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The standard form of a Linear Program (LP)

minimize c>x

subject to Ax = b

x ≥ 0

where

• x ∈ Rn is the unknown variable;

• A ∈ Rm×n is given, where m < n and rank(A) = m;

• b ∈ Rm is given.
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Other forms of LP can be converted to the standard form.

For example, suppose an LP is given as

maximize c>x

subject to Ax ≤ b

x ≥ 0

Then we can rewrite it as an equivalent standard form

minimize (−c)>x

subject to Ax + y = b

x,y ≥ 0

where [x;y] ∈ Rn+m is the variable to solve for now, and y is called the slack
variable.

If [x∗;y∗] is a solution of the new problem, then x∗ is a solution of the original
problem.
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Example. Convert the LP below into the standard form

maximize x2 − x1

subject to 3x1 = x2 − 5

|x2| ≤ 2

x1 ≤ 0

• x′1 := −x1, then x1 ≤ 0⇐⇒ x′1 ≥ 0

• x2 = u− v where u, v ≥ 0

• |x2| ≤ 2⇐⇒ −2 ≤ u− v ≤ 2

• Introduce slack variables x3, x4 ≥ 0 such that u − v + x3 = 2 and
u− v − x4 = −2
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Example (cont). Now we obtain an equivalent problem:

minimize − x′1 − u + v

subject to 3x′1 + u− v = 5

u− v + x3 = 2

u− v − x4 = −2

x′1, u, v, x3, x4 ≥ 0

Note that there are 5 variables now.
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Example. Suppose a factory wants to manufacture 4 products with the cost
and budget (availability), as well as their profits, given in the table below. The
goal is to maximize total profit.

P1 P2 P3 P4 availability
man weeks 1 2 1 2 20

kg of material A 6 5 3 2 100
boxes of material B 3 4 9 12 75

profit 6 4 7 5

Solution. Let xi be the quantity to manufacture product i, then the LP is

maximize 6x1 + 4x2 + 7x3 + 5x4

subject to x1 + 2x2 + x3 + 2x4 ≤ 20

6x1 + 5x2 + 3x3 + 2x4 ≤ 100

3x1 + 4x2 + 9x3 + 12x3 ≤ 75

x1, x2, x3, x4 ≥ 0

Exercise: convert this into the standard form of LP.
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Geometric interpretation of the feasible set Ω = {x ∈ Rn : Ax ≤ b,x ≥
0}:

Let a>i be the ith row of A for i = 1, . . . ,m. Then a>i x ≤ bi is a half space.

Hence Ax ≤ b is the intersection of m half spaces, which is a polyhedra. So
is Ω.

The objective c>x is a plane with slope defined on Ω, and the optimal point
x∗ is the point in Ω that has the minimum value c>x∗.
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Basic solutions of linear system Ax = b.

Suppose A = [B D] where B ∈ Rm×m has rank(B) = m. Denote xB =

B−1b ∈ Rm. Then

x =

[
xB
0

]
∈ Rn

is called a basic solution of Ax = b.
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Definition. We introduce the following terms:

• xB ∈ Rm: basic variables

• If xB has zero component(s), then x is called a degenerate basic solution

• B: basic columns of A. Note that in practice there are up to
(
n
m

)
ways to

choose the basic columns.

• x is called a feasible point if x ∈ Ω := {x ∈ Rn : Ax = b,x ≥ 0}.

• x is called a basic feasible point if x is a basic solution and also feasible.

• x∗ ∈ Ω is called an optimal (feasible) solution if c>x∗ ≤ c>x for all
x ∈ Ω.
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Properties of basic solutions

Theorem (Fundamental Theorem of LP). For an LP with nonempty feasible
set Ω, the following statements hold:

(a) A basic feasible point exists.

(b) If LP has solution, then there exists an optimal basic feasible solution.
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Proof. Part (a). Let x ∈ Ω (since Ω 6= ∅), i.e., Ax = b and x ≥ 0. WLOG,
assume x1, . . . , xp > 0 and xp+1, . . . , xn = 0. Then

Ax = x1a1 + · · ·+ xpap = b

where A = [a1, . . . ,ap, . . . ,an].

If a1, . . . ,ap are linearly independent, then p ≤ m (since A ∈ Rm×n), and
hence x is a basic feasible point.

