol{x}^* + t\boldsymbol{y} + D\boldsymbol{h}(\boldsymbol{x}^*)^\top \boldsymbol{u}(t)$$

is the desired curve.

Definiton. The normal space of Ω at x^* is defined by

$$N(x^*) = \{x \in \mathbb{R}^n : x = Dh(x^*)^ op z ext{ for some } z \in \mathbb{R}^m\}$$

In other words,

$$N(x^*) = C(Dh(x^*)^\top)$$

= $\mathcal{R}(Dh(x^*))$
= span{ $\nabla h_1(x^*), \dots, \nabla h_m(x^*)$ }

Note that $\dim(N(x^*)) = \dim(\mathcal{R}(Dh(x^*))) = m$.

Remark. The tangent space $T(x^*)$ and the normal space $N(x^*)$ form an orthogonal decomposition of \mathbb{R}^n :

$$\mathbb{R}^n = T(x^*) \oplus N(x^*) = \mathcal{N}(Dh(x^*)) \oplus \mathcal{R}(Dh(x^*))$$

where $T(x^*) \perp N(x^*)$.

We can also write this as $T(x^*)^{\perp} = N(x^*)$ or $N(x^*)^{\perp} = T(x^*)$.

Hence, for any $v \in \mathbb{R}^n$, there exist a unique pair $y \in T(x^*)$ and $w \in N(x^*)$, such that

$$v = y + w$$

Now let us see the first-order necessary conditions (FONC) for equality-constrained minimization.

Suppose x^* is a local minimizer of f(x) over $\Omega = \{x : h(x) = 0\}$, where $f, h \in C^1$.

Then for any $y \in T(x^*)$, there exists curve $x : (a, b) \to \Omega$ such that $x(t) = x^*$ and x'(t) = y for some $t \in (a, b)$.

Define $\phi(s) = f(x(s))$ (note that $\phi : (a, b) \to \mathbb{R}$), then $\phi'(s) = \nabla f(x(s))^{\top} x'(s)$

In particular, due to the standard FONC, we have

$$\phi'(t) = \nabla f(\boldsymbol{x}(t))^{\top} \boldsymbol{x}'(t) = \nabla f(\boldsymbol{x}^*)^{\top} \boldsymbol{y} = 0$$

Since $m{y} \in T(m{x}^*)$ is arbitrary, we know $abla f(m{x}^*) \perp T(m{x}^*)$, i.e.,

$$abla f(\boldsymbol{x}^*) \in N(\boldsymbol{x}^*)$$

This means that $\exists \lambda^* \in \mathbb{R}^m$, such that

$$\nabla f(x^*) + Dh(x^*)^\top \lambda^* = 0$$

This result is summarized below:

Theorem [Lagrange's Theorem]. If x^* is a local minimizer (or maximizer) of $f : \mathbb{R}^n \to \mathbb{R}$ subject to $h(x) = 0 \in \mathbb{R}^m$ where $m \leq n$, and x^* is a regular point $(Dh(x^*)$ has full row rank), then there exists $\lambda^* \in \mathbb{R}^m$ s.t.

$$\nabla f(x^*) + Dh(x^*)^\top \lambda^* = 0$$

Now we know if x^* is a local minimizer of

minimize f(x)subject to h(x) = 0

then x^* must satisfy

$$abla f(x^*) + Dh(x^*)^ op \lambda^* = 0$$
 $h(x^*) = 0$

There are called the first-order necessary conditions (FNOC), or the **Lagrange condition**, of the equality-constrained minimization problem. λ^* is called the **Lagrange multiplier**.

Remark. The conditions above are necessary but not sufficient to determine x^* to be a local minimizer—a point satisfying these conditions could be a local maximizer or neither.

Example. Consider the problem

minimize f(x)subject to h(x) = 0

where f(x) = x and

$$h(x) = \begin{cases} x^2 & \text{if } x < 0\\ 0 & \text{if } 0 \le x \le 1\\ (x-1)^2 & \text{if } x > 1 \end{cases}$$

We can see that $\Omega = [0, 1]$ and $x^* = 0$ is the only local minimizer. However $f'(x^*) = 1$ and $h'(x^*) = 0$. The Lagrange condition fails to hold because x^* is not a regular point.

