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Consider x(k) and compute g(k) := ∇f(x(k)). Set descent direction to
d(k) = −g(k).

Now we want to find α ≥ 0 such that x(k) − αg(k) improves x(k).

Define φ(α) := f(x(k) − αg(k)), then φ has Taylor expansion:

f(x(k) − αg(k)) = f(x(k))− α‖g(k)‖2 + o(α)

For α sufficiently small, we have

f(x(k) − αg(k)) ≤ f(x(k))
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Gradient Descent Method (or Gradient Method):

x(k+1) = x(k) − αkg(k)

Set an initial guess x(0), and iterate the scheme above to obtain {x(k) : k =

0,1, . . . }.

• x(k): current estimate;

• g(k) := ∇f(x(k)): gradient at x(k);

• αk ≥ 0: step size.
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Steepest Descent Method: choose αk such that

αk = argmin
α≥0

f(x(k) − αg(k))

Steepest descent method is an exact line search method.

We will first discuss some properties of steepest descent method, and con-
sider other (inexact) line search methods.
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Proposition. Let {x(k)} be obtained by steepest descent method, then

(x(k+2) − x(k+1))>(x(k+1) − x(k)) = 0

Proof. Define φ(α) := f(x(k)−αg(k)). Since αk = argminφ(α), we have

0 = φ′(αk) = ∇f(x(k) − αkg(k))>g(k) = g(k+1)>g(k)

On the other hand, we have

x(k+2) = x(k+1) − αk+1g
(k+1)

x(k+1) = x(k) − αkg(k)

Therefore, we have

(x(k+2) − x(k+1))>(x(k+1) − x(k)) = αk+1αkg
(k+1)>g(k) = 0.
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Proposition. Let {x(k)} be obtained by steepest descent method and g(k) 6=
0, then f(x(k+1)) < f(x(k))

Proof. Define φ(α) := f(x(k) − αg(k)). Then

φ′(0) = −∇f(x(k) − 0g(k))>g(k) = −‖g(k)‖2 < 0.

Since αk is a minimizer, there is

f(x(k+1)) = φ(αk) < φ(0) = f(x(k)).
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Stopping Criterion.

For a prescribed ε > 0, terminate the iteration if one of the followings is met:

• ‖g(k)‖ < ε;

• |f(x(k+1))− f(x(k))| < ε;

• ‖x(k+1) − x(k)‖ < ε.

More preferable choices using “relative change”:

• |f(x(k+1))− f(x(k))|/|f(x(k))| < ε;

• ‖x(k+1) − x(k)‖/‖x(k)‖ < ε.
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Example. Use steepest descent method for 3 iterations on

f(x1, x2, x3) = (x1 − 4)4 + (x2 − 3)2 +4(x3 +5)4

with initial point x(0) = [4,2,−1]>.

Solution. We will repeatedly use the gradient, so let’s compute it first:

∇f(x) =

 4(x1 − 4)3

2(x2 − 3)
16(x3 +5)3


We keep in mind that x∗ = [4,3,−5]>.
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In the 1st iteration:

• Current iterate: x(0) = [4,2,−1]>;

• Current gradient: g(0) = ∇f(x(0)) = [0,−2,1024]>;

• Find step size:

α0 = argmin
α≥0

f(x(0) − αg(0))

= argmin
α≥0

(
0+ (2+ 2α− 3)2 +4(−1− 1024α+5)4

)
and use secant method to get α0 = 3.967× 10−3.

• Next iterate: x(1) = x(0) − α0g(0) = · · · = [4.000,2.008,−5.062]>.
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In the 2nd iteration:

• Current iterate: x(1) = [4.000,2.008,−5.062]>;

• Current gradient: g(1) = ∇f(x(1)) = [0.001,−1.984,−0.003875]>;

• Find step size:

α1 = argmin
α≥0

f(x(1) − αg(1))

= argmin
α≥0

(
0+ (2.008+ 1.984α− 3)2 +4(−5.062+ 0.003875α+5)4

)
and use secant method to get α1 = 0.500.

