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Constrained optimization problems are formulated as

minimize f(x)
subjectto g;(x) <0, j=1,...,p,
hz(:c)zO, i=1,...,m,
where g;, h; : R™ — R are inequality and equality constraint functions, re-

spectively.

We can summarize them into vector-valued functions g and h:
hy(x) ]

_gp(a:)_ _hm(w)_
so the constraints can be written as g(x) < 0 and h(x) = 0, respectively.

g1 (.-’B)—

glx) = and h(x) =

Note that g : R™ — RP and h : R™ — R™,
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We can write the constrained optimization concisely as

minimize f(x)
subjectto g(x) <0
h(x) =0

The feasible setis Q2 := {x € R" : g(x) < 0,h(x) = 0}.

Exmaple. LP (standard form) is a constrained optimization with f(z) = ¢’ «,

g(x) = —xand h(x) = Ax — b.

Xiaojing Ye, Math & Stat, Georgia State University 2



We now focus on constrained optimization problems with equality constraints
only, i.e.,

minimize f(x)
subjectto h(x) =0

and the feasible setis 2 = {x € R" : h(x) = 0}.
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Some equality-constrained optimization problem can be converted into uncon-
strained ones.

Example.

e Consider the constrained optimization problem

minimize CB% + 2x12> + 3:13% + 4x1 + 55 + 623
subjectto x1 + 22, =3
dr1 + bx3z3 =6
The constraints imply that zo = 3(3 — 1) and z3 = £(6 — 21). Substi-
tute x» and z3 in the objective function to get an unconstrained minimiza-
tion of 21 only.
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Example.

e Consider the constrained optimization problem

maximize x1xo
subjectto % 4+ 423 =1

It is equivalent to maximizing z$z3 then substitute =5 by 1 — 43 to get
an unconstrained problem of x».

Another way to solving this is using 1 = x% + (2z5)? > 4x1x, Where
the equality holds when x1; = 225.S0 1 = v/2/2 and x5 = v/2/4.

However, not all equality-constrained problems can be easily converted into
unconstrained ones.
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We need general theory to solve constrained optimization problems with equal-
Ity constraints:

minimize f(x)
subjectto h(x) =0
and the feasible setis 2 = {x € R" : h(x) = 0}.

Recall that h : R™ — R™ (m < n) has Jacobian matrix

Vhi(z)T

Dh(zx) = c R

_th:(w) T_

Definition. We say a point & € 2 is a regular point if rank(Dh(x)) = m,
l.e., the Jacobian matrix has full row rank.
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Example. Let n = 3 and m = 1. Define hi(z) = zo — x3 be the only
constraint. Then the Jacobian matrix is

Dh(z) = [Vhi(z)'] = [0,1, —2x3]
Note that Dh(x) #= 0 and hence rank(Dh(x)) = 1 everywhere.

The feasible set 2 is a “surface” in R3 with dimensionn — m =3 — 1 = 2.
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Example. Let n = 3 and m = 2. Define h1(z) = z1 and ho(x) = x5 — 3.

The Jacobian is

Dh(a:)z[l 0 O ]

O 1 —2z3

with rank(Dh(z)) = 2 everywhere, and the feasible set 2 is a line in R3 with
dimensionn —m =3 — 2 = 1.
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Tangent space and normal space

Defintion. We say « : (a,b) — R"™, a curve in R", is differentiable if =/ (¢)
exists for all t € (a,b). The derivative is defined by

(1)
x'(t) = :
EAO]
We say z is twice differentiable if =’ (¢) exists for all ¢ € (a,b), and
_:vll’(t)_
' (t) = :
2 (1)
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Defintion. The tangent space of 2 = {x € R" : h(x) = 0} at * is the set
T(x*) ={y € R" : Dh(x™)y = 0}.
In other words, T'(x*) = N (Dh(x*)).

Remark. If * is regular, thenrank(Dh(x*)) = m, and hence dim(7T'(x*)) =
dim(N(Dh(x*))) =n — m.

