MATH 4211/6211 - Optimization Quasi-Newton Method

Xiaojing Ye
Department of Mathematics \& Statistics
Georgia State University

Quasi-Newton Method

Motivation: Approximate the inverse Hessian $\left(\nabla^{2} f\left(\boldsymbol{x}^{(k)}\right)\right)^{-1}$ in the Newton's method by some $\boldsymbol{H}_{\boldsymbol{k}}$:

$$
\boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(k)}-\alpha_{k} \boldsymbol{H}_{k} \boldsymbol{g}^{(k)}
$$

That is, the search direction is set to $\boldsymbol{d}^{(k)}=-\boldsymbol{H}_{k} \boldsymbol{g}^{(k)}$.
Based on $\boldsymbol{H}_{k}, \boldsymbol{x}^{(k)}, \boldsymbol{g}^{(k)}$, quasi-Newton generates the next \boldsymbol{H}_{k+1}, and so on.

Proposition. If $f \in \mathcal{C}^{1}, \boldsymbol{g}^{(k)} \neq \mathbf{0}$, and $\boldsymbol{H}_{k} \succ \mathbf{0}$, then $\boldsymbol{d}^{(k)}=-\boldsymbol{H}_{k} \boldsymbol{g}^{(k)}$ is a descent direction.

Proof. Let $\boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(k)}-\alpha \boldsymbol{H}_{k} \boldsymbol{g}^{(k)}$ for some α, then by Taylor's expansion

$$
f\left(\boldsymbol{x}^{(k+1)}\right)=f\left(\boldsymbol{x}^{(k)}\right)-\alpha \boldsymbol{g}^{(k)^{\top}} \boldsymbol{H}_{k} \boldsymbol{g}^{(k)}+o\left(\left\|\boldsymbol{H}_{k} \boldsymbol{g}^{(k)}\right\| \alpha\right)<f\left(\boldsymbol{x}^{(k)}\right)
$$

for α sufficiently small.

Recall that for quadratic functions with $\boldsymbol{Q} \succ \mathbf{0}$, the Hessian is $\boldsymbol{H}^{(k)}=\boldsymbol{Q}$ for all k, and

$$
\boldsymbol{g}^{(k+1)}-\boldsymbol{g}^{(k)}=\boldsymbol{Q}\left(\boldsymbol{x}^{(k+1)}-\boldsymbol{x}^{(k)}\right)
$$

For notation simplicity, we denote

$$
\Delta \boldsymbol{x}^{(k)}=\boldsymbol{x}^{(k+1)}-\boldsymbol{x}^{(k)} \quad \text { and } \quad \Delta \boldsymbol{g}^{(k)}=\boldsymbol{g}^{(k+1)}-\boldsymbol{g}^{(k)}
$$

Then we can write the identity above as

$$
\Delta \boldsymbol{g}^{(k)}=\boldsymbol{Q} \Delta \boldsymbol{x}^{(k)}
$$

or equivalently

$$
\boldsymbol{Q}^{-1} \Delta \boldsymbol{g}^{(k)}=\Delta \boldsymbol{x}^{(k)}
$$

In quasi-Newton method, \boldsymbol{H}_{k} is in the place of \boldsymbol{Q}^{-1} :

$$
\begin{aligned}
\text { Newton : } & \boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(k)}-\alpha_{k} \boldsymbol{Q}^{-1} \boldsymbol{g}^{(k)} \\
\text { Quasi-Newton : } & \boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(k)}-\alpha_{k} \boldsymbol{H}_{k} \boldsymbol{g}^{(k)}
\end{aligned}
$$

Therefore we would like to have a sequence of \boldsymbol{H}_{k} with same property of \boldsymbol{Q}^{-1} :

$$
\boldsymbol{H}_{k+1} \Delta \boldsymbol{g}^{(i)}=\Delta \boldsymbol{x}^{(i)}, \quad 0 \leq i \leq k
$$

for all $k=0,1,2, \ldots$.