• Next iterate: x(2) = x(1) − α1g(1) = · · · = [4.000,3.000,−5.060]>.
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In the 3rd iteration:

• Current iterate: x(2) = [4.000,3.000,−5.060]>;

• Current gradient: g(2) = ∇f(x(2)) = [0.000,0.000,−0.003525]>;

• Find step size:

α2 = argmin
α≥0

f(x(2) − αg(2))

= argmin
α≥0

(
0+ 0+ 4(−5.060+ 0.003525α+5)4

)
and use secant method to get α2 = 16.29.

• Next iterate: x(3) = x(2) − α2g(2) = · · · = [4.000,3.000,−5.002]>.
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A quadratic function f of x can be written as

f(x) = x>Ax− b>x

where A is not necessarily symmetric.

Note that x>Ax = x>A>x and hence x>Ax = 1
2x
>(A + A>)x where

A+A> is symmetric.

Therefore, a quadratic function can always be rewritten as

f(x) =
1

2
x>Qx− b>x

where Q is symmetric. In this case, the gradient and Hessian are:

∇f(x) = Qx− b and ∇2f(x) = Q.
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Now let’s see what happens when we apply the steepest descent method to a
quadratic function f :

f(x) =
1

2
x>Qx− b>x

where Q � 0.

At k-th iteration, we have x(k) and g(k) = ∇f(x(k)) = Qx(k) − b.

Then we need to find the step size αk = argminα φ(α) where

φ(α) := f(x(k) − αg(k)) =
1

2
(x(k) − αg(k))>Q(x(k) − αg(k))− b>(x(k) − αg(k))

Solving φ′(α) = −(x(k) − αg(k))>Qg(k) + b>g(k) = 0, we obtain

αk =
(Qx(k) − b)>g(k)

g(k)
>
Qg(k)

=
g(k)

>
g(k)

g(k)
>
Qg(k)
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Therefore, the steepest descent method applied to f(x) = 1
2x
>Qx − b>x

with Q � 0 yields

x(k+1) = x(k) −
(

g(k)
>
g(k)

g(k)
>
Qg(k)

)
g(k)
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Several concepts about algorithms and convergence:

• Iterative algorithm: an algorithm that generates sequence x(0), x(1),
x(2),. . . , each based on the points preceding it.

• Descent method: a method/algorithm such that f(x(k+1)) ≤ f(x(k)).

• Globally convergent: an algorithm that generates sequence x(k) → x∗

starting from ANY x(0).

• Locally convergent: an algorithm that generates sequence x(k) → x∗ if
x(0) is sufficiently close to x∗.

• Rate of convergence: how fast is the convergence (more later).
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Now we come back to the convergence of the steepest descent applied to
quadratic function f(x) = 1

2x
>Qx− b>x where Q � 0.

Since∇2f(x) = Q � 0, f is strictly convex and only has a unique minimizer,
denoted by x∗.

By FONC, there is ∇f(x∗) = Qx∗ − b = 0, i.e., Qx∗ = b.
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To examine the convergence, we consider

V (x) := f(x) +
1

2
x∗>Qx∗

= · · ·

=
1

2
(x− x∗)>Q(x− x∗)

(show this as an exercise).

Since Q � 0, there is V (x) = 0 iff x = x∗.
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Lemma. Let {x(k)} be generated by the steepest descent method. Then

V (x(k+1)) = (1− γk)V (x(k))

where

γk =


0 if ‖g(k)‖ = 0

αk
g(k)

>
Qg(k)

g(k)
>
Q−1g(k)

(
2 g(k)

>
g(k)

g(k)
>
Qg(k)

− αk
)

if ‖g(k)‖ 6= 0
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Proof. If ‖g(k)‖ = 0, then x(k+1) = x(k) and V (x(k+1)) = V (x(k)).
Hence γk = 0.

