MATH 4211/6211 – Optimization Gradient Method

Xiaojing Ye Department of Mathematics & Statistics Georgia State University

Consider $x^{(k)}$ and compute $g^{(k)} := \nabla f(x^{(k)})$. Set descent direction to $d^{(k)} = -g^{(k)}$.

Now we want to find $\alpha \geq 0$ such that $x^{(k)} - \alpha g^{(k)}$ improves $x^{(k)}$.

Define $\phi(\alpha) := f(x^{(k)} - \alpha g^{(k)})$, then ϕ has Taylor expansion: $f(x^{(k)} - \alpha g^{(k)}) = f(x^{(k)}) - \alpha ||g^{(k)}||^2 + o(\alpha)$

For α sufficiently small, we have

$$f(\boldsymbol{x}^{(k)} - \alpha \boldsymbol{g}^{(k)}) \leq f(\boldsymbol{x}^{(k)})$$

Gradient Descent Method (or Gradient Method):

$$x^{(k+1)} = x^{(k)} - \alpha_k g^{(k)}$$

Set an initial guess $x^{(0)}$, and iterate the scheme above to obtain $\{x^{(k)} : k = 0, 1, ...\}$.

• $x^{(k)}$: current estimate;

•
$$g^{(k)} := \nabla f(x^{(k)})$$
: gradient at $x^{(k)}$;

• $\alpha_k \ge 0$: step size.

Steepest Descent Method: choose α_k such that

$$\alpha_k = \underset{\alpha \ge 0}{\arg\min} f(\boldsymbol{x}^{(k)} - \alpha \boldsymbol{g}^{(k)})$$

Steepest descent method is an *exact line search* method.

We will first discuss some properties of steepest descent method, and consider other (inexact) line search methods. **Proposition**. Let $\{x^{(k)}\}$ be obtained by steepest descent method, then

$$(x^{(k+2)} - x^{(k+1)})^{ op}(x^{(k+1)} - x^{(k)}) = 0$$

Proof. Define $\phi(\alpha) := f(x^{(k)} - \alpha g^{(k)})$. Since $\alpha_k = \arg \min \phi(\alpha)$, we have

$$0 = \phi'(\alpha_k) = \nabla f(x^{(k)} - \alpha_k g^{(k)})^\top g^{(k)} = g^{(k+1)} g^{(k)}$$

On the other hand, we have

$$x^{(k+2)} = x^{(k+1)} - \alpha_{k+1}g^{(k+1)}$$

 $x^{(k+1)} = x^{(k)} - \alpha_k g^{(k)}$

Therefore, we have

$$(x^{(k+2)} - x^{(k+1)})^{\top} (x^{(k+1)} - x^{(k)}) = \alpha_{k+1} \alpha_k g^{(k+1)^{\top}} g^{(k)} = 0$$

Proposition. Let $\{x^{(k)}\}$ be obtained by steepest descent method and $g^{(k)} \neq 0$, then $f(x^{(k+1)}) < f(x^{(k)})$

Proof. Define $\phi(\alpha) := f(x^{(k)} - \alpha g^{(k)})$. Then

$$\phi'(0) = -\nabla f(x^{(k)} - 0g^{(k)})^{\top}g^{(k)} = -\|g^{(k)}\|^2 < 0.$$

Since α_k is a minimizer, there is

$$f(x^{(k+1)}) = \phi(\alpha_k) < \phi(0) = f(x^{(k)}).$$

Stopping Criterion.

For a prescribed $\epsilon > 0$, terminate the iteration if one of the followings is met:

- $\|\boldsymbol{g}^{(k)}\| < \epsilon;$
- $|f(x^{(k+1)}) f(x^{(k)})| < \epsilon;$

•
$$\|x^{(k+1)}-x^{(k)}\|<\epsilon.$$

More preferable choices using "relative change":

•
$$|f(x^{(k+1)}) - f(x^{(k)})| / |f(x^{(k)})| < \epsilon;$$

•
$$\|x^{(k+1)} - x^{(k)}\| / \|x^{(k)}\| < \epsilon.$$

Example. Use steepest descent method for 3 iterations on

$$f(x_1, x_2, x_3) = (x_1 - 4)^4 + (x_2 - 3)^2 + 4(x_3 + 5)^4$$

with initial point $x^{(0)} = [4, 2, -1]^{\top}$.

Solution. We will repeatedly use the gradient, so let's compute it first:

$$\nabla f(x) = \begin{bmatrix} 4(x_1 - 4)^3 \\ 2(x_2 - 3) \\ 16(x_3 + 5)^3 \end{bmatrix}$$

We keep in mind that $x^* = [4, 3, -5]^{ op}$.

