MATH 4211/6211 - Optimization Gradient Method

Xiaojing Ye
Department of Mathematics \& Statistics
Georgia State University

Consider $\boldsymbol{x}^{(k)}$ and compute $\boldsymbol{g}^{(k)}:=\nabla f\left(\boldsymbol{x}^{(k)}\right)$. Set descent direction to $\boldsymbol{d}^{(k)}=-\boldsymbol{g}^{(k)}$.

Now we want to find $\alpha \geq 0$ such that $\boldsymbol{x}^{(k)}-\alpha \boldsymbol{g}^{(k)}$ improves $\boldsymbol{x}^{(k)}$.
Define $\phi(\alpha):=f\left(\boldsymbol{x}^{(k)}-\alpha \boldsymbol{g}^{(k)}\right)$, then ϕ has Taylor expansion:

$$
f\left(\boldsymbol{x}^{(k)}-\alpha \boldsymbol{g}^{(k)}\right)=f\left(\boldsymbol{x}^{(k)}\right)-\alpha\left\|\boldsymbol{g}^{(k)}\right\|^{2}+o(\alpha)
$$

For α sufficiently small, we have

$$
f\left(\boldsymbol{x}^{(k)}-\alpha \boldsymbol{g}^{(k)}\right) \leq f\left(\boldsymbol{x}^{(k)}\right)
$$

Gradient Descent Method (or Gradient Method):

$$
\boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(k)}-\alpha_{k} \boldsymbol{g}^{(k)}
$$

Set an initial guess $\boldsymbol{x}^{(0)}$, and iterate the scheme above to obtain $\left\{\boldsymbol{x}^{(k)}: k=\right.$ $0,1, \ldots\}$.

- $x^{(k)}$: current estimate;
- $\boldsymbol{g}^{(k)}:=\nabla f\left(\boldsymbol{x}^{(k)}\right)$: gradient at $\boldsymbol{x}^{(k)}$;
- $\alpha_{k} \geq 0$: step size.

Steepest Descent Method: choose α_{k} such that

$$
\alpha_{k}=\underset{\alpha \geq 0}{\arg \min } f\left(\boldsymbol{x}^{(k)}-\alpha \boldsymbol{g}^{(k)}\right)
$$

Steepest descent method is an exact line search method.

We will first discuss some properties of steepest descent method, and consider other (inexact) line search methods.

Proposition. Let $\left\{\boldsymbol{x}^{(k)}\right\}$ be obtained by steepest descent method, then

$$
\left(\boldsymbol{x}^{(k+2)}-\boldsymbol{x}^{(k+1)}\right)^{\top}\left(\boldsymbol{x}^{(k+1)}-\boldsymbol{x}^{(k)}\right)=0
$$

Proof. Define $\phi(\alpha):=f\left(\boldsymbol{x}^{(k)}-\alpha \boldsymbol{g}^{(k)}\right)$. Since $\alpha_{k}=\arg \min \phi(\alpha)$, we have

$$
0=\phi^{\prime}\left(\alpha_{k}\right)=\nabla f\left(\boldsymbol{x}^{(k)}-\alpha_{k} \boldsymbol{g}^{(k)}\right)^{\top} \boldsymbol{g}^{(k)}=\boldsymbol{g}^{(k+1)^{\top}} \boldsymbol{g}^{(k)}
$$

On the other hand, we have

$$
\begin{aligned}
& \boldsymbol{x}^{(k+2)}=\boldsymbol{x}^{(k+1)}-\alpha_{k+1} \boldsymbol{g}^{(k+1)} \\
& \boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(k)}-\alpha_{k} \boldsymbol{g}^{(k)}
\end{aligned}
$$

Therefore, we have

$$
\left(\boldsymbol{x}^{(k+2)}-\boldsymbol{x}^{(k+1)}\right)^{\top}\left(\boldsymbol{x}^{(k+1)}-\boldsymbol{x}^{(k)}\right)=\alpha_{k+1} \alpha_{k} \boldsymbol{g}^{(k+1)^{\top}} \boldsymbol{g}^{(k)}=0
$$

Proposition. Let $\left\{\boldsymbol{x}^{(k)}\right\}$ be obtained by steepest descent method and $\boldsymbol{g}^{(k)} \neq$ $\mathbf{0}$, then $f\left(\boldsymbol{x}^{(k+1)}\right)<f\left(\boldsymbol{x}^{(k)}\right)$

Proof. Define $\phi(\alpha):=f\left(\boldsymbol{x}^{(k)}-\alpha \boldsymbol{g}^{(k)}\right)$. Then

$$
\phi^{\prime}(0)=-\nabla f\left(\boldsymbol{x}^{(k)}-0 \boldsymbol{g}^{(k)}\right)^{\top} \boldsymbol{g}^{(k)}=-\left\|\boldsymbol{g}^{(k)}\right\|^{2}<0
$$

Since α_{k} is a minimizer, there is

$$
f\left(\boldsymbol{x}^{(k+1)}\right)=\phi\left(\alpha_{k}\right)<\phi(0)=f\left(\boldsymbol{x}^{(k)}\right) .
$$

Stopping Criterion.

For a prescribed $\epsilon>0$, terminate the iteration if one of the followings is met:

- $\left\|\boldsymbol{g}^{(k)}\right\|<\epsilon$;
- $\left|f\left(\boldsymbol{x}^{(k+1)}\right)-f\left(\boldsymbol{x}^{(k)}\right)\right|<\epsilon$;
- $\left\|\boldsymbol{x}^{(k+1)}-\boldsymbol{x}^{(k)}\right\|<\epsilon$.

