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Quasi-Newton Method

Motivation: Approximate the inverse Hessian (∇2f(x(k)))−1 in the New-
ton’s method by some Hk:

x(k+1) = x(k) − αkHkg
(k)

That is, the search direction is set to d(k) = −Hkg
(k).

Based on Hk,x
(k), g(k), quasi-Newton generates the next Hk+1, and so on.
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Proposition. If f ∈ C1, g(k) 6= 0, and Hk � 0, then d(k) = −Hkg
(k) is a

descent direction.

Proof. Let x(k+1) = x(k)−αHkg
(k) for some α, then by Taylor’s expansion

f(x(k+1)) = f(x(k))− αg(k)>Hkg
(k) + o(‖Hkg

(k)‖α) < f(x(k))

for α sufficiently small.

Xiaojing Ye, Math & Stat, Georgia State University 2



Recall that for quadratic functions with Q � 0, the Hessian is H(k) = Q for
all k, and

g(k+1) − g(k) = Q(x(k+1) − x(k))

For notation simplicity, we denote

∆x(k) = x(k+1) − x(k) and ∆g(k) = g(k+1) − g(k)

Then we can write the identity above as

∆g(k) = Q∆x(k)

or equivalently

Q−1∆g(k) = ∆x(k)
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In quasi-Newton method, Hk is in the place of Q−1:

Newton : x(k+1) = x(k) − αkQ−1g(k)

Quasi-Newton : x(k+1) = x(k) − αkHkg
(k)

Therefore we would like to have a sequence of Hk with same property of Q−1:

Hk+1∆g(i) = ∆x(i), 0 ≤ i ≤ k

for all k = 0,1,2, . . . .
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If this is true, then at iteration n, there are

Hn∆g(0) = ∆x(0)

Hn∆g(1) = ∆x(1)

...

Hn∆g(n−1) = ∆x(n−1)

or Hn[∆g(0), . . . ,∆g(n−1)] = [∆x(0), . . . ,∆x(n−1)].

On the other hand, Q−1[∆g(0), . . . ,∆g(n−1)] = [∆x(0), . . . ,∆x(n−1)]. If
[∆g(0), . . . ,∆g(n−1)] is invertible, then we have Hn = Q−1.

Then at the iteration n+ 1, there is x(n+1) = x(n)−αnHng(n) = x∗ since
this is the same as the Newton’s update.

Hence for quadratic functions, quasi-Newton method would converge in at
most n steps.
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Quasi-Newton method

d(k) = −Hkg
(k)

αk = arg min
α≥0

f(x(k) + αkd
(k))

x(k+1) = x(k) + αkd
(k)

where H0,H1, . . . are symmetric.

Moreover, for quadratic functions of form f(x) = 1
2x
>Qx−b>x, the matrices

H0,H1, . . . are required to satisfy

Hk+1∆g(i) = ∆x(i), 0 ≤ i ≤ k
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Theorem. Consider a quasi-Newton algorithm applied to a quadratic function
with symmetric Q � 0 , such that for all k = 0,1, . . . , n− 1, there are

Hk+1∆g(i) = ∆x(i), 0 ≤ i ≤ k

and Hk are all symmetric. If αi 6= 0 for 0 ≤ i ≤ k, then d(0), . . . ,d(n) are
Q-conjugate.
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Proof. We prove by induction. It is trivial to show g(1)>d(i).

Assume the claim holds for some k < n− 1. We have for i ≤ k that

d(k+1)>Qd(i) = −(Hk+1g
(k+1))>Qd(i)

= −g(k+1)>Hk+1
Q∆x(i)

αi

= −g(k+1)>Hk+1
∆g(i)

αi

= −g(k+1)>∆x(i)

αi

= −g(k+1)>d(i)

Since d(0), . . . ,d(k) are Q-conjugate, we know g(k+1)>d(i) = 0 for all i ≤
k. Hence d(0), . . . ,d(k),d(k+1) are Q-conjugate. By induction the claim
holds.
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The theorem above also shows that quasi-Newton method is a conjugate di-
rection method, and hence converges in n steps for quadratic objective func-
tions.

