MATH 4211/6211 - Optimization Conjugate Gradient Method

Xiaojing Ye
Department of Mathematics \& Statistics
Georgia State University

Conjugate Gradient Method

Motivation: Design an improved gradient method without storing or inverting Hessian.

Definition. Let $\boldsymbol{Q} \succ \mathbf{0}$. The directions $\boldsymbol{d}^{(0)}, \boldsymbol{d}^{(1)}, \ldots, \boldsymbol{d}^{(k)}$ are called (mutually) \boldsymbol{Q}-conjugate if $\boldsymbol{d}^{(i)^{\top}} \boldsymbol{Q} \boldsymbol{d}^{(j)}=0$ for all $i \neq j$.

Remark: We can define \boldsymbol{Q}-inner product by $\langle\boldsymbol{x}, \boldsymbol{y}\rangle_{\boldsymbol{Q}}:=\boldsymbol{x}^{\top} \boldsymbol{Q} \boldsymbol{y}$. Then \boldsymbol{x} and y are Q-conjugate if they are orthogonal, i.e., $\langle\boldsymbol{x}, \boldsymbol{y}\rangle_{Q}=0$, in the sense of Q-inner product. Also note that $\langle\boldsymbol{x}, \boldsymbol{x}\rangle_{Q}=\|x\|_{Q}^{2}$.

Lemma. Let $\boldsymbol{Q} \succ 0$ be an n-by-n positive definite matrix. If $\boldsymbol{d}^{(0)}, \ldots, \boldsymbol{d}^{(k)}$ ($k \leq n-1$) are \boldsymbol{Q}-conjugate, then they are linearly independent.

Proof. Suppose $\alpha_{0} \boldsymbol{d}^{(0)}+\alpha_{1} \boldsymbol{d}^{(1)}+\cdots+\alpha_{k} \boldsymbol{d}^{(k)}=\mathbf{0}$. For each i, multiplying $\boldsymbol{d}^{(i)^{\top}} \boldsymbol{Q}$ yields $\alpha_{i} \boldsymbol{d}^{(i)^{\top}} \boldsymbol{Q} \boldsymbol{d}^{(i)}=0$ due to the mutual \boldsymbol{Q}-conjugacy. Hence $\alpha_{i}=0$.

Example. Find a set of Q-conjugate directions $\boldsymbol{d}^{(0)}, \boldsymbol{d}^{(1)}, \boldsymbol{d}^{(2)} \in \mathbb{R}^{3}$ where

$$
Q=\left[\begin{array}{lll}
3 & 0 & 1 \\
0 & 4 & 2 \\
1 & 2 & 3
\end{array}\right]
$$

Solution. We first check that $Q \succ 0$ by its leading principal minors:

$$
3>0, \quad\left|\begin{array}{ll}
3 & 0 \\
0 & 4
\end{array}\right|=12>0, \quad\left|\begin{array}{lll}
3 & 0 & 1 \\
0 & 4 & 2 \\
1 & 2 & 3
\end{array}\right|=22>0
$$

We can set $\boldsymbol{d}^{(0)}$ to any nonzero vector. For instance, we can set with $\boldsymbol{d}^{(0)}=$ $[1,0,0]^{\top}$.

Then we need to find $\boldsymbol{d}^{(1)}=\left[d_{1}^{(1)}, d_{2}^{(1)}, d_{3}^{(1)}\right]^{\top}$ such that

$$
\boldsymbol{d}^{(1)^{\top}} \boldsymbol{Q} \boldsymbol{d}^{(0)}=3 d_{1}^{(1)}+d_{3}^{(1)}=0
$$

For example, we can set $d_{1}^{(1)}=1, d_{2}^{(1)}=0$, and $d_{3}^{(1)}=-3$, and hence $\boldsymbol{d}^{(1)}=[1,0,-3]^{\top}$.

