# MATH 4211/6211 - Optimization Linear Programming 

Xiaojing Ye<br>Department of Mathematics \& Statistics<br>Georgia State University

The standard form of a Linear Program (LP)

$$
\begin{aligned}
\operatorname{minimize} & \boldsymbol{c}^{\top} \boldsymbol{x} \\
\text { subject to } & \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b} \\
& \boldsymbol{x} \geq \mathbf{0}
\end{aligned}
$$

where

- $\boldsymbol{x} \in \mathbb{R}^{n}$ is the unknown variable;
- $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ is given, where $m<n$ and $\operatorname{rank}(\boldsymbol{A})=m$;
- $\boldsymbol{b} \in \mathbb{R}^{m}$ is given.

Other forms of LP can be converted to the standard form.

For example, suppose an LP is given as

$$
\begin{array}{cl}
\operatorname{maximize} & \boldsymbol{c}^{\top} \boldsymbol{x} \\
\text { subject to } & \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b} \\
& \boldsymbol{x} \geq \mathbf{0}
\end{array}
$$

Then we can rewrite it as an equivalent standard form

$$
\begin{aligned}
\operatorname{minimize} & (-\boldsymbol{c})^{\top} \boldsymbol{x} \\
\text { subject to } & \boldsymbol{A} \boldsymbol{x}+\boldsymbol{y}=\boldsymbol{b} \\
& \boldsymbol{x}, \boldsymbol{y} \geq \mathbf{0}
\end{aligned}
$$

where $[\boldsymbol{x} ; \boldsymbol{y}] \in \mathbb{R}^{n+m}$ is the variable to solve for now, and $\boldsymbol{y}$ is called the slack variable.

If $\left[\boldsymbol{x}^{*} ; \boldsymbol{y}^{*}\right]$ is a solution of the new problem, then $\boldsymbol{x}^{*}$ is a solution of the original problem.

Example. Convert the LP below into the standard form

$$
\begin{aligned}
\operatorname{maximize} & x_{2}-x_{1} \\
\text { subject to } & 3 x_{1}=x_{2}-5 \\
& \left|x_{2}\right| \leq 2 \\
& x_{1} \leq 0
\end{aligned}
$$

- $x_{1}^{\prime}:=-x_{1}$, then $x_{1} \leq 0 \Longleftrightarrow x_{1}^{\prime} \geq 0$
- $x_{2}=u-v$ where $u, v \geq 0$
- $\left|x_{2}\right| \leq 2 \Longleftrightarrow-2 \leq u-v \leq 2$
- Introduce slack variables $x_{3}, x_{4} \geq 0$ such that $u-v+x_{3}=2$ and $u-v-x_{4}=-2$

Example (cont). Now we obtain an equivalent problem:

$$
\begin{aligned}
\operatorname{minimize} & -x_{1}^{\prime}-u+v \\
\text { subject to } & 3 x_{1}^{\prime}+u-v=5 \\
& u-v+x_{3}=2 \\
& u-v-x_{4}=-2 \\
& x_{1}^{\prime}, u, v, x_{3}, x_{4} \geq 0
\end{aligned}
$$

Note that there are 5 variables now.

Example. Suppose a factory wants to manufacture 4 products with the cost and budget (availability), as well as their profits, given in the table below. The goal is to maximize total profit.

|  | P1 | P2 | P3 | P4 | availability |
| :---: | :---: | :---: | :---: | :---: | :---: |
| man weeks | 1 | 2 | 1 | 2 | 20 |
| kg of material A | 6 | 5 | 3 | 2 | 100 |
| boxes of material B | 3 | 4 | 9 | 12 | 75 |
| profit | 6 | 4 | 7 | 5 |  |

Solution. Let $x_{i}$ be the quantity to manufacture product $i$, then the LP is

$$
\begin{array}{ll}
\operatorname{maximize} & 6 x_{1}+4 x_{2}+7 x_{3}+5 x_{4} \\
\text { subject to } & x_{1}+2 x_{2}+x_{3}+2 x_{4} \leq 20 \\
& 6 x_{1}+5 x_{2}+3 x_{3}+2 x_{4} \leq 100 \\
& 3 x_{1}+4 x_{2}+9 x_{3}+12 x_{3} \leq 75 \\
& x_{1}, x_{2}, x_{3}, x_{4} \geq 0
\end{array}
$$

Exercise: convert this into the standard form of LP.

Geometric interpretation of the feasible set $\Omega=\left\{\boldsymbol{x} \in \mathbb{R}^{n}: \boldsymbol{A x} \leq \boldsymbol{b}, \boldsymbol{x} \geq\right.$ $0\}$ :

Let $\boldsymbol{a}_{i}^{\top}$ be the $i$ th row of $\boldsymbol{A}$ for $i=1, \ldots, m$. Then $\boldsymbol{a}_{i}^{\top} \boldsymbol{x} \leq b_{i}$ is a half space.

Hence $\boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}$ is the intersection of $m$ half spaces, which is a polyhedra. So is $\Omega$.

The objective $\boldsymbol{c}^{\top} \boldsymbol{x}$ is a plane with slope defined on $\Omega$, and the optimal point $x^{*}$ is the point in $\Omega$ that has the minimum value $c^{\top} x^{*}$.