In practice, there are various ways to generate Hk such that

Hk+1∆g(i) = ∆x(i), 0 ≤ i ≤ k

Now we learn three algorithms that produce such Hk.
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Rank one correction formula

Suppose we would like to update Hk to Hk+1 by adding a rank one matrix

akz
(k)z(k)> for some ak ∈ R and z(k) ∈ Rn:

Hk+1 = Hk + akz
(k)z(k)>

Now let us derive what this akz(k)z(k)> should be.

Since we need Hk+1∆g(i) = ∆x(i) for i ≤ k, we at least need Hk+1∆g(k) =

∆x(k). That is

∆x(k) = Hk+1∆g(k)

= (Hk + akz
(k)z(k)>)∆g(k)

= Hk∆g(k) + ak(z(k)>∆g(k))z(k)
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Therefore

z(k) =
∆x(k) −Hk∆g(k)

ak(z(k)>∆g(k))

and hence

Hk+1 = Hk +
(∆x(k) −Hk∆g(k))(∆x(k) −Hk∆g(k))>

ak(z(k)>∆g(k))2

On the other hand, multiplying ∆g(k)> on both sides of ∆x(k) −Hkg
(k) =

ak(z(k)>∆g(k))z(k), we obtain

∆g(k)>(∆x(k) −Hk∆g(k)) = ak(z(k)>∆g(k))2.

Hence

Hk+1 = Hk +
(∆x(k) −Hk∆g(k))(∆x(k) −Hk∆g(k))>

∆g(k)>(∆x(k) −Hk∆g(k))

This is the rank one correction formula.
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We obtained the formula by requiring Hk+1∆g(k) = ∆x(k). However, we
also need Hk+1∆g(i) = ∆x(i) for i < k. This turns out to be true automat-
ically:

Theorem. For the rank one algorithm applied to quadratic functions with Hes-
sian symmetric Q, there are

Hk+1∆g(i) = ∆x(i), 0 ≤ i ≤ k

for k = 0,1, . . . , n− 1.
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Proof. We have showed Hk+1∆g(k) = ∆x(k) for all k = 0,1,2, · · · .
Assume the identities hold up to k, we use induction to show it’s true for k+1.
We here only need to show Hk+1∆g(i) = ∆x(i) for i < k:

Hk+1∆g(i) =
(
Hk +

(∆x(k) −Hk∆g(k))(∆x(k) −Hk∆g(k))>

∆g(k)>(∆x(k) −Hk∆g(k))

)
∆g(i)

= ∆x(i) +
(∆x(k) −Hk∆g(k))(∆x(k) −Hk∆g(k))>∆g(i)

∆g(k)>(∆x(k) −Hk∆g(k))

Note that

(Hk∆g(k))>∆g(i) = ∆g(k)>Hk∆g(i) = ∆g(k)>∆x(i)

= ∆x(k)>Q∆x(i) = ∆x(k)>∆g(i)

Hence the second term on the right is zero, and we obtain

Hk∆g(i) = ∆x(i)

This completes the proof.
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Issues with rank one correction formula:

• Hk+1 may not be positive definite even if Hk is. Hence −Hkg
(k) may

not be a descent direction;

• the denominator in the rank one correction is ∆g(k)>(∆x(k)−Hk∆g(k)),
which can be close to 0 and makes computation unstable.
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We now study the DFP algorithm which improves the rank one correction for-
mula by ensuring positive definiteness of Hk.

DFP algoirthm [Davidson 1959, Fletcher and Powell 1963]

Hk+1 = Hk +
∆x(k)∆x(k)>

∆x(k)>∆g(k)
−

(Hk∆g(k))(Hk∆g(k))>

∆g(k)>Hk∆g(k)
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We first show that DFP is a quasi-Newton method.

Theorem. The DFP algorithm applied to quadratic functions satisfies

Hk+1∆g(i) = ∆x(i), 0 ≤ i ≤ k

for all k.
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Proof. We prove this by induction. It is trivial for k = 0.

Assume the claim is true for k, i.e., Hk∆g(i) = ∆x(i) for all i ≤ k − 1.