We introduce the Lagrange function

$$l(x, \lambda) = f(x) + h(x)^{\top} \lambda$$

Then the Lagrange condition becomes

$$egin{aligned}
abla_x l(x^*, \lambda^*) &=
abla f(x^*) + Dh(x^*)^ op \lambda^* = 0 \
abla_\lambda l(x^*, \lambda^*) &= h(x^*) = 0 \end{aligned}$$

Note that this is a system of n + m equations for $[x; \lambda] \in \mathbb{R}^{n+m}$ (which as n + m unknowns).

Example. Given a fixed area A of cardboard, we wish to construct a closed cardboard box with maximum volume. Let the dimension of the box be $x = [x_1; x_2; x_3]$, then the problem can be formulated as

maximize
$$x_1x_2x_3$$

subject to $2(x_1x_2 + x_2x_3 + x_3x_1) = A$

Hence we can set

$$f(x) = -x_1 x_2 x_3$$

$$h(x) = x_1 x_2 + x_2 x_3 + x_3 x_1 - \frac{A}{2}$$

Then the Lagrange function is

$$l(x,\lambda) = f(x) + h(x)\lambda = -x_1x_2x_3 + \left(x_1x_2 + x_2x_3 + x_3x_1 - \frac{A}{2}\right)\lambda$$

So the Lagrange condition is

 $abla_x l(x,\lambda) = 0 \
abla_\lambda l(x,\lambda) = 0$

which is

$$x_{2}x_{3} - (x_{2} + x_{3})\lambda = 0$$
$$x_{1}x_{3} - (x_{1} + x_{3})\lambda = 0$$
$$x_{1}x_{2} - (x_{1} + x_{2})\lambda = 0$$
$$x_{1}x_{2} + x_{2}x_{3} + x_{3}x_{1} - \frac{A}{2} = 0$$

Then solving this system yields

$$x_1 = x_2 = x_3 = \sqrt{\frac{A}{6}}, \quad \lambda = \frac{1}{2}\sqrt{\frac{A}{6}}.$$

Example. Consider an equality-constrained optimization problem

minimize
$$x_1^2 + x_2^2$$

subject to $x_1^2 + 2x_2^2 = 1$

Solution. Here
$$f(x) = x_1^2 + x_2^2$$
 and $h(x) = x_1^2 + 2x_2^2 - 1$.

The Lagrange function is

$$l(x, \lambda) = (x_1^2 + x_2^2) + \lambda(x_1^2 + 2x_2^2 - 1)$$

Then we obtain

$$\partial_{x_1} l(x,\lambda) = 2x_1 + 2\lambda x_1 = 0$$

$$\partial_{x_2} l(x,\lambda) = 2x_2 + 4\lambda x_2 = 0$$

$$\partial_{\lambda} l(x,\lambda) = x_1^2 + 2x_2^2 - 1 = 0$$

Solution (cont). Solving this system yields

$$\begin{bmatrix} x_1 \\ x_2 \\ \lambda \end{bmatrix} = \begin{bmatrix} 0 \\ 1/\sqrt{2} \\ -1/2 \end{bmatrix}, \begin{bmatrix} 0 \\ -1/\sqrt{2} \\ -1/2 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, \text{ and } \begin{bmatrix} -1 \\ 0 \\ -1 \end{bmatrix}$$

It is easy to check that $x = [0; \pm 1/\sqrt{2}]$ are local minimizers, and $x = [0; \pm 1]$ are local maximizers.

Now we consider second-order conditions. We assume $f, h \in C^2$.

Following the same steps as in FONC, suppose x^* is a local minimizer, then for any $y \in T(x^*)$, there exists a curve $x : (a, b) \to \Omega$ such that $x(t) = x^*$ and x'(t) = y for some $t \in (a, b)$.

Again define $\phi(s) = f(x(s))$, and hence $\phi'(s) = \nabla f(x(s))^{\top} x'(s)$. Then the standard second-order necessary condition (SONC) implies that at a local minimizer there are

$$\phi'(t) = \nabla f(\boldsymbol{x}(t))^{\top} \boldsymbol{x}'(t) = \nabla f(\boldsymbol{x}^*)^{\top} \boldsymbol{y} = \boldsymbol{0}$$

and

$$\phi''(t) = \boldsymbol{y}^\top \nabla^2 f(\boldsymbol{x}^*) \boldsymbol{y} + \nabla f(\boldsymbol{x}^*)^\top \boldsymbol{x}''(t) \ge 0$$

In addition, since $\psi_i(s) := h_i(x(s)) = 0$ for all $s \in (a, b)$, we have $\psi''_i(t) = 0$ which yields

$$\boldsymbol{y}^{\top} \nabla^2 h_i(\boldsymbol{x}^*) \boldsymbol{y} + \nabla h_i(\boldsymbol{x}^*)^{\top} \boldsymbol{x}''(t) = 0$$

for all i = 1, ..., m.

