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Conjugate Gradient Method

Motivation: Design an improved gradient method without storing or inverting
Hessian.

Definition. Let Q = 0. The directions d(©), d(1) ... d(¥) are called (mutu-
ally) Q-conjugate if d© ' Qd() = 0 for all i £ ;.

Remark: We can define Q-inner product by (z,y)q = ' Qy. Then = and
y are Q-conjugate if they are orthogonal, i.e., (z,y)g = O, in the sense of
Q-inner product. Also note that (z,x)g = ||a:\|§2.
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Lemma. Let Q = 0 be an n-by-n positive definite matrix. If d(®), ... d(F)
(k < n — 1) are Q-conjugate, then they are linearly independent.

Proof. Suppose agd(®) +a1d1) +- .. +a,d®) = 0. For each i, multiplying

d® " Q yields a;d® ' Qd® = 0 due to the mutual Q-conjugacy. Hence

Oéz':O.
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Example. Find a set of Q-conjugate directions d(®), d(1) d(2) ¢ R3 where

3 0 1
Q=10 4
12

2
3_

Solution. We first check that @@ >~ 0 by its leading principal minors:

3 0 3 01
3 >0, |O 4‘=12>O, 0O 4 2/=22>0
1 2 3

We can set d(9) to any nonzero vector. For instance, we can set with d(0) =
[1,0,0]".
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Then we need to find d(1) = [dgl), dgl), dél)]T such that

dD'Qd©® =341 + 4V = o

For example, we can set dgl) = 1, dgl) = 0, and dgl) = -3, and hence
d1) =1[1,0,-3]".

Finally we need d(2) = [dgz), dgz), de)]T such that

d(Q)TQd(O) _ 3d§2) + dgz) — 0
d®'Qd® = 642 — 84 =0

from which we solve for d(?) to get d(2) = [1,4, —3]T.

In the end, we obtain d(©) = [1,0,0]T,d(1) =[1,0,-3]T7,d(2 =[1,4,-3]T.
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The idea of Gram-Schmidt process can be used to produce Q-conjugate
directions:

First select an arbitrary set of linearly independent directions ,0(0)7 e v(n—1)
Set d(0) = v(O)/”v(O)”Q_

Suppose we have got d(©), ... d*=1) then compute d(¥) by

k-1 -
) = o ® _ 3 (x0T Qaya®
i=0

and then normalize d(¥) < d(*) /||d(¥)]| 5.

It is easy to verify that d®) ' Qd(® = 0fori=0,... .k —1.
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Now we consider using conjugate directions d(9), ... d("—1) (assume given)

to solve
1

minimize f(x), where f(z)=>-z'Qzr—-b'x
T ER™ 2
Basic conjugate direction algorithm: For k = 0,1,...,n — 1, do

g® = v (™) = Qz® _ b
g™ " g®)

d® T Qdk)
2D = () 4 o g(8)

Ozk:

Note that above o, = arg min g f(z(*) + ad(*)) is the steepest step size.
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Theorem. The basic conjugate direction algorithm converges in n steps.

Proof. First keep in mind that

2 = (=1 4 o g(n=1)

=20 4 00d® + ... + o, d"D

Now suppose z* — z(0) = Bd(O) + ...+ 8, 1d("1) (this is possible since
d® . . d("-1) s a basis of R™.)

Now we will check that 3, = o forallk = 0, ..., n—1: multiplying * —z(0)
by d® ' Q, we obtain d® ' Q(z* — () = 8,d® ' Qd®.
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We can solve for gy.:

_d® Qe — 2(®)

& a7 Qdk)
d®) ' Q[(a* — &™) + (k) — £(O))]
N oM 0
d® ' (k)
T AW gaw
where the 3rd equality above is due to Q(z* — (¥)) = —(Qz*) — b) =

—g®) and that () — 2(0) = $+—1 o;d() which is a linear combination of

{d(j) 0<j<k-— 1} that are all Q-conjugate with d(¥).

Therefore (™) — £(0) = z* — £(0) hence (") = z*.
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Lemma. Forany k = 0,1,...,n — 1, there are

T ..
g(k’+1) dl) = 0, Vj<Ek.

Proof. Multiplying both sides of z(*1t1) = (k) 4 o, d(F) by Q:
Qzt1) = Qz¥) + o, Qd®
which yields g(¥1t1) = g(k) 4+ o, Qd(*) since g¥) = Qx*) — b for all k.