Remark. We sometimes draw the tangent space as a plane tangent to €2 at
x*, that tangent plane is

TP(x™) =x*+T(x*)={x*4+y:yeT(x)}
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Example. Let

Q:{$€R3 chi(x) =21 =0, ho(x) =x1—x2=O}
Then we have
Vhi(z)'

|1 0 O
Vho(z)T| ~ |1 =1 0O
at any x € €2, and the tangent space at any point x is

1 0 0]
1 —1 o]y_o}

= {[0;0;a] e R®: a € R}

Dh(x) = [

T(x) = N (D(h(z)) = {y c RS :
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Theorem. Suppose x* is regular. Then y € T'(x*) iff there exists curve
x: (—6,0) — Qsuchthat £(0) = x* and z’'(0) = v.

Proof. (<) Let x(¢) be such a curve, then h(x(t)) = 0fort € (—4,6) and

Dh(z(0))x'(0) = Dh(z*)y =0
which implies y € T'(a*).
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Proof (cont.)

(=) For any ¢, let u = u(t) € R™ be determined by ¢ s.t. it solves
h(t,u) := h(z* + ty + Dh(z*) 'u) =0
We know u(0) = 0 is a solution at t = 0. Moreover,
Duh(0,u) = Dh(z*)Dh(z*)" = 0

as Dh(x*) has full row rank. Hence by Implicit Function Theorem, there is
§ > 0 s.t. a unique solution u(t) to h(t,u) = 0 exists for t € (—4,5). Then

z(t) = z* + ty + Dh(z*) 'u(t)

is the desired curve.

Xiaojing Ye, Math & Stat, Georgia State University 13



Defintion. The normal space of <2 at «* is defined by
N(z*) = {z € R" : « = Dh(z*) ' z for some z € R™}
In other words,
N(z*) = C(Dh(z*)")

= R(Dh(x*))
= span{Vhi(x*),...,Vhp(xz™)}

Note that dim(N (z*)) = dim(R(Dh(z*))) = m.
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Remark. The tangent space T'(x*) and the normal space N(x*) form an
orthogonal decomposition of R":

R" =T(z*) ® N(z") = N(Dh(z¥)) ® R(Dh(z"))
where T'(x*) L N(x*).

We can also write this as T'(x*)+ = N(z*) or N(z*)+ = T'(x*).

Hence, for any v € R", there exist a unique pair y € T'(x*) and w € N(x™*),
such that

v=Yy+ w
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Now let us see the first-order necessary conditions (FONC) for equality-constrained
minimization.

Suppose x* is a local minimizer of f(x) over Q = {x : h(x) = 0}, where
f,heCl.

Then for any y € T'(x*), there exists curve x : (a,b) — €2 such that x(t) =
x* and x'(t) = y forsome t € (a,b).

Define ¢(s) = f(x(s)) (note that ¢ : (a,b) — R), then
¢'(s) = Vf(x(s) @'(s)
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In particular, due to the standard FONC, we have
¢'(t) = Vi(x(t) o' (t) = V@) y=0
Since y € T'(x*) is arbitrary, we know V f(x*) L T'(x*), i.e.,
Vf(z") € N(z)
This means that 3 \* € R™, such that

Vi(z*) 4+ Dh(z*)'A* =0

This result is summarized below:

Theorem [Lagrange’s Theorem]. If £* is a local minimizer (or maximizer) of
f : R™ — R subjectto h(x) = 0 € R™ where m < n, and «* is a regular
point (Dh(x*) has full row rank), then there exists A* € R™ s.t.

Vi(z*) 4+ Dh(z*)'A* =0
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Now we know if * is a local minimizer of
minimize f(x)
subjectto h(x) =0
then * must satisfy
Vi(z*) + Dh(z*) ' A" =0
h(xz*) =0

There are called the first-order necessary conditions (FNOC), or the Lagrange
condition, of the equality-constrained minimization problem. A* is called the
Lagrange multiplier.