According to the Lagrange condition, we know $\exists \lambda^* \in \mathbb{R}^m$ such that

$$abla f(x^*) + Dh(x^*)^\top \lambda^* =
abla f(x^*) + \sum_{i=1}^m \lambda_i^* \nabla h_i(x^*) = 0$$

Using the results above, we can cancel the term with x''(t) and obtain

$$oldsymbol{y}^{ op}\left[
abla^2 f(oldsymbol{x}^*) + \sum_{i=1}^m \lambda_i^*
abla^2 h_i(oldsymbol{x}^*)
ight]oldsymbol{y} \geq 0$$

for all $y \in T(x^*)$.

We summarize the second-order necessary condition (SONC):

Theorem (SONC). Let x^* be a local minimizer of $f : \mathbb{R}^n \to \mathbb{R}$ over $\Omega = \{x : h(x) = 0 \in \mathbb{R}^m\}$ with $m \le n$, where $f, h \in C^2$. Suppose x^* is regular, then $\exists \lambda^* = [\lambda_1^*; \ldots; \lambda_m^*] \in \mathbb{R}^m$ such that

1.
$$\nabla f(x^*) + Dh(x^*)^{\top} \lambda^* = 0;$$

2. For every $y \in T(x^*)$, there is

$$oldsymbol{y}^{ op}\left[
abla^2 f(oldsymbol{x}^*) + \sum_{i=1}^m \lambda_i^*
abla^2 h_i(oldsymbol{x}^*)
ight]oldsymbol{y} \geq 0.$$

So $\nabla^2 f(x^*) + \sum_{i=1}^m \lambda_i^* \nabla^2 h_i(x^*)$ is playing the role of "Hessian".

We also have the following second-order sufficient condition (SOSC):

Theorem (SOSC). Suppose $x^* \in \Omega = \{x : h(x) = 0\}$ is regular. If $\exists \lambda^* = [\lambda_1^*; \ldots; \lambda_m^*] \in \mathbb{R}^m$ such that

1.
$$\nabla f(x^*) + Dh(x^*)^\top \lambda^* = 0;$$

2. for every nonzero $y \in T(x^*)$, there is

$$y^{\top} \left[\nabla^2 f(x^*) + \sum_{i=1}^m \lambda_i^* \nabla^2 h_i(x^*) \right] y > 0.$$

Then x^* is a strict local minimizer of f over Ω .

Example. Solve the following problem

maximize
$$rac{x^ op Qx}{x^ op Px}$$
 where $Q= ext{diag}([4,1])$ and $P= ext{diag}([2,1]).$

Solution. Note the objective function is scale-invariant (replacing x by tx for any $t \neq 0$ yields the same value). This can be converted into the constrained minimization problem

minimize $-x^ op Qx$ subject to $x^ op Px - 1 = 0$

and $h(x) = x^ op P x - 1 \in \mathbb{R}$ is the constraint.

Note that $Dh(x) = 2Px = [4x_1; 2x_2].$

Solution (cont). We first write the Lagrange function

$$l(x,\lambda) = -x^ op Q x + \lambda (x^ op P x - 1)$$

Then the Lagrange condition becomes

$$egin{aligned}
abla_x l(x^*,\lambda^*) &= -2(Q-\lambda^*P)x^* = 0 \
abla_\lambda l(x^*,\lambda^*) &= x^{* op}Px^* - 1 = 0 \end{aligned}$$

The first equation implies $P^{-1}Qx^* = \lambda^*x^*$, and hence λ^* is an eigenvalue of $P^{-1}Q = \text{diag}([2, 1])$. Hence $\lambda^* = 2$ or $\lambda^* = 1$.

For $\lambda^* = 2$, we know x^* is the corresponding eigenvector of $P^{-1}Q$ and satisfies $x^{*\top}Px^* = 1$. Hence $x^* = [\pm 1/\sqrt{2}; 0]$. The tangent space is $T(x^*) = \mathcal{N}(Dh(x^*)) = \mathcal{N}([\pm \sqrt{2}; 0]) = \{[0; a] : a \in \mathbb{R}\}.$

We also have

$$abla^2 f(x^*) + \lambda^*
abla^2 h(x^*) = -2Q + 2\lambda^* P = \begin{bmatrix} 0 & 0 \\ 0 & 2 \end{bmatrix}$$

Therefore $y^{\top}[\nabla^2 f(x^*) + \lambda^* \nabla^2 h(x^*)]y = 2a^2 > 0$ for all $y = [0; a] \in T(x^*)$ with $a \neq 0$.