Basic solutions of linear system $\boldsymbol{A x}=\boldsymbol{b}$.
Suppose $\boldsymbol{A}=[\boldsymbol{B} \boldsymbol{D}]$ where $\boldsymbol{B} \in \mathbb{R}^{m \times m}$ has $\operatorname{rank}(\boldsymbol{B})=m$. Denote $\boldsymbol{x}_{B}=$ $\boldsymbol{B}^{-1} \boldsymbol{b} \in \mathbb{R}^{m}$. Then

$$
\boldsymbol{x}=\left[\begin{array}{c}
\boldsymbol{x}_{B} \\
\mathbf{0}
\end{array}\right] \in \mathbb{R}^{n}
$$

is called a basic solution of $\boldsymbol{A x}=\boldsymbol{b}$.

Definition. We introduce the following terms:

- $\boldsymbol{x}_{B} \in \mathbb{R}^{m}$ : basic variables
- If $\boldsymbol{x}_{B}$ has zero component(s), then $\boldsymbol{x}$ is called a degenerate basic solution
- $\boldsymbol{B}$ : basic columns of $\boldsymbol{A}$. Note that in practice there are up to $\binom{n}{m}$ ways to choose the basic columns.
- $\boldsymbol{x}$ is called a feasible point if $\boldsymbol{x} \in \Omega:=\left\{\boldsymbol{x} \in \mathbb{R}^{n}: \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}, \boldsymbol{x} \geq \mathbf{0}\right\}$.
- $\boldsymbol{x}$ is called a basic feasible point if $\boldsymbol{x}$ is a basic solution and also feasible.
- $\boldsymbol{x}^{*} \in \Omega$ is called an optimal (feasible) solution if $\boldsymbol{c}^{\top} \boldsymbol{x}^{*} \leq \boldsymbol{c}^{\top} \boldsymbol{x}$ for all $x \in \Omega$.


## Properties of basic solutions

Theorem (Fundamental Theorem of LP). For an LP with nonempty feasible set $\Omega$, the following statements hold:
(a) A basic feasible point exists.
(b) If LP has solution, then there exists an optimal basic feasible solution.

Proof. Part (a). Let $x \in \Omega$ (since $\Omega \neq \varnothing$ ), i.e., $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ and $\boldsymbol{x} \geq 0$. WLOG, assume $x_{1}, \ldots, x_{p}>0$ and $x_{p+1}, \ldots, x_{n}=0$. Then

$$
\boldsymbol{A} \boldsymbol{x}=x_{1} \boldsymbol{a}_{1}+\cdots+x_{p} \boldsymbol{a}_{p}=\boldsymbol{b}
$$

where $\boldsymbol{A}=\left[a_{1}, \ldots, a_{p}, \ldots, a_{n}\right]$.
If $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{p}$ are linearly independent, then $p \leq m$ (since $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ ), and hence $x$ is a basic feasible point.

If $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{p}$ are linearly dependent, then $\exists y_{1}, \ldots, y_{p} \in \mathbb{R}$ not all zero such that

$$
\boldsymbol{A} \boldsymbol{y}=y_{1} \boldsymbol{a}_{1}+\cdots+y_{p} \boldsymbol{a}_{p}=\mathbf{0}
$$

where $\boldsymbol{y}=\left[y_{1}, \ldots, y_{p}, 0, \ldots, 0\right]^{\top} \in \mathbb{R}^{n}$ (WLOG we assume at least one $y_{i}>0$ otherwise take $\left.\boldsymbol{y}=-\boldsymbol{y}\right)$, then we know $\boldsymbol{A}(\boldsymbol{x}-\varepsilon \boldsymbol{y})=\boldsymbol{b}$ for all $\varepsilon$.

Proof (cont). Choose $\varepsilon=\min \left\{x_{i} / y_{i}: y_{i}>0\right\}$, then $\boldsymbol{x}-\varepsilon \boldsymbol{y} \in \Omega$ and has only $p-1$ nonzero components.

We update $\boldsymbol{x}$ to $\boldsymbol{x}-\varepsilon \boldsymbol{y}$ (then $\boldsymbol{x} \geq 0$ and has $p-1$ positive components).
Repeat this procedure until we find the basic columns of $\boldsymbol{A}$ and its corresponding basic feasible point.

Proof (cont). Part (b). Let $x \in \Omega$ be optimal, and again WLOG assume $x_{1}, \ldots, x_{p}>0$.

If $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{p}$ are linearly independent, then $p \leq m$ and $\boldsymbol{x}$ is also a basic solution. Hence $x$ is optimal, basic, and feasible.

If $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{p}$ are linearly dependent, then with the same argument as in (a), $\exists y_{1}, \ldots, y_{p} \in \mathbb{R}$ not all zero such that

$$
\boldsymbol{A} \boldsymbol{y}=y_{1} \boldsymbol{a}_{1}+\cdots+y_{p} \boldsymbol{a}_{p}=\mathbf{0}
$$

If $\boldsymbol{c}^{\top} \boldsymbol{y} \neq 0$ (say $>0$ ), then by choosing any $0<\varepsilon \leq \min \left\{\left|x_{i} / y_{i}\right|: y_{i} \neq 0\right\}$, we have $\boldsymbol{x}-\varepsilon \boldsymbol{y} \in \Omega$ and $\boldsymbol{c}^{\top}(\boldsymbol{x}-\varepsilon \boldsymbol{y})=\boldsymbol{c}^{\top} \boldsymbol{x}-\varepsilon \boldsymbol{c}^{\top} \boldsymbol{y}<\boldsymbol{c}^{\top} \boldsymbol{x}$, which contradicts to the optimality of $\boldsymbol{x}$. Hence $\boldsymbol{c}^{\top} \boldsymbol{y}=0$.