More preferable choices using "relative change":

- $\left|f\left(\boldsymbol{x}^{(k+1)}\right)-f\left(\boldsymbol{x}^{(k)}\right)\right| /\left|f\left(\boldsymbol{x}^{(k)}\right)\right|<\epsilon ;$
- $\left\|\boldsymbol{x}^{(k+1)}-\boldsymbol{x}^{(k)}\right\| /\left\|\boldsymbol{x}^{(k)}\right\|<\epsilon$.

Example. Use steepest descent method for 3 iterations on

$$
f\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}-4\right)^{4}+\left(x_{2}-3\right)^{2}+4\left(x_{3}+5\right)^{4}
$$

with initial point $\boldsymbol{x}^{(0)}=[4,2,-1]^{\top}$.
Solution. We will repeatedly use the gradient, so let's compute it first:

$$
\nabla f(x)=\left[\begin{array}{c}
4\left(x_{1}-4\right)^{3} \\
2\left(x_{2}-3\right) \\
16\left(x_{3}+5\right)^{3}
\end{array}\right]
$$

We keep in mind that $\boldsymbol{x}^{*}=[4,3,-5]^{\top}$.

In the 1st iteration:

- Current iterate: $\boldsymbol{x}^{(0)}=[4,2,-1]^{\top}$;
- Current gradient: $\boldsymbol{g}^{(0)}=\nabla f\left(\boldsymbol{x}^{(0)}\right)=[0,-2,1024]^{\top}$;
- Find step size:

$$
\begin{aligned}
\alpha_{0} & =\underset{\alpha \geq 0}{\arg \min } f\left(\boldsymbol{x}^{(0)}-\alpha \boldsymbol{g}^{(0)}\right) \\
& =\underset{\alpha \geq 0}{\arg \min }\left(0+(2+2 \alpha-3)^{2}+4(-1-1024 \alpha+5)^{4}\right)
\end{aligned}
$$

and use secant method to get $\alpha_{0}=3.967 \times 10^{-3}$.

- Next iterate: $\boldsymbol{x}^{(1)}=\boldsymbol{x}^{(0)}-\alpha_{0} \boldsymbol{g}^{(0)}=\cdots=[4.000,2.008,-5.062]^{\top}$.

In the 2nd iteration:

- Current iterate: $\boldsymbol{x}^{(1)}=[4.000,2.008,-5.062]^{\top}$;
- Current gradient: $\boldsymbol{g}^{(1)}=\nabla f\left(\boldsymbol{x}^{(1)}\right)=[0.001,-1.984,-0.003875]^{\top}$;
- Find step size:

$$
\begin{aligned}
\alpha_{1} & =\underset{\alpha \geq 0}{\arg \min } f\left(\boldsymbol{x}^{(1)}-\alpha \boldsymbol{g}^{(1)}\right) \\
& =\underset{\alpha \geq 0}{\arg \min }\left(0+(2.008+1.984 \alpha-3)^{2}+4(-5.062+0.003875 \alpha+5)^{4}\right)
\end{aligned}
$$

and use secant method to get $\alpha_{1}=0.500$.

- Next iterate: $\boldsymbol{x}^{(2)}=\boldsymbol{x}^{(1)}-\alpha_{1} \boldsymbol{g}^{(1)}=\cdots=[4.000,3.000,-5.060]^{\top}$.

In the 3rd iteration:

- Current iterate: $\boldsymbol{x}^{(2)}=[4.000,3.000,-5.060]^{\top}$;
- Current gradient: $\boldsymbol{g}^{(2)}=\nabla f\left(\boldsymbol{x}^{(2)}\right)=[0.000,0.000,-0.003525]^{\top}$;
- Find step size:

$$
\begin{aligned}
\alpha_{2} & =\underset{\alpha \geq 0}{\arg \min } f\left(\boldsymbol{x}^{(2)}-\alpha \boldsymbol{g}^{(2)}\right) \\
& =\underset{\alpha \geq 0}{\arg \min }\left(0+0+4(-5.060+0.003525 \alpha+5)^{4}\right)
\end{aligned}
$$

and use secant method to get $\alpha_{2}=16.29$.

- Next iterate: $\boldsymbol{x}^{(3)}=\boldsymbol{x}^{(2)}-\alpha_{2} \boldsymbol{g}^{(2)}=\cdots=[4.000,3.000,-5.002]^{\top}$.

A quadratic function f of x can be written as

$$
f(\boldsymbol{x})=\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}^{\top} \boldsymbol{x}
$$

where \boldsymbol{A} is not necessarily symmetric.
Note that $\boldsymbol{x}^{\top} \boldsymbol{A x}=\boldsymbol{x}^{\top} \boldsymbol{A}^{\top} \boldsymbol{x}$ and hence $\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{x}=\frac{1}{2} \boldsymbol{x}^{\top}\left(\boldsymbol{A}+\boldsymbol{A}^{\top}\right) \boldsymbol{x}$ where $\boldsymbol{A}+\boldsymbol{A}^{\top}$ is symmetric.

Therefore, a quadratic function can always be rewritten as

$$
f(x)=\frac{1}{2} \boldsymbol{x}^{\top} \boldsymbol{Q} \boldsymbol{x}-\boldsymbol{b}^{\top} \boldsymbol{x}
$$

where Q is symmetric. In this case, the gradient and Hessian are:

$$
\nabla f(x)=Q x-b \quad \text { and } \quad \nabla^{2} f(x)=Q
$$

Now let's see what happens when we apply the steepest descent method to a quadratic function f :

$$
f(x)=\frac{1}{2} \boldsymbol{x}^{\top} \boldsymbol{Q} \boldsymbol{x}-\boldsymbol{b}^{\top} \boldsymbol{x}
$$

where $Q \succ 0$.
At k-th iteration, we have $\boldsymbol{x}^{(k)}$ and $\boldsymbol{g}^{(k)}=\nabla f\left(\boldsymbol{x}^{(k)}\right)=\boldsymbol{Q} \boldsymbol{x}^{(k)}-\boldsymbol{b}$.
Then we need to find the step size $\alpha_{k}=\arg \min _{\alpha} \phi(\alpha)$ where

$$
\phi(\alpha):=f\left(\boldsymbol{x}^{(k)}-\alpha \boldsymbol{g}^{(k)}\right)=\frac{1}{2}\left(\boldsymbol{x}^{(k)}-\alpha \boldsymbol{g}^{(k)}\right)^{\top} \boldsymbol{Q}\left(\boldsymbol{x}^{(k)}-\alpha \boldsymbol{g}^{(k)}\right)-\boldsymbol{b}^{\top}\left(\boldsymbol{x}^{(k)}-\alpha \boldsymbol{g}^{(k)}\right)
$$