If this is true, then at iteration n, there are

$$
\begin{gathered}
\boldsymbol{H}_{n} \Delta \boldsymbol{g}^{(0)}=\Delta \boldsymbol{x}^{(0)} \\
\boldsymbol{H}_{n} \Delta \boldsymbol{g}^{(1)}=\Delta \boldsymbol{x}^{(1)} \\
\vdots \\
\boldsymbol{H}_{n} \Delta \boldsymbol{g}^{(n-1)}=\Delta \boldsymbol{x}^{(n-1)}
\end{gathered}
$$

or $\boldsymbol{H}_{n}\left[\Delta \boldsymbol{g}^{(0)}, \ldots, \Delta \boldsymbol{g}^{(n-1)}\right]=\left[\Delta \boldsymbol{x}^{(0)}, \ldots, \Delta \boldsymbol{x}^{(n-1)}\right]$.

On the other hand, $\boldsymbol{Q}^{-1}\left[\Delta \boldsymbol{g}^{(0)}, \ldots, \Delta \boldsymbol{g}^{(n-1)}\right]=\left[\Delta \boldsymbol{x}^{(0)}, \ldots, \Delta \boldsymbol{x}^{(n-1)}\right]$. If $\left[\Delta \boldsymbol{g}^{(0)}, \ldots, \Delta \boldsymbol{g}^{(n-1)}\right]$ is invertible, then we have $\boldsymbol{H}_{n}=\boldsymbol{Q}^{-1}$.

Then at the iteration $n+1$, there is $\boldsymbol{x}^{(n+1)}=\boldsymbol{x}^{(n)}-\alpha_{n} \boldsymbol{H}_{n} \boldsymbol{g}^{(n)}=\boldsymbol{x}^{*}$ since this is the same as the Newton's update.

Hence for quadratic functions, quasi-Newton method would converge in at most n steps.

Quasi-Newton method

$$
\begin{aligned}
\boldsymbol{d}^{(k)} & =-\boldsymbol{H}_{k} \boldsymbol{g}^{(k)} \\
\alpha_{k} & =\underset{\alpha \geq 0}{\arg \min } f\left(\boldsymbol{x}^{(k)}+\alpha_{k} \boldsymbol{d}^{(k)}\right) \\
\boldsymbol{x}^{(k+1)} & =\boldsymbol{x}^{(k)}+\alpha_{k} \boldsymbol{d}^{(k)}
\end{aligned}
$$

where $\boldsymbol{H}_{0}, \boldsymbol{H}_{1}, \ldots$ are symmetric.
Moreover, for quadratic functions of form $f(\boldsymbol{x})=\frac{1}{2} \boldsymbol{x}^{\top} \boldsymbol{Q} \boldsymbol{x}-\boldsymbol{b}^{\top} \boldsymbol{x}$, the matrices $\boldsymbol{H}_{0}, \boldsymbol{H}_{1}, \ldots$ are required to satisfy

$$
\boldsymbol{H}_{k+1} \Delta \boldsymbol{g}^{(i)}=\Delta \boldsymbol{x}^{(i)}, \quad 0 \leq i \leq k
$$

Theorem. Consider a quasi-Newton algorithm applied to a quadratic function with symmetric $Q \succ 0$, such that for all $k=0,1, \ldots, n-1$, there are

$$
\boldsymbol{H}_{k+1} \Delta \boldsymbol{g}^{(i)}=\Delta \boldsymbol{x}^{(i)}, \quad 0 \leq i \leq k
$$

and \boldsymbol{H}_{k} are all symmetric. If $\alpha_{i} \neq 0$ for $0 \leq i \leq k$, then $\boldsymbol{d}^{(0)}, \ldots, \boldsymbol{d}^{(n)}$ are Q-conjugate.

Proof. We prove by induction. It is trivial to show $\boldsymbol{g}^{(1)^{\top}} \boldsymbol{d}^{(i)}$.