If ‖g(k)‖ 6= 0, then

V (x(k+1)) =
1

2
(x(k+1) − x∗)>Q(x(k+1) − x∗)

=
1

2
(x(k) − x∗+ αkg

(k))>Q(x(k) − x∗+ αkg
(k))

= V (x(k))− αkg(k)
>
Q(x(k) − x∗) +

1

2
α2kg

(k)>Qg(k)

Therefore

V (x(k))− V (x(k+1))

V (x(k))
=
αkg

(k)>Q(x(k) − x∗)− 1
2α

2
kg

(k)>Qg(k)

V (x(k))
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Note that:

Q(x(k) − x∗) = Qx(k) − b = ∇f(x(k)) = g(k)

x(k) − x∗ = Q−1g(k)

V (x(k)) =
1

2
(x(k) − x∗)>Q(x(k) − x∗) =

1

2
g(k)

>
Q−1g(k)

Then we obtain

V (x(k))− V (x(k+1))

V (x(k))
=
αka− 1

2α
2
kb

1
2c

= αk
b

c

(
2
a

b
− αk

)
where

a := g(k)
>
g(k), b := g(k)

>
Qg(k), c := g(k)

>
Q−1g(k)
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Now we have obtained V (x(k+1)) = (1− γk)V (x(k)), from which we have

V (x(k)) =

[k−1∏
i=0

(1− γi)
]
V (x(0))

Since x(0) is given and fixed, we can see

V (x(k))→ 0 ⇐⇒
k−1∏
i=0

(1− γi)→ 0

⇐⇒ −
k−1∑
i=0

log(1− γi)→ +∞

⇐⇒
k−1∑
i=0

γi → +∞
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We summarize the result below:

Theorem. Let
{
x(k)

}
be generated by the gradient algorithm for a quadratic

function f(x) = (1/2)x>Qx − b>x (where Q � 0) with step sizes αk
converges, i.e., x(k) → x∗ iff

∑∞
k=0 γk = +∞.

Proof. (Sketch) Use the inequalities

γ ≤ − log(1− γ) ≤ 2γ

which hold for γ ≥ 0 close to 0. Then use the squeeze theorem.

Xiaojing Ye, Math & Stat, Georgia State University 24



Rayleigh’s inequality: given a symmetric Q � 0, there is

λmin(Q)‖x‖2 ≤ x>Qx =: ‖x‖2Q ≤ λmax(Q)‖x‖2

for any x.

Here λmin(Q) (λmax(Q)) are the minimum (maximum) eigenvalue of Q.

In addition, we can get the min/max eigenvalues of Q−1:

λmin(Q
−1) =

1

λmax(Q)
and λmax(Q

−1) =
1

λmin(Q)
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Lemma. If Q � 0, then for any x, there is

λmin(Q)

λmax(Q)
≤

‖x‖4

‖x‖2Q‖x‖
2
Q−1

≤
λmax(Q)

λmin(Q)

Proof. By Rayleigh’s inequality, we have

λmin(Q)‖x‖2 ≤ ‖x‖2Q ≤ λmax(Q)‖x‖2 and
‖x‖2

λmax(Q)
≤ ‖x‖2Q−1 ≤

‖x‖2

λmin(Q)

These imply

1

λmax(Q)
≤
‖x‖2

‖x‖2Q
≤

1

λmin(Q)
and λmin(Q) ≤

‖x‖2

‖x‖2
Q−1

≤ λmax(Q)

Multiplying the two yields the claim.
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We can show the steepest descent method has αk set to satisfy
∑
k γk =

+∞:

First recall that αk = g(k)
>
g(k)

g(k)
>
Qg(k)

.

Then there is

γk = αk
g(k)

>
Qg(k)

g(k)
>
Q−1g(k)

(
2

g(k)
>
g(k)

g(k)
>
Qg(k)

− αk
)

=
(g(k)

>
g(k))2

g(k)
>
Qg(k)g(k)

>
Q−1g(k)

=
‖g(k)‖4

‖g(k)‖2Q‖g(k)‖
2
Q−1

≥
λmin(Q)

λmax(Q)
> 0

Therefore
∑
k γk = +∞.
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Now let’s consider the gradient method with fixed step size α > 0:

Theorem. If the step size α > 0 is fixed, then the gradient method converges
if and only if

0 < α <
2

λmax(Q)