Remark. The conditions above are necessary but not sufficient to determine
x™* 1o be a local minimizer—a point satisfying these conditions could be a local
maximizer or neither.
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Example. Consider the problem

minimize f(x)
subjectto h(x) =0

where f(x) = x and

(

72 ifx <O
h(x) =<0 fo<zxz<1
(r—1)2 ifz>1

\

We can see that 2 = [0, 1] and =* = 0 is the only local minimizer. However
f'(x*) = 1 and K/ (2*) = 0. The Lagrange condition fails to hold because z*
IS not a regular point.
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We introduce the Lagrange function

[(x,A\) = f(x) + h(z) A

Then the Lagrange condition becomes

Val(z*, A = Vf(z*) + Dh(z*) ' \* =0
Val(x®,\*) = h(x*) =0

Note that this is a system of n + m equations for [z; A\] € R*tT™ (which as
n + m unknowns).
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Example. Given a fixed area A of cardboard, we wish to construct a closed
cardboard box with maximum volume. Let the dimension of the box be x =
[x1; zo; z3], then the problem can be formulated as

maximize r1xox3
subject to 2(361:62 + xox3 + :133%1) = A
Hence we can set
f(®) = —z1w003

A

h(x) = x120 + x223 + 321 — >

Then the Lagrange function is

A
l(z,\) = f(x) + h(x)\ = —z17023 + (5E1332 + w3 + 2371 — 5) A
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So the Lagrange condition is
Vzel(x,\) =0
Vii(xz,\) =0
which is
ror3 — (z2 +23)A =0

123 — (21 +23)A =0

120 — (1 +22)A =0
A
x1To + Tox3 + 3T — > =0

Then solving this system yields

A 1 /A
r1] = xp = x3 = & )\25 &
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Example. Consider an equality-constrained optimization problem

minimize x% + x%
subjectto % 4+ 2x3 =1

Solution. Here f(z) = x7 + x5 and h(z) = 2% + 223 — 1.

The Lagrange function is

I(z,A) = (a7 + 23) + A(2f + 225 — 1)

Then we obtain

83;11(:3, )\) — 2:131 —|— 2)\5131 =0
Oxsl(x, A\) =220 + 44Xz =0
l(x,\) =22 +225 —1=0

Xiaojing Ye, Math & Stat, Georgia State University

23



Solution (cont). Solving this system yields

o
L2
A

0
1/v/2

__ 1/2_

Y

It is easy to check that x =
are local maximizers.

0
—1//2

-1/2 |

Y

Y

and

0; +1/+/2] are local minimizers, and z = [0; 1]
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Now we consider second-order conditions. We assume f, h € C2.

Following the same steps as in FONC, suppose x* is a local minimizer, then
forany y € T'(x*), there exists a curve x : (a,b) — 2 such that x(t) = x*
and x/(t) = y for some t € (a,b).

Again define ¢(s) = f(x(s)), and hence ¢/(s) = Vf(x(s)) z/(s). Then
the standard second-order necessary condition (SONC) implies that at a local
minimizer there are

() =Vi®)'dt) =Vfia) y=0
and

¢"(t) =y' Vf(x )y + V(@) 2" (t) >0
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In addition, since v;(s) := h;(x(s)) = 0 for all s € (a,b), we have o/ (t) =

O which yields
y ' V2hi(xz*)y + Vhi(z*) 2" (t) = 0

forall: =1,...,m.
According to the Lagrange condition, we know 3 A* € R™ such that

Vf(x*) + Dh(z) TN = Vi) + 3 \iVhi(z*) = 0
=1

Using the results above, we can cancel the term with =’ (¢) and obtain

yT [V2r@) + 3 A V2] y > 0
=1

forally € T'(x*).
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We summarize the second-order necessary condition (SONC):