Therefore $x^* = [\pm 1/\sqrt{2}; 0]$ are both strict local minimizers of the constrained optimization problem.

Going back to the original problem, any $x^* = [t; 0]$ with $t \neq 0$ is a strict local maximizer of $\frac{x^\top Qx}{x^\top Px}$.

For $\lambda^* = 1$, we know x^* is the corresponding eigenvector of $P^{-1}Q$ and satisfies $x^{*\top}Px^* = 1$. Hence $x^* = [0; \pm 1]$. The tangent space is $T(x^*) = \mathcal{N}(Dh(x^*)) = \mathcal{N}([0; \pm 1]) = \{[a; 0] : a \in \mathbb{R}\}.$

We also have

$$\nabla^2 f(x^*) + \lambda^* \nabla^2 h(x^*) = -2Q + 2\lambda^* P = \begin{bmatrix} -4 & 0 \\ 0 & 0 \end{bmatrix}$$

Therefore $y^{\top}[\nabla^2 f(x^*) + \lambda^* \nabla^2 h(x^*)]y = -4a^2 < 0$ for all $y = [a; 0] \in T(x^*)$ with $a \neq 0$.

Therefore $x^* = [0; \pm 1]$ are both strict local maximizers of the constrained optimization problem.

Going back to the original problem, any $x^* = [0; t]$ with $t \neq 0$ is strict local minimizer of $\frac{x^\top Qx}{x^\top Px}$.

Now we consider a special type of constrained minimization problem with linear equality constraints (again $Q \succ 0$ and A has full row rank):

minimize
$$\frac{1}{2}x^{ op}Qx$$

subject to $Ax = b$
We have $f(x) = \frac{1}{2}x^{ op}Qx$ and $h(x) = b - Ax$.

The Lagrange function is

$$l(x,\lambda) = rac{1}{2}x^ op Qx + \lambda^ op (b-Ax).$$

Hence the Lagrange condition is

$$egin{aligned}
abla_x l(x,oldsymbol{\lambda}) &= Qx - A^ op oldsymbol{\lambda} = 0 \
abla_oldsymbol{\lambda} l(x,oldsymbol{\lambda}) &= b - Ax = 0 \end{aligned}$$

Now we solve the following system for $[x^*; \lambda^*]$:

$$egin{aligned}
abla_x L(x^*, oldsymbol{\lambda}^*) &= Qx^* - A^ op oldsymbol{\lambda}^* = 0 \
abla_oldsymbol{\lambda} L(x^*, oldsymbol{\lambda}^*) &= b - Ax^* = 0 \end{aligned}$$

The first equation implies $x^* = Q^{-1}A^ op \lambda^*.$

Plugging this into the second equation and solve for λ^* to get

$$\lambda^* = (AQ^{-1}A^ op)^{-1}b$$

Hence the solution is

$$x^* = Q^{-1}A^{ op}\lambda^* = Q^{-1}A^{ op}(AQ^{-1}A^{ op})^{-1}b$$

Example. Consider the problem of finding the solution of minimal norm to the linear system Ax = b. That is

minimize
$$||x||$$

subject to $Ax = b$

Solution. The problem is equivalent to

minimize
$$\frac{1}{2} \|x\|^2 = \frac{1}{2} x^\top x$$

subject to $Ax = b$

which is the problem above with Q = I. Hence the solution is

$$x^* = A^ op (AA^ op)^{-1}b$$

Example. Consider a discrete dynamical system

$$x_k = ax_{k-1} + bu_k$$

with given initial x_0 , where k = 1, ..., N stand for the time point. Here x_k is the "state" and u_k is the "control".

Suppose we want to minimize the state and control at all points, then we can formulate the problem as

minimize
$$\frac{1}{2} \sum_{k=1}^{N} (qx_k^2 + ru_k^2)$$

subject to
$$x_k = ax_{k-1} + bu_k, \quad k = 1, \dots, N.$$

This is an example of *linear quadratic regulator* (LQR) in the optimal control theory.