So we can choose $\varepsilon$ in the same way as in (a) to get $\boldsymbol{x}-\varepsilon \boldsymbol{y}$ which has $p-1$ nonzeros. Repeat to obtain an optimal, basic, and feasible solution.

Theorem. Consider an LP with nonempty $\Omega$, then $x$ is an extreme point of $\Omega$ iff $x$ is a basic feasible point.

In theory, we only need to examine the basic feasible points of $\Omega$ and find the optimal basic feasible solution of the LP.

However, there could be a large amount of extreme points to examine.

Now we study the Simplex Method designed for LP.

Recall basic row operations to linear system $\boldsymbol{A x}=\boldsymbol{b}$ :

- interchange two rows
- multiply one row by a real nonzero scalar
- adding a scalar multiple of one row to another row

Each of these operations corresponds to an invertible matrix $\boldsymbol{E} \in \mathbb{R}^{m}$ premultiplying to $\boldsymbol{A}$.

Also recall that, to solve a linear system $\boldsymbol{A x}=\boldsymbol{b}$, we first form the augmented matrix $\left[\boldsymbol{A}, \boldsymbol{b}\right.$ ], then apply a series of row operations, say $\boldsymbol{E}_{1}, \ldots, \boldsymbol{E}_{t}$, to the matrix to obtain

$$
\boldsymbol{E}_{t} \cdots \boldsymbol{E}_{1}[\boldsymbol{A}, \boldsymbol{b}]=\left[\boldsymbol{I}, \boldsymbol{D}, \boldsymbol{B}^{-1} \boldsymbol{b}\right]
$$

where $\boldsymbol{D}$ is such that $\boldsymbol{E}_{t} \ldots \boldsymbol{E}_{1} \boldsymbol{A}=[\boldsymbol{I}, \boldsymbol{D}]$ and $\boldsymbol{B}=\left(\boldsymbol{E}_{t} \cdots \boldsymbol{E}_{1}\right)^{-1} \in \mathbb{R}^{m \times m}$ is invertible. Note $\boldsymbol{A}=[\boldsymbol{B}, \boldsymbol{B D}]$.

Then a particular solution of $\boldsymbol{A x}=\boldsymbol{b}$ is $\boldsymbol{x}=\left[\boldsymbol{B}^{-1} \boldsymbol{b} ; 0\right] \in \mathbb{R}^{n}$.

In addition, note that $\left[-\boldsymbol{D} \boldsymbol{x}_{D} ; \boldsymbol{x}_{D}\right] \in \mathbb{R}^{n}$ is a solution of $[\boldsymbol{I}, \boldsymbol{D}] \boldsymbol{x}=\mathbf{0}$ (hence a solution of $\boldsymbol{A x}=0$ ) for any $\boldsymbol{x}_{D} \in \mathbb{R}^{n-m}$.

Therefore, any solution of $\boldsymbol{A x}=\boldsymbol{b}$ can be written for some $\boldsymbol{x}_{D} \in \mathbb{R}^{n-m}$ as

$$
\boldsymbol{x}=\left[\begin{array}{c}
\boldsymbol{B}^{-1} \boldsymbol{b} \\
\mathbf{0}
\end{array}\right]+\left[\begin{array}{c}
-\boldsymbol{D} \boldsymbol{x}_{D} \\
\boldsymbol{x}_{D}
\end{array}\right]
$$

Suppose we have applied basic row operations and converted $\boldsymbol{A x}=\boldsymbol{b}$ to $[\boldsymbol{I}, \boldsymbol{Y}] \boldsymbol{x}=\boldsymbol{y}_{0}$ (called the canonical form) where

$$
\boldsymbol{Y}=\left[\begin{array}{ccc}
y_{1 m+1} & \cdots & y_{1 n} \\
\vdots & \ddots & \vdots \\
y_{m m+1} & \cdots & y_{m n}
\end{array}\right] \in \mathbb{R}^{m \times(n-m)} \quad \boldsymbol{y}_{0}=\left[\begin{array}{c}
y_{10} \\
\vdots \\
y_{m 0}
\end{array}\right] \in \mathbb{R}^{m}
$$

Note that the column $\boldsymbol{y}_{q}=\left[y_{1 q} ; \ldots ; y_{m q}\right] \in \mathbb{R}^{m}(q>m)$ gives the coefficients to represent $a_{q}$ using $a_{1}, \ldots, a_{m}$, where $a_{i}$ is the $i$ th column of $\boldsymbol{A}$ :

$$
\boldsymbol{a}_{q}=y_{1 q} \boldsymbol{a}_{1}+\cdots+y_{m q} \boldsymbol{a}_{m}=\left[\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}\right] \boldsymbol{y}_{q}
$$

since $A=\left[a_{1}, \ldots, a_{m}, a_{m+1}, \ldots, a_{n}\right]=[B, B Y]$.
Now we are using $a_{1}, \ldots, \boldsymbol{a}_{m}$ as basic columns, and $\boldsymbol{x}=\left[\boldsymbol{B}^{-1} \boldsymbol{b} ; \mathbf{0}\right]$ is the corresponding basic solution to $\boldsymbol{A x}=\boldsymbol{b}$. If $\boldsymbol{B}^{-1} \boldsymbol{b} \geq 0$, then $\boldsymbol{x}$ is a basic feasible point of the LP. We temporarily assume we started with a basic feasible point.