Theorem (SONC). Let =* be a local minimizer of f : R — R over 2 = {x :
h(x) = 0 € R™} with m < n, where f, h € C2. Suppose x* is regular, then
IA* = [AY;...; A5] € R™ such that

1. Vf(x*) + Dh(z*) " X\* = 0;

2. Forevery y € T(x*), there is
™m
y" [ V2£(@) + 3 AiV2hi@)|y 2 0

=1

So V2f(x*) + X1 1 A\¥V2h;(x*) is playing the role of “Hessian”.
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We also have the following second-order sufficient condition (SOSC):

Theorem (SOSC). Suppose x* € 2 = {x : h(x) = 0} is regular. If IN*
(AT ... A5,] € R™ such that
1. Vf(x*) + Dh(z*) " X\* = 0;

2. for every nonzero y € T'(x*), there is

yT [v2f<az*> + 3 A%‘V%(w*)] y > 0.
1=1

Then x* is a strict local minimizer of f over €2.
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Example. Solve the following problem

' Qx
x! Px
where Q = diag([4, 1]) and P = diag([2, 1]).

maximize

Solution. Note the objective function is scale-invariant (replacing « by tx for
any t == 0 yields the same value). This can be converted into the constrained
minimization problem

minimize — :cTQa:
subjectto ' Pz —1=0

and h(x) = ' Pz — 1 € R is the constraint.

Note that Dh(a:) = 2Px = [4$1; 2%2].
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Solution (cont). We first write the Lagrange function
(z,\) = —z' Qz + Mz Pz —1)
Then the Lagrange condition becomes

Vzl(x*, \*) = -2(Q — \*P)x* =0
Val(x®, ") = ' Px* —1=0

The first equation implies P~1Qz* = \*z*, and hence \* is an eigenvalue
of P~1Q = diag([2, 1]). Hence \* = 2 or \* = 1.
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For \* = 2, we know x* is the corresponding eigenvector of P~1Q and
satisfies «* ' Px* = 1. Hence z* = [+1/v/2;0]. The tangent space is
T(z*) = N(Dh(z*)) = N([£v2;0]) = {[0; a] : a € R}.

We also have

V2 F(2*) + NV2h(z*) = —2Q + 20" P = [O O]

0 2
Therefore y ' [V2f(x*) + M*V2h(z*)]y = 2¢2 > Oforally = [0;qa] €
T (x*) with a £ 0.

Therefore * = [+1/+/2; 0] are both strict local minimizers of the constrained
optimization problem.

Going back to the original problem, any x* = [¢; O] with ¢t #= 0 is a strict local
x' Qx

maximizer of ~+=".
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For \* = 1, we know x* is the corresponding eigenvector of P~1Q and
satisfies z* | Px* = 1. Hence =* = [0; +1]. The tangent space is T'(z*) =
N(Dh(x*)) = N([0; £1]) = {[a; 0] : a € R}.

We also have
V2f(z*) + N'V2h(z*) = —2Q + 2\*P = [_4 O]

O O

Therefore y ' [V2f(x*) + M*V2h(z*)]y = —4a? < Oforally = [a;0] €
T (x*) with a £ 0.

Therefore * = [0; &=1] are both strict local maximizers of the constrained
optimization problem.

Going back to the original problem, any x* = [0; t] with ¢ %= 0 is strict local
' Qx

minimizer of ~ 25"
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Now we consider a special type of constrained minimization problem with lin-
ear equality constraints (again Q > 0 and A has full row rank):
1
minimize EmTQw
subjectto Ax = b
We have f(z) = 3z 'Qz and h(z) = b — Az.

The Lagrange function is

I(x,\) = %wTQm + A" (b- Ax).

Hence the Lagrange condition is

Vel(x,\) = Qx — A'x=0
Vallx,A\) =b— Az =0
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Now we solve the following system for [x*; A*]:

Vael(z*,A) =Qz*— A"\ =0
VAL(x*, A*) =b— Ax™ =0

The first equation implies z* = Q1A T \*.