Solving $\phi^{\prime}(\alpha)=-\left(\boldsymbol{x}^{(k)}-\alpha \boldsymbol{g}^{(k)}\right)^{\top} \boldsymbol{Q} \boldsymbol{g}^{(k)}+\boldsymbol{b}^{\top} \boldsymbol{g}^{(k)}=0$, we obtain

$$
\alpha_{k}=\frac{\left(\boldsymbol{Q} \boldsymbol{x}^{(k)}-\boldsymbol{b}\right)^{\top} \boldsymbol{g}^{(k)}}{\boldsymbol{g}^{(k)^{\top}} \boldsymbol{Q} \boldsymbol{g}^{(k)}}=\frac{\boldsymbol{g}^{(k)^{\top}} \boldsymbol{g}^{(k)}}{\boldsymbol{g}^{(k)^{\top}} \boldsymbol{Q} \boldsymbol{g}^{(k)}}
$$

Therefore, the steepest descent method applied to $f(x)=\frac{1}{2} \boldsymbol{x}^{\top} \boldsymbol{Q} \boldsymbol{x}-\boldsymbol{b}^{\top} \boldsymbol{x}$ with $Q \succ 0$ yields

$$
\boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(k)}-\left(\frac{\boldsymbol{g}^{(k)^{\top}} \boldsymbol{g}^{(k)}}{\boldsymbol{g}^{(k)^{\top}} \boldsymbol{Q} \boldsymbol{g}^{(k)}}\right) \boldsymbol{g}^{(k)}
$$

Several concepts about algorithms and convergence:

- Iterative algorithm: an algorithm that generates sequence $\boldsymbol{x}^{(0)}, \boldsymbol{x}^{(1)}$, $x^{(2)}, \ldots$, each based on the points preceding it.
- Descent method: a method/algorithm such that $f\left(\boldsymbol{x}^{(k+1)}\right) \leq f\left(\boldsymbol{x}^{(k)}\right)$.
- Globally convergent: an algorithm that generates sequence $\boldsymbol{x}^{(k)} \rightarrow \boldsymbol{x}^{*}$ starting from ANY $x^{(0)}$.
- Locally convergent: an algorithm that generates sequence $\boldsymbol{x}^{(k)} \rightarrow \boldsymbol{x}^{*}$ if $x^{(0)}$ is sufficiently close to x^{*}.
- Rate of convergence: how fast is the convergence (more later).

Now we come back to the convergence of the steepest descent applied to quadratic function $f(x)=\frac{1}{2} \boldsymbol{x}^{\top} \boldsymbol{Q} \boldsymbol{x}-\boldsymbol{b}^{\top} \boldsymbol{x}$ where $\boldsymbol{Q} \succ 0$.

Since $\nabla^{2} f(x)=Q \succ 0, f$ is strictly convex and only has a unique minimizer, denoted by x^{*}.

By FONC, there is $\nabla f\left(\boldsymbol{x}^{*}\right)=\boldsymbol{Q} \boldsymbol{x}^{*}-\boldsymbol{b}=\mathbf{0}$, i.e., $\boldsymbol{Q} \boldsymbol{x}^{*}=\boldsymbol{b}$.

To examine the convergence, we consider

$$
\begin{aligned}
V(\boldsymbol{x}) & :=f(\boldsymbol{x})+\frac{1}{2} \boldsymbol{x}^{* \top} \boldsymbol{Q} \boldsymbol{x}^{*} \\
& =\cdots \\
& =\frac{1}{2}\left(\boldsymbol{x}-\boldsymbol{x}^{*}\right)^{\top} \boldsymbol{Q}\left(\boldsymbol{x}-\boldsymbol{x}^{*}\right)
\end{aligned}
$$

(show this as an exercise).

Since $Q \succ 0$, there is $V(x)=0$ iff $\boldsymbol{x}=\boldsymbol{x}^{*}$.

Lemma. Let $\left\{\boldsymbol{x}^{(k)}\right\}$ be generated by the steepest descent method. Then

$$
V\left(\boldsymbol{x}^{(k+1)}\right)=\left(1-\gamma_{k}\right) V\left(\boldsymbol{x}^{(k)}\right)
$$

where

$$
\gamma_{k}= \begin{cases}0 & \text { if }\left\|\boldsymbol{g}^{(k)}\right\|=0 \\ \alpha_{k} \frac{\boldsymbol{g}^{(k)^{\top}} \boldsymbol{Q \boldsymbol { g } ^ { (k) }}}{\boldsymbol{g}^{(k)^{\top}} \boldsymbol{Q}^{-1} \boldsymbol{g}^{(k)}}\left(2 \frac{\boldsymbol{g}^{(k)^{\top}} \boldsymbol{g}^{(k)}}{\boldsymbol{g}^{(k)}} \boldsymbol{Q \boldsymbol { g } ^ { (k) }}-\alpha_{k}\right) & \text { if }\left\|\boldsymbol{g}^{(k)}\right\| \neq 0\end{cases}
$$

Proof. If $\left\|\boldsymbol{g}^{(k)}\right\|=0$, then $\boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(k)}$ and $V\left(\boldsymbol{x}^{(k+1)}\right)=V\left(\boldsymbol{x}^{(k)}\right)$. Hence $\gamma_{k}=0$.