Now we want to move to another basic feasible point. To this end, we need to exchange one of $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}$ with another $\boldsymbol{a}_{q}(q>m)$ to form the new basic columns, find the corresponding basic solution $\boldsymbol{x}$ of $\boldsymbol{A x}=\boldsymbol{b}$, making sure that $x \geq 0$.

Exchanging basic columns $p$ and $q$ where $p \leq m<q$ is simple: just apply basic row operations $[\boldsymbol{I}, \boldsymbol{Y}]$ so that the $q$ th column becomes $\boldsymbol{e}_{p}$. Here $\boldsymbol{e}_{p} \in \mathbb{R}^{n}$ is the vector with 1 as the $p$ th component and 0 elsewhere.

However, which $a_{q}$ we should choose to enter the basic columns, and which $a_{p}$ to leave?

Since $\boldsymbol{x}=\left[y_{10} ; \ldots ; y_{m 0} ; 0 ; \ldots ; 0\right] \in \mathbb{R}_{+}^{n}$ is a basic solution corresponding to $\boldsymbol{A x}=\boldsymbol{b}$, we know

$$
y_{10} \boldsymbol{a}_{1}+\cdots+y_{m 0} \boldsymbol{a}_{m}=\boldsymbol{b}
$$

Suppose we decide to let $\boldsymbol{a}_{q}$ enter the basic columns, then due to

$$
\boldsymbol{a}_{q}=y_{1 q} \boldsymbol{a}_{1}+\cdots+y_{m q} \boldsymbol{a}_{m}=\left[\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}\right] \boldsymbol{y}_{q}
$$

we know for any $\varepsilon \geq 0$ there is

$$
\left(y_{10}-\varepsilon y_{1 q}\right) \boldsymbol{a}_{1}+\cdots+\left(y_{m 0}-\varepsilon y_{m q}\right) \boldsymbol{a}_{m}+\varepsilon \boldsymbol{a}_{q}=\boldsymbol{b}
$$

Note that $y_{q}$ have positive and nonpositive components (if all are nonpositive then the problem is unbounded), then for $\varepsilon>0$ gradually increasing from 0 , one of the coefficients (say $p$ ) will become 0 first. We will choose $\boldsymbol{a}_{p}$ to leave the basic columns.

More precisely, we choose $\varepsilon=\min _{i}\left\{y_{i 0} / y_{i q}: y_{i q}>0\right\}$, and obtain the basic columns

$$
\boldsymbol{a}_{1}, \ldots, \widehat{\boldsymbol{a}}_{p}, \ldots, \boldsymbol{a}_{m}, \boldsymbol{a}_{q}
$$

Now we consider which $a_{q}$ to enter the basic column.
Ideally, we should choose $a_{q}$ such that $\boldsymbol{c}^{\top} \boldsymbol{x}$ decreases the most.
Recall that the current point is $x=\left[\boldsymbol{y}_{0} ; 0\right] \in \mathbb{R}^{n}$. If we choose $\boldsymbol{a}_{q}$ to enter, then the objective function becomes

$$
\left.\begin{array}{rl}
\boldsymbol{c}^{\top}\left(\left[\begin{array}{c}
\boldsymbol{y}_{0}-\varepsilon \boldsymbol{y}_{q} \\
0
\end{array}\right]+\varepsilon \boldsymbol{e}_{q}\right.
\end{array}\right)=z_{0}+\varepsilon\left[c_{q}-\left(c_{1} y_{1 q}+\cdots+c_{m} y_{m q}\right)\right] \quad \text { } \quad=z_{0}+\left(c_{q}-z_{q}\right) \varepsilon .
$$

where $z_{i}:=c_{[1: m]}^{\top} \boldsymbol{y}_{i}$ for $i=0,1, \ldots, m$.

If $c_{q}-z_{q}<0$ for some $q$, then choosing $\boldsymbol{a}_{q}$ to enter can further reduce the objective function since $\varepsilon>0$. If there are more than one such $q$, then choose the one with smallest index or the one with smallest $c_{q}-z_{q}$.

If $c_{q}-z_{q} \geq 0$ for all $q$, then the optimal basic point is reached.

These answered which $a_{q}$ to enter, and when the simplex method should stop.

To simplify the process, we consider the matrix form of the simplex method.

Given the standard form of an LP

$$
\begin{aligned}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & A x=b \\
& x \geq 0
\end{aligned}
$$

we form the tableau of the problem as the matrix

$$
\left[\begin{array}{cc}
\boldsymbol{A} & \boldsymbol{b} \\
\boldsymbol{c}^{\top} & 0
\end{array}\right]=\left[\begin{array}{ccc}
\boldsymbol{B} & \boldsymbol{D} & \boldsymbol{b} \\
\boldsymbol{c}_{B}^{\top} & \boldsymbol{c}_{D}^{\top} & 0
\end{array}\right] \in \mathbb{R}^{(m+1) \times(n+1)}
$$

Note that the tableau contains all information of the LP.

