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Consider the primal LP given by

minimize c>x

subject to Ax ≥ b
x ≥ 0

and the corresponding dual problem

maximize b>λ

subject to A>λ ≤ c
λ ≥ 0
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Due to the duality theory, the primal-dual pair [x;λ] ∈ Rn+m is a solution if
and only if

c>x = b>λ

Ax ≥ b
A>λ ≤ c

x ≥ 0

λ ≥ 0

We can further rewrite c>x = b>λ as c>x−b>λ ≤ 0 and−c>x+b>λ ≤ 0.
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Therefore we obtain a system of inequalities as

c>x− b>λ ≤ 0

−c>x+ b>λ ≤ 0

Ax ≥ b
A>λ ≤ c

x ≥ 0

λ ≥ 0

Note that [x;λ] solves the system of inequalities above iff [x;λ] is a solution
to the primal and dual LP.
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The system of inequalities can be concisely written as

Pz ≤ q

where

P =



c> −b>
−c> b>

−A 0m×m
−In 0n×m
0n×n A>

0n×m −Im


, z =

[
x
λ

]
, q =



0
0
−b
0n
c
0m


Now the question becomes solving Pz ≤ q.
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We introduce the notation of ellipsoid in Rs associated with Q ∈ Rs×s cen-
tered at z ∈ Rs as

EQ(z) :=
{
z +Qy : y ∈ Rs, ‖y‖ ≤ 1

}
If Q is an orthogonal matrix then EQ(z) is a unit ball center at z.

Khachiyan’s method (or ellipsoid method) proceeds in the following way:
assuming at z(k) we compute Qk making sure the optimal solution is in the
ellipsoid EQk(z

(k)). Then find z(k+1), and so on, until Pz(k) ≤ q. However
in practice Khachiyan’s method is very slow.
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Affine Scaling Method

We consider the standard form of LP:

minimize c>x

subject to Ax = b

x ≥ 0

Suppose we are currently at a feasible point x(0) which is an interior point of
Ω = {x ∈ Rn : Ax = b, x ≥ 0}. That is, Ax = 0 and x > 0. Then we
seek for a descent direction d(0) and step size α0, such that

x(1) = x(0) + α0d
(0)

is still an interior point of Ω but closer to the optimal solution x∗.
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To make sure x(1) is still in Ω, we need Ax(1) = b. Hence

A(x(1) − x(0)) = α0Ad
(0) = 0

Hence d(0) is in the null space of A.

Note the orthogonal projector defined below

P = In −A>(AA>)−1A

has the property that Pz is the projection of z onto the null space ofA. There-
fore, we would like to use the projection of the negative gradient −∇f(x) =

−∇(c>x) = −c as the descent direction d(0). More specifically,

d(0) = P (−c) = −Pc = −(In −A>(AA>)−1A)c
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To maximize efficiency, we would like to start from some x(0) near the center
of Ω so the step size can be larger.

For simplicity, if A = [1
n, . . . ,

1
n] ∈ R1×n, and b = 1, then we choose center

x(0) = 1 := [1; . . . ; 1] ∈ Rn.

If x(0) = [x(0)
1 ; . . . ;x(0)

n ] 6= 1, then we apply a diagonal scaling matrix

D0 = diag(x(0)
1 , . . . , x

(0)
n ) ∈ Rn×n

to obtain

1 = D−1
0 x(0)

Therefore, as long as x(0) is an interior point (x(0)
i 6= 0 ∀ i), we can apply

such scaling to get 1 close to the center.
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Now the LP problem becomes

minimize c̄>0 x̄

subject to Ā0x̄ ≥ b
x̄ ≥ 0

where

c̄0 = D0c, Ā0 = AD0

So the orthogonal projector is

P̄0 = In − Ā>0 (Ā0Ā
>
0 )−1Ā0

and the projection of −c̄0 onto the null space of Ā0 is the descent direction

d̄(0) = −P̄0c̄0

Xiaojing Ye, Math & Stat, Georgia State University 9



The scaling idea presented above is applied in every iteration such that

x(k+1) = x(k) + αkd
(k)

where

Dk = diag(x(k)
1 , . . . , x

(k)
n )