Proof. “⇐” Suppose 0 < α < 2
λmax(Q), then

γk = α
‖g(k)‖2Q
‖g(k)‖2

Q−1

(
2
‖g(k)‖2

‖g(k)‖2Q
− α

)

≥ α
λmin(Q)‖g(k)‖2

λmax(Q−1)‖g(k)‖2

(
2

λmax(Q)
− α

)
= αλ2min(Q)

(
2

λmax(Q)
− α

)
> 0

Therefore
∑
k γk =∞ and hence GM converges.
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“⇒” Suppose GM converges but α ≤ 0 or α ≥ 2
λmax(Q). Then if x(0) is

chosen such that x(0)−x∗ is the eigenvector corresponding to the eigenvalue
λmax(Q) of Q, we have

x(k+1) − x∗ = x(k) − αg(k) − x∗

= x(k) − α(Qx(k) − b)− x∗

= x(k) − α(Qx(k) −Qx∗)− x∗

= (I − αQ)(x(k) − x∗)

= (I − αQ)k+1(x(0) − x∗)

= (1− αλmax(Q))k+1(x(0) − x∗)

Taking norm on both sides yields

‖x(k+1) − x∗‖ = |1− αλmax(Q)|k+1‖x(0) − x∗‖

where |1− αλmax(Q)| ≥ 1 if α ≤ 0 or α ≥ 2
λmax(Q). Contradiction.
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Example. Find an appropriate α for the GM with fixed step size α for

f(x) = x>
[
4 2
√
2

0 5

]
x+ x>

[
3
6

]
+24

Solution. First rewrite f into the standard quadratic form with symmetric Q:

f(x) =
1

2
x>

[
8 2

√
2

2
√
2 10

]
x+ x>

[
3
6

]
+24

Then we compute the eigenvalues of Q =

[
8 2

√
2

2
√
2 10

]
:

|λI −Q| =
∣∣∣∣∣ λ− 8 −2

√
2

−2
√
2 λ− 10

∣∣∣∣∣ = (λ− 8)(λ− 10)− 8 = (λ− 6)(λ− 12)

Hence λmax(Q) = 12, and the range of α should be (0, 2
12).
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Convergence rate of steepest descent method:

Recall that applying SD to f(x) = 1
2x
>Qx+ b>x with Q � 0 yields

V (x(k+1)) ≤ (1− κ)V (x(k))

where V (x) := 1
2(x− x∗)>Q(x− x∗), and κ = λmin(Q)

λmax(Q).

Remark. λmax(Q)
λmin(Q) = ‖Q‖‖Q−1‖ is called the condition number of Q.
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Order of convergence

We say x(k) → x∗ with order p if

0 < lim
k→∞

‖x(k+1) − x∗‖
‖x(k) − x∗‖p

<∞

It can be shown that p ≥ 1, and the larger p is, the faster the convergence is.
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Example.

• x(k) = 1
k → 0, then

|x(k+1)|
|x(k)|p

=
kp

k+1
<∞

if p ≤ 1. Therefore x(k) → 0 with order 1.

• x(k) = qk → 0 for some q ∈ (0,1), then

|x(k+1)|
|x(k)|p

=
qk+1

qkp
= qk(1−p)+1 <∞

if p ≤ 1. Therefore x(k) → 0 with order 1.
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Example.

• x(k) = q2
k → 0, then

|x(k+1)|
|x(k)|p

=
q2

k+1

qp2
k

= q2
k(2−p) <∞

if p ≤ 2. Therefore x(k) → 0 with order 2.
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In general, we have the following result:

Theorem. If ‖x(k+1) − x∗‖ = O(‖x(k) − x∗‖p), then the convergence is of
order at least p.

Remark. Note that p ≥ 1.
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Descent method and line search

Given a descent direction d(k) of f : Rn → R at x(k) (e.g., d(k) = −g(k)),
we need to decide the step size αk in order to compute

x(k+1) = x(k) + αkd
(k).

Exact line search computes αk by solving for

αk = argmin
α

φk(α), where φk(α) := f(x(k) + αd(k)).