Premultiplying the matrix $\left[\begin{array}{cc}B^{-1} & 0 \\ 0^{\top} & 1\end{array}\right]$ to the tableau, we obtain

$$
\left[\begin{array}{cc}
\boldsymbol{B}^{-1} & \mathbf{0} \\
\mathbf{0}^{\top} & 1
\end{array}\right]\left[\begin{array}{ccc}
\boldsymbol{B} & \boldsymbol{D} & \boldsymbol{b} \\
\boldsymbol{c}_{B}^{\top} & \boldsymbol{c}_{D}^{\top} & 0
\end{array}\right]=\left[\begin{array}{ccc}
\boldsymbol{I} & \boldsymbol{B}^{-1} \boldsymbol{D} & \boldsymbol{B}^{-1} \boldsymbol{b} \\
\boldsymbol{c}_{B}^{\top} & \boldsymbol{c}_{D}^{\top} & 0
\end{array}\right]
$$

Further premultiplying the matrix $\left[\begin{array}{cc}I & 0 \\ -\boldsymbol{c}_{B}^{\top} & 1\end{array}\right]$ yields

$$
\left[\begin{array}{cc}
\boldsymbol{I} & \mathbf{0} \\
-\boldsymbol{c}_{B}^{\top} & 1
\end{array}\right]\left[\begin{array}{ccc}
\boldsymbol{I} & \boldsymbol{B}^{-1} \boldsymbol{D} & \boldsymbol{B}^{-1} \boldsymbol{b} \\
\boldsymbol{c}_{B}^{\top} & \boldsymbol{c}_{D}^{\top} & 0
\end{array}\right]=\left[\begin{array}{ccc}
\boldsymbol{I} & \boldsymbol{B}^{-1} \boldsymbol{D} & \boldsymbol{B}^{-1} \boldsymbol{b} \\
\mathbf{0}^{\top} & \boldsymbol{c}_{D}^{\top}-\boldsymbol{c}_{B}^{\top} \boldsymbol{B}^{-1} \boldsymbol{D} & -\boldsymbol{c}_{B}^{\top} \boldsymbol{B}^{-1} \boldsymbol{b}
\end{array}\right]
$$

It is easy to check that

- $\left[\boldsymbol{B}^{-1} \boldsymbol{b} ; 0\right] \in \mathbb{R}^{n}$ is the basic solution
- $\boldsymbol{c}_{D}^{\top}-\boldsymbol{c}_{B}^{\top} \boldsymbol{B}^{-1} \boldsymbol{D} \in \mathbb{R}^{n-m}$ contains the reduced cost coefficients, i.e., $z_{q}-c_{q}$ for $q=m+1, \ldots, n$
- $\boldsymbol{c}_{B}^{\top} \boldsymbol{B}^{-1} \boldsymbol{b} \in \mathbb{R}$ is the objective function

According to the discussion above, the simplex method executes the following actions in order:

- find the index, say $q$, of the most negative component among $\boldsymbol{c}_{D}^{\top}-\boldsymbol{c}_{B}^{\top} \boldsymbol{B}^{-1} \boldsymbol{D} \in$ $\mathbb{R}^{n-m}$;
- find $p=\arg \min _{i}\left\{y_{i 0} / y_{i q}: y_{i q}>0\right\} ;$
- pivot the tableau about the ( $p, q$ ) entry by basic row operations so that the column becomes 0 except the ( $p, q$ ) entry which is 1 .
- [1: $m, n+1$ ] of the tableau gives the current basic solution (basic feasible point), the nonzeros in $[m+1,1: n]$ are the reduced cost coefficients, and the ( $m+1, n+1$ ) entry is the negative of objective function.

Example. Consider the following linear programming problem:

$$
\begin{array}{ll}
\operatorname{maximize} & 7 x_{1}+6 x_{2} \\
\text { subject to } & 2 x_{1}+x_{2} \leq 3 \\
& x_{1}+4 x_{2} \leq 4 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

Solve this LP using the simplex method.

Solution. We first convert this LP to the standard form:

$$
\begin{aligned}
\operatorname{minimize} & -7 x_{1}-6 x_{2} \\
\text { subject to } & 2 x_{1}+x_{2}+x_{3}=3 \\
& x_{1}+4 x_{2}+x_{4}=4 \\
& x_{1}, x_{2}, x_{3}, x_{4} \geq 0
\end{aligned}
$$

Solution (cont). The tableau of this LP is

$$
\left[\begin{array}{ccccc}
2 & 1 & 1 & 0 & 3 \\
1 & 4 & 0 & 1 & 4 \\
-7 & -6 & 0 & 0 & 0
\end{array}\right]
$$

where the upper left $2 \times 4$ submatrix corresponds to $A=\left[a_{1}, \ldots, a_{4}\right], c=$ $[-7 ;-6,0 ; 0]$, and $b=[3 ; 4]$.

Note that $\boldsymbol{A}$ is already in the canonical form: $\boldsymbol{a}_{3}, a_{4}$ are the basic columns, and $\boldsymbol{x}=[0 ; 0 ; 3 ; 4]$ is the basic solution of $\boldsymbol{A x}=\boldsymbol{b}$.

Since -7 is the most negative term, we will let $a_{1}$ enter the basic column. Comparing $3 / 2$ and $4 / 1$, we see the former is smaller and hence decide to let $a_{3}$ leave the basic column.