Finally we need $\boldsymbol{d}^{(2)}=\left[d_{1}^{(2)}, d_{2}^{(2)}, d_{3}^{(2)}\right]^{\top}$ such that

$$
\begin{aligned}
& \boldsymbol{d}^{(2)^{\top}} \boldsymbol{Q} \boldsymbol{d}^{(0)}=3 d_{1}^{(2)}+d_{3}^{(2)}=0 \\
& \boldsymbol{d}^{(2)^{\top}} \boldsymbol{Q} \boldsymbol{d}^{(1)}=-6 d_{2}^{(2)}-8 d_{3}^{(2)}=0
\end{aligned}
$$

from which we solve for $\boldsymbol{d}^{(2)}$ to get $\boldsymbol{d}^{(2)}=[1,4,-3]^{\top}$.
In the end, we obtain $\boldsymbol{d}^{(0)}=[1,0,0]^{\top}, \boldsymbol{d}^{(1)}=[1,0,-3]^{\top}, \boldsymbol{d}^{(2)}=[1,4,-3]^{\top}$.

The idea of Gram-Schmidt process can be used to produce Q-conjugate directions:

First select an arbitrary set of linearly independent directions $\boldsymbol{v}^{(0)}, \ldots, \boldsymbol{v}^{(n-1)}$. Set $\boldsymbol{d}^{(0)}=\boldsymbol{v}^{(0)} /\left\|\boldsymbol{v}^{(0)}\right\|_{\boldsymbol{Q}}$.

Suppose we have got $\boldsymbol{d}^{(0)}, \ldots, \boldsymbol{d}^{(k-1)}$, then compute $\boldsymbol{d}^{(k)}$ by

$$
\boldsymbol{d}^{(k)}=\boldsymbol{v}^{(k)}-\sum_{i=0}^{k-1}\left(\boldsymbol{v}^{(k)^{\top}} \boldsymbol{Q} \boldsymbol{d}^{(i)}\right) \boldsymbol{d}^{(i)}
$$

and then normalize $\boldsymbol{d}^{(k)} \leftarrow \boldsymbol{d}^{(k)} /\left\|\boldsymbol{d}^{(k)}\right\|_{\boldsymbol{Q}}$.
It is easy to verify that $\boldsymbol{d}^{(k)^{\top}} \boldsymbol{Q} \boldsymbol{d}^{(i)}=0$ for $i=0, \ldots, k-1$.

Now we consider using conjugate directions $\boldsymbol{d}^{(0)}, \ldots, \boldsymbol{d}^{(n-1)}$ (assume given) to solve

$$
\underset{\boldsymbol{x} \in \mathbb{R}^{n}}{\operatorname{minimize}} f(\boldsymbol{x}), \quad \text { where } \quad f(\boldsymbol{x})=\frac{1}{2} \boldsymbol{x}^{\top} \boldsymbol{Q} \boldsymbol{x}-\boldsymbol{b}^{\top} \boldsymbol{x}
$$

Basic conjugate direction algorithm: For $k=0,1, \ldots, n-1$, do

$$
\begin{aligned}
\boldsymbol{g}^{(k)} & =\nabla f\left(\boldsymbol{x}^{(k)}\right)=\boldsymbol{Q} \boldsymbol{x}^{(k)}-\boldsymbol{b} \\
\alpha_{k} & =-\frac{\boldsymbol{g}^{(k)^{\top}} \boldsymbol{d}^{(k)}}{\boldsymbol{d}^{(k)^{\top}} \boldsymbol{Q} \boldsymbol{d}^{(k)}} \\
\boldsymbol{x}^{(k+1)} & =\boldsymbol{x}^{(k)}+\alpha_{k} \boldsymbol{d}^{(k)}
\end{aligned}
$$

Note that above $\alpha_{k}=\arg \min _{\alpha>0} f\left(\boldsymbol{x}^{(k)}+\alpha \boldsymbol{d}^{(k)}\right)$ is the steepest step size.

Theorem. The basic conjugate direction algorithm converges in n steps.
Proof. First keep in mind that

$$
\begin{aligned}
\boldsymbol{x}^{(n)} & =\boldsymbol{x}^{(n-1)}+\alpha_{n-1} \boldsymbol{d}^{(n-1)} \\
& =\cdots \\
& =\boldsymbol{x}^{(0)}+\alpha_{0} \boldsymbol{d}^{(0)}+\cdots+\alpha_{n-1} \boldsymbol{d}^{(n-1)}
\end{aligned}
$$

Now suppose $\boldsymbol{x}^{*}-\boldsymbol{x}^{(0)}=\beta_{0} \boldsymbol{d}^{(0)}+\cdots+\beta_{n-1} \boldsymbol{d}^{(n-1)}$ (this is possible since $\boldsymbol{d}^{(0)}, \ldots, \boldsymbol{d}^{(n-1)}$ is a basis of \mathbb{R}^{n}.)