To solve this, we let $\boldsymbol{z} = [x_1; \ldots; x_N; u_1; \ldots; u_N] \in \mathbb{R}^{2N}$,

$$\boldsymbol{Q} = \begin{bmatrix} q\boldsymbol{I}_N & \boldsymbol{0} \\ \boldsymbol{0} & r\boldsymbol{I}_N \end{bmatrix} \in \mathbb{R}^{(2N) \times (2N)}$$

and

$$A = \begin{bmatrix} 1 & \cdots & 0 & -b & \cdots & 0 \\ -a & 1 & \vdots & -b & \vdots \\ \vdots & \ddots & \ddots & \vdots & \ddots & \vdots \\ 0 & -a & 1 & 0 & \cdots & -b \end{bmatrix} \quad b = \begin{bmatrix} ax_0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

Then the problem can be written as

minimize
$$\frac{1}{2}z^{\top}Qz$$

subject to $Az = b$

and the solution is

$$z^* = [x^*; u^*] = Q^{-1} A^ op (A Q^{-1} A^ op)^{-1} b$$

Example [Credit card holder's dilemma]. Suppose we have a credit card debt \$10,000 which has a monthly interest rate of 2%. Now we want to make monthly payment for 10 months to minimize the balance as well as the amount of monthly payments.

Let x_k be the balance and u_k be the payment in month k. Then the problem can be written as

minimize
$$\frac{1}{2} \sum_{k=1}^{10} (qx_k^2 + ru_k^2)$$

subject to $x_k = 1.02 x_{k-1} - u_k$, $k = 1, \dots, 10$, $x_0 = 10000$.

The more anxious we are to reduce our debt, the larger the value of q relative to r. On the other hand, the more reluctant we are to make payments, the larger the value of r relative to q.

Here are two instances with different choices of q and r:

q = 1, r = 10:

$$q = 1, r = 300$$
:

k	Balance x_k	Payment u_k	_	k	Balance x_k	Payment u_k
1	7326.60	2873.40	_	1	9844.66	355.34
2	5374.36	2098.77		2	9725.36	316.20
3	3951.13	1530.72		3	9641.65	278.22
4	2916.82	1113.34		4	9593.23	241.25
5	2169.61	805.54		5	9579.92	205.17
6	1635.97	577.04		6	9601.68	169.84
7	1263.35	405.34		7	9658.58	135.13
8	1015.08	273.53		8	9750.83	100.92
9	866.73	168.65		9	9878.78	67.08
10	803.70	80.37		10	10042.87	33.48

We now focus on constrained optimization problems with both equality and inequality constraints:

minimize
$$f(x)$$

subject to $g(x) \leq 0$
 $h(x) = 0$

and the feasible set is $\Omega = \{x \in \mathbb{R}^n : g(x) \leq 0, \ h(x) = 0\}.$

Note that $g(x) = [g_1(x); \ldots; g_p(x)] \in \mathbb{R}^p$ and $h(x) = [h_1(x); \ldots; h_m(x)] \in \mathbb{R}^m$.

Definition. We call the inequality constraint g_j active at $x \in \Omega$ if $g_j(x) = 0$ and **inactive** if $g_j(x) < 0$.

Definition. Denote J(x) the index set of active constraints at x:

$$J(\boldsymbol{x}) = \{j : g_j(\boldsymbol{x}) = 0\}.$$

Also denote $J^c(x) = \{1, \ldots, p\} \setminus J(x)$ as its complement.

Definition. We call x a **regular point** in Ω if

 $abla h_i({m x}), \quad
abla g_j({m x}), \quad 1 \leq i \leq m, \quad j \in J({m x})$

are linearly independent (total of m + |J(x)| vectors in \mathbb{R}^n).

Now we consider the first order necessary condition (FONC) for the optimization problem with both equality and inequality constraints:

Theorem [Karush-Kahn-Tucker (KKT)]. Suppose $f, g, h \in C^1$, x^* is a regular point and local minimizer of f, then $\exists \lambda^* \in \mathbb{R}^m, \ \mu^* \in \mathbb{R}^p$ such that

$$egin{aligned}
abla f(x^*)^{ op} + \lambda^{*^{ op}} Dh(x^*) + \mu^{*^{ op}} Dg(x^*) &= 0^{ op} \ h(x^*) &= 0 \ g(x^*) &\leq 0 \ \mu^* &\geq 0 \ \mu^{*^{ op}} g(x^*) &= 0 \end{aligned}$$

Remarks.