Now pivoting about the $(1,1)$ entry, we obtain

$$
\left[\begin{array}{ccccc}
1 & \frac{1}{2} & \frac{1}{2} & 0 & \frac{3}{2} \\
0 & \frac{7}{2} & -\frac{1}{2} & 1 & \frac{5}{2} \\
0 & -\frac{5}{2} & \frac{7}{2} & 0 & \frac{21}{2}
\end{array}\right]
$$

Now we see $-5 / 2$ is the most negative term, so we let $a_{2}$ enter the basic columns. Comparing $\frac{3 / 2}{1 / 2}=3$ and $\frac{5 / 2}{7 / 2}=5 / 7$, we let $a_{4}$ leave the basic column. Then pivoting about the $(2,2)$ entry, we obtain

$$
\left[\begin{array}{ccccc}
1 & 0 & \frac{4}{7} & -\frac{1}{7} & \frac{8}{7} \\
0 & 1 & -\frac{1}{7} & \frac{2}{7} & \frac{5}{7} \\
0 & 0 & \frac{22}{7} & \frac{5}{7} & \frac{86}{7}
\end{array}\right]
$$

There are no negative entries in the last row, so we stop. The optimal solution is $x^{*}=\left[\frac{8}{7}, \frac{5}{7}, 0,0\right]$ and optimal value is $-\frac{86}{7}$ of the LP in its standard form. These correspond to the optimal solution $x_{1}=8 / 7, x_{2}=5 / 7$, and optimal value $86 / 7$ of the original problem.

## Starting the Simplex Method

The simplex method discussed above is referred to the Phase II which requires an initial point to be a basic feasible point.

Now we consider the Phase I which finds one of such basic feasible points. To this end, we introduce artificial variables $\boldsymbol{y} \in \mathbb{R}^{m}$ and consider the following artificial problem:

$$
\begin{aligned}
\operatorname{minimize} & \mathbf{1}^{\top} \boldsymbol{y} \\
\text { subject to } & A \boldsymbol{x}+\boldsymbol{E} \boldsymbol{y}=\boldsymbol{b} \\
& \boldsymbol{x} \geq \mathbf{0}, \boldsymbol{y} \geq \mathbf{0}
\end{aligned}
$$

where $1=[1, \ldots, 1]^{\top} \in \mathbb{R}^{m}, \boldsymbol{E}$ is diagonal with $\boldsymbol{E}_{i i}=\operatorname{sign}\left(b_{i}\right)$.

Note that the equality constraint is equivalent to $\boldsymbol{E} \boldsymbol{A} \boldsymbol{x}+\boldsymbol{y}=\boldsymbol{E} \boldsymbol{b}=|\boldsymbol{b}|$. That is, if $b_{i}<0$, then multiply -1 to both sides of the $i$ th equality constraint.

Then the artificial problem

$$
\begin{aligned}
\operatorname{minimize} & 1^{\top} \boldsymbol{y} \\
\text { subject to } & \boldsymbol{E A x}+\boldsymbol{y}=|\boldsymbol{b}| \\
& \boldsymbol{x} \geq \mathbf{0}, \boldsymbol{y} \geq \mathbf{0}
\end{aligned}
$$

has an obvious basic feasible point $[x ; y]=\left[0 ; \ldots ; 0 ;\left|b_{1}\right| ; \ldots ;\left|b_{m}\right|\right]$, which we can use as an initial and apply the Phase II simplex method.

Moreover, the artificial problem in Phase I has a solution iff the original problem has nonempty feasible set $\Omega$. In this case, the artificial problem above have an optimal objective value 0 and optimal solution $\left[x^{*} ; \boldsymbol{y}^{*}\right]$, such that $\boldsymbol{y}^{*}=0$ and $x^{*}$ is a basic feasible point of the original LP problem:

- If $\Omega$ is nonempty, then there exists $\boldsymbol{x} \in \Omega$, i.e., $\boldsymbol{A x}=\boldsymbol{b}$ and $\boldsymbol{x} \geq \mathbf{0}$. So $[x ; 0]$ solves the artificial problem in Phase I.
- If the artificial problem has a solution such that $\mathbf{1}^{\top} \boldsymbol{y}=0$, then $\boldsymbol{y}=0$, and $x$ satisfies $A x=b$ and $x \geq 0$, which means $x \in \Omega$.


## Revised Simplex Method

If $m \gg n$, it is wasteful to apply row operations to all columns since most of them do not give new basic variables. Instead, we can keep tracking $B^{-1}$ and the current basic columns only.

Specifically, we start with only the $m \times(m+1)$ portion of $\boldsymbol{A} \in \mathbb{R}^{m \times(n+1)}$ : $[\boldsymbol{I}, \boldsymbol{b}]$. We set $\boldsymbol{B}=\boldsymbol{B}^{-1}=\boldsymbol{I}$, and the rest of $\boldsymbol{A}$ as $\boldsymbol{D}$. Let $\boldsymbol{y}_{0}=\boldsymbol{B}^{-1} \boldsymbol{b}=\boldsymbol{b}$, so we have $\left[\boldsymbol{B}^{-1}, \boldsymbol{y}_{0}\right]=[\boldsymbol{I}, \boldsymbol{b}]$ and record the corresponding basic variables.

In each iteration, we will need an updated $\left[\boldsymbol{B}^{-1}, \boldsymbol{y}_{0}\right]$ and the corresponding basic variables to do the followings.

## Revised Simplex Method (continued)

Then we can compute $r_{D}^{\top}:=\boldsymbol{c}_{D}^{\top}-\left(\boldsymbol{c}_{B}^{\top} \boldsymbol{B}^{-1}\right) \boldsymbol{D}$, and look for the most negative component of $\boldsymbol{r}_{D}^{\top}$ to decide which $x_{q}$ to become new basic variable.

Note that in the original simplex method we needed to apply row operations to $\boldsymbol{D}$, but here we only compute $\left(\boldsymbol{c}_{B}^{\top} \boldsymbol{B}^{-1}\right) \boldsymbol{D}$ which only require two matrixvector multiplications.