Now we will check that $\beta_{k}=\alpha_{k}$ for all $k=0, \ldots, n-1$: multiplying $\boldsymbol{x}^{*}-\boldsymbol{x}^{(0)}$ by $\boldsymbol{d}^{(k)^{\top}} \boldsymbol{Q}$, we obtain $\boldsymbol{d}^{(k)^{\top}} \boldsymbol{Q}\left(\boldsymbol{x}^{*}-\boldsymbol{x}^{(0)}\right)=\beta_{k} \boldsymbol{d}^{(k)^{\top}} \boldsymbol{Q} \boldsymbol{d}^{(k)}$.

We can solve for β_{k} :

$$
\begin{aligned}
\beta_{k} & =\frac{\boldsymbol{d}^{(k)^{\top}} \boldsymbol{Q}\left(\boldsymbol{x}^{*}-\boldsymbol{x}^{(0)}\right)}{\boldsymbol{d}^{(k)^{\top}} \boldsymbol{Q} \boldsymbol{d}^{(k)}} \\
& =\frac{\boldsymbol{d}^{(k)^{\top}} \boldsymbol{Q}\left[\left(\boldsymbol{x}^{*}-\boldsymbol{x}^{(k)}\right)+\left(\boldsymbol{x}^{(k)}-\boldsymbol{x}^{(0)}\right)\right]}{\boldsymbol{d}^{(k)^{\top}} \boldsymbol{Q} \boldsymbol{d}^{(k)}} \\
& =-\frac{\boldsymbol{d}^{(k)^{\top}} \boldsymbol{g}^{(k)}}{\boldsymbol{d}^{(k)^{\top}} \boldsymbol{Q} \boldsymbol{d}^{(k)}}=\alpha_{k}
\end{aligned}
$$

where the 3rd equality above is due to $\boldsymbol{Q}\left(\boldsymbol{x}^{*}-\boldsymbol{x}^{(k)}\right)=-\left(\boldsymbol{Q} \boldsymbol{x}^{(k)}-\boldsymbol{b}\right)=$ $-\boldsymbol{g}^{(k)}$ and that $\boldsymbol{x}^{(k)}-\boldsymbol{x}^{(0)}=\sum_{j=0}^{k-1} \alpha_{j} \boldsymbol{d}^{(j)}$ which is a linear combination of $\left\{\boldsymbol{d}^{(j)}: 0 \leq j \leq k-1\right\}$ that are all \boldsymbol{Q}-conjugate with $\boldsymbol{d}^{(k)}$.

Therefore $\boldsymbol{x}^{(n)}-\boldsymbol{x}^{(0)}=\boldsymbol{x}^{*}-\boldsymbol{x}^{(0)}$, hence $\boldsymbol{x}^{(n)}=\boldsymbol{x}^{*}$.

Lemma. For any $k=0,1, \ldots, n-1$, there are

$$
\boldsymbol{g}^{(k+1)^{\top}} \boldsymbol{d}^{(j)}=0, \quad \forall j \leq k
$$

Proof. Multiplying both sides of $\boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(k)}+\alpha_{k} \boldsymbol{d}^{(k)}$ by \boldsymbol{Q} :

$$
\boldsymbol{Q} \boldsymbol{x}^{(k+1)}=\boldsymbol{Q} \boldsymbol{x}^{(k)}+\alpha_{k} \boldsymbol{Q} \boldsymbol{d}^{(k)}
$$

which yields $\boldsymbol{g}^{(k+1)}=\boldsymbol{g}^{(k)}+\alpha_{k} \boldsymbol{Q} \boldsymbol{d}^{(k)}$ since $\boldsymbol{g}^{(k)}=\boldsymbol{Q} \boldsymbol{x}^{(k)}-\boldsymbol{b}$ for all k.