Assume the claim holds for some $k<n-1$. We have for $i \leq k$ that

$$
\begin{aligned}
\boldsymbol{d}^{(k+1)^{\top}} \boldsymbol{Q} \boldsymbol{d}^{(i)} & =-\left(\boldsymbol{H}_{k+1} \boldsymbol{g}^{(k+1)}\right)^{\top} \boldsymbol{Q} \boldsymbol{d}^{(i)} \\
& =-\boldsymbol{g}^{(k+1)^{\top}} \boldsymbol{H}_{k+1} \frac{\boldsymbol{Q} \Delta \boldsymbol{x}^{(i)}}{\alpha_{i}} \\
& =-\boldsymbol{g}^{(k+1)^{\top}} \boldsymbol{H}_{k+1} \frac{\Delta \boldsymbol{g}^{(i)}}{\alpha_{i}} \\
& =-\boldsymbol{g}^{(k+1)^{\top} \frac{\Delta \boldsymbol{x}^{(i)}}{\alpha_{i}}} \\
& =-\boldsymbol{g}^{(k+1)^{\top}} \boldsymbol{d}^{(i)}
\end{aligned}
$$

Since $\boldsymbol{d}^{(0)}, \ldots, \boldsymbol{d}^{(k)}$ are \boldsymbol{Q}-conjugate, we know $\boldsymbol{g}^{(k+1)^{\top}} \boldsymbol{d}^{(i)}=0$ for all $i \leq$ k. Hence $\boldsymbol{d}^{(0)}, \ldots, \boldsymbol{d}^{(k)}, \boldsymbol{d}^{(k+1)}$ are \boldsymbol{Q}-conjugate. By induction the claim holds.

The theorem above also shows that quasi-Newton method is a conjugate direction method, and hence converges in n steps for quadratic objective functions.

In practice, there are various ways to generate \boldsymbol{H}_{k} such that

$$
\boldsymbol{H}_{k+1} \Delta \boldsymbol{g}^{(i)}=\Delta \boldsymbol{x}^{(i)}, \quad 0 \leq i \leq k
$$

Now we learn three algorithms that produce such $\boldsymbol{H}_{\boldsymbol{k}}$.

Rank one correction formula

Suppose we would like to update \boldsymbol{H}_{k} to \boldsymbol{H}_{k+1} by adding a rank one matrix $a_{k} \boldsymbol{z}^{(k)} \boldsymbol{z}^{(k)^{\top}}$ for some $a_{k} \in \mathbb{R}$ and $\boldsymbol{z}^{(k)} \in \mathbb{R}^{n}$:

$$
\boldsymbol{H}_{k+1}=\boldsymbol{H}_{k}+a_{k} \boldsymbol{z}^{(k)} \boldsymbol{z}^{(k)^{\top}}
$$

Now let us derive what this $a_{k} z^{(k)} \boldsymbol{z}^{(k)^{\top}}$ should be.
Since we need $\boldsymbol{H}_{k+1} \Delta \boldsymbol{g}^{(i)}=\Delta \boldsymbol{x}^{(i)}$ for $i \leq k$, we at least need $\boldsymbol{H}_{k+1} \Delta \boldsymbol{g}^{(k)}=$ $\Delta \boldsymbol{x}^{(k)}$. That is

$$
\begin{aligned}
\Delta \boldsymbol{x}^{(k)} & =\boldsymbol{H}_{k+1} \Delta \boldsymbol{g}^{(k)} \\
& =\left(\boldsymbol{H}_{k}+a_{k} \boldsymbol{z}^{(k)} \boldsymbol{z}^{(k)^{\top}}\right) \Delta \boldsymbol{g}^{(k)} \\
& =\boldsymbol{H}_{k} \Delta \boldsymbol{g}^{(k)}+a_{k}\left(\boldsymbol{z}^{(k)^{\top}} \Delta \boldsymbol{g}^{(k)}\right) \boldsymbol{z}^{(k)}
\end{aligned}
$$

Therefore

$$
\boldsymbol{z}^{(k)}=\frac{\Delta \boldsymbol{x}^{(k)}-\boldsymbol{H}_{k} \Delta \boldsymbol{g}^{(k)}}{a_{k}\left(\boldsymbol{z}^{(k)^{\top}} \Delta \boldsymbol{g}^{(k)}\right)}
$$

and hence

$$
\boldsymbol{H}_{k+1}=\boldsymbol{H}_{k}+\frac{\left(\Delta \boldsymbol{x}^{(k)}-\boldsymbol{H}_{k} \Delta \boldsymbol{g}^{(k)}\right)\left(\Delta \boldsymbol{x}^{(k)}-\boldsymbol{H}_{k} \Delta \boldsymbol{g}^{(k)}\right)^{\top}}{a_{k}\left(\boldsymbol{z}^{(k)^{\top}} \Delta \boldsymbol{g}^{(k)}\right)^{2}}
$$

