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Consider (%) and compute g(*) := Vf(x(¥)). Set descent direction to

Now we want to find a > 0 such that (¥) — ag(¥) improves z ().

Define ¢(a) := f(x®) — ag(¥)), then ¢ has Taylor expansion:
f@® —ag®) = f(@®) - allg®|? + o()

For o sufficiently small, we have

F@&®) —agk)y < ()
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Gradient Descent Method (or Gradient Method):

2D = (0 _ o o)

Set an initial guess (%), and iterate the scheme above to obtain {z(*) : k =
0,1,...}.

o x(F): current estimate:
o gb) .= v f(x(*): gradient at z(¥);

e o, > O: step size.
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Steepest Descent Method: choose ;. such that
ap = arg min f(a:(k) — ozg(k))
a>0

Steepest descent method is an exact line search method.

We will first discuss some properties of steepest descent method, and con-
sider other (inexact) line search methods.
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Proposition. Let {<(¥)} be obtained by steepest descent method, then
(2 12) _ (k1)) Tp(k+1) _ 2y = g

Proof. Define ¢(a) := f(x*) —ag(¥)). Since a;, = arg min (), we have

0= ¢(ap) = VF@® — a,g?)Tg®) = glht1) " 5
On the other hand, we have

L(k2) (k1)
1) ()

ozk+1g(k+1)

g™

Therefore, we have

(22 _ g DNT (g (k+1) _ (k)Y (k+1) " (k) — o,

— Op41%kg
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Proposition. Let {(¥)} be obtained by steepest descent method and g(*) =
0, then f(w(k‘l'l)) < f(a;(k))
Proof. Define (o) := f(z(*) — ag(¥)). Then
¢/(O) — —Vf(ilf(k) _ Og(k))Tg(k) — _Hg(k)HQ <0.
Since «y, is a minimizer, there is

F@F D)) = (o) < ¢(0) = f(x=M).
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Stopping Criterion.

For a prescribed € > 0, terminate the iteration if one of the followings is met:
e g™ <&
o |f(@*FTD)) — f(a(k))] < ;
o [[z(hTD) _ 2(F)|| < e

More preferable choices using “relative change”:

o [f(x(Ft1)) — f(x(R)|/|f(x®)| < ¢

o l2tHD) — g/l < e
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Example. Use steepest descent method for 3 iterations on

fx1,z0,23) = (21 — 4)* + (z2 — 3)° + 4(x3 + 5)*
with initial point z(®) = [4,2, —1]T.

Solution. We will repeatedly use the gradient, so let's compute it first:

4(z1 —4)3 |
Vi(z) =1 2(zo - 3)
16(z3 + 5)3_

We keep in mind that z* = [4,3, —5] .
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In the 1st iteration:
e Current iterate: £(0) = (4,2, —1]T;
e Current gradient: ¢(0) = v f(2(0)) = [0,-2,1024]T;

e Find step size:

ap = arg min f(a:(o) — ag(o))
a>0
= arg min (O +(242a—-3)2+4(—1—1024a + 5)4>
a>0

and use secant method to get g = 3.967 x 1073.

e Next iterate: (1) = £(0) — 44g(0) = ... = [4.000,2.008, —5.062] .
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In the 2nd iteration:

e Current iterate: (1) = [4.000,2.008, —5.062] T ;

e Current gradient: g(1) = v f(2(1)) = [0.001, —1.984, —0.003875] ' ;

e Find step size:

a1 = arg min f(z® — ag™)
a>0

= arg min (o + (2.008 4 1.984a — 3)? + 4(—5.062 4 0.003875a + 5)4)

a>0

and use secant method to get a3 = 0.500.

e Next iterate: z(2) = (1) — o79(1) = ... = [4.000, 3.000, —5.060] .
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In the 3rd iteration:
e Current iterate: (2) = [4.000, 3.000, —5.060] T ;

e Current gradient: g(® = v f(2(?)) = [0.000,0.000, —0.003525] T;

e Find step size:

as = argmin f(z® — ag®)
a>0

— arg min (o + 0+ 4(—5.060 + 0.003525a + 5)4)

a>0

and use secant method to get o = 16.29.

e Nextiterate: z(3) = £(2) — a,g(2) = ... = [4.000, 3.000, —5.002] .
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A quadratic function f of = can be written as
flx)=xz' Az —b'x

where A is not necessarily symmetric.