We will use this and induction to prove the claim.

Proof (cont). It is easy to show $\boldsymbol{g}^{(1)^{\top}} \boldsymbol{d}^{(0)}=0$.

Suppose the claim holds for k, i.e.,

Then $\boldsymbol{g}^{(k+1)^{\top}} \boldsymbol{d}^{(i)}=\boldsymbol{g}^{(k)^{\top}} \boldsymbol{d}^{(i)}+\alpha_{k} \boldsymbol{d}^{(k)^{\top}} \boldsymbol{Q} \boldsymbol{d}^{(i)}$.
If $i \leq k-1$, then $\boldsymbol{g}^{(k+1)^{\top}} \boldsymbol{d}^{(i)}=0$ due to induction hypothesis and \boldsymbol{Q} conjugacy. If $i=k$, then $\boldsymbol{g}^{(k+1)^{\top}} \boldsymbol{d}^{(k)}=\boldsymbol{g}^{(k)^{\top}} \boldsymbol{d}^{(k)}+\alpha_{k} \boldsymbol{d}^{(k)^{\top}} \boldsymbol{Q} \boldsymbol{d}^{(k)}=0$ due to the definition of α_{k}. Therefore the claim also holds for $k+1$.

Conjugate direction method can also be interpreted as an "expanding subspace" method:

Denote $\boldsymbol{D}^{(k)}:=\operatorname{span}\left\{\boldsymbol{d}^{(0)}, \boldsymbol{d}^{(1)}, \ldots, \boldsymbol{d}^{(k-1)}\right\}$. Then $\boldsymbol{x}^{(k)}-\boldsymbol{x}^{(0)} \in \boldsymbol{D}^{(k)}$, and $x^{(k)}$ is selected such that

$$
\boldsymbol{x}^{(k)}=\underset{\boldsymbol{x} \in \boldsymbol{x}^{(0)}+\boldsymbol{D}^{(k)}}{\arg \min } f(\boldsymbol{x})
$$

Therefore $\boldsymbol{D}^{(0)} \subset \boldsymbol{D}^{(1)} \subset \cdots \subset \boldsymbol{D}^{(n)}=\mathbb{R}^{n}$, and $\boldsymbol{x}^{(n)}$ is the minimizer of $f(\boldsymbol{x})$ over $\boldsymbol{D}^{(n)}=\mathbb{R}^{n}$.

Now we have one more practical issue to solve: how to get Q-conjugate directions?

Conjugate gradient method generates a new conjugate direction in every iteration.

More specifically, suppose we have got $\boldsymbol{x}^{(k)}$ and $\boldsymbol{d}^{(k)}$, then compute

$$
\boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(k)}+\alpha_{k} \boldsymbol{d}^{(k)}
$$

where $\alpha_{k}=-\frac{\boldsymbol{g}^{(k)^{\top}} \boldsymbol{d}^{(k)}}{\boldsymbol{d}^{(k)^{\top}} \boldsymbol{Q} \boldsymbol{d}^{(k)}}$.
The new conjugate direction is given by

$$
\boldsymbol{d}^{(k+1)}=-\boldsymbol{g}^{(k+1)}+\beta_{k} \boldsymbol{d}^{(k)}
$$

where $\beta_{k}=\frac{\boldsymbol{g}^{(k+1)^{\top}} \boldsymbol{Q} \boldsymbol{d}^{(k)}}{\boldsymbol{d}^{(k)^{\top}} \boldsymbol{Q} \boldsymbol{d}^{(k)}}$.

Conjugate gradient method for quadratic function $f(x)=\frac{1}{2} \boldsymbol{x}^{\top} \boldsymbol{Q} \boldsymbol{x}-\boldsymbol{b}^{\top} \boldsymbol{x}$.
First give initial $\boldsymbol{x}^{(0)}$, compute $\boldsymbol{g}^{(0)}=\nabla f\left(\boldsymbol{x}^{(0)}\right)$ and set $\boldsymbol{d}^{(0)}=-\boldsymbol{g}^{(0)}$.