In the 1st iteration:

• Current iterate:
$$x^{(0)} = [4, 2, -1]^{\top};$$

• Current gradient:
$$g^{(0)} = \nabla f(x^{(0)}) = [0, -2, 1024]^{\top};$$

• Find step size:

$$\alpha_0 = \underset{\alpha \ge 0}{\arg\min} f(x^{(0)} - \alpha g^{(0)})$$

=
$$\underset{\alpha \ge 0}{\arg\min} \left(0 + (2 + 2\alpha - 3)^2 + 4(-1 - 1024\alpha + 5)^4 \right)$$

and use secant method to get $\alpha_0 = 3.967 \times 10^{-3}$.

• Next iterate: $x^{(1)} = x^{(0)} - \alpha_0 g^{(0)} = \cdots = [4.000, 2.008, -5.062]^\top$.

In the 2nd iteration:

- Current iterate: $x^{(1)} = [4.000, 2.008, -5.062]^{\top};$
- Current gradient: $g^{(1)} = \nabla f(x^{(1)}) = [0.001, -1.984, -0.003875]^{\top};$
- Find step size:

$$\begin{aligned} \alpha_1 &= \operatorname*{arg\,min}_{\alpha \ge 0} f(x^{(1)} - \alpha g^{(1)}) \\ &= \operatorname*{arg\,min}_{\alpha \ge 0} \left(0 + (2.008 + 1.984\alpha - 3)^2 + 4(-5.062 + 0.003875\alpha + 5)^4 \right) \\ \text{and use secant method to get } \alpha_1 &= 0.500. \end{aligned}$$

• Next iterate: $x^{(2)} = x^{(1)} - \alpha_1 g^{(1)} = \cdots = [4.000, 3.000, -5.060]^\top$.

In the 3rd iteration:

- Current iterate: $x^{(2)} = [4.000, 3.000, -5.060]^{\top};$
- Current gradient: $g^{(2)} = \nabla f(x^{(2)}) = [0.000, 0.000, -0.003525]^{\top};$
- Find step size:

$$\alpha_{2} = \underset{\alpha \ge 0}{\arg\min} f(x^{(2)} - \alpha g^{(2)})$$

=
$$\underset{\alpha \ge 0}{\arg\min} \left(0 + 0 + 4(-5.060 + 0.003525\alpha + 5)^{4} \right)$$

and use secant method to get $\alpha_2 = 16.29$.

• Next iterate: $x^{(3)} = x^{(2)} - \alpha_2 g^{(2)} = \cdots = [4.000, 3.000, -5.002]^\top$.

A quadratic function f of x can be written as

$$f(x) = x^{\top}Ax - b^{\top}x$$

where A is not necessarily symmetric.

Note that $x^{\top}Ax = x^{\top}A^{\top}x$ and hence $x^{\top}Ax = \frac{1}{2}x^{\top}(A + A^{\top})x$ where $A + A^{\top}$ is symmetric.

Therefore, a quadratic function can always be rewritten as

$$f(x) = \frac{1}{2}x^{\top}Qx - b^{\top}x$$

where Q is symmetric. In this case, the gradient and Hessian are:

$$abla f(x) = Qx - b$$
 and $abla^2 f(x) = Q.$

Now let's see what happens when we apply the steepest descent method to a quadratic function f:

$$f(x) = \frac{1}{2}x^{\top}Qx - b^{\top}x$$

where $Q \succ 0$.

At k-th iteration, we have $x^{(k)}$ and $g^{(k)} = \nabla f(x^{(k)}) = Qx^{(k)} - b$.

Then we need to find the step size $\alpha_k = \arg \min_{\alpha} \phi(\alpha)$ where

$$\phi(\alpha) := f(x^{(k)} - \alpha g^{(k)}) = \frac{1}{2} (x^{(k)} - \alpha g^{(k)})^{\top} Q(x^{(k)} - \alpha g^{(k)}) - b^{\top} (x^{(k)} - \alpha g^{(k)})$$

Solving $\phi'(\alpha) = -(x^{(k)} - \alpha g^{(k)})^{\top} Qg^{(k)} + b^{\top} g^{(k)} = 0$, we obtain
 $(Qx^{(k)} - b)^{\top} a^{(k)} - a^{(k)}$

$$\alpha_k = \frac{(\boldsymbol{Q}\boldsymbol{x}^{(k)} - \boldsymbol{b})^\top \boldsymbol{g}^{(k)}}{\boldsymbol{g}^{(k)}^\top \boldsymbol{Q}\boldsymbol{g}^{(k)}} = \frac{\boldsymbol{g}^{(k)} \quad \boldsymbol{g}^{(k)}}{\boldsymbol{g}^{(k)}^\top \boldsymbol{Q}\boldsymbol{g}^{(k)}}$$

Therefore, the steepest descent method applied to $f(x) = \frac{1}{2}x^{\top}Qx - b^{\top}x$ with $Q \succ 0$ yields

Several concepts about algorithms and convergence:

- Iterative algorithm: an algorithm that generates sequence $x^{(0)}$, $x^{(1)}$, $x^{(2)}$,..., each based on the points preceding it.
- **Descent method**: a method/algorithm such that $f(x^{(k+1)}) \leq f(x^{(k)})$.
- Globally convergent: an algorithm that generates sequence $x^{(k)} o x^*$ starting from ANY $x^{(0)}$.
- Locally convergent: an algorithm that generates sequence $x^{(k)} o x^*$ if $x^{(0)}$ is sufficiently close to x^* .
- Rate of convergence: how fast is the convergence (more later).