On the other hand, multiplying $\Delta \boldsymbol{g}^{(k)^{\top}}$ on both sides of $\Delta \boldsymbol{x}^{(k)}-\boldsymbol{H}_{k} \boldsymbol{g}^{(k)}=$ $a_{k}\left(\boldsymbol{z}^{(k)^{\top}} \boldsymbol{\Delta} \boldsymbol{g}^{(k)}\right) \boldsymbol{z}^{(k)}$, we obtain

$$
\Delta \boldsymbol{g}^{(k)^{\top}}\left(\Delta \boldsymbol{x}^{(k)}-\boldsymbol{H}_{k} \Delta \boldsymbol{g}^{(k)}\right)=a_{k}\left(\boldsymbol{z}^{(k)^{\top}} \Delta \boldsymbol{g}^{(k)}\right)^{2}
$$

Hence

$$
\boldsymbol{H}_{k+1}=\boldsymbol{H}_{k}+\frac{\left(\Delta \boldsymbol{x}^{(k)}-\boldsymbol{H}_{k} \Delta \boldsymbol{g}^{(k)}\right)\left(\Delta \boldsymbol{x}^{(k)}-\boldsymbol{H}_{k} \Delta \boldsymbol{g}^{(k)}\right)^{\top}}{\Delta \boldsymbol{g}^{(k)^{\top}}\left(\Delta \boldsymbol{x}^{(k)}-\boldsymbol{H}_{k} \Delta \boldsymbol{g}^{(k)}\right)}
$$

This is the rank one correction formula.

We obtained the formula by requiring $\boldsymbol{H}_{k+1} \Delta \boldsymbol{g}^{(k)}=\Delta \boldsymbol{x}^{(k)}$. However, we also need $\boldsymbol{H}_{k+1} \Delta \boldsymbol{g}^{(i)}=\Delta \boldsymbol{x}^{(i)}$ for $i<k$. This turns out to be true automatically:

Theorem. For the rank one algorithm applied to quadratic functions with Hessian symmetric Q, there are

$$
\boldsymbol{H}_{k+1} \Delta \boldsymbol{g}^{(i)}=\Delta \boldsymbol{x}^{(i)}, \quad 0 \leq i \leq k
$$

for $k=0,1, \ldots, n-1$.

Proof. We have showed $\boldsymbol{H}_{k+1} \Delta \boldsymbol{g}^{(k)}=\Delta \boldsymbol{x}^{(k)}$ for all $k=0,1,2, \cdots$. Assume the identities hold up to k, we use induction to show it's true for $k+1$. We here only need to show $\boldsymbol{H}_{k+1} \Delta \boldsymbol{g}^{(i)}=\Delta \boldsymbol{x}^{(i)}$ for $i<k$:

$$
\begin{aligned}
\boldsymbol{H}_{k+1} \Delta \boldsymbol{g}^{(i)} & =\left(\boldsymbol{H}_{k}+\frac{\left(\Delta \boldsymbol{x}^{(k)}-\boldsymbol{H}_{k} \Delta \boldsymbol{g}^{(k)}\right)\left(\Delta \boldsymbol{x}^{(k)}-\boldsymbol{H}_{k} \Delta \boldsymbol{g}^{(k)}\right)^{\top}}{\Delta \boldsymbol{g}^{(k)^{\top}}\left(\Delta \boldsymbol{x}^{(k)}-\boldsymbol{H}_{k} \Delta \boldsymbol{g}^{(k)}\right)}\right) \Delta \boldsymbol{g}^{(i)} \\
& =\Delta \boldsymbol{x}^{(i)}+\frac{\left(\Delta \boldsymbol{x}^{(k)}-\boldsymbol{H}_{k} \Delta \boldsymbol{g}^{(k)}\right)\left(\Delta \boldsymbol{x}^{(k)}-\boldsymbol{H}_{k} \Delta \boldsymbol{g}^{(k)}\right)^{\top} \Delta \boldsymbol{g}^{(i)}}{\Delta \boldsymbol{g}^{(k)^{\top}}\left(\Delta \boldsymbol{x}^{(k)}-\boldsymbol{H}_{k} \Delta \boldsymbol{g}^{(k)}\right)}
\end{aligned}
$$