We then compute $\boldsymbol{y}_{q}=\boldsymbol{B}^{-1} \boldsymbol{a}_{q}$ ( $\boldsymbol{a}_{q}$ is the $q$ th column of $\boldsymbol{A}$ ), and check $\boldsymbol{y}_{0} / \boldsymbol{y}_{q}$ componentwisely to find the smallest positive number, say $p$, then pivot [ $\boldsymbol{B}^{-1}, \boldsymbol{y}_{0}, \boldsymbol{y}_{q}$ ] on the $p$ th component of $\boldsymbol{y}_{q}$ (so the last column becomes $\boldsymbol{e}_{p}$ after pivoting). Then delete the last column to obtain the updated [ $B^{-1}, \boldsymbol{y}_{0}$ ] (and use $x_{q}$ to switch $x_{p}$ out of the basic variables) and repeat from top of this page.

Example (Revised simplex method). Consider the following linear program:

$$
\begin{array}{ll}
\operatorname{maximize} & 3 x_{1}+5 x_{2} \\
\text { subject to } & x_{1}+x_{2} \leq 4 \\
& 5 x_{1}+3 x_{2} \geq 8 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

Solve this LP using the revised simplex method.

Solution. We first convert this LP to the standard form:

$$
\begin{aligned}
\operatorname{minimize} & -3 x_{1}-5 x_{2} \\
\text { subject to } & x_{1}+x_{2}+x_{3}=4 \\
& 5 x_{1}+3 x_{2}-x_{4}=8 \\
& x_{1}, x_{2}, x_{3}, x_{4} \geq 0
\end{aligned}
$$

Solution (cont.) We first form the artificial problem $x_{5}=y_{1}$ :

$$
\begin{aligned}
\operatorname{minimize} & x_{5} \\
\text { subject to } & x_{1}+x_{2}+x_{3}=4 \\
& 5 x_{1}+3 x_{2}-x_{4}+x_{5}=8 \\
& x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \geq 0
\end{aligned}
$$

with a basic feasible point $\left[x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right]=[0,0,4,0,8]$ to start.

The complete tableau for this artificial problem is

| $\boldsymbol{a}_{1}$ | $a_{2}$ | $\boldsymbol{a}_{3}$ | $\boldsymbol{a}_{4}$ | $\boldsymbol{a}_{5}$ | $\boldsymbol{b}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 0 | 0 | 4 |
| 5 | 3 | 0 | -1 | 1 | 8 |
| 0 | 0 | 0 | 0 | 1 | 0 |

where the last row contains $\boldsymbol{c}^{\top}=[0,0,0,0,1]$.

Solution (cont.) The initial $\boldsymbol{B}^{-1}=\boldsymbol{I}, \boldsymbol{y}_{0}=[4 ; 8]$, and the basic variables are $x_{3}, x_{5}$.

Then we check

$$
\begin{aligned}
\boldsymbol{r}_{D}^{\top} & =\boldsymbol{c}_{D}^{\top}-\left(\boldsymbol{c}_{B}^{\top} \boldsymbol{B}^{-1}\right) \boldsymbol{D} \\
& =[0,0,0]-\left([0,1]\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{ccc}
1 & 1 & 0 \\
5 & 3 & -1
\end{array}\right] \\
& =[-5,-3,1]=\left[r_{1}, r_{2}, r_{4}\right]
\end{aligned}
$$

So we decide to let $x_{1}$ become a new basic variable since $r_{1}$ is most negative.

Compute $\boldsymbol{y}_{1}=\boldsymbol{B}^{-1} \boldsymbol{a}_{1}=[1 ; 5]$, then $\boldsymbol{y}_{0} / \boldsymbol{y}_{1}=[4,8 / 5]$ so we let $\boldsymbol{x}_{5}$ not be basic variable anymore since $8 / 5$ is smaller.

Solution (cont.) Now we do pivoting on the 2nd component of $\boldsymbol{y}_{1}$ :

$$
\left[B^{-1}, \boldsymbol{y}_{0}, \boldsymbol{y}_{1}\right]=\left[\begin{array}{llll}
1 & 0 & 4 & 1 \\
0 & 1 & 8 & 5
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & -\frac{1}{5} & \frac{12}{5} & 0 \\
0 & \frac{1}{5} & \frac{8}{5} & 1
\end{array}\right]
$$

Then the updated $\left[B^{-1}, y_{0}\right]$ is $\left[\begin{array}{ccc}1 & -\frac{1}{5} & \frac{12}{5} \\ 0 & \frac{1}{5} & \frac{8}{5}\end{array}\right]$ and the corresponding basic variables are $x_{3}, x_{1}$.

Then we check

$$
\begin{aligned}
\boldsymbol{r}_{D}^{\top} & =\boldsymbol{c}_{D}^{\top}-\left(\boldsymbol{c}_{B}^{\top} \boldsymbol{B}^{-1}\right) \boldsymbol{D} \\
& =[0,0,1]-\left([0,0]\left[\begin{array}{cc}
1 & -\frac{1}{5} \\
0 & \frac{1}{5}
\end{array}\right]\right)\left[\begin{array}{ccc}
1 & 0 & 0 \\
3 & -1 & 1
\end{array}\right] \\
& =[0,0,1]=\left[r_{2}, r_{4}, r_{5}\right] \geq \mathbf{0}
\end{aligned}
$$

So the Phase I is completed, and we get solution $\left[x_{1}, \ldots, x_{5}\right]=\left[\frac{8}{5}, 0, \frac{12}{5}, 0,0\right]$.