Notice that φ : R+ → R and φ′(α) = ∇f(x(k)+αd(k))d(k). Hence we can
use the secant method:

α(l+1) = α(l) −
α(l) − α(l−1)

φ′k(α
(l))− φ′k(α(l−1))

φ′k(α
(l)).

with some initial guess α(0), α(1), and set αk to liml→∞α
(l).
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In practice, it is not computationally economical to use exact line search.

Instead, we prefer inexact line search. That is, we do not exactly solve

αk = argmin
α

φk(α), where φk(α) := f(x(k) + αd(k)),

but only require αk to satisfy certain conditions such that:

• easy to compute in practice.

• guarantees convergence.

• performs well in practice.
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There are several commonly used conditions for αk:

• Armijo condition: let ε ∈ (0,1), γ > 1 and

φk(αk) ≤ φk(0) + εαkφ
′
k(0) (so αk not too large)

φk(γαk) ≥ φk(0) + εγαkφ
′
k(0) (so αk not too small)

• Armijo-Goldstein condition: let 0 < ε < η < 1 and

φk(αk) ≤ φk(0) + εαkφ
′
k(0) (so αk not too large)

φk(αk) ≥ φk(0) + ηαkφ
′
k(0) (so φ′k(αk) not too small)

• Wolfe condition: let 0 < ε < η < 1 and

φk(αk) ≤ φk(0) + εαkφ
′
k(0) (so αk not too large)

φ′k(αk) ≥ ηφ
′
k(0) (so φk not too steep at αk)

Strong-Wolfe condition: replaces the second condition with |φ′k(αk)| ≤
η|φ′k(0)|.
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Backtracking line search

In practice, we often use the following backtracking line search:

Backtracking: choose initial guess α(0) and τ ∈ (0,1) (e.g., τ = 0.5), then
set α = α(0) and repeat:

1. Check whether φk(α) ≤ φk(0)+ εαφ′k(0) (first Armijo condition). If yes,
then terminate.

2. Shrink α to τα.

In other words, we find the smallest integer m ∈ N0 such that αk = τmα(0)

satisfies the first Armijo condition φk(αk) ≤ φk(0) + εαkφ
′
k(0).
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Why line search guarantees convergence?

First, note that here by convergence we mean ‖∇f(x(k))‖ → 0.

We take Wolfe condition and d(k) = −g(k) for simplicity. Assume ∇f is
L-Lipschitz continuous. Now

x(k+1) = x(k) − αkg(k)

φk(αk) = f(x(k+1))

φ′k(αk) = −∇f(x(k+1))g(k)

φk(0) = f(x(k))

φ′k(0) = −∇f(x(k))g(k)

Moreover, L-Lipschitz continuity of ∇f implies

±〈∇f(x)−∇f(y),x− y〉 ≤ ‖∇f(x)−∇f(y)‖‖x− y‖ ≤ L‖x− y‖2

for any x,y.
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Claim. αk ≥
1−η
L .

Proof of Claim. The second Wolfe condition φ′k(αk) ≥ ηφ′k(0) implies
φ′k(αk)− φ

′
k(0) ≥ (η − 1)φ′k(0), which is

−〈∇f(x(k+1))−∇f(x(k)), g(k)〉 ≥ (1− η)‖g(k)‖2.

Note that g(k) = x(k+1)−x(k)

αk
, we know

−〈∇f(x(k+1))−∇f(x(k)), g(k)〉 ≤
L

αk
‖x(k+1) − x(k)‖2 = Lαk‖g(k)‖2

Combining the two inequalities above yields the claim.
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The first Wolfe condition (Armijo condition) implies

f(x(k+1)) ≤ f(x(k))− εαk‖g(k)‖2 ≤ f(x(k))−
ε(1− η)

L
‖g(k)‖2.

Taking telescope sum yields

f(x(K)) ≤ f(x(0))−
ε(1− η)

L

K−1∑
k=0

‖g(k)‖2.

which implies

ε(1− η)
L

K−1∑
k=0

‖g(k)‖2 ≤ f(x(0))− f(x(K)) <∞

for any K (we assume f is bounded below). Notice that ε(1−η)L > 0.

Therefore ‖g(k)‖ = ‖∇f(x(k))‖ → 0.
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