Note that

$$
\begin{aligned}
\left(\boldsymbol{H}_{k} \Delta \boldsymbol{g}^{(k)}\right)^{\top} \Delta \boldsymbol{g}^{(i)} & =\Delta \boldsymbol{g}^{(k)^{\top}} \boldsymbol{H}_{k} \Delta \boldsymbol{g}^{(i)}=\Delta \boldsymbol{g}^{(k)^{\top}} \Delta \boldsymbol{x}^{(i)} \\
& =\Delta \boldsymbol{x}^{(k)^{\top}} \boldsymbol{Q} \Delta \boldsymbol{x}^{(i)}=\Delta \boldsymbol{x}^{(k)^{\top}} \Delta \boldsymbol{g}^{(i)}
\end{aligned}
$$

Hence the second term on the right is zero, and we obtain

$$
\boldsymbol{H}_{k} \Delta \boldsymbol{g}^{(i)}=\Delta \boldsymbol{x}^{(i)}
$$

This completes the proof.

Issues with rank one correction formula:

- \boldsymbol{H}_{k+1} may not be positive definite even if \boldsymbol{H}_{k} is. Hence $-\boldsymbol{H}_{k} \boldsymbol{g}^{(k)}$ may not be a descent direction;
- the denominator in the rank one correction is $\Delta \boldsymbol{g}^{(k)^{\top}}\left(\Delta \boldsymbol{x}^{(k)}-\boldsymbol{H}_{k} \Delta \boldsymbol{g}^{(k)}\right)$, which can be close to 0 and makes computation unstable.

We now study the DFP algorithm which improves the rank one correction formula by ensuring positive definiteness of $\boldsymbol{H}_{\boldsymbol{k}}$.

DFP algoirthm [Davidson 1959, Fletcher and Powell 1963]

$$
\boldsymbol{H}_{k+1}=\boldsymbol{H}_{k}+\frac{\Delta \boldsymbol{x}^{(k)} \Delta \boldsymbol{x}^{(k)^{\top}}}{\Delta \boldsymbol{x}^{(k)^{\top}} \Delta \boldsymbol{g}^{(k)}}-\frac{\left(\boldsymbol{H}_{k} \Delta \boldsymbol{g}^{(k)}\right)\left(\boldsymbol{H}_{k} \Delta \boldsymbol{g}^{(k)}\right)^{\top}}{\Delta \boldsymbol{g}^{(k)^{\top}} \boldsymbol{H}_{k} \Delta \boldsymbol{g}^{(k)}}
$$

We first show that DFP is a quasi-Newton method.

Theorem. The DFP algorithm applied to quadratic functions satisfies

$$
\boldsymbol{H}_{k+1} \Delta \boldsymbol{g}^{(i)}=\Delta \boldsymbol{x}^{(i)}, \quad 0 \leq i \leq k
$$

for all k.

Proof. We prove this by induction. It is trivial for $k=0$.
Assume the claim is true for k, i.e., $\boldsymbol{H}_{k} \Delta \boldsymbol{g}^{(i)}=\Delta \boldsymbol{x}^{(i)}$ for all $i \leq k-1$.
Now we first have $\boldsymbol{H}_{k+1} \Delta \boldsymbol{g}^{(i)}=\Delta \boldsymbol{x}^{(i)}$ for $i=k$ by direct computation. For $i<k$, there is

$$
\begin{aligned}
& \boldsymbol{H}_{k+1} \Delta \boldsymbol{g}^{(i)}=\boldsymbol{H}_{k} \Delta \boldsymbol{g}^{(i)}+ \frac{\Delta \boldsymbol{x}^{(k)}\left(\Delta \boldsymbol{x}^{(k)^{\top}} \Delta \boldsymbol{g}^{(i)}\right)}{\Delta \boldsymbol{x}^{(k)^{\top} \Delta \boldsymbol{g}^{(k)}}} \\
&-\frac{\left(\boldsymbol{H}_{k} \Delta \boldsymbol{g}^{(k)}\right)\left(\boldsymbol{H}_{k} \Delta \boldsymbol{g}^{(k)}\right)^{\top} \Delta \boldsymbol{g}^{(i)}}{\Delta \boldsymbol{g}^{(k)^{\top}} \boldsymbol{H}_{k} \Delta \boldsymbol{g}^{(k)}}
\end{aligned}
$$