If a1, . . . ,ap are linearly dependent, then ∃ y1, . . . , yp ∈ R not all zero such
that

Ay = y1a1 + · · ·+ ypap = 0

where y = [y1, . . . , yp,0, . . . ,0]> ∈ Rn (WLOG we assume at least one
yi > 0 otherwise take y = −y), then we know A(x− εy) = b for all ε.
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Proof (cont). Choose ε = min{xi/yi : yi > 0}, then x − εy ∈ Ω and has
only p− 1 nonzero components.

We update x to x− εy (then x ≥ 0 and has p− 1 positive components).

Repeat this procedure until we find the basic columns of A and its correspond-
ing basic feasible point.
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Proof (cont). Part (b). Let x ∈ Ω be optimal, and again WLOG assume
x1, . . . , xp > 0.

If a1, . . . ,ap are linearly independent, then p ≤ m and x is also a basic
solution. Hence x is optimal, basic, and feasible.

If a1, . . . ,ap are linearly dependent, then with the same argument as in (a),
∃ y1, . . . , yp ∈ R not all zero such that

Ay = y1a1 + · · ·+ ypap = 0

If c>y 6= 0 (say > 0), then by choosing any 0 < ε ≤ min{|xi/yi| : yi 6= 0},
we have x−εy ∈ Ω and c>(x−εy) = c>x−εc>y < c>x, which contradicts
to the optimality of x. Hence c>y = 0.

So we can choose ε in the same way as in (a) to get x− εy which has p− 1

nonzeros. Repeat to obtain an optimal, basic, and feasible solution.
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Theorem. Consider an LP with nonempty Ω, then x is an extreme point of Ω

iff x is a basic feasible point.

In theory, we only need to examine the basic feasible points of Ω and find the
optimal basic feasible solution of the LP.

However, there could be a large amount of extreme points to examine.
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Now we study the Simplex Method designed for LP.

Recall basic row operations to linear system Ax = b:

• interchange two rows

• multiply one row by a real nonzero scalar

• adding a scalar multiple of one row to another row

Each of these operations corresponds to an invertible matrix E ∈ Rm premul-
tiplying to A.
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Also recall that, to solve a linear system Ax = b, we first form the augmented
matrix [A, b], then apply a series of row operations, say E1, . . . ,Et, to the
matrix to obtain

Et · · ·E1[A, b] = [I,D,B−1b]

where D is such that Et . . .E1A = [I,D] and B = (Et · · ·E1)−1 ∈ Rm×m

is invertible. Note A = [B,BD].

Then a particular solution of Ax = b is x = [B−1b; 0] ∈ Rn.

In addition, note that [−DxD;xD] ∈ Rn is a solution of [I,D]x = 0 (hence
a solution of Ax = 0) for any xD ∈ Rn−m.

Therefore, any solution of Ax = b can be written for some xD ∈ Rn−m as

x =

[
B−1b

0

]
+

[
−DxD
xD

]
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Suppose we have applied basic row operations and converted Ax = b to
[I,Y ]x = y0 (called the canonical form) where

Y =

y1m+1 · · · y1n... . . . ...
ymm+1 · · · ymn

 ∈ Rm×(n−m) y0 =

y10...
ym0

 ∈ Rm

Note that the column yq = [y1q; . . . ; ymq] ∈ Rm (q > m) gives the coefficients
to represent aq using a1, . . . ,am, where ai is the ith column of A:

aq = y1qa1 + · · ·+ ymqam = [a1, . . . ,am]yq

since A = [a1, . . . ,am,am+1, . . . ,an] = [B,BY ].

Now we are using a1, . . . ,am as basic columns, and x = [B−1b; 0] is the
corresponding basic solution to Ax = b. If B−1b ≥ 0, then x is a basic
feasible point of the LP. We temporarily assume we started with a basic feasible
point.
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Now we want to move to another basic feasible point. To this end, we need to
exchange one of a1, . . . ,am with another aq (q > m) to form the new basic
columns, find the corresponding basic solution x of Ax = b, making sure that
x ≥ 0.

Exchanging basic columns p and q where p ≤ m < q is simple: just apply
basic row operations [I,Y ] so that the qth column becomes ep. Here ep ∈ Rn

is the vector with 1 as the pth component and 0 elsewhere.