If $\left\|\boldsymbol{g}^{(k)}\right\| \neq 0$, then

$$
\begin{aligned}
V\left(\boldsymbol{x}^{(k+1)}\right) & =\frac{1}{2}\left(\boldsymbol{x}^{(k+1)}-\boldsymbol{x}^{*}\right)^{\top} \boldsymbol{Q}\left(\boldsymbol{x}^{(k+1)}-\boldsymbol{x}^{*}\right) \\
& =\frac{1}{2}\left(\boldsymbol{x}^{(k)}-\boldsymbol{x}^{*}+\alpha_{k} \boldsymbol{g}^{(k)}\right)^{\top} \boldsymbol{Q}\left(\boldsymbol{x}^{(k)}-\boldsymbol{x}^{*}+\alpha_{k} \boldsymbol{g}^{(k)}\right) \\
& =V\left(\boldsymbol{x}^{(k)}\right)-\alpha_{k} \boldsymbol{g}^{(k)^{\top}} \boldsymbol{Q}\left(\boldsymbol{x}^{(k)}-\boldsymbol{x}^{*}\right)+\frac{1}{2} \alpha_{k}^{2} \boldsymbol{g}^{(k)^{\top}} \boldsymbol{Q} \boldsymbol{g}^{(k)}
\end{aligned}
$$

Therefore

$$
\frac{V\left(\boldsymbol{x}^{(k)}\right)-V\left(\boldsymbol{x}^{(k+1)}\right)}{V\left(\boldsymbol{x}^{(k)}\right)}=\frac{\alpha_{k} \boldsymbol{g}^{(k)^{\top}} \boldsymbol{Q}\left(\boldsymbol{x}^{(k)}-\boldsymbol{x}^{*}\right)-\frac{1}{2} \alpha_{k}^{2} \boldsymbol{g}^{(k)^{\top}} \boldsymbol{Q} \boldsymbol{g}^{(k)}}{V\left(\boldsymbol{x}^{(k)}\right)}
$$

Note that:

$$
\begin{aligned}
\boldsymbol{Q}\left(\boldsymbol{x}^{(k)}-\boldsymbol{x}^{*}\right) & =\boldsymbol{Q} \boldsymbol{x}^{(k)}-\boldsymbol{b}=\nabla f\left(\boldsymbol{x}^{(k)}\right)=\boldsymbol{g}^{(k)} \\
\boldsymbol{x}^{(k)}-\boldsymbol{x}^{*} & =\boldsymbol{Q}^{-1} \boldsymbol{g}^{(k)} \\
V\left(\boldsymbol{x}^{(k)}\right) & =\frac{1}{2}\left(\boldsymbol{x}^{(k)}-\boldsymbol{x}^{*}\right)^{\top} \boldsymbol{Q}\left(\boldsymbol{x}^{(k)}-\boldsymbol{x}^{*}\right)=\frac{1}{2} \boldsymbol{g}^{(k)^{\top}} \boldsymbol{Q}^{-1} \boldsymbol{g}^{(k)}
\end{aligned}
$$

Then we obtain

$$
\frac{V\left(\boldsymbol{x}^{(k)}\right)-V\left(\boldsymbol{x}^{(k+1)}\right)}{V\left(\boldsymbol{x}^{(k)}\right)}=\frac{\alpha_{k} a-\frac{1}{2} \alpha_{k}^{2} b}{\frac{1}{2} c}=\alpha_{k} \frac{b}{c}\left(2 \frac{a}{b}-\alpha_{k}\right)
$$

where

$$
a:=\boldsymbol{g}^{(k)^{\top}} \boldsymbol{g}^{(k)}, \quad b:=\boldsymbol{g}^{(k)^{\top}} \boldsymbol{Q} \boldsymbol{g}^{(k)}, \quad c:=\boldsymbol{g}^{(k)^{\top}} \boldsymbol{Q}^{-1} \boldsymbol{g}^{(k)}
$$

Now we have obtained $V\left(\boldsymbol{x}^{(k+1)}\right)=\left(1-\gamma_{k}\right) V\left(\boldsymbol{x}^{(k)}\right)$, from which we have

$$
V\left(\boldsymbol{x}^{(k)}\right)=\left[\prod_{i=0}^{k-1}\left(1-\gamma_{i}\right)\right] V\left(\boldsymbol{x}^{(0)}\right)
$$

Since $\boldsymbol{x}^{(0)}$ is given and fixed, we can see

$$
\begin{aligned}
V\left(\boldsymbol{x}^{(k)}\right) \rightarrow 0 & \Longleftrightarrow \prod_{i=0}^{k-1}\left(1-\gamma_{i}\right) \rightarrow 0 \\
& \Longleftrightarrow-\sum_{i=0}^{k-1} \log \left(1-\gamma_{i}\right) \rightarrow+\infty \\
& \Longleftrightarrow \sum_{i=0}^{k-1} \gamma_{i} \rightarrow+\infty
\end{aligned}
$$

We summarize the result below:

Theorem. Let $\left\{x^{(k)}\right\}$ be generated by the gradient algorithm for a quadratic function $f(\boldsymbol{x})=(1 / 2) \boldsymbol{x}^{\top} \boldsymbol{Q} \boldsymbol{x}-\boldsymbol{b}^{\top} \boldsymbol{x}$ (where $\boldsymbol{Q} \succ 0$) with step sizes α_{k} converges, i.e., $\boldsymbol{x}^{(k)} \rightarrow \boldsymbol{x}^{*}$ iff $\sum_{k=0}^{\infty} \gamma_{k}=+\infty$.

Proof. (Sketch) Use the inequalities

$$
\gamma \leq-\log (1-\gamma) \leq 2 \gamma
$$

which hold for $\gamma \geq 0$ close to 0 . Then use the squeeze theorem.