For $k=0,1,2, \ldots, n-1$, iterate

$$
\begin{aligned}
\alpha_{k} & =-\frac{\boldsymbol{g}^{(k)^{\top}} \boldsymbol{d}^{(k)}}{\boldsymbol{d}^{(k)^{\top}} \boldsymbol{Q} \boldsymbol{d}^{(k)}} \\
\boldsymbol{x}^{(k+1)} & =\boldsymbol{x}^{(k)}+\alpha_{k} \boldsymbol{d}^{(k)} \\
\boldsymbol{g}^{(k+1)} & =\nabla f\left(\boldsymbol{x}^{(k)}\right)=\boldsymbol{Q} \boldsymbol{x}^{(k+1)}-\boldsymbol{b} \\
\beta_{k} & =\frac{\boldsymbol{g}^{(k+1)^{\top}} \boldsymbol{Q} \boldsymbol{d}^{(k)}}{\boldsymbol{d}^{(k)^{\top}} \boldsymbol{Q} \boldsymbol{d}^{(k)}} \\
\boldsymbol{d}^{(k+1)} & =-\boldsymbol{g}^{(k+1)}+\beta_{k} \boldsymbol{d}^{(k)}
\end{aligned}
$$

Most expensive computation is $\boldsymbol{Q \boldsymbol { d } ^ { (k) }}$, which requires n^{2} multiplications and $n(n-1)=O\left(n^{2}\right)$ summations. This is done 1 time in every iteration.

We also need storing $\boldsymbol{Q} \boldsymbol{x}^{(k)}$ which is updated for every k by $\boldsymbol{Q} \boldsymbol{x}^{(k+1)}=$ $\boldsymbol{Q} \boldsymbol{x}^{(k)}+\alpha_{k} \boldsymbol{Q} \boldsymbol{d}^{(k)}$.

Also, $\boldsymbol{g}^{(k+1)}=\boldsymbol{g}^{(k)}+\alpha_{k} \boldsymbol{Q} \boldsymbol{d}^{(k)}$ can be updated by vector summation.
But all these computations are of order $O(n)$.

Now we show CG converges in n steps for quadratic $f(\boldsymbol{x})$. To this end, we only need the following result.

Proposition. The directions $\boldsymbol{d}^{(0)}, \boldsymbol{d}^{(1)}, \ldots, \boldsymbol{d}^{(n-1)}$ generated by CG algorithm are Q-conjugate.

Proof. We prove this by induction.
First, $\boldsymbol{d}^{(1)^{\top}} \boldsymbol{Q} \boldsymbol{d}^{(0)}=\left(-\boldsymbol{g}^{(1)}+\beta_{0} \boldsymbol{d}^{(0)}\right)^{\top} \boldsymbol{Q} \boldsymbol{d}^{(0)}=0$ due to defintion of β_{0}.
Now assume $\boldsymbol{d}^{(0)}, \ldots, \boldsymbol{d}^{(k)}$ are \boldsymbol{Q}-conjugate. We need to show $\boldsymbol{d}^{(k+1)}$ is Q-conjugate with all of them.

Proof (cont).

We need the following facts:

- $\boldsymbol{d}^{(k)}=-\boldsymbol{g}^{(k)}+\beta_{k-1} \boldsymbol{d}^{(k-1)}, \forall k$, by definition of $\boldsymbol{d}^{(k)}$ in CG.
- $\boldsymbol{g}^{(k+1)}=\boldsymbol{g}^{(k)}+\alpha_{k} \boldsymbol{Q} \boldsymbol{d}^{(k)}, \forall k$, by $\boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(k)}+\alpha_{k} \boldsymbol{d}^{(k)}$ in CG.
- $\boldsymbol{g}^{(k+1)^{\top}} \boldsymbol{d}^{(j)}=0, \forall j \leq k$, by previous lemma.
- $\boldsymbol{g}^{(k+1)^{\top}} \boldsymbol{g}^{(j)}=0, \forall j \leq k$, since $\boldsymbol{g}^{(k+1)^{\top}} \boldsymbol{g}^{(j)}=\boldsymbol{g}^{(k+1)^{\top}}\left(\boldsymbol{d}^{(j)}-\right.$ $\left.\beta_{j-1} d^{(j)}\right)=0$.