Now we first have Hk+1∆g(i) = ∆x(i) for i = k by direct computation. For
i < k, there is

Hk+1∆g(i) = Hk∆g(i) +
∆x(k)(∆x(k)>∆g(i))

∆x(k)>∆g(k)

−
(Hk∆g(k))(Hk∆g(k))>∆g(i)

∆g(k)>Hk∆g(k)

Note that due to assumption d(0), . . . ,d(k) are Q-conjugate, and hence

∆x(k)>∆g(i) = ∆x(k)>Q∆x(i) = αkαid
(k)>Qd(i) = 0

similarly ∆g(k)>Hk∆g(i) = ∆g(k)>∆x(i) = 0. This completes the proof.
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Next we show that Hk+1 inherits positive definiteness of Hk in DFP algorithm.

Theorem. Suppose g(k) 6= 0, then Hk � 0 implies Hk+1 � 0 in DFP.

Proof. For any x ∈ Rn, there is

x>Hk+1x = x>Hkx +
(x>∆x(k))2

∆x(k)>∆g(k)
−

(x>Hk∆g(k))2

∆g(k)>Hk∆g(k)

For notation simplicity, we denote

a = H
1/2
k x and b = H

1/2
k ∆g(k)

where Hk = H
1/2
k H

1/2
k (we know H

1/2
k exists since Hk is SPD).
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Proof (cont). Now we have

x>Hk+1x =
‖a‖2‖b‖2 − (a>b)2

‖b‖2
+

(x>∆x(k))2

∆x(k)>∆g(k)

Note also that ∆x(k) = αkd
(k) = −αkHkg

(k), therefore

∆x(k)>∆g(k) = ∆x(k)>(g(k+1)−g(k)) = −∆x(k)>g(k) = αkg
(k)>Hkg

(k)

where we used d(k)>g(k+1) = 0 due to Q-conjugacy of d(k) in the sec-
ond equality. Hence x>Hk+1x ≥ 0 since both terms on the right side are
nonnegative.
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Proof (cont). Now we need to show that the two terms cannot be 0 simulta-
neously.

Suppose the first term is 0, then a = βb for some scalar β > 0. That is
H

1/2
k x = βH

1/2
k ∆g(k), or x = β∆g(k).

In this case, there is

(x>∆x(k))2 = (β∆g(k)>∆x(k))2 = α2
kβ

2(∆g(k)>d(k))2

= α2
kβ

2(g(k)>d(k))2 = (αkβ)2(g(k)>Hkg
(k))2 > 0

and hence the second term is positive.

This completes the proof.
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BFGS algorithm (named after Broyden, Fletcher, Goldfarb, Shannon)

Instead of directly finding Hk such that Hk+1∆g(i) = ∆x(i) for 0 ≤ i ≤ k,
the BFGS first find Bk such that

Bk+1∆x(i) = ∆g(i), 0 ≤ i ≤ k

Then replacing Hk by Bk and swapping ∆x(k) and ∆g(k) in DFP yield

Bk+1 = Bk +
∆g(k)∆g(k)>

∆x(k)>∆g(k)
−

(Bk∆x(k))(Bk∆x(k))>

∆x(k)>Bk∆x(k)
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Then the actual Hk = Bk
−1 and hence

Hk+1 =
(
Bk +

∆g(k)∆g(k)>

∆x(k)>∆g(k)
−

(Bk∆x(k))(Bk∆x(k))>

∆x(k)>Bk∆x(k)

)−1

= Hk +
(

1 +
∆g(k)>Hk∆g(k)

∆g(k)>∆x(k)

)
∆x(k)∆x(k)>

∆x(k)>∆g(k)

−
Hk∆g(k)∆x(k)>+ (Hk∆g(k)∆x(k)>)>

∆g(k)>∆x(k)

This is the update rule of Hk in BFGS algorithm
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The inverse was obtained by applying the following result:

Lemma. [Sherman-Morrison formula] Let A be a nonsingular matrix, and u

and v are column vectors such that 1 + v>A−1u 6= 0, then A + uv> is
nonsingular, and

(A + uv>)−1 = A−1 −
(A−1u)(v>A−1)

1 + v>A−1u

Proof. Direct computation.
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BFGS algorithm:

1. Set k = 0; select x(0) and SPD H0, and compute g(0) = ∇f(x(0)).

2. Repeat:

d(k) = −Hkg
(k)

αk = arg min
α≥0

f(x(k) + αd(k))

x(k+1) = x(k) + αkd
(k)

g(k+1) = ∇f(x(k+1))

Hk+1 = Hk + · · · (Compute the BFGS update of Hk)

k ← k + 1

Until g(k) = 0.
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