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Newton’s method

• Improve gradient method by using second-order (Hessian) information.

• Approximate f at x(k) locally by a quadratic function, and use the mini-
mizer of the quadratic function as x(k+1).

• The Newton’s method resolves to iterating

x(k+1) = x(k) − (H(k))−1g(k)

where g(k) = ∇f(x(k)) and H(k) = ∇2f(x(k)).
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The Newton’s (or Newton-Raphson) method executes the two steps below in
each iteration:

• Step 1: Solve d(k) from H(k)d(k) = −g(k);

• Step 2: Update x(k+1) = x(k) + d(k).

Therefore the key is solving a linear system in Step 1 in every iteration.
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• Pros:

– very fast convergence near solution x∗ (more later).

• Cons:

– not a descent method;

– Hessian may not be invertible;

– may diverge if initial guess is bad.

We will see how fast Newton’s method is, and how to remedy the issues.
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Let us first see what happens when applying Newton’s method to minimize the
quadratic functions with Q � 0:

f(x) =
1

2
x>Qx− b>x

We know that

∇f(x) = Qx− b and ∇2f(x) = Q

In addition, the unique minimizer is x∗ = Q−1b.

Therefore, given any initial x(0), we have

x(1) = x(0) − (H(0))−1g(0)

= x(0) − (Q)−1(Qx(0) − b)

= Q−1b

= x∗

which means the Newton’s method converges in 1 iteration.
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Convergence of the Newton’s method for general case.

Theorem. Suppose f ∈ C3(Rn;R), and ∃x∗ ∈ Rn such that ∇f(x∗) =

0 and ∇2f(x∗) is invertible. Then for all x(0) sufficiently close to x∗, the
Newton’s method is well-defined for all k, and x(k) → x∗ with order at least 2.

Proof. Since f ∈ C3 and ∇2f(x∗) is invertible, we know ∃ r, c1, c2 > 0, such
that ∀x ∈ B(x∗; r), there are

• ‖∇f(x∗)−∇f(x)−∇2f(x)(x∗ − x)‖ ≤ c1‖x∗ − x‖2;

• ∇2f(x) is invertible;

• ‖(∇2f(x))−1‖ ≤ c2.
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Proof (cont). Let ε = min(r, 1
c1c2

,1−) (here 1− means any number slightly
smaller than 1).

If x(k) ∈ B(x∗; ε), then

‖x(k+1) − x∗‖ = ‖x(k) − (H(k))−1g(k) − x∗‖
= ‖(H(k))−1(H(k)(x(k) − x∗)− g(k))‖
≤ ‖(H(k))−1‖‖H(k)(x(k) − x∗)− g(k)‖
≤ ‖(H(k))−1‖‖0− g(k) −H(k)(x∗ − x(k))‖
≤ c1c2‖x(k) − x∗‖2

≤ ‖x(k) − x∗‖
≤ ε

which implies

x(k+1) ∈ B(x∗; ε) and ‖x(k+1) − x∗‖ ≤ c1c2‖x(k) − x∗‖2

for all k by induction. This implies the convergence is of order at least 2.
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Now we consider modifications to overcome the issues of Newton’s method.

Issue #1: d(k) = −(H(k))−1g(k) may not be a descent direction.

Theorem. If g(k) 6= 0 and H(k) � 0, then d(k) is a descent direction.

Proof. Let d(k) = −(H(k))−1g(k), and denote φ(α) = f(x(k) + αd(k)).

Then φ(0) = f(x(k)), and

φ′(0) = ∇f(x(k))>d(k) = −g(k)(H(k))−1g(k) < 0

Therefore, ∃ ᾱ > 0 such that φ(α) < φ(0), i.e.,

f(x(k) + αd(k)) < f(x(k))

for all α ∈ (0, ᾱ). Therefore d(k) is a descent direction.
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Issue #2: H(k) may not be positive definite (or invertible).

Observation. Suppose H is symmetric, then it has eigenvalue decomposition
H = U>ΛU for some orthogonal U and Λ = diag(λ1, . . . , λn), where
λ1 ≥ · · · ≥ λn.

Let µ > max(0,−λn), then λi + µ > 0 for all i.

Then H + µI = U>(Λ + µI)U � 0 since all eigenvalues λi + µ > 0.

Xiaojing Ye, Math & Stat, Georgia State University 8



Levenberg-Marquardt’s modification of Newton’s method.

Replace H(k) by H(k) + µkI for sufficiently large µk > 0, and

• d(k) = −(H(k) + µkI)−1g(k) is a descent direction;

• choose αk properly such that

x(k+1) = x(k) − αk(H(k) + µkI)−1g(k)

is a descent method.
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Newton’s method for nonlinear least-squares.

Suppose we want to solve

minimize f(x) where f(x) =
m∑
i=1

(ri(x))2

and ri : Rn → R may not be affine.

Now denote r(x) = [r1(x), . . . , rm(x)]> ∈ Rm. Then the Jacobian of r :

Rn → Rm is

J(x) =


∂r1
∂x1

(x) · · · ∂r1
∂xn

(x)
... . . . ...

∂rm
∂x1

(x) · · · ∂rm
∂xn

(x)

 ∈ Rm×n
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Note that f(x) = ‖r(x)‖2, therefore,

∇f(x) = 2J(x)>r(x)

∇2f(x) = 2(J(x)>J(x) + S(x))

where S(x) =
∑m
i=1 ri(x)∇2ri(x) ∈ Rn×n.

In this case, Newton’s method yields

x(k+1) = x(k) − (J(k)>J(k) + S(k))−1J(k)>r(k)

where J(k) = J(x(k)),S(k) = S(x(k)), r(k) = r(x(k)).
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• If S(k) ≈ 0, then we have

x(k+1) = x(k) − (J(k)>J(k))−1J(k)>r(k)

This is known as the Gauss-Newton’s method.

• If J(k)>J(k) is not positive definite, then we modify it:

x(k+1) = x(k) − (J(k)>J(k) + µkI)−1J(k)>r(k)

This is known as the Levenberg-Marquardt’s method.

Xiaojing Ye, Math & Stat, Georgia State University 12