However, which aq we should choose to enter the basic columns, and which
ap to leave?
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Since x = [y10; . . . ; ym0; 0; . . . ; 0] ∈ Rn
+ is a basic solution corresponding

to Ax = b, we know

y10a1 + · · ·+ ym0am = b

Suppose we decide to let aq enter the basic columns, then due to

aq = y1qa1 + · · ·+ ymqam = [a1, . . . ,am]yq

we know for any ε ≥ 0 there is

(y10 − εy1q)a1 + · · ·+ (ym0 − εymq)am + εaq = b
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Note that yq have positive and nonpositive components (if all are nonpositive
then the problem is unbounded), then for ε > 0 gradually increasing from 0,
one of the coefficients (say p) will become 0 first. We will choose ap to leave
the basic columns.

More precisely, we choose ε = mini{yi0/yiq : yiq > 0}, and obtain the basic
columns

a1, . . . , âp, . . . ,am,aq
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Now we consider which aq to enter the basic column.

Ideally, we should choose aq such that c>x decreases the most.

Recall that the current point is x = [y0; 0] ∈ Rn. If we choose aq to enter,
then the objective function becomes

c>
[y0 − εyq

0

]
+ εeq

 = z0 + ε[cq − (c1y1q + · · ·+ cmymq)]

= z0 + (cq − zq)ε

where zi := c>[1:m]yi for i = 0,1, . . . ,m.
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If cq − zq < 0 for some q, then choosing aq to enter can further reduce the
objective function since ε > 0. If there are more than one such q, then choose
the one with smallest index or the one with smallest cq − zq.

If cq − zq ≥ 0 for all q, then the optimal basic point is reached.

These answered which aq to enter, and when the simplex method should stop.
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To simplify the process, we consider the matrix form of the simplex method.

Given the standard form of an LP

minimize c>x

subject to Ax = b

x ≥ 0

we form the tableau of the problem as the matrix[
A b
c> 0

]
=

[
B D b
c>B c>D 0

]
∈ R(m+1)×(n+1)

Note that the tableau contains all information of the LP.
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Premultiplying the matrix
[
B−1 0
0> 1

]
to the tableau, we obtain

[
B−1 0
0> 1

] [
B D b
c>B c>D 0

]
=

[
I B−1D B−1b
c>B c>D 0

]

Further premultiplying the matrix
[

I 0
−c>B 1

]
yields

[
I 0
−c>B 1

] [
I B−1D B−1b
c>B c>D 0

]
=

[
I B−1D B−1b
0> c>D − c>BB

−1D −c>BB
−1b

]
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It is easy to check that

• [B−1b; 0] ∈ Rn is the basic solution

• c>D−c
>
BB
−1D ∈ Rn−m contains the reduced cost coefficients, i.e., zq−cq

for q = m + 1, . . . , n

• c>BB
−1b ∈ R is the objective function
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According to the discussion above, the simplex method executes the following
actions in order:

• find the index, say q, of the most negative component among c>D−c
>
BB
−1D ∈

Rn−m;

• find p = arg mini{yi0/yiq : yiq > 0};

• pivot the tableau about the (p, q) entry by basic row operations so that the
column becomes 0 except the (p, q) entry which is 1.

• [1 : m,n+1] of the tableau gives the current basic solution (basic feasible
point), the nonzeros in [m + 1,1 : n] are the reduced cost coefficients,
and the (m + 1, n + 1) entry is the negative of objective function.
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Example. Consider the following linear programming problem:

maximize 7x1 + 6x2

subject to 2x1 + x2 ≤ 3

x1 + 4x2 ≤ 4

x1, x2 ≥ 0

Solve this LP using the simplex method.

Solution. We first convert this LP to the standard form:

minimize − 7x1 − 6x2

subject to 2x1 + x2 + x3 = 3

x1 + 4x2 + x4 = 4

x1, x2, x3, x4 ≥ 0
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Solution (cont). The tableau of this LP is 2 1 1 0 3
1 4 0 1 4
−7 −6 0 0 0


where the upper left 2 × 4 submatrix corresponds to A = [a1, . . . ,a4], c =

[−7;−6,0; 0], and b = [3; 4].

Note that A is already in the canonical form: a3,a4 are the basic columns,
and x = [0; 0; 3; 4] is the basic solution of Ax = b.