• Define Lagrange function:

$$l(x, \lambda, \mu) = f(x) + \lambda^{\top} h(x) + \mu^{\top} g(x)$$

then the first KKT condition is just $abla x^l(x^*,\lambda^*,\mu^*)=0.$

- The second and third KKT conditions are just the constraints.
- λ is the Lagrange multiplier and μ is the KKT multiplier.
- Since $\mu^* \ge 0$ and $g(x^*) \le 0$, the last KKT condition implies $\mu_j^* g_j(x^*) = 0$ for all j = 1, ..., p. Namely $g_j(x^*) < 0$ implies $\mu_j^* = 0$. Hence

$$\mu_j^* = 0, \quad \forall j \neq J(x^*).$$

Proof (KKT Theorem). We first just let $\mu_j^* = 0$ for all $j \in J^c(x^*)$.

Since g_j is not active at x^* for $j \in J^c(x^*)$, it's not active in a neighbor of x^* either. Hence x^* is a regular point and local minimizer in Ω implies that x^* is a regular point and local minimizer in

$$\Omega' := \{x \in \Omega : h(x) = 0, g_j(x) = 0, j \in J(x^*)\}$$

Note Ω' only contains equality constraints, hence the Lagrange theorem for equality constrained problems applies, i.e., $\exists \lambda^*, \mu_j^*$ for $j \in J(x^*)$ such that

$$\nabla f(x^*) + Dh(x^*)^\top \lambda^* + Dg(x^*)^\top \mu^* = 0$$

where $\mu^* = [\mu_1^*; \ldots; \mu_p^*]$. We only need to show $\mu_j^* \ge 0$ for all $j \in J(x^*)$.

Proof (cont.) If $\mu_j^* < 0$ for some $j \in J(x^*)$, then define

$$\widehat{T}(\boldsymbol{x}^*) := \{ \boldsymbol{y} \in \mathbb{R}^n : D\boldsymbol{h}(\boldsymbol{x}^*) \boldsymbol{y} = \boldsymbol{0}, \nabla g_{j'}(\boldsymbol{x}^*)^\top \boldsymbol{y} = \boldsymbol{0}, j \in J(\boldsymbol{x}^*), j' \neq j \}.$$

We claim that $\exists y \in \hat{T}(x^*)$ such that $\nabla g_j(x^*)^\top y \neq 0$: otherwise $\nabla g_j(x^*)$ can be spanned by $\{\nabla h_i(x^*), \nabla g_{j'}(x^*) : 1 \leq i \leq m, j' \in J(x^*), j' \neq j\}$, which contradicts to that $\nabla h_i(x^*), \nabla g_j(x^*)$ are linearly independent (since x^* is regular). We choose y (or -y) so that $\nabla g_j(x^*)^\top y < 0$.

Now left-multiply y^{\top} to both sides of $\nabla f(x^*) + Dh(x^*)^{\top}\lambda^* + Dg(x^*)^{\top}\mu^* = 0$, we get (since $\mu_j^* < 0$ and $\nabla g_j(x^*)^{\top}y < 0$):

$$0 = \boldsymbol{y}^{\top} \nabla f(\boldsymbol{x}^*) + \mu_j^* \boldsymbol{y}^{\top} \nabla g_j(\boldsymbol{x}^*) > \boldsymbol{y}^{\top} \nabla f(\boldsymbol{x}^*)$$

Therefore there exists a curve $x(t) : (a, b) \to \Omega$ such that $x(t^*) = x^*$ and $x'(t^*) = y$ for $t^* \in (a, b)$.

Proof (cont.) Moreover, define $\phi(t) := f(x(t))$, then

$$\phi'(t^*) = \nabla f(\boldsymbol{x}(t^*))^\top \boldsymbol{x}'(t^*) = \nabla f(\boldsymbol{x}^*)^\top \boldsymbol{y} < 0$$

Also, define $\psi(t) = g_j(x(t))$, then

$$\psi'(t^*) =
abla g_j(\boldsymbol{x}(t^*))^{ op} \boldsymbol{x}'(t^*) =
abla g_j(\boldsymbol{x}^*)^{ op} \boldsymbol{y} < 0$$

These mean that $\exists \epsilon > 0$ such that during $[t^*, t^* + \epsilon] \subset (a, b)$, f(x(t)) and $g_j(x(t))$ can both decrease further, so $x(t) \in \Omega$ and $f(x(t)) < f(x^*)$ for $t \in (t^*, t^* + \epsilon]$. This contradicts to that x^* is a local minimizer on Ω . Hence $\mu_j^* \ge 0$ for all $j \in J(x^*)$.