Note that zT Az = =" ATz and hence " Az = JzT(A + AT)z where
A+ AT is symmetric.

Therefore, a quadratic function can always be rewritten as
1
f(x) = EwTQw —b'x
where (@ is symmetric. In this case, the gradient and Hessian are:

Vi(x)=Qx—b and V2f(z) = Q.

Xiaojing Ye, Math & Stat, Georgia State University 14



Now let's see what happens when we apply the steepest descent method to a
quadratic function f:

f(x) = %wTQw —b'x

where Q > 0.

At k-th iteration, we have z(¥) and g(*) = v f(x(¥)) = Qz(¥) — b.

Then we need to find the step size o, = arg min,, ¢(«) where
d(a) 1= f(a:(k) _ ag(’“)) — l(w(k) _ ag(k))TQ(w(k) _ ag(k)) _ bT(w(k) _ ag(k))
2
Solving ¢'(a) = —(x®) — agENTQg*) + bTg(k) = 0, we obtain

(Qz) —b)Tgh) _ gk "g(®)
g Qg MO0

O{k:
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Therefore, the steepest descent method applied to f(z) = 3z 'Qx — b’z
with Q > O yields

.
SHD) () ( gt g™ >g<k>
g(®) " Qg (k)
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Several concepts about algorithms and convergence:

e lterative algorithm: an algorithm that generates sequence x(®), (1),
z(2), .. each based on the points preceding it.

e Descent method: a method/algorithm such that f(z(*+1)) < £(x(k)).

e Globally convergent: an algorithm that generates sequence (k) — g
starting from ANY z(9).

e Locally convergent: an algorithm that generates sequence (k) — * if
z(0) is sufficiently close to x*.

e Rate of convergence: how fast is the convergence (more later).
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Now we come back to the convergence of the steepest descent applied to
quadratic function f(z) = 2z Qz — b x where Q >~ 0.

Since V2f(x) = Q = O, f is strictly convex and only has a unique minimizer,
denoted by x*.

By FONC, thereis Vf(x*) = Qx* — b =0, i.e.,, Qz* = b.
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To examine the convergence, we consider

V() = f(2) + 5o T Qa’

= (@) Qo)

(show this as an exercise).

Since Q = 0, thereis V(x) =0 iff x = x*.
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Lemma. Let {(*)} be generated by the steepest descent method. Then
V(@) = (1 - )V (™)

where

(

0 it lgt)]| =0

KT k DT (k
B0 (200 ) g0 2
\ g(k) Q—lg(k) g(k) Qg(k)

N\

Tk
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Proof. If [[g(F)|| = 0, then £(*1t1) = £(k) and vV (x(k+1)) = v (k).
Hence ~;, = O.

If |lg(*)|| # 0, then

V(e®+D)y = L@+ _ 0T a1 _ )

2
1

=2
=V@®) ~ag® Q® — 2% + 2™ Qg

(") —a* + apg") T Q@™ — 2" + ayg™)

Therefore

V(e®) - v(at+t)) ozkg(’“)TQ(a:(k) — ) — %Oé%g(k)TQg(k)
V(x(k) - V(z(®)
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Note that:

Qx™) —z*) = QxF) —b=vVf(ax®)) = g
m(k) — = Q_lg(k)

1 1 NT
Viz®)y = 5(:,j(k) — 29T Q® — ) = 5g(k) Q14

Then we obtain

V(z®) - v(EtD)  aga—3ab b/ a
= T = ap— (2— — ak)
V({I}(k)) 5C C
where
T T T
a:=g" g®) =g Qg™ c:=g® @ 1g"
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Now we have obtained V (z(*+1)) = (1 — v,)V (2(¥)), from which we have

k—1
V(eh)) = [H (1- w] V(2(9)

i=0
Since x(9) is given and fixed, we can see

k—1
V(a:(k)) — 0 <= H (1—~)—0
i=0

k—1
— — ) log(l—)— +oo
i=0
k—1
— ) v — oo
i=0
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We summarize the result below:

Theorem. Let {a:("“)} be generated by the gradient algorithm for a quadratic
function f(z) = (1/2)x'Qx — b'x (where Q > 0) with step sizes oy,
converges, i.e., z(F) — z* iff 1220 4 = +oo.