Note that due to assumption $\boldsymbol{d}^{(0)}, \ldots, \boldsymbol{d}^{(k)}$ are \boldsymbol{Q}-conjugate, and hence

$$
\Delta \boldsymbol{x}^{(k)^{\top}} \Delta \boldsymbol{g}^{(i)}=\Delta \boldsymbol{x}^{(k)^{\top}} \boldsymbol{Q} \Delta \boldsymbol{x}^{(i)}=\alpha_{k} \alpha_{i} \boldsymbol{d}^{(k)^{\top}} \boldsymbol{Q} \boldsymbol{d}^{(i)}=0
$$

similarly $\Delta \boldsymbol{g}^{(k)^{\top}} \boldsymbol{H}_{k} \Delta \boldsymbol{g}^{(i)}=\Delta \boldsymbol{g}^{(k)^{\top}} \Delta \boldsymbol{x}^{(i)}=0$. This completes the proof.

Next we show that \boldsymbol{H}_{k+1} inherits positive definiteness of \boldsymbol{H}_{k} in DFP algorithm.
Theorem. Suppose $\boldsymbol{g}^{(k)} \neq \mathbf{0}$, then $\boldsymbol{H}_{k} \succ \mathbf{0}$ implies $\boldsymbol{H}_{k+1} \succ \mathbf{0}$ in DFP.
Proof. For any $x \in \mathbb{R}^{n}$, there is

$$
\boldsymbol{x}^{\top} \boldsymbol{H}_{k+1} \boldsymbol{x}=\boldsymbol{x}^{\top} \boldsymbol{H}_{k} \boldsymbol{x}+\frac{\left(\boldsymbol{x}^{\top} \Delta \boldsymbol{x}^{(k)}\right)^{2}}{\Delta \boldsymbol{x}^{(k)^{\top}} \Delta \boldsymbol{g}^{(k)}}-\frac{\left(\boldsymbol{x}^{\top} \boldsymbol{H}_{\boldsymbol{k}} \Delta \boldsymbol{g}^{(k)}\right)^{2}}{\Delta \boldsymbol{g}^{(k)^{\top}} \boldsymbol{H}_{k} \Delta \boldsymbol{g}^{(k)}}
$$

For notation simplicity, we denote

$$
\boldsymbol{a}=\boldsymbol{H}_{k}^{1 / 2} \boldsymbol{x} \quad \text { and } \quad \boldsymbol{b}=\boldsymbol{H}_{k}^{1 / 2} \Delta \boldsymbol{g}^{(k)}
$$

where $\boldsymbol{H}_{k}=\boldsymbol{H}_{k}^{1 / 2} \boldsymbol{H}_{k}^{1 / 2}$ (we know $\boldsymbol{H}_{k}^{1 / 2}$ exists since \boldsymbol{H}_{k} is SPD).

Proof (cont). Now we have

$$
\boldsymbol{x}^{\top} \boldsymbol{H}_{k+1} \boldsymbol{x}=\frac{\|\boldsymbol{a}\|^{2}\|\boldsymbol{b}\|^{2}-\left(\boldsymbol{a}^{\top} \boldsymbol{b}\right)^{2}}{\|\boldsymbol{b}\|^{2}}+\frac{\left(\boldsymbol{x}^{\top} \Delta \boldsymbol{x}^{(k)}\right)^{2}}{\Delta \boldsymbol{x}^{(k)^{\top}} \Delta \boldsymbol{g}^{(k)}}
$$