Example. Consider the problem

minimize
$$f(x_1, x_2) = x_1^2 + x_2^2 + x_1x_2 - 3x_1$$

subject to $x_1, x_2 \ge 0$

The Lagrange function is

$$l(\mathbf{x}, \boldsymbol{\mu}) = x_1^2 + x_2^2 + x_1 x_2 - 3x_1 - x_1 \mu_1 - x_2 \mu_2$$

The KKT condition is

$$2x_1 + x_2 - 3 - \mu_1 = 0$$
$$x_1 + 2x_2 - \mu_2 = 0$$
$$x_1, x_2, \mu_1, \mu_2 \ge 0$$
$$\mu_1 x_1 + \mu_2 x_2 = 0$$

Solving this yields

$$x_1^* = \mu_2^* = \frac{3}{2}, \quad x_2^* = \mu_1^* = 0.$$

Similar as the proof of FONC, we can show SONC.

Theorem [Second order necessary condition (SONC)]. Suppose $f, g, h \in C^2$. If x^* is a regular point and local minimizer, then $\exists \lambda^* \in \mathbb{R}^m, \mu^* \in \mathbb{R}^p_+$ such that

- The KKT condition for (x^*, λ^*, μ^*) holds;
- For all $oldsymbol{y} \in T(oldsymbol{x}^*)$, there is

$$oldsymbol{y}^{ op}
abla^2_{oldsymbol{x}}l(oldsymbol{x}^*,oldsymbol{\lambda}^*,oldsymbol{\mu}^*)oldsymbol{y}\geq 0$$

where

$$T(x^*) = \{ y \in \mathbb{R}^n : Dh(x^*)y = 0, \nabla g_j(x^*)^\top y = 0, \forall j \in J(x^*) \}$$

Proof. The first part follows from the KKT theorem. The second part is due to the fact that x^* being a local minimizer of f over Ω implies that it is a local minimizer over Ω' .

Theorem [Second order sufficient condition (SOSC)]. Suppose $f, g, h \in C^2$. If $\exists \lambda^* \in \mathbb{R}^m, \mu^* \in \mathbb{R}^p$ such that

- The KKT condition of (x^*, λ^*, μ^*) holds;
- For all nonzero $oldsymbol{y}\in ilde{T}(oldsymbol{x}^*,oldsymbol{\mu}^*)$, there is

$$oldsymbol{y}^{ op}
abla^2_{oldsymbol{x}}l(oldsymbol{x}^*,oldsymbol{\lambda}^*,oldsymbol{\mu}^*)oldsymbol{y}>0$$

where

$$ilde{T}(x^*,\mu^*):=\{y\in \mathbb{R}^n: Dh(x)y=0,
abla g_j(x^*)y=0, j\in ilde{J}(x^*,\mu^*)\}$$
 and

$$ilde{J}(oldsymbol{x}^*,oldsymbol{\mu}^*) := \{j \in J(oldsymbol{x}^*) : oldsymbol{\mu}_j^* > 0\}$$

Then x^* is a strict local minimizer.

Remark. We omit the proof here. Note that $T(x^*) \subset \tilde{T}(x^*, \mu^*)$.

Example. Consider the following constrained problem:

minimize
$$x_1 x_2^2$$

subject to $x_1 = x_2$
 $x_1 \ge 0$

Solution. Here $f(x) = x_1 x_2^2$, $h(x) = x_1 - x_2$, and $g(x) = -x_1$. The Lagrange function is

$$l(x, \lambda, \mu) = x_1 x_2^2 + \lambda (x_1 - x_2) - \mu x_1$$

Then we obtain the KKT conditions:

$$\partial_{x_1} l(x, \lambda, \mu) = x_2^2 + \lambda - \mu = 0$$

$$\partial_{x_2} l(x, \lambda, \mu) = 2x_1 x_2 - \lambda = 0$$

$$\partial_{\lambda} l(x, \lambda, \mu) = x_1 - x_2 = 0$$

$$x_1 \ge 0$$

$$\mu \ge 0$$

$$\mu x_1 = 0$$

Solution (cont.) If $x_1^* = x_2^* = 0$, then $\lambda^* = \mu^* = 0$. If $x_1^* = x_2^* > 0$, then $\mu^* = 0$ but we cannot find any valid λ^* . So only the point $[x^*, \lambda^*, \mu^*] = [0, 0, 0, 0]$ satisfies the KKT conditions.