Rayleigh's inequality: given a symmetric $Q \succ 0$, there is

$$
\lambda_{\min }(\boldsymbol{Q})\|\boldsymbol{x}\|^{2} \leq \boldsymbol{x}^{\top} \boldsymbol{Q} \boldsymbol{x}=:\|\boldsymbol{x}\|_{\boldsymbol{Q}}^{2} \leq \lambda_{\max }(\boldsymbol{Q})\|\boldsymbol{x}\|^{2}
$$

for any \boldsymbol{x}.

Here $\lambda_{\min }(Q)\left(\lambda_{\max }(Q)\right)$ are the minimum (maximum) eigenvalue of Q.
In addition, we can get the $\mathrm{min} / \mathrm{max}$ eigenvalues of Q^{-1} :

$$
\lambda_{\min }\left(Q^{-1}\right)=\frac{1}{\lambda_{\max }(\boldsymbol{Q})} \quad \text { and } \quad \lambda_{\max }\left(Q^{-1}\right)=\frac{1}{\lambda_{\min }(\boldsymbol{Q})}
$$

Lemma. If $Q \succ 0$, then for any \boldsymbol{x}, there is

$$
\frac{\lambda_{\min }(Q)}{\lambda_{\max }(\boldsymbol{Q})} \leq \frac{\|x\|^{4}}{\|x\|_{\boldsymbol{Q}}^{2}\|x\|_{Q^{-1}}^{2}} \leq \frac{\lambda_{\max }(\boldsymbol{Q})}{\lambda_{\min }(\boldsymbol{Q})}
$$

Proof. By Rayleigh's inequality, we have
$\lambda_{\min }(\boldsymbol{Q})\|\boldsymbol{x}\|^{2} \leq\|\boldsymbol{x}\|_{\boldsymbol{Q}}^{2} \leq \lambda_{\max }(\boldsymbol{Q})\|\boldsymbol{x}\|^{2}$ and $\frac{\|\boldsymbol{x}\|^{2}}{\lambda_{\max }(\boldsymbol{Q})} \leq\|\boldsymbol{x}\|_{\boldsymbol{Q}^{-1}}^{2} \leq \frac{\|\boldsymbol{x}\|^{2}}{\lambda_{\min }(\boldsymbol{Q})}$
These imply

$$
\frac{1}{\lambda_{\max }(\boldsymbol{Q})} \leq \frac{\|x\|^{2}}{\|x\|_{Q}^{2}} \leq \frac{1}{\lambda_{\min }(\boldsymbol{Q})} \quad \text { and } \quad \lambda_{\min }(Q) \leq \frac{\|x\|^{2}}{\|x\|_{Q^{-1}}^{2}} \leq \lambda_{\max }(\boldsymbol{Q})
$$

Multiplying the two yields the claim.

We can show the steepest descent method has α_{k} set to satisfy $\sum_{k} \gamma_{k}=$ $+\infty$:

First recall that $\alpha_{k}=\frac{\boldsymbol{g}^{(k)} \boldsymbol{T}^{\top} \boldsymbol{g}^{(k)}}{\boldsymbol{g}^{(k)^{\top}} \boldsymbol{Q \boldsymbol { g } ^ { (k) }}}$.
Then there is

$$
\begin{aligned}
\gamma_{k} & =\alpha_{k} \frac{\boldsymbol{g}^{(k)^{\top}} \boldsymbol{Q} \boldsymbol{g}^{(k)}}{\boldsymbol{g}^{(k)^{\top}} \boldsymbol{Q}^{-1} \boldsymbol{g}^{(k)}}\left(2 \frac{\boldsymbol{g}^{(k)^{\top}} \boldsymbol{g}^{(k)}}{\boldsymbol{g}^{(k)^{\top}} \boldsymbol{Q} \boldsymbol{g}^{(k)}}-\alpha_{k}\right) \\
& =\frac{\left(\boldsymbol{g}^{(k)}{ }^{\top} \boldsymbol{g}^{(k)}\right)^{2}}{\boldsymbol{g}^{(k)^{\top}} \boldsymbol{Q} \boldsymbol{g}^{(k)} \boldsymbol{g}^{(k)^{\top}} \boldsymbol{Q}^{-1} \boldsymbol{g}^{(k)}} \\
& =\frac{\left\|\boldsymbol{g}^{(k)}\right\|^{4}}{\left\|\boldsymbol{g}^{(k)}\right\|_{\boldsymbol{Q}}^{2}\left\|\boldsymbol{g}^{(k)}\right\|_{\boldsymbol{Q}^{-1}}^{2}} \geq \frac{\lambda_{\min }(\boldsymbol{Q})}{\lambda_{\max }(\boldsymbol{Q})}>0
\end{aligned}
$$

Therefore $\sum_{k} \gamma_{k}=+\infty$.

Now let's consider the gradient method with fixed step size $\alpha>0$:
Theorem. If the step size $\alpha>0$ is fixed, then the gradient method converges if and only if

$$
0<\alpha<\frac{2}{\lambda_{\max }(\boldsymbol{Q})}
$$

Proof. " \Leftarrow " Suppose $0<\alpha<\frac{2}{\lambda_{\max }(Q)}$, then

$$
\begin{aligned}
\gamma_{k} & =\alpha \frac{\left\|\boldsymbol{g}^{(k)}\right\|_{\boldsymbol{Q}}^{2}}{\left\|\boldsymbol{g}^{(k)}\right\|_{\boldsymbol{Q}^{-1}}^{2}}\left(2 \frac{\left\|\boldsymbol{g}^{(k)}\right\|^{2}}{\left\|\boldsymbol{g}^{(k)}\right\|_{\boldsymbol{Q}}^{2}}-\alpha\right) \\
& \geq \alpha \frac{\lambda_{\min }(\boldsymbol{Q})\left\|\boldsymbol{g}^{(k)}\right\|^{2}}{\lambda_{\max }\left(\boldsymbol{Q}^{-1}\right)\left\|\boldsymbol{g}^{(k)}\right\|^{2}}\left(\frac{2}{\lambda_{\max }(\boldsymbol{Q})}-\alpha\right) \\
& =\alpha \lambda_{\min }^{2}(\boldsymbol{Q})\left(\frac{2}{\lambda_{\max }(\boldsymbol{Q})}-\alpha\right)>0
\end{aligned}
$$