Since −7 is the most negative term, we will let a1 enter the basic column.
Comparing 3/2 and 4/1, we see the former is smaller and hence decide to
let a3 leave the basic column.
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Now pivoting about the (1,1) entry, we obtain
1 1

2
1
2 0 3

2
0 7

2 −1
2 1 5

2
0 −5

2
7
2 0 21

2


Now we see −5/2 is the most negative term, so we let a2 enter the basic
columns. Comparing 3/2

1/2 = 3 and 5/2
7/2 = 5/7, we let a4 leave the basic

column. Then pivoting about the (2,2) entry, we obtain
1 0 4

7 −1
7

8
7

0 1 −1
7

2
7

5
7

0 0 22
7

5
7

86
7


There are no negative entries in the last row, so we stop. The optimal solution
is x∗ = [8

7,
5
7,0,0] and optimal value is −86

7 of the LP in its standard form.
These correspond to the optimal solution x1 = 8/7, x2 = 5/7, and optimal
value 86/7 of the original problem.
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Starting the Simplex Method

The simplex method discussed above is referred to the Phase II which requires
an initial point to be a basic feasible point.

Now we consider the Phase I which finds one of such basic feasible points. To
this end, we introduce artificial variables y ∈ Rm and consider the following
artificial problem:

minimize 1>y

subject to Ax + Ey = b

x ≥ 0, y ≥ 0

where 1 = [1, . . . ,1]> ∈ Rm, E is diagonal with Eii = sign(bi).

Xiaojing Ye, Math & Stat, Georgia State University 29



Note that the equality constraint is equivalent to EAx + y = Eb = |b|. That
is, if bi < 0, then multiply −1 to both sides of the ith equality constraint.

Then the artificial problem

minimize 1>y

subject to EAx + y = |b|
x ≥ 0, y ≥ 0

has an obvious basic feasible point [x;y] = [0; . . . ; 0; |b1|; . . . ; |bm|], which
we can use as an initial and apply the Phase II simplex method.

Xiaojing Ye, Math & Stat, Georgia State University 30



Moreover, the artificial problem in Phase I has a solution iff the original problem
has nonempty feasible set Ω. In this case, the artificial problem above have
an optimal objective value 0 and optimal solution [x∗;y∗], such that y∗ = 0

and x∗ is a basic feasible point of the original LP problem:

• If Ω is nonempty, then there exists x ∈ Ω, i.e., Ax = b and x ≥ 0. So
[x; 0] solves the artificial problem in Phase I.

• If the artificial problem has a solution such that 1>y = 0, then y = 0,
and x satisfies Ax = b and x ≥ 0, which means x ∈ Ω.
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Revised Simplex Method

If m � n, it is wasteful to apply row operations to all columns since most of
them do not give new basic variables. Instead, we can keep tracking B−1 and
the current basic columns only.

Specifically, we start with only the m × (m + 1) portion of A ∈ Rm×(n+1):
[I, b]. We set B = B−1 = I, and the rest of A as D. Let y0 = B−1b = b,
so we have [B−1,y0] = [I, b] and record the corresponding basic variables.

In each iteration, we will need an updated [B−1,y0] and the corresponding
basic variables to do the followings.
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Revised Simplex Method (continued)

Then we can compute r>D := c>D−(c>BB
−1)D, and look for the most negative

component of r>D to decide which xq to become new basic variable.

Note that in the original simplex method we needed to apply row operations
to D, but here we only compute (c>BB

−1)D which only require two matrix-
vector multiplications.

We then compute yq = B−1aq (aq is the qth column of A), and check
y0/yq componentwisely to find the smallest positive number, say p, then pivot
[B−1,y0,yq] on the pth component of yq (so the last column becomes ep
after pivoting). Then delete the last column to obtain the updated [B−1,y0]

(and use xq to switch xp out of the basic variables) and repeat from top of this
page.
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Example (Revised simplex method). Consider the following linear program:

maximize 3x1 + 5x2

subject to x1 + x2 ≤ 4

5x1 + 3x2 ≥ 8

x1, x2 ≥ 0

Solve this LP using the revised simplex method.