Solution (cont.) Now we start Phase II. The complete tableau is

| $a_{1}$ | $a_{2}$ | $a_{3}$ | $a_{4}$ | $b$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 0 | 4 |
| 5 | 3 | 0 | -1 | 8 |
| -3 | -5 | 0 | 0 | 0 |

where the last row contains $\boldsymbol{c}^{\top}=[-3,-5,0,0]$.
We also have basic variables $x_{3}=\frac{12}{5}, x_{1}=\frac{8}{5}$ and

$$
\left[B^{-1}, \boldsymbol{y}_{0}\right]=\left[\begin{array}{ccc}
1 & -\frac{1}{5} & \frac{12}{5} \\
0 & \frac{1}{5} & \frac{8}{5}
\end{array}\right]
$$

Solution (cont.) Then we check

$$
\begin{aligned}
\boldsymbol{r}_{D}^{\top} & =\boldsymbol{c}_{D}^{\top}-\left(\boldsymbol{c}_{B}^{\top} \boldsymbol{B}^{-1}\right) \boldsymbol{D} \\
& =[-5,0]-\left([0,-3]\left[\begin{array}{cc}
1 & -\frac{1}{5} \\
0 & \frac{1}{5}
\end{array}\right]\right)\left[\begin{array}{cc}
1 & 0 \\
3 & -1
\end{array}\right] \\
& =\left[-\frac{16}{5},-\frac{3}{5}\right]=\left[r_{2}, r_{4}\right]
\end{aligned}
$$

So we let $x_{2}$ become a new basic variable.

Compute $\boldsymbol{y}_{2}=\boldsymbol{B}^{-1} \boldsymbol{a}_{2}=\left[\frac{2}{5} ; \frac{3}{5}\right]$, then $\boldsymbol{y}_{0} / \boldsymbol{y}_{1}=\left[6, \frac{8}{3}\right]$ so we let $x_{1}$ not be basic variable anymore since $\frac{8}{3}$ is smaller.

Solution (cont.) Now we do pivoting on the 2nd component of $\boldsymbol{y}_{2}$ :

$$
\left[\boldsymbol{B}^{-1}, \boldsymbol{y}_{0}, \boldsymbol{y}_{2}\right]=\left[\begin{array}{cccc}
1 & -\frac{1}{5} & \frac{12}{5} & \frac{2}{5} \\
0 & \frac{1}{5} & \frac{8}{5} & \frac{3}{5}
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & -\frac{1}{3} & \frac{4}{3} & 0 \\
0 & \frac{1}{3} & \frac{8}{3} & 1
\end{array}\right]
$$

Then the updated $\left[\boldsymbol{B}^{-1}, \boldsymbol{y}_{0}\right]$ is $\left[\begin{array}{ccc}1 & -\frac{1}{3} & \frac{4}{3} \\ 0 & \frac{1}{3} & \frac{8}{3}\end{array}\right]$ and the corresponding basic variables are $x_{3}=\frac{4}{3}, x_{2}=\frac{8}{3}$.

Then we check

$$
\begin{aligned}
\boldsymbol{r}_{D}^{\top} & =\boldsymbol{c}_{D}^{\top}-\left(\boldsymbol{c}_{B}^{\top} \boldsymbol{B}^{-1}\right) \boldsymbol{D} \\
& =[-3,0]-\left([0,-5]\left[\begin{array}{cc}
1 & -\frac{1}{3} \\
0 & \frac{1}{3}
\end{array}\right]\right)\left[\begin{array}{cc}
1 & 0 \\
5 & -1
\end{array}\right] \\
& =\left[\frac{16}{3},-\frac{5}{3}\right]=\left[r_{1}, r_{4}\right]
\end{aligned}
$$

So we let $x_{4}$ be a new basic variable.

Solution (cont.) Compute $y_{4}=B^{-1} a_{4}=\left[\frac{1}{3} ;-\frac{1}{3}\right]$, then $y_{0} / y_{4}=[4,-8]$ so we let $x_{3}$ not be basic variable anymore.

Now we do pivoting on the first component of $\boldsymbol{y}_{4}$ :

$$
\left[B^{-1}, y_{0}, y_{4}\right]=\left[\begin{array}{cccc}
1 & -\frac{1}{3} & \frac{4}{3} & \frac{1}{3} \\
0 & \frac{1}{3} & \frac{8}{3} & -\frac{1}{3}
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
3 & -1 & 4 & 1 \\
1 & 0 & 4 & 0
\end{array}\right]
$$

Then the updated $\left[B^{-1}, \boldsymbol{y}_{0}\right]$ is $\left[\begin{array}{ccc}3 & -1 & 4 \\ 1 & 0 & 4\end{array}\right]$ and the corresponding basic variables are $x_{4}=4, x_{2}=4$. Then we check

$$
\begin{aligned}
\boldsymbol{r}_{D}^{\top} & =\boldsymbol{c}_{D}^{\top}-\left(\boldsymbol{c}_{B}^{\top} \boldsymbol{B}^{-1}\right) \boldsymbol{D} \\
& =[-3,0]-\left([0,-5]\left[\begin{array}{cc}
3 & -1 \\
1 & 0
\end{array}\right]\right)\left[\begin{array}{cc}
1 & 1 \\
5 & 0
\end{array}\right] \\
& =[2,5]=\left[r_{1}, r_{3}\right] \geq \mathbf{0}
\end{aligned}
$$

So Phase II is finished, and solution is $x=[0 ; 4 ; 0 ; 4]$. Hence the solution for the original problem is then $\left[x_{1}, x_{2}\right]=[0,4]$.