Therefore $\sum_{k} \gamma_{k}=\infty$ and hence GM converges.
" \Rightarrow " Suppose GM converges but $\alpha \leq 0$ or $\alpha \geq \frac{2}{\lambda_{\max }(\boldsymbol{Q})}$. Then if $\boldsymbol{x}^{(0)}$ is chosen such that $\boldsymbol{x}^{(0)}-\boldsymbol{x}^{*}$ is the eigenvector corresponding to the eigenvalue $\lambda_{\max }(Q)$ of Q, we have

$$
\begin{aligned}
\boldsymbol{x}^{(k+1)}-\boldsymbol{x}^{*} & =\boldsymbol{x}^{(k)}-\alpha \boldsymbol{g}^{(k)}-\boldsymbol{x}^{*} \\
& =\boldsymbol{x}^{(k)}-\alpha\left(\boldsymbol{Q} \boldsymbol{x}^{(k)}-\boldsymbol{b}\right)-\boldsymbol{x}^{*} \\
& =\boldsymbol{x}^{(k)}-\alpha\left(\boldsymbol{Q} \boldsymbol{x}^{(k)}-\boldsymbol{Q} \boldsymbol{x}^{*}\right)-\boldsymbol{x}^{*} \\
& =(\boldsymbol{I}-\alpha \boldsymbol{Q})\left(\boldsymbol{x}^{(k)}-\boldsymbol{x}^{*}\right) \\
& =(\boldsymbol{I}-\alpha \boldsymbol{Q})^{k+1}\left(\boldsymbol{x}^{(0)}-\boldsymbol{x}^{*}\right) \\
& =\left(1-\alpha \lambda_{\max }(\boldsymbol{Q})\right)^{k+1}\left(\boldsymbol{x}^{(0)}-\boldsymbol{x}^{*}\right)
\end{aligned}
$$

Taking norm on both sides yields

$$
\left\|\boldsymbol{x}^{(k+1)}-\boldsymbol{x}^{*}\right\|=\left|1-\alpha \lambda_{\max }(\boldsymbol{Q})\right|^{k+1}\left\|\boldsymbol{x}^{(0)}-\boldsymbol{x}^{*}\right\|
$$

where $\left|1-\alpha \lambda_{\max }(Q)\right| \geq 1$ if $\alpha \leq 0$ or $\alpha \geq \frac{2}{\lambda_{\max }(Q)}$. Contradiction.

Example. Find an appropriate α for the GM with fixed step size α for

$$
f(x)=x^{\top}\left[\begin{array}{cc}
4 & 2 \sqrt{2} \\
0 & 5
\end{array}\right] x+x^{\top}\left[\begin{array}{l}
3 \\
6
\end{array}\right]+24
$$

Solution. First rewrite f into the standard quadratic form with symmetric Q :

$$
f(x)=\frac{1}{2} x^{\top}\left[\begin{array}{cc}
8 & 2 \sqrt{2} \\
2 \sqrt{2} & 10
\end{array}\right] x+x^{\top}\left[\begin{array}{l}
3 \\
6
\end{array}\right]+24
$$

Then we compute the eigenvalues of $Q=\left[\begin{array}{cc}8 & 2 \sqrt{2} \\ 2 \sqrt{2} & 10\end{array}\right]$:

$$
|\lambda I-Q|=\left|\begin{array}{cc}
\lambda-8 & -2 \sqrt{2} \\
-2 \sqrt{2} & \lambda-10
\end{array}\right|=(\lambda-8)(\lambda-10)-8=(\lambda-6)(\lambda-12)
$$

Hence $\lambda_{\max }(\boldsymbol{Q})=12$, and the range of α should be $\left(0, \frac{2}{12}\right)$.

Convergence rate of steepest descent method:
Recall that applying SD to $f(\boldsymbol{x})=\frac{1}{2} \boldsymbol{x}^{\top} \boldsymbol{Q} \boldsymbol{x}+\boldsymbol{b}^{\top} \boldsymbol{x}$ with $\boldsymbol{Q} \succ 0$ yields

$$
V\left(\boldsymbol{x}^{(k+1)}\right) \leq(1-\kappa) V\left(\boldsymbol{x}^{(k)}\right)
$$

where $V(x):=\frac{1}{2}\left(x-x^{*}\right)^{\top} \boldsymbol{Q}\left(\boldsymbol{x}-\boldsymbol{x}^{*}\right)$, and $\kappa=\frac{\lambda_{\min }(Q)}{\lambda_{\max }(Q)}$.
Remark. $\frac{\lambda_{\max }(Q)}{\lambda_{\min }(Q)}=\|\boldsymbol{Q}\|\left\|Q^{-1}\right\|$ is called the condition number of \boldsymbol{Q}.

Order of convergence

We say $\boldsymbol{x}^{(k)} \rightarrow \boldsymbol{x}^{*}$ with order p if

$$
0<\lim _{k \rightarrow \infty} \frac{\left\|\boldsymbol{x}^{(k+1)}-\boldsymbol{x}^{*}\right\|}{\left\|\boldsymbol{x}^{(k)}-\boldsymbol{x}^{*}\right\|^{p}}<\infty
$$

It can be shown that $p \geq 1$, and the larger p is, the faster the convergence is.

Example.