Note also that $\Delta \boldsymbol{x}^{(k)}=\alpha_{k} \boldsymbol{d}^{(k)}=-\alpha_{k} \boldsymbol{H}_{k} \boldsymbol{g}^{(k)}$, therefore
$\Delta \boldsymbol{x}^{(k)^{\top}} \Delta \boldsymbol{g}^{(k)}=\Delta \boldsymbol{x}^{(k)^{\top}}\left(\boldsymbol{g}^{(k+1)}-\boldsymbol{g}^{(k)}\right)=-\Delta \boldsymbol{x}^{(k)^{\top}} \boldsymbol{g}^{(k)}=\alpha_{k} \boldsymbol{g}^{(k)^{\top}} \boldsymbol{H}_{k} \boldsymbol{g}^{(k)}$
where we used $\boldsymbol{d}^{(k)^{\top}} \boldsymbol{g}^{(k+1)}=0$ due to \boldsymbol{Q}-conjugacy of $\boldsymbol{d}^{(k)}$ in the second equality. Hence $\boldsymbol{x}^{\top} \boldsymbol{H}_{k+1} \boldsymbol{x} \geq 0$ since both terms on the right side are nonnegative.

Proof (cont). Now we need to show that the two terms cannot be 0 simultaneously.

Suppose the first term is 0 , then $\boldsymbol{a}=\beta \boldsymbol{b}$ for some scalar $\beta>0$. That is $\boldsymbol{H}_{k}^{1 / 2} \boldsymbol{x}=\beta \boldsymbol{H}_{k}^{1 / 2} \Delta \boldsymbol{g}^{(k)}$, or $\boldsymbol{x}=\beta \Delta \boldsymbol{g}^{(k)}$.

In this case, there is

$$
\begin{aligned}
\left(\boldsymbol{x}^{\top} \Delta \boldsymbol{x}^{(k)}\right)^{2} & =\left(\beta \Delta \boldsymbol{g}^{(k)^{\top}} \boldsymbol{\Delta} \boldsymbol{x}^{(k)}\right)^{2}=\alpha_{k}^{2} \beta^{2}\left(\Delta \boldsymbol{g}^{(k)^{\top}} \boldsymbol{d}^{(k)}\right)^{2} \\
& =\alpha_{k}^{2} \beta^{2}\left(\boldsymbol{g}^{(k)^{\top}} \boldsymbol{d}^{(k)}\right)^{2}=\left(\alpha_{k} \beta\right)^{2}\left(\boldsymbol{g}^{(k)^{\top}} \boldsymbol{H}_{k} \boldsymbol{g}^{(k)}\right)^{2}>0
\end{aligned}
$$

and hence the second term is positive.

This completes the proof.

BFGS algorithm (named after Broyden, Fletcher, Goldfarb, Shannon)

Instead of directly finding \boldsymbol{H}_{k} such that $\boldsymbol{H}_{k+1} \Delta \boldsymbol{g}^{(i)}=\Delta \boldsymbol{x}^{(i)}$ for $0 \leq i \leq k$, the BFGS first find \boldsymbol{B}_{k} such that

$$
\boldsymbol{B}_{k+1} \Delta \boldsymbol{x}^{(i)}=\Delta \boldsymbol{g}^{(i)}, \quad 0 \leq i \leq k
$$

Then replacing \boldsymbol{H}_{k} by \boldsymbol{B}_{k} and swapping $\Delta \boldsymbol{x}^{(k)}$ and $\Delta \boldsymbol{g}^{(k)}$ in DFP yield

$$
\boldsymbol{B}_{k+1}=\boldsymbol{B}_{k}+\frac{\Delta \boldsymbol{g}^{(k)} \Delta \boldsymbol{g}^{(k)^{\top}}}{\Delta \boldsymbol{x}^{(k)^{\top}} \Delta \boldsymbol{g}^{(k)}}-\frac{\left(\boldsymbol{B}_{k} \Delta \boldsymbol{x}^{(k)}\right)\left(\boldsymbol{B}_{k} \Delta \boldsymbol{x}^{(k)}\right)^{\top}}{\Delta \boldsymbol{x}^{(k)^{\top}} \boldsymbol{B}_{k} \Delta \boldsymbol{x}^{(k)}}
$$