Plugging this into the second equation and solve for A* to get
Hence the solution is

* — Q_lATA* — Q—lAT(AQ—lAT)—lb
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Example. Consider the problem of finding the solution of minimal norm to the

linear system Ax = b. That is

minimize ||z
subjectto Ax =b

Solution. The problem is equivalent to

L 1 1
minimize =|z||° = 2z '«
2 2

subjectto Ax =1b

which is the problem above with Q = I. Hence the solution is

r*=A"(AA) b
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Example. Consider a discrete dynamical system

T = aTp_1 + bug

with given initial g, where k = 1,..., N stand for the time point. Here z;, is
the “state” and ;. is the “control”.

Suppose we want to minimize the state and control at all points, then we can
formulate the problem as

1 N
5 Z (QZE% + TU%)
k=1

subjectto z, = axp_1 +bu, k=1,...,N.

minimize

This is an example of linear quadratic regulator (LQR) in the optimal control
theory.
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To solve this, we let z = [z1;...;zn; u1; ... uy] € RV,

and

A=

O

_|laIn O (2N) x(2N)
[ 0 TIN < R
O —-b .- 0
: —b -
—a 1 0 --. —b

Then the problem can be written as

and the solution is

L 1
minimize EzTQz

subjectto Az =b»

S* — [33*; ’U,*] — Q—lAT(AQ—lAT)—lb
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Example [Credit card holder’s dilemma]. Suppose we have a credit card
debt $10,000 which has a monthly interest rate of 2%. Now we want to make
monthly payment for 10 months to minimize the balance as well as the amount
of monthly payments.

Let ;. be the balance and u;. be the payment in month k£. Then the problem
can be written as

RECI ,
> > (qzj + rug)
k=1

subjectto z;, = 1.02x3_1 —ug, k=1,...,10, xg9= 10000.

minimize

The more anxious we are to reduce our debt, the larger the value of g relative
to . On the other hand, the more reluctant we are to make payments, the
larger the value of r relative to gq.
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Here are two instances with different choices of ¢ and r:

q=1,r = 10:

k Balance z;; Payment u;

—

QWO NOOTA~A,WDN =

7326.60
9374.36
3951.13
2916.82
2169.61
1635.97
1263.35
1015.08

866.73

803.70

2873.40
2098.77
1530.72
1113.34
805.54
577.04
405.34
273.53
168.65
80.37
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q¢=1,r = 300:

k Balance x;, Payment wu,

CQCOWOONOOIA~,WDN —

—h

9844.66
9725.36
9641.65
9593.23
9579.92
9601.68
9658.58
9750.83
9878.78

10042.87

355.34
316.20
278.22
241.25
205.17
169.84
135.13
100.92

67.08

33.48
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We now focus on constrained optimization problems with both equality and
iInequality constraints:

minimize f(x)
subjectto g(x) <0
h(x) =0

and the feasible setis 2 = {x € R" : g(x) < 0, h(x) = 0}.

Notethatg(x) = [g1(x);...; gp(x)] € RPand h(x) = [h1(x);...; hm(x)] €
R™,

Definition. We call the inequality constraint g; active at x € Q2 if g;(x) = 0
and inactive if g;(x) < 0.
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Definition. Denote J(x) the index set of active constraints at «:

J(z) ={j : gj(=) = O},
Also denote J¢(x) = {1,...,p} \ J(x) as its complement.