- $\boldsymbol{x}^{(k)}=\frac{1}{k} \rightarrow 0$, then

$$
\frac{\left|\boldsymbol{x}^{(k+1)}\right|}{\left|\boldsymbol{x}^{(k)}\right|^{p}}=\frac{k^{p}}{k+1}<\infty
$$

if $p \leq 1$. Therefore $\boldsymbol{x}^{(k)} \rightarrow 0$ with order 1 .

- $\boldsymbol{x}^{(k)}=q^{k} \rightarrow 0$ for some $q \in(0,1)$, then

$$
\frac{\left|\boldsymbol{x}^{(k+1)}\right|}{\left|\boldsymbol{x}^{(k)}\right|^{p}}=\frac{q^{k+1}}{q^{k p}}=q^{k(1-p)+1}<\infty
$$

if $p \leq 1$. Therefore $\boldsymbol{x}^{(k)} \rightarrow 0$ with order 1 .

Example.

- $\boldsymbol{x}^{(k)}=q^{2^{k}} \rightarrow 0$, then

$$
\frac{\left|\boldsymbol{x}^{(k+1)}\right|}{\left|\boldsymbol{x}^{(k)}\right|^{p}}=\frac{q^{2^{k+1}}}{q^{p^{k}}}=q^{2^{k}(2-p)}<\infty
$$

if $p \leq 2$. Therefore $\boldsymbol{x}^{(k)} \rightarrow 0$ with order 2 .

In general, we have the following result:
Theorem. If $\left\|\boldsymbol{x}^{(k+1)}-\boldsymbol{x}^{*}\right\|=O\left(\left\|\boldsymbol{x}^{(k)}-\boldsymbol{x}^{*}\right\|^{p}\right)$, then the convergence is of order at least p.

Remark. Note that $p \geq 1$.

Descent method and line search

Given a descent direction $\boldsymbol{d}^{(k)}$ of $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ at $\boldsymbol{x}^{(k)}\left(\right.$ e.g., $\left.\boldsymbol{d}^{(k)}=-\boldsymbol{g}^{(k)}\right)$, we need to decide the step size α_{k} in order to compute

$$
\boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(k)}+\alpha_{k} \boldsymbol{d}^{(k)}
$$

Exact line search computes α_{k} by solving for

$$
\alpha_{k}=\underset{\alpha}{\arg \min } \phi_{k}(\alpha), \quad \text { where } \quad \phi_{k}(\alpha):=f\left(\boldsymbol{x}^{(k)}+\alpha \boldsymbol{d}^{(k)}\right)
$$

Notice that $\phi: \mathbb{R}_{+} \rightarrow \mathbb{R}$ and $\phi^{\prime}(\alpha)=\nabla f\left(\boldsymbol{x}^{(k)}+\alpha \boldsymbol{d}^{(k)}\right) \boldsymbol{d}^{(k)}$. Hence we can use the secant method:

$$
\alpha^{(l+1)}=\alpha^{(l)}-\frac{\alpha^{(l)}-\alpha^{(l-1)}}{\phi_{k}^{\prime}\left(\alpha^{(l)}\right)-\phi_{k}^{\prime}\left(\alpha^{(l-1)}\right)} \phi_{k}^{\prime}\left(\alpha^{(l)}\right) .
$$

with some initial guess $\alpha^{(0)}, \alpha^{(1)}$, and set α_{k} to $\lim _{l \rightarrow \infty} \alpha^{(l)}$.

In practice, it is not computationally economical to use exact line search.

Instead, we prefer inexact line search. That is, we do not exactly solve

$$
\alpha_{k}=\underset{\alpha}{\arg \min } \phi_{k}(\alpha), \quad \text { where } \quad \phi_{k}(\alpha):=f\left(\boldsymbol{x}^{(k)}+\alpha \boldsymbol{d}^{(k)}\right),
$$

but only require α_{k} to satisfy certain conditions such that:

- easy to compute in practice.
- guarantees convergence.
- performs well in practice.

There are several commonly used conditions for α_{k} :

- Armijo condition: let $\varepsilon \in(0,1), \gamma>1$ and

$$
\begin{aligned}
\phi_{k}\left(\alpha_{k}\right) \leq \phi_{k}(0)+\varepsilon \alpha_{k} \phi_{k}^{\prime}(0) & & \text { (so } \alpha_{k} \text { not too large) } \\
\phi_{k}\left(\gamma \alpha_{k}\right) \geq \phi_{k}(0)+\varepsilon \gamma \alpha_{k} \phi_{k}^{\prime}(0) & & \text { (so } \alpha_{k} \text { not too small) }
\end{aligned}
$$

- Armijo-Goldstein condition: let $0<\varepsilon<\eta<1$ and

$$
\begin{array}{ll}
\phi_{k}\left(\alpha_{k}\right) \leq \phi_{k}(0)+\varepsilon \alpha_{k} \phi_{k}^{\prime}(0) & \left(\text { so } \alpha_{k}\right. \text { not too large) } \\
\phi_{k}\left(\alpha_{k}\right) \geq \phi_{k}(0)+\eta \alpha_{k} \phi_{k}^{\prime}(0) & \text { (so } \phi_{k}^{\prime}\left(\alpha_{k}\right) \text { not too small) }
\end{array}
$$

- Wolfe condition: let $0<\varepsilon<\eta<1$ and

$$
\begin{aligned}
& \phi_{k}\left(\alpha_{k}\right) \leq \phi_{k}(0)+\varepsilon \alpha_{k} \phi_{k}^{\prime}(0) \quad\left(\text { so } \alpha_{k} \text { not too large }\right) \\
& \left.\phi_{k}^{\prime}\left(\alpha_{k}\right) \geq \eta \phi_{k}^{\prime}(0) \quad \text { (so } \phi_{k} \text { not too steep at } \alpha_{k}\right)
\end{aligned}
$$

Strong-Wolfe condition: replaces the second condition with $\left|\phi_{k}^{\prime}\left(\alpha_{k}\right)\right| \leq$ $\eta\left|\phi_{k}^{\prime}(0)\right|$.