Proof. (Sketch) Use the inequalities

v < —log(l—7) <2y

which hold for v > 0 close to 0. Then use the squeeze theorem.
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Rayleigh’s inequality: given a symmetric QQ = O, there is

Amin(@)|z]|* < 2" Qz = ||z]|§ < Amax(Q) ||z ||?

for any .
Here \pin(Q) (Amax(Q)) are the minimum (maximum) eigenvalue of Q.

In addition, we can get the min/max eigenvalues of Q—1:

Amin(Q_l) = Amai(Q) and )\max(Q_l) — )\ 1(Q)
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Lemma. If Q > 0, then for any x, there is

Amin(@) < ||33||4 < Amax (@)
Amax(Q) — ||w||£2||w||§2_1 ~ Amin(Q)

Proof. By Rayleigh’s inequality, we have

2 2
| 2 < lzl3 < A 2 = _ 2 ]
Amin(@) 217 < 2/l = Amax(Q)lll[* and 1=~ os < lZlg-1 =+~ 5y

These imply
L el 2
= = and  Amin(Q) < < Amax(Q)
Amax(Q) ||33||€2 Amin(Q) min ||33Hé_1 max

Multiplying the two yields the claim.
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We can show the steepest descent method has «; set to satisfy > v, =
~+ o0

.
g g®)
g " Qg(k)

First recall that o, =

Then there is

Tk — &

HOE ORI ORNG
e (2~
g(k) Q 1g(k) g(k) Qg(k)
T

_ (g g(k))2

g Qg g ' Q—14(k)

_ g™ Amin(@)

lg™NBl1gMNG-1 — Amax(Q)

Therefore > 1. vi. = +o0.

0
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Now let’s consider the gradient method with fixed step size a > O:

Theorem. If the step size a > 0 is fixed, then the gradient method converges

if and only if
2

I<as Amax(Q)

Proof. “<=” Suppose 0 < a < m then

g™ /1192
Y — & (2 — Oé)
N FICI PR PO

@IV (2
~ Amax(Q1)|1g(R)||12

- 2 _
= Ainin(@) ()\max(Q)

Therefore Y"1 7. = oo and hence GM converges.

a>>0
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“=" Suppose GM converges but o < 0 or a > m Then if (0) s
chosen such that (%) — z* is the eigenvector corresponding to the eigenvalue
Amax(Q) of Q, we have

e D) _px — 2 (F) _ g(R) _ g

=2 _ o(Qz*) —b) — 2*

%) — 0(Qz® — Qz*) — z*
= (I - aQ) (¥ — z*)
= (I - a@)" 1 (2% — a*)
= (1 - Amax(Q)F (@) — z%)

Taking norm on both sides yields

D — ¥ = |1 — admax(Q)|F T |2(®) — 2*|

where |1 — admax(Q)| > 1ifa<0ora > N (Q)° Contradiction.
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Example. Find an appropriate « for the GM with fixed step size « for

4 242

0 5 + 24

flz)=a' >

]a:—|—a:T

Solution. First rewrite f into the standard quadratic form with symmetric Q:

1 1+ 8 2v2 T13
f(a:)—iaz N 10]:134—:13 6 + 24
. | 8 2v2|.
Then we compute the eigenvalues of Q = [2\/5 10 ]
_(A=8 —2v2|_ ., B P B
|AI—Q|_|_2\@ N 10 =A=-8)\A\-10)-8=AN-6)(A—-12)

Hence Amax(Q) = 12, and the range of « should be (0, %).
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Convergence rate of steepest descent method:

Recall that applying SD to f(z) = 3z "Qz + bz with Q >~ 0 yields

V(eh ) < (1 - r)v(e®)

where V(z) = i(x — 2*)TQ(x — @*), and x = jnrg;r;%%g.

Remark. A;*ng)) = |Q||||Q}|| is called the condition number of Q.
min
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Order of convergence

We say (k) — z* with order p if

2D — o

0<
k—oo ||x(k) — x||P

It can be shown that p > 1, and the larger p is, the faster the convergence is.
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Example.

o (k) = % — 0, then

|w(k+1)’ kP
2®p  k+1

if p < 1. Therefore (¥) — 0 with order 1.

e (k) = ¢k — 0 for some ¢ € (0, 1), then
|:L‘(k+1>| qk—l—l
|m(k) |p o qkp

if p < 1. Therefore (k) — 0 with order 1.
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Example.

o (k) = qzk — 0, then

k+1
|$(k+1)| _ C]2 _ q2k(2_p) < oo
(k) |p gh2"

if p < 2. Therefore (¥) — 0 with order 2.
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In general, we have the following result:

Theorem. If |x(*11) — 2*|| = O(||z(¥) — &*||P), then the convergence is of
order at least p.