Āk = ADk

P̄k = In − Ā>k (ĀkĀ
>
k )−1Āk

d(k) = −DkP̄kDkc

and the step size αk = αrk such that α = 0.9 or 0.99, and

rk = min
i:d(k)

i <0
−
x

(k)
i

d
(k)
i

so that one of the coordinates of x(k+1) is close to 0.
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So far we can run the affine scaling method if we were given an interior point
as initial.

In practice, we need to solve an artificial problem to find such interior point.
This is called the Phase I.

To obtain the artificial problem, we first select an arbitrary positive vector u >
0, and check

v = b−Au

If v = 0, then u is an interior point of Ω = {x : Ax = b,x ≥ 0}, and we can
just set x(0) = u.

Xiaojing Ye, Math & Stat, Georgia State University 11



If v 6= 0, then we introduce the following artificial problem:

minimize y

subject to Ax+ vy = b

x ≥ 0, y ≥ 0

Then the artificial problem has a solution y = 0 iff Ω in the original problem is
nonempty.

Note that [u; 1] > 0 is an interior point of the feasible set of the artificial
problem, sinceAu+v = Au+ (b−Au) = b, so we can use it as the initial
and run the affine scaling algorithm. The result we get is [x; 0+] where x > 0

is an interior point of the feasible set Ω.
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Unlike simplex method, the affine scaling method is an interior-point method
and will not stop within finitely many steps. Therefore, we need to impose a
stopping criterion, for example,

|c>x(k+1) − c>x(k)|
max{1, |c>x(k)|}

< ε

for some prescribed ε > 0.
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Karmarkar’s method

First of all, Karmarkar’s method requires to start with the Karmarkar’s canon-
ical form:

minimize c>x

subject to Ax = 0

1>x = 1

x ≥ 0

The last two constraints yields the set called simplex

∆ :=

x ∈ Rn :
n∑
i=1

xi = 1, xi ≥ 0


We denote Ω′ = {x ∈ Rn : Ax = 0}. Then the feasible set is Ω = Ω′ ∩∆,
which is the intersection of the plane Ω containing 0 and the simplex ∆.
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Example. Consider the LP problem

minimize 3x1 + 3x2 − x3

subject to 2x1 − 3x2 + x3 = 0

x1 + x2 + x3 = 1

x1, x2, x3 ≥ 0

We can see that the problem above is of the Karmarkar’s canonical form with

c = [3; 3;−1], A = [2,−3,1]

It can be shown that any LP problem can be converted into an equivalent LP
problem in Karmarkar’s canonical form.
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Karmarkar’s algorithm also needs the following assumptions:

1. The center of the simplex, a0 = 1
n1, is feasible, i.e., a0 ∈ Ω′;

2. The minimum value of the objective function over the feasible set is zero;

3. The matrix
[
A
1>

]
∈ R(m+1)×n has rank m+ 1;

4. The algorithm terminates when a feasible point x satisfies c>x
c>a0

≤ 2−q for
some prescribed q > 0.

The last three assumptions are fairly easy to hold.

Xiaojing Ye, Math & Stat, Georgia State University 16



Now we show how to convert an LP of standard form to the Karmarkar’s canon-
ical form (note that any LP can be converted to the standard form).