Proof (cont).

Now we come back to $L H S:=\boldsymbol{d}^{(k+1)^{\top}} \boldsymbol{Q} \boldsymbol{d}^{(j)}=\left(-\boldsymbol{g}^{(k+1)}+\beta_{k} \boldsymbol{d}^{(k)}\right)^{\top} \boldsymbol{Q} \boldsymbol{d}^{(j)}$. If $j<k$, then $L H S=-\boldsymbol{g}^{(k+1)^{\top}} \boldsymbol{Q} \boldsymbol{d}^{(j)}=-\boldsymbol{g}^{(k+1)^{\top}} \frac{\boldsymbol{g}^{(j+1)}-\boldsymbol{g}^{(j)}}{\alpha_{j}}=0$. If $j=k$, then $L H S=\boldsymbol{d}^{(k+1)^{\top}} \boldsymbol{Q} \boldsymbol{d}^{(k)}=\left(-\boldsymbol{g}^{(k+1)}+\beta_{k} \boldsymbol{d}^{(k)}\right)^{\top} \boldsymbol{Q} \boldsymbol{d}^{(k)}=0$ due to definition of β_{k}.

Therefore $\boldsymbol{d}^{(k+1)^{\top}} \boldsymbol{Q} \boldsymbol{d}^{(j)}$ for all $j \leq k$.

We now consider Conjugate Gradient method for non-quadratic problems.
If we have $\boldsymbol{x}^{(k)}$ and $\boldsymbol{d}^{(k)}$, we can get step size α_{k} using line search such as

$$
\alpha_{k}=\underset{\alpha \geq 0}{\arg \min } f\left(\boldsymbol{x}^{(k)}+\alpha \boldsymbol{d}^{(k)}\right)
$$

So we only need to find β_{k} for $\boldsymbol{d}^{(k+1)}=\boldsymbol{g}^{(k+1)}+\beta_{k} \boldsymbol{d}^{(k)}$, so $\boldsymbol{d}^{(0)}, \ldots, \boldsymbol{d}^{(n)}$ are Q-conjugate. In quadratic case

$$
\beta_{k}=\frac{\boldsymbol{g}^{(k+1)^{\top}} \boldsymbol{Q} \boldsymbol{d}^{(k)}}{\boldsymbol{d}^{(k)^{\top}} \boldsymbol{Q} \boldsymbol{d}^{(k)}}
$$

However, for non-quadratic f, the Hessian $\nabla^{2} f(x)$ is not constant \boldsymbol{Q}.

There are several modifications to get β_{k} by eliminating the need of $\boldsymbol{Q} \boldsymbol{d}^{(k)}$.

- Hestenes-Stiefel formula:

$$
\beta_{k}=\frac{\boldsymbol{g}^{(k+1)^{\top}}\left(\boldsymbol{g}^{(k+1)}-\boldsymbol{g}^{(k)}\right)}{\boldsymbol{d}^{(k)^{\top}}\left(\boldsymbol{g}^{(k+1)}-\boldsymbol{g}^{(k)}\right)}
$$

- Polak-Ribière formula:

$$
\beta_{k}=\frac{\boldsymbol{g}^{(k+1)^{\top}}\left(\boldsymbol{g}^{(k+1)}-\boldsymbol{g}^{(k)}\right)}{\left\|\boldsymbol{g}^{(k)}\right\|^{2}}
$$

- Fletcher-Reeves formula:

$$
\beta_{k}=\frac{\left\|\boldsymbol{g}^{(k+1)}\right\|^{2}}{\left\|\boldsymbol{g}^{(k)}\right\|^{2}}
$$

Remark.

- All three modifications are identical if f is quadratic;
- Need reinitialization $\boldsymbol{d}^{(k)}=-\boldsymbol{g}^{(k)}$ for $k=n, 2 n, \ldots$;
- Line search accuracy affects overall performance.

Some experience.

- Use Hestenes-Stiefel if line search is inaccurate.
- Use Polak-Ribière if $\boldsymbol{g}^{(k)}$ are bounded away from 0 .
- Fletcher-Reeves has better global convergence property.