We will use this and induction to prove the claim.
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Proof (cont). It is easy to show g g = g

Suppose the claim holds for &, i.e.,

g®'a®d =0 fori=o0,1,. .. k—1.
Then g+ g = g ' g@® 4 o, d® "' Qd®.

ifi < k— 1, then g*+1D '@ = 0 due to induction hypothesis and Q-

conjugacy. If i = k, then g+ ' d(®) = g0 ' g®) 4 o, d® ' QdM) = o
due to the definition of «.. Therefore the claim also holds for £ 4 1.
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Conjugate direction method can also be interpreted as an “expanding sub-
space” method:

Denote D) := span{d(®),d1), ... d¢=D1 Then xk) — £(0) ¢ D),
and z(¥) is selected such that

x (k) = argmin  f(x)
xcx(0)4 D)

Therefore DO « D) - ... c D) = R"™, and 2(") is the minimizer of
f(x) over D) = R",
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Now we have one more practical issue to solve: how to get Q-conjugate di-
rections?

Conjugate gradient method generates a new conjugate direction in every
iteration.

More specifically, suppose we have got z(¥) and d(¥), then compute
2D = ) | g g®

g gk

where = :
T T W T Qa

The new conjugate direction is given by
d-+1) = _gk+1) 4 g, q(k)

_ gD T gak)

wher = :
ere O d T Qd®)
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Conjugate gradient method for quadratic function f(z) = 3z 'Qz — b'z.
First give initial (%), compute g(®) = V f(2(0)) and set d(0) = —g(0).

Fork=0,1,2,...,n— 1, iterate

HOWFO

d® T Qd*)
2D = () 4 o g(8)

gkt = vrzR)y = Qzk+1) _p
gD T g

= T 0a
dF+1) = _gk+1) 4 g, q(k)

ak:
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Most expensive computation is Qd(*), which requires n2 multiplications and
n(n — 1) = O(n?) summations. This is done 1 time in every iteration.

We also need storing Qx(%) which is updated for every k by Qz(k+1) =
Qz*) 4+ 0,.Qd(R).

Also, gt¢1+1) = g(k) 4+ o, Qd*¥) can be updated by vector summation.

But all these computations are of order O(n).
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Now we show CG converges in n steps for quadratic f(ax). To this end, we
only need the following result.

Proposition. The directions d(0),d(1), ... d("»—1) generated by CG algo-
rithm are Q-conjugate.

Proof. We prove this by induction.
First, d(l)TQd(O) = (=g 4+ B5d(O)TQd(®) = 0 due to defintion of Bg.

Now assume d(9), ... d(¥) are Q-conjugate. We need to show d(*¥t1) is
(Q-conjugate with all of them.
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Proof (cont).

We need the following facts:
o d¥) = _gk) 4 3 1dk—1) vk, by definition of d*) in CG.
o gt = g(k) 4 o, Qd®), Vi, by (k1) = (k) 4 o, d(*) in CG.
° g(’f‘H)Tal(j> = 0, Vj < k, by previous lemma.

. g<k+1>fg<j> — 0,Vj < k, since gt ' g() = g+ (g _
5j_1d(1)) — 0.
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Proof (cont).

Now we come backto LHS := d*+1) ' Qd() = (—g*+D 18, d*)TQdW).

. i+1)_ (5
If j < ko then LHS = —g(:+1D T Qd() = _glh+1) TgV =g _

Q

If j = k, then LHS = d*+D ' Qd® = (—gk+1) 4 3,d)TQd®*) = o
due to definition of 5.

Therefore d(k+1)TQd(j) for all j < k.

Xiaojing Ye, Math & Stat, Georgia State University 17



We now consider Conjugate Gradient method for non-quadratic problems.

If we have 2(¥) and d(¥), we can get step size a;, using line search such as
ap = arg min f(:z:(k) + ad(k))
a>0
So we only need to find 8, for d(k11) = g(k+1) 4 3, d(k) 50 d(O) ... d(™)
are (Q-conjugate. In quadratic case

g+ T gk
d®) " Qdk)

B, =

However, for non-quadratic f, the Hessian V2 f(x) is not constant Q.
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There are several modifications to get 3;, by eliminating the need of Qd(*).

o Hestenes-Stiefel formula:
-
g(k+1) (g(k+1) _ g(k))
dR) T (g(k+1) _ g(k))

B =

e Polak-Ribiere formula:

-
8 — g(k+1) (g(k+1) _ g(k))
1g(F)|2

e Fletcher-Reeves formula:
|g(F+1))2
B, = ONE
g\
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Remark.
e All three modifications are identical if f is quadratic;
e Need reinitialization d¥) = —g®¥) for k = n, 2n, ...
e Line search accuracy affects overall performance.
Some experience.
e Use Hestenes-Stiefel if line search is inaccurate.

e Use Polak-Ribiere if g(*¥) are bounded away from 0.

e Fletcher-Reeves has better global convergence property.
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