Since $\mu^* = 0$, we have

$$ilde{T}(x^*,\mu^*) = \mathcal{N}(
abla h(x^*)) = \mathcal{N}([1,-1]) = \{t[1,1] : t \in \mathbb{R}\}$$

On the other hand

$$abla_{\boldsymbol{x}}^{2}l(\boldsymbol{x}^{*},\lambda^{*},\mu^{*}) = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

so $y^{\top}(\nabla^2 l(x^*, \lambda^*, \mu^*))y = 0$ for all $y \in \tilde{T}(x^*, \mu)$ but not strictly larger than 0. Hence SOSC does not hold. But in fact $x^* = [0, 0]$ is the local minimum (actually also global).

Example. Consider the following constrained problem:

minimize
$$x_1 + 4x_2^2$$

subject to $x_1^2 + 2x_2^2 \ge 4$

Solution. Here $f(x) = x_1^2 + 4x_2^2$, $g(x) = -(x_1^2 + 2x_2^2 - 4)$. The Lagrange function is

$$l(\mathbf{x},\mu) = x_1^2 + 4x_2^2 - \mu(x_1^2 + 2x_2^2 - 4).$$

Then we obtain the KKT conditions:

$$\partial_{x_1} l(x, \mu) = 2x_1 - 2\mu x_1 = 0$$

$$\partial_{x_2} l(x, \mu) = 8x_2 - 4\mu x_2 = 0$$

$$x_1^2 + 2x_2^2 \ge 4$$

$$\mu \ge 0$$

$$-\mu(x_1^2 + 2x_2^2 - 4) = 0$$

Solution (cont.)

- If $\mu^* = 0$, then $x_1^* = x_2^* = 0$ which violates $g(x) \le 0$.
- If $\mu^* = 1$ then $[x_1^*, x_2^*] = \pm [2, 0]$.
- If $\mu^* = 2$ then $[x_1^*, x_2^*] = \pm [0, \sqrt{2}].$
- If $\mu^* > 0$ but $\mu \neq 1, 2$, then $x_1^* = x_2^* = 0$ which again violates $g(x) \le 0$.

Hence the following 4 points satisfy the KKT conditions:

$$\begin{bmatrix} x_1^* \\ x_2^* \\ \mu^* \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} -2 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ \sqrt{2} \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ -\sqrt{2} \\ 2 \end{bmatrix}$$

Solution (cont.)

For $\mu^* = 1$, we have

$$\nabla_x^2 l([\pm 2, 0, 1]) = \begin{bmatrix} 0 & 0 \\ 0 & 4 \end{bmatrix}, \quad \nabla g([\pm 2, 0]) = \begin{bmatrix} \mp 4 \\ 0 \end{bmatrix}$$

which implies

$$\tilde{T}(x^*, \mu^*) = T(x^*) = \{t[0, 1] : t \in \mathbb{R}\}$$

Hence

$$y^{\top} \nabla_x^2 l([x_1^*, x_2^*, \mu^*]) y = 4t^2 > 0$$

for all $oldsymbol{y} \in ilde{T}(oldsymbol{x}^*,\mu^*) \setminus \{\mathbf{0}\}.$

So $[x_1^*, x_2^*] = [\pm 2, 0]$ satisfy SOSC and are strict local minimizers.

Solution (cont.)

For $\mu^* = 2$, we have

$$\nabla_x^2 l([0, \pm\sqrt{2}, 2]) = \begin{bmatrix} -2 & 0\\ 0 & 0 \end{bmatrix}, \quad \nabla g([0, \pm\sqrt{2}]) = \begin{bmatrix} 0\\ \mp 4\sqrt{2} \end{bmatrix}$$

which implies

$$\tilde{T}(x^*, \mu^*) = T(x^*) = \{t[1, 0] : t \in \mathbb{R}\}$$

Hence

$$y^{\top} \nabla_x^2 l([x_1^*, x_2^*, \mu^*]) y = -4t^2 < 0$$

for all $oldsymbol{y}\in ilde{T}(oldsymbol{x}^*,\mu^*)\setminus\{\mathbf{0}\}.$

So $[x_1^*, x_2^*] = [0, \pm \sqrt{2}]$ do not satisfy SOSC but are strict local maximizers.