Remark. Note that p > 1.
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Descent method and line search

Given a descent direction d(%) of f : R" — R at z(F) (e.g., d¥) = —g(K)),
we need to decide the step size «;, in order to compute

g1 — (k) 4 akd(k)_
Exact line search computes «;. by solving for
ap = arg min ¢r.(a), where ¢n(a) ;= f(a:(k) + ad(k)).
«

Notice that ¢ : R;. — R and ¢/(«) = Vf(z*) + ad(%))d(*). Hence we can
use the secant method:

¢ (D) — ¢ (al-1))

with some initial guess a(0), a(1), and set o, to lim;_, ., a(®).

LD O

o (aD).

Xiaojing Ye, Math & Stat, Georgia State University 36



In practice, it is not computationally economical to use exact line search.

Instead, we prefer inexact line search. That is, we do not exactly solve
ap, = argmin¢p(a), where ¢.(a) = f(z*) + ad®),
(87
but only require oy, to satisfy certain conditions such that:

e casy to compute in practice.
e guarantees convergence.

e performs well in practice.
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There are several commonly used conditions for a.:

e Armijo condition: lets € (0,1),~v > 1 and

dr(ag) < ¢5(0) + eaydy,(0) (s0 oy, not too large)
or(vay) > ¢1.(0) + eyay¢.(0) (SO oy not too small)

e Armijo-Goldstein condition: let0 < e < n < 1 and

o1 () < 05 (0) 4+ e85 (0) (so a;, not too large)
dr(ag) > 61(0) + naydi(0)  (so ¢ (az) not too small)

e Wolfe condition: let0 < e <7 < 1 and

or(ar) < ¢ (0) + eag,(0) (S0 oy not too large)
o1 () > 1. (0) (so ¢, not too steep at o)

Strong-Wolfe condition: replaces the second condition with ¢ (ag)| <

1|9, (0)].

Xiaojing Ye, Math & Stat, Georgia State University 38



Backtracking line search
In practice, we often use the following backiracking line search:

Backtracking: choose initial guess a(0) and 7 € (0,1) (e.g., - = 0.5), then
set o = o(0) and repeat:

1. Check whether ¢ (o) < ¢4 (0) + eagy.(0) (first Armijo condition). If yes,
then terminate.

2. Shrink o to 7.

In other words, we find the smallest integer m € Ng such that oy, = 7a/(0)
satisfies the first Armijo condition ¢ (o) < ¢5(0) 4 e, (0).
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Why line search guarantees convergence?
First, note that here by convergence we mean ||V f(z(*)|| — 0.

We take Wolfe condition and d(*) = —g(¥) for simplicity. Assume Vf is
L-Lipschitz continuous. Now

k1) — (B _ o g
dr(op) = faFTD)
o (o) = =V f (a1 gk
¢1(0) = f(x(®)
$:(0) = —Vf(@")g"

Moreover, L-Lipschitz continuity of V f implies

H(Vf(x) - Vi(y),z—y) <|Vfx) - Viwllz -yl <Lz —y|?
forany x, y.

(k)
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. 1—
Claim. oy, > =1

Proof of Claim. The second Wolfe condition ¢} (ax) > n¢).(0) implies
¢ (ar) — ¢1.(0) > (n — 1)¢;.(0), which is

—(Vf(*TDy — @), g®)y > (1 —n)|1g™)| 2.

2 (k1) _ (k)
af

Note that g(k) = . we know

_ (V@) Z v i@®), g®y < L gttD Z g2 = 1, )1g®)2
095

Combining the two inequalities above yields the claim.
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The first Wolfe condition (Armijo condition) implies

1 —
F@®HD) < f@®) —carlg®? < f@®) - D g®)2

Taking telescope sum yields

1 _ ) K=1
F@) < p(@@) — L5 g2
k=0

which implies

e(1—-mn)

K-1
— 2 g™ < £@@) - f@)) < oo

k=0

for any K (we assume f is bounded below). Notice that @ > 0.

Therefore ||g(®)|| = ||V f(x(F))| — 0.
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