Solution. We first convert this LP to the standard form:

minimize − 3x1 − 5x2

subject to x1 + x2 + x3 = 4

5x1 + 3x2 − x4 = 8

x1, x2, x3, x4 ≥ 0
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Solution (cont.) We first form the artificial problem x5 = y1:

minimize x5

subject to x1 + x2 + x3 = 4

5x1 + 3x2 − x4 + x5 = 8

x1, x2, x3, x4, x5 ≥ 0

with a basic feasible point [x1, x2, x3, x4, x5] = [0,0,4,0,8] to start.

The complete tableau for this artificial problem is

a1 a2 a3 a4 a5 b
1 1 1 0 0 4
5 3 0 −1 1 8
0 0 0 0 1 0

where the last row contains c> = [0,0,0,0,1].
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Solution (cont.) The initial B−1 = I, y0 = [4; 8], and the basic variables
are x3, x5.

Then we check

r>D = c>D − (c>BB
−1)D

= [0,0,0]−
(

[0,1]

[
1 0
0 1

]) [
1 1 0
5 3 −1

]
= [−5,−3,1] = [r1, r2, r4]

So we decide to let x1 become a new basic variable since r1 is most negative.

Compute y1 = B−1a1 = [1; 5], then y0/y1 = [4,8/5] so we let x5 not be
basic variable anymore since 8/5 is smaller.
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Solution (cont.) Now we do pivoting on the 2nd component of y1:

[B−1,y0,y1] =

[
1 0 4 1
0 1 8 5

]
→

1 −1
5

12
5 0

0 1
5

8
5 1


Then the updated [B−1,y0] is

1 −1
5

12
5

0 1
5

8
5

 and the corresponding basic

variables are x3, x1.

Then we check

r>D = c>D − (c>BB
−1)D

= [0,0,1]−
(

[0,0]

1 −1
5

0 1
5

) [1 0 0
3 −1 1

]
= [0,0,1] = [r2, r4, r5] ≥ 0

So the Phase I is completed, and we get solution [x1, . . . , x5] = [8
5,0, 12

5 ,0,0].
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Solution (cont.) Now we start Phase II. The complete tableau is

a1 a2 a3 a4 b
1 1 1 0 4
5 3 0 −1 8
−3 −5 0 0 0

where the last row contains c> = [−3,−5,0,0].

We also have basic variables x3 = 12
5 , x1 = 8

5 and

[B−1,y0] =

1 −1
5

12
5

0 1
5

8
5
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Solution (cont.) Then we check

r>D = c>D − (c>BB
−1)D

= [−5,0]−
(

[0,−3]

1 −1
5

0 1
5

) [1 0
3 −1

]

= [−
16

5
,−

3

5
] = [r2, r4]

So we let x2 become a new basic variable.

Compute y2 = B−1a2 = [2
5; 3

5], then y0/y1 = [6, 8
3] so we let x1 not be

basic variable anymore since 8
3 is smaller.
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Solution (cont.) Now we do pivoting on the 2nd component of y2:

[B−1,y0,y2] =

1 −1
5

12
5

2
5

0 1
5

8
5

3
5

→
1 −1

3
4
3 0

0 1
3

8
3 1


Then the updated [B−1,y0] is

1 −1
3

4
3

0 1
3

8
3

 and the corresponding basic vari-

ables are x3 = 4
3, x2 = 8

3.

Then we check

r>D = c>D − (c>BB
−1)D

= [−3,0]−
(

[0,−5]

1 −1
3

0 1
3

) [1 0
5 −1

]

= [
16

3
,−

5

3
] = [r1, r4]

So we let x4 be a new basic variable.
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Solution (cont.) Compute y4 = B−1a4 = [1
3;−1

3], then y0/y4 = [4,−8]

so we let x3 not be basic variable anymore.

Now we do pivoting on the first component of y4:

[B−1,y0,y4] =

1 −1
3

4
3

1
3

0 1
3

8
3 −

1
3

→ [
3 −1 4 1
1 0 4 0

]

Then the updated [B−1,y0] is
[
3 −1 4
1 0 4

]
and the corresponding basic

variables are x4 = 4, x2 = 4. Then we check

r>D = c>D − (c>BB
−1)D

= [−3,0]−
(

[0,−5]

[
3 −1
1 0

]) [
1 1
5 0

]
= [2,5] = [r1, r3] ≥ 0

So Phase II is finished, and solution is x = [0; 4; 0; 4]. Hence the solution for
the original problem is then [x1, x2] = [0,4].
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