Definition. We call « a regular point in <2 if

Vhi(x), Vgi(x), 1<i<m, jecJ(z)

are linearly independent (total of m + |J(a)| vectors in R™).
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Now we consider the first order necessary condition (FONC) for the optimiza-
tion problem with both equality and inequality constraints:

Theorem [Karush-Kahn-Tucker (KKT)]. Suppose f,g,h € C, * is a reg-
ular point and local minimizer of f, then 3 A* € R™, u* € RP such that

Vi)' + X' Dh(z*) + p* ' Dg(z*) =07
h(x*) =0
g(x™) <0

p" >0
pg(z*) =0
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Remarks.

e Define Lagrange function:

(@, A ) = f(@) + A h(z) + p' g()
then the first KKT condition is just Vgl(x™, A*, u*) = 0.

e The second and third KKT conditions are just the constraints.
e )\ is the Lagrange multiplier and u is the KKT multiplier.

e Since pu* > 0 and g(x*) < 0, the last KKT condition implies ,u;fgj(a:*) =
Oforallj =1,...,p. Namely g;(x*) < O implies u;f = 0. Hence

pu; =0, Vji#EJ").
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Proof (KKT Theorem). We first just let u}'f = Oforall j € J°(x*).

Since g; is not active at x=* for j € J¢(x*), it's not active in a neighbor of x*
either. Hence x* is a regular point and local minimizer in €2 implies that * is
a regular point and local minimizer in

Q' ={xeQ:h(x)=0,g;(x) =0,j € J(z*)}

Note 2’ only contains equality constraints, hence the Lagrange theorem for
equality constrained problems applies, i.e., IA*, uf; for j € J(ax*) such that

Vf(x*) + Dh(z*) ' A\* + Dg(z*) " p* = 0

where pu* = [u7; ..., puyl. We only need to show u;f > O forall j € J(x*).
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Proof (cont.) If u* < O for some j € J(x*), then define
J

T(xz*) :={y € R": Dh(z*)y = 0,Vgu(z*) 'y =0,j € J(z*),5 # j}.

We claim that 3y € T'(x*) such that ng(az*)Ty # 0: otherwise Vg;(x*)
can be spanned by {Vh;(z*),Vgy(z*) : 1 <i < m,j" € J(x¥),j # j},
which contradicts to that Vh;(x*), Vg,;(x*) are linearly independent (since
z* is regular). We choose y (or —y) so that Vg, (z*) 'y < 0.

Now left-multiply 3 ' to both sides of Vf(z*)+ Dh(x*) ' A\*+ Dg(x*) ' u* =
0, we get (since % < 0 and Vg;(z*) 'y <0):

0=y ' Vfx*) +uy' Vgj(=z*) >y ' Vf(x*)
Therefore there exists a curve x(t) : (a,b) — 2 such that x(¢t*) = x* and
/' (t*) = y for t* € (a,b).
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Proof (cont.) Moreover, define ¢(t) := f(x(t)), then
¢'(t*) = Vi) '« t*) = V@) 'y <0
Also, define 1 (t) = g;(x(t)), then
(%) = Vg (x(t)) "2/ (t*) = Vg;(x*) 'y < 0
These mean that 3¢ > 0 such that during [¢t*,t* + €] C (a,b), f(x(t)) and
g;j(x(t)) can both decrease further, so x(t) € 2 and f(x(t)) < f(z*) for

t € (t*,t* 4 €]. This contradicts to that «* is a local minimizer on €2. Hence
M; > O forall j € J(x*).
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Example. Consider the problem
minimize f(xq1,z2) = x% -+ m% + 2125 — 321
subjectto x1,2zo >0
The Lagrange function is
[(z, p) = 25 + 25 + x120 — 321 — T1p1 — T
The KKT condition is
2x1 +x0—3 —u1 =0
Ty + 2w —pp =20

x1,x2, 11, 42 = 0
p1r1 + poxo =0

Solving this yields

3
] =pp =5, w2=p1 =0
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Similar as the proof of FONC, we can show SONC.