Then the actual $\boldsymbol{H}_{k}=\boldsymbol{B}_{k}{ }^{-1}$ and hence

$$
\begin{aligned}
\boldsymbol{H}_{k+1}= & \left(\boldsymbol{B}_{k}+\frac{\Delta \boldsymbol{g}^{(k)} \Delta \boldsymbol{g}^{(k)^{\top}}}{\Delta \boldsymbol{x}^{(k)^{\top}} \Delta \boldsymbol{g}^{(k)}}-\frac{\left(\boldsymbol{B}_{k} \Delta \boldsymbol{x}^{(k)}\right)\left(\boldsymbol{B}_{k} \Delta \boldsymbol{x}^{(k)}\right)^{\top}}{\left.\Delta \boldsymbol{x}^{(k)^{\top} \boldsymbol{B}_{k} \Delta \boldsymbol{x}^{(k)}}\right)^{-1}} \begin{array}{rl}
=\boldsymbol{H}_{k}+ & \left(1+\frac{\Delta \boldsymbol{g}^{(k)^{\top}} \boldsymbol{H}_{k} \Delta \boldsymbol{g}^{(k)}}{\Delta \boldsymbol{g}^{(k)^{\top}} \Delta \boldsymbol{x}^{(k)}}\right) \frac{\left.\Delta \boldsymbol{x}^{(k)} \Delta \boldsymbol{x}^{(k)}\right)^{\top}}{\Delta \boldsymbol{x}^{(k)^{\top}} \Delta \boldsymbol{g}^{(k)}} \\
& -\frac{\boldsymbol{H}_{k} \Delta \boldsymbol{g}^{(k)} \Delta \boldsymbol{x}^{(k)^{\top}}+\left(\boldsymbol{H}_{k} \Delta \boldsymbol{g}^{(k)} \Delta \boldsymbol{x}^{(k)^{\top}}\right)^{\top}}{\Delta \boldsymbol{g}^{(k)^{\top}} \Delta \boldsymbol{x}^{(k)}}
\end{array}\right) .
\end{aligned}
$$

This is the update rule of \boldsymbol{H}_{k} in BFGS algorithm

The inverse was obtained by applying the following result:

Lemma. [Sherman-Morrison formula] Let \boldsymbol{A} be a nonsingular matrix, and \boldsymbol{u} and \boldsymbol{v} are column vectors such that $1+\boldsymbol{v}^{\top} \boldsymbol{A}^{-1} \boldsymbol{u} \neq 0$, then $\boldsymbol{A}+\boldsymbol{u} \boldsymbol{v}^{\top}$ is nonsingular, and

$$
\left(A+u v^{\top}\right)^{-1}=A^{-1}-\frac{\left(A^{-1} u\right)\left(\boldsymbol{v}^{\top} A^{-1}\right)}{1+v^{\top} A^{-1} u}
$$

Proof. Direct computation.

BFGS algorithm:

1. Set $k=0$; select $\boldsymbol{x}^{(0)}$ and SPD \boldsymbol{H}_{0}, and compute $\boldsymbol{g}^{(0)}=\nabla f\left(\boldsymbol{x}^{(0)}\right)$.
2. Repeat:

$$
\begin{aligned}
\boldsymbol{d}^{(k)} & =-\boldsymbol{H}_{k} \boldsymbol{g}^{(k)} \\
\alpha_{k} & =\underset{\alpha \geq 0}{\arg \min } f\left(\boldsymbol{x}^{(k)}+\alpha \boldsymbol{d}^{(k)}\right) \\
\boldsymbol{x}^{(k+1)} & =\boldsymbol{x}^{(k)}+\alpha_{k} \boldsymbol{d}^{(k)} \\
\boldsymbol{g}^{(k+1)} & =\nabla f\left(\boldsymbol{x}^{(k+1)}\right) \\
\boldsymbol{H}_{k+1} & \left.=\boldsymbol{H}_{k}+\cdots \quad \text { (Compute the BFGS update of } \boldsymbol{H}_{k}\right) \\
k & \leftarrow k+1
\end{aligned}
$$

Until $\boldsymbol{g}^{(k)}=\mathbf{0}$.