Backtracking line search

In practice, we often use the following backtracking line search:

Backtracking: choose initial guess $\alpha^{(0)}$ and $\tau \in(0,1)$ (e.g., $\left.\tau=0.5\right)$, then set $\alpha=\alpha^{(0)}$ and repeat:

1. Check whether $\phi_{k}(\alpha) \leq \phi_{k}(0)+\varepsilon \alpha \phi_{k}^{\prime}(0)$ (first Armijo condition). If yes, then terminate.
2. Shrink α to $\tau \alpha$.

In other words, we find the smallest integer $m \in \mathbb{N}_{\mathrm{O}}$ such that $\alpha_{k}=\tau^{m}{ }_{\alpha}(0)$ satisfies the first Armijo condition $\phi_{k}\left(\alpha_{k}\right) \leq \phi_{k}(0)+\varepsilon \alpha_{k} \phi_{k}^{\prime}(0)$.

Why line search guarantees convergence?

First, note that here by convergence we mean $\left\|\nabla f\left(\boldsymbol{x}^{(k)}\right)\right\| \rightarrow 0$.
We take Wolfe condition and $\boldsymbol{d}^{(k)}=-\boldsymbol{g}^{(k)}$ for simplicity. Assume ∇f is L-Lipschitz continuous. Now

$$
\begin{aligned}
\boldsymbol{x}^{(k+1)} & =\boldsymbol{x}^{(k)}-\alpha_{k} \boldsymbol{g}^{(k)} \\
\phi_{k}\left(\alpha_{k}\right) & =f\left(\boldsymbol{x}^{(k+1)}\right) \\
\phi_{k}^{\prime}\left(\alpha_{k}\right) & =-\nabla f\left(\boldsymbol{x}^{(k+1)}\right) \boldsymbol{g}^{(k)} \\
\phi_{k}(0) & =f\left(\boldsymbol{x}^{(k)}\right) \\
\phi_{k}^{\prime}(0) & =-\nabla f\left(\boldsymbol{x}^{(k)}\right) \boldsymbol{g}^{(k)}
\end{aligned}
$$

Moreover, L-Lipschitz continuity of ∇f implies

$$
\pm\langle\nabla f(\boldsymbol{x})-\nabla f(\boldsymbol{y}), \boldsymbol{x}-\boldsymbol{y}\rangle \leq\|\nabla f(\boldsymbol{x})-\nabla f(\boldsymbol{y})\|\|\boldsymbol{x}-\boldsymbol{y}\| \leq L\|\boldsymbol{x}-\boldsymbol{y}\|^{2}
$$

for any $\boldsymbol{x}, \boldsymbol{y}$.

Claim. $\alpha_{k} \geq \frac{1-\eta}{L}$.
Proof of Claim. The second Wolfe condition $\phi_{k}^{\prime}\left(\alpha_{k}\right) \geq \eta \phi_{k}^{\prime}(0)$ implies $\phi_{k}^{\prime}\left(\alpha_{k}\right)-\phi_{k}^{\prime}(0) \geq(\eta-1) \phi_{k}^{\prime}(0)$, which is

$$
-\left\langle\nabla f\left(\boldsymbol{x}^{(k+1)}\right)-\nabla f\left(\boldsymbol{x}^{(k)}\right), \boldsymbol{g}^{(k)}\right\rangle \geq(1-\eta)\left\|\boldsymbol{g}^{(k)}\right\|^{2} .
$$

Note that $\boldsymbol{g}^{(k)}=\frac{\boldsymbol{x}^{(k+1)}-\boldsymbol{x}^{(k)}}{\alpha_{k}}$, we know

$$
-\left\langle\nabla f\left(\boldsymbol{x}^{(k+1)}\right)-\nabla f\left(\boldsymbol{x}^{(k)}\right), \boldsymbol{g}^{(k)}\right\rangle \leq \frac{L}{\alpha_{k}}\left\|\boldsymbol{x}^{(k+1)}-\boldsymbol{x}^{(k)}\right\|^{2}=L \alpha_{k}\left\|\boldsymbol{g}^{(k)}\right\|^{2}
$$

Combining the two inequalities above yields the claim.

The first Wolfe condition (Armijo condition) implies

$$
f\left(\boldsymbol{x}^{(k+1)}\right) \leq f\left(\boldsymbol{x}^{(k)}\right)-\varepsilon \alpha_{k}\left\|\boldsymbol{g}^{(k)}\right\|^{2} \leq f\left(\boldsymbol{x}^{(k)}\right)-\frac{\varepsilon(1-\eta)}{L}\left\|\boldsymbol{g}^{(k)}\right\|^{2} .
$$

Taking telescope sum yields

$$
f\left(\boldsymbol{x}^{(K)}\right) \leq f\left(\boldsymbol{x}^{(0)}\right)-\frac{\varepsilon(1-\eta)}{L} \sum_{k=0}^{K-1}\left\|\boldsymbol{g}^{(k)}\right\|^{2} .
$$

which implies

$$
\frac{\varepsilon(1-\eta)}{L} \sum_{k=0}^{K-1}\left\|\boldsymbol{g}^{(k)}\right\|^{2} \leq f\left(\boldsymbol{x}^{(0)}\right)-f\left(\boldsymbol{x}^{(K)}\right)<\infty
$$

for any K (we assume f is bounded below). Notice that $\frac{\varepsilon(1-\eta)}{L}>0$.
Therefore $\left\|\boldsymbol{g}^{(k)}\right\|=\left\|\nabla f\left(\boldsymbol{x}^{(k)}\right)\right\| \rightarrow 0$.