Recall the standard form of LP is

minimize c>x

subject to Ax = b

x ≥ 0

which is equivalent to

minimize c′>z

subject to A′z = 0

z ≥ 0

where z = [x; 1] ∈ Rn+1, A′ = [A,−b] ∈ Rm×(n+1), and c′ = [c; 0] ∈
Rn+1.
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We need one more step to make the decision variables sum to 1. To this end,
let y = [y1, . . . , yn, yn+1]> ∈ Rn+1, where

yi =
xi

x1 + · · ·+ xn + 1
, i = 1, . . . , n

yn+1 =
1

x1 + · · ·+ xn + 1

i.e., y is the projective transformation of x. Note that we can easily get xi =
yi

yn+1
using y1, . . . , yn+1.
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Now we have obtained the Karmarkar’s canonical form in y ∈ Rn+1:

minimize c′>y

subject to A′y = 0

1>y = 1

y ≥ 0

As showed earlier, we can get x from the solution y to the above problem.
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Recall that Karmarkar’s method requires the simplex’s center a0 to be feasible,
i.e., Aa0 = 0. To this end, suppose we have an interior feasible point a (i.e.,
Aa = 0 and a > 0), and define the mapping

T (x) = [T1(x); . . . ;Tn(x);Tn+1(x)] ∈∆

for any x ≥ 0 where

Ti(x) =
xi/ai

x1/a1 + · · ·+ xn/an + 1
, i = 1, . . . , n

Tn+1(x) =
1

x1/a1 + · · ·+ xn/an + 1

So we can solve for y = T (x) from the Karmarkar’s canonical form, where
the simplex’s center a0 = T (a) is feasible, and then obtain x = T−1(y).
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Now the question becomes that whether we have an interior point a to start.

Recall the symmetric primal-dual form of LP:

Primal

minimize c>x

subject to Ax ≥ b
x ≥ 0

Dual

maximize b>λ

subject to A>λ ≤ c
λ ≥ 0

which is equivalent to the primal-dual system

c>x = b>λ

Ax ≥ b
A>λ ≤ c

x ≥ 0

λ ≥ 0
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We introduce slack variable u and surplus variable v to convert the primal-dual
system above into

c>x = b>λ

Ax− v = b

A>λ+ u = c

x,λ,u, v ≥ 0

We know that a solution [x∗;λ∗] of the system above gives the optimal primal
variable x∗ and dual variable λ∗.
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To convert the system above into an LP with easy-to-get initial feasible interior
point, we choose arbitrary x(0),λ0,u0, v0 ≥ 0, e.g., x(0) = 1n etc.

Then we consider the following Karmarkar’s artificial problem:

minimize z

subject to c>x− b>λ+ (−c>x(0) + b>λ0)z = 0

Ax− v + (b−Ax0 + v0)z = b

A>λ+ u+ (c−A>λ0)z = c

x,λ,u, v, z ≥ 0

Note that [x;λ;u;v; z] = [x0;λ0;u0;v0; 1] > 0 is naturally an interior
feasible point of the artificial problem above.

In addition, the original LP has a solution iff the artificial problem has a solution
with z∗ = 0.
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Therefore, we can solve the Karmarkar’s artificial problem (matrix form below)
instead of the original LP:

minimize c̃>x̃

subject to Ãx̃ = b̃

x̃ ≥ 0

where

x̃ = [x;λ;u;v; z] ∈ R2m+2n+1

c̃ = [0; 0; 0; 0; 1]

Ã =

 c
> −b> 0>n 0>m (−c>x(0) + b>λ0)
A 0m×m 0m×n −Im (b−Ax0 + v0)

0n×n A> In 0n×m (c−A>λ0)


b̃ = [0; b; c] ∈ Rm+n+1

Up to this point, we can convert any LP into the Karmarkar’s canonical form
which also satisfies the four assumptions imposed earlier.
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Now we consider how to solve the LP of Karmarkar’s canonical form.

Recall the LP problem is given by

minimize c>x

subject to x ∈ Ω′ ∩∆

where Ω′ = {x ∈ Rn : Ax = 0} and ∆ =
{
x ∈ Rn : 1>x = 1,x ≥ 0

}
.