Theorem [Second order necessary condition (SONC)]. Suppose f,g,h €

CZ2. If z* is a regular point and local minimizer, then IX* € R™, u* € RY

such that

e The KKT condition for (x*, A*, u*) holds;

e Forally € T(x*), there is
y ' Val(x*, X, p*)y > 0
where

T(z*) = {y €R" : Dh(z*)y = 0,Vyg;(z*) 'y =0,Vj € J(z*)}

Proof. The first part follows from the KKT theorem. The second part is due
to the fact that «* being a local minimizer of f over €2 implies that it is a local
minimizer over <2’.
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Theorem [Second order sufficient condition (SOSC)]. Suppose f,g,h €
C2.1f 3X* € R™, u* € RP such that

e The KKT condition of (x*, A*, u*) holds;
e Forall nonzero y € T(x*, u*), there is
y ' V20(x*, X, uF)y > 0
where
T(x*,p*) :={y € R" : Dh(x)y = 0,Vyg,;(x*)y =0,j € J(«*, n*)}
and
J(x*, pu*) :={jcJ(z"): p; > 0}

Then x* is a strict local minimizer.

Remark. We omit the proof here. Note that T'(x*) C T(x*, u*).
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Example. Consider the following constrained problem:

minimize 723
subjectto x1 = xo
x1 >0

Solution. Here f(x) = wlx%, h(x) = 1 — zp, and g(x) = —z71. The

Lagrange function is

[(@, A, 1) = w175 + Az — 22) — pay
Then we obtain the KKT conditions:
O l(m, A\, p) =25+ A —p=0
O l(T, A\, 0) = 2x120 — A =0
Wl(x,\,u) =x1 —20 =0
x1 >0
p=>0
pry =0
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Solution (cont.) If x] = 25 = 0, then \* = p* = 0. If 2] = 25 > O,
then p* = 0O but we cannot find any valid A*. So only the point [2*, \*, u*] =
[0, 0, 0, 0] satisfies the KKT conditions.

Since u* = 0, we have

T(x*, 1*) = N(Vh(x")) = N([1,-1]) = {t[1,1] : t € R}

On the other hand

2 X oy ko K\ O 0
so y ! (V2I(x*, \*, u*))y = 0 for all y € T'(x*, 1) but not strictly larger than
0. Hence SOSC does not hold. But in fact * = [0, 0] is the local minimum

(actually also global).
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Example. Consider the following constrained problem:
minimize 1 + 45
subjectto x% + 223 > 4
Solution. Here f(x) = x% + 423, g(x) = —(z% + 225 — 4). The Lagrange
function is
(x,pn) = :13% + 4:1:% — ,LL(:I:% + 2:1:% —4).
Then we obtain the KKT conditions:
Ox l(x, n) =221 — 2uz1 =0
Oz, l(x, u) = 8xo — 4puxo =0
a:% + 2:13% >4
p =0
2 2 __
—p(r] +225-4) =0
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Solution (cont.)
o If u* = 0, then 2] = x5 = 0 which violates g(x) < 0.
o If u* = 1then [z7,x5] = £[2,0].
o If u* = 2then [z%,2%] = £[0,2].

o If u* > Obutpu # 1,2, then 2] = 25 = 0 which again violates g(x) < 0.

Hence the following 4 points satisfy the KKT conditions:

T 2 -2 0 0
33* — O y O ) \/§ ) _\/5
_M*_ 1 |1 2 2
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Solution (cont.)

For u* = 1, we have

V21([£2,0,1]) = [8 2], Vg([2,0]) = [%4]

which implies
T(x*, pu*) =T(x*) = {t[0,1] : t € R}
Hence
y' Vai([z1, 25, p*]))y = 4t > 0
forally € T'(x*, u*) \ {0}.

So [z],25] = [£2, 0] satisfy SOSC and are strict local minimizers.
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Solution (cont.)

For u* = 2, we have

V2U([0,£v2,2]) = [‘02 8] Vo([0, £v2]) = [MO ﬁ]

which implies
T(x*, pu*) =T(x*) = {t[1,0] : t € R}
Hence
y ' Val([e], 25, p*)y = —4t% < 0
forally € T'(x*, u*) \ {0}.

So [z%, z5] = [0, ++/2] do not satisfy SOSC but are strict local maximizers.
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