Karmarkar’s algorithm starts from an initial feasible point x(0), and generates
a sequence of iterates x(1),x(2), . . . ,x(k) until c>x(k)/c>x(0) < 2−q for
some prescribed q > 0.
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Karmarkar’s algorithm proceeds the following steps iteratively:

1. Initialize: Set k := 0; x(0) = a0 := 1
n1;

2. Update: Set x(k+1) = Ψ(x(k)) where Ψ is the update map (see below);

3. Check stopping criterion: If the condition c>x(k)/c>x(0) < 2−q is
satisfied then stop; otherwise continue;

4. Iterate: Set k ← k + 1, go to 2.
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To perform the update map Ψ, we consider the first step with x(0) = a0 and

x(1) = x(0) + αd(0)

Recall that the search direction d(0) is better to be the projection of −c onto
the null space of B0 := [A; 1>] ∈ R(m+1)×n, which is the matrix in defining
the equality constraints of the feasible set

Ω = Ω′ ∩∆ =
{
x : B0x = [0; 1],x ≥ 0

}
Hence, we set d(0) to

d(0) = −
1√

n(n− 1)

P0c

‖P0c‖

where P0 = In−B>0 (B0B
>
0 )−1B0 is the orthogonal projector onto the null

space of B0.
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A few remarks are in place:

• 1√
n(n−1)

is the radius of the largest sphere inscribed in the simplex ∆.

• α ∈ (0,1), e.g., α = 1/4.

• d(0) is in the null space of B0 and hence x(1) = x(0) + αd(0) is still an
interior point of Ω = Ω′ ∩∆.
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The update map Ψ for general x(k) is very similar, except that x(k) may not
be the center of the simplex.

To overcome this issue, we employ the affine scaling idea: given x(k), we
define Dk = diag(x(k)) which is diagonal and invertible (since x(k) > 0).

Consider the mapping Uk : ∆→∆ given by

Uk(x) =
D−1
k x

1>D−1
k x

Note that Uk is a one-to-one correspondence with inverse U−1
k (x̄) = Dkx̄

1>Dkx̄

and Uk(x(k)) = a0 = 1
n. Therefore we can perform the same update Ψ as

we did for x(0).
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More specifically, we pretend that we are solving the following problem (but
just for one iteration):

minimize c>Dkx̄

subject to ADkx̄ = 0

x̄ ∈∆

where x̄ = Uk(x).

We perform the update x̄(k+1) = x̄(k) + αd(k) where x̄(k) = a0 and

d(k) = −
1√

n(n− 1)

Pk(Dkc)

‖Pk(Dkc)‖

where Pk = I − B>k (BkB
>
k )−1Bk and Bk = [ADk; 1>]. The step size

α ∈ (0,1).

Then we compute x(k+1) = U−1
k (x̄(k+1)) = Dkx̄

(k+1)

1>Dkx̄(k+1) ∈ Ω.
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The update map Ψ for general x(k), i.e., x(k+1) = Ψ(x(k)), can be sum-
marized below:

1. Compute the matrix Dk = diag(x(k)) and Bk = [ADk; 1>];

2. Compute search direction

d(k) = −
1√

n(n− 1)

Pk(Dkc)

‖Pk(Dkc)‖

where Pk = I −B>k (BkB
>
k )−1Bk.

3. Select α ∈ (0,1) and perform update

x̄(k+1) = x̄(k) + αd(k)

4. Compute x(k+1) = U−1
k (x̄(k+1)) = Dkx̄

(k+1)

1>Dkx̄(k+1) .
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Note that we do not need to explicitly write out the projector matrix Pk in Step
2 above.

Instead, we first solve y from the linear system BkB
>
k y = BkDkc (so that

y = (BkB
>
k )−1BkDkc), and set

Pk(Dkc) = Dkc−Bky

Note the right-hand side is

Dkc−Bky = Dkc−Bk(BkB
>
k )−1BkDkc = (I−Bk(BkB

>
k )−1Bk)Dkc

which is exactly the projection we need.
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