Now we come back to the convergence of the steepest descent applied to quadratic function $f(x) = \frac{1}{2}x^{\top}Qx - b^{\top}x$ where $Q \succ 0$.

Since $\nabla^2 f(x) = Q \succ 0$, *f* is strictly convex and only has a unique minimizer, denoted by x^* .

By FONC, there is $abla f(x^*) = Qx^* - b = 0$, i.e., $Qx^* = b$.

To examine the convergence, we consider

$$egin{aligned} V(x) &\coloneqq f(x) + rac{1}{2} x^{* op} Q x^* \ &= \cdots \ &= rac{1}{2} (x - x^*)^{ op} Q (x - x^*) \end{aligned}$$

(show this as an exercise).

Since $Q \succ 0$, there is V(x) = 0 iff $x = x^*$.

Lemma. Let $\{x^{(k)}\}$ be generated by the steepest descent method. Then

$$V(x^{(k+1)}) = (1 - \gamma_k)V(x^{(k)})$$

where

$$\gamma_{k} = \begin{cases} 0 & \text{if } \|g^{(k)}\| = 0\\ \alpha_{k} \frac{g^{(k)^{\top}} Q g^{(k)}}{g^{(k)^{\top}} Q^{-1} g^{(k)}} \left(2 \frac{g^{(k)^{\top}} g^{(k)}}{g^{(k)^{\top}} Q g^{(k)}} - \alpha_{k}\right) & \text{if } \|g^{(k)}\| \neq 0 \end{cases}$$

Proof. If $||g^{(k)}|| = 0$, then $x^{(k+1)} = x^{(k)}$ and $V(x^{(k+1)}) = V(x^{(k)})$. Hence $\gamma_k = 0$.

If $||g^{(k)}|| \neq 0$, then $V(x^{(k+1)}) = \frac{1}{2}(x^{(k+1)} - x^*)^\top Q(x^{(k+1)} - x^*)$ $= \frac{1}{2}(x^{(k)} - x^* + \alpha_k g^{(k)})^\top Q(x^{(k)} - x^* + \alpha_k g^{(k)})$ $= V(x^{(k)}) - \alpha_k g^{(k)}^\top Q(x^{(k)} - x^*) + \frac{1}{2}\alpha_k^2 g^{(k)}^\top Qg^{(k)}$

Therefore

$$\frac{V(x^{(k)}) - V(x^{(k+1)})}{V(x^{(k)})} = \frac{\alpha_k g^{(k)^\top} Q(x^{(k)} - x^*) - \frac{1}{2} \alpha_k^2 g^{(k)^\top} Q g^{(k)}}{V(x^{(k)})}$$

Note that:

$$Q(x^{(k)} - x^*) = Qx^{(k)} - b = \nabla f(x^{(k)}) = g^{(k)}$$
$$x^{(k)} - x^* = Q^{-1}g^{(k)}$$
$$V(x^{(k)}) = \frac{1}{2}(x^{(k)} - x^*)^{\top}Q(x^{(k)} - x^*) = \frac{1}{2}g^{(k)^{\top}}Q^{-1}g^{(k)}$$

Then we obtain

$$\frac{V(x^{(k)}) - V(x^{(k+1)})}{V(x^{(k)})} = \frac{\alpha_k a - \frac{1}{2}\alpha_k^2 b}{\frac{1}{2}c} = \alpha_k \frac{b}{c} \left(2\frac{a}{b} - \alpha_k\right)$$

where

$$a := {g^{(k)}}^{\top} g^{(k)}, \quad b := {g^{(k)}}^{\top} Q g^{(k)}, \quad c := {g^{(k)}}^{\top} Q^{-1} g^{(k)}$$

Now we have obtained $V(x^{(k+1)}) = (1 - \gamma_k)V(x^{(k)})$, from which we have

$$V(\boldsymbol{x}^{(k)}) = \left[\prod_{i=0}^{k-1} (1-\gamma_i)\right] V(\boldsymbol{x}^{(0)})$$

Since $x^{(0)}$ is given and fixed, we can see

$$V(x^{(k)}) o 0 \iff \prod_{i=0}^{k-1} (1 - \gamma_i) o 0$$

 $\iff -\sum_{i=0}^{k-1} \log(1 - \gamma_i) o +\infty$
 $\iff \sum_{i=0}^{k-1} \gamma_i o +\infty$

We summarize the result below:

Theorem. Let $\{x^{(k)}\}$ be generated by the gradient algorithm for a quadratic function $f(x) = (1/2)x^{\top}Qx - b^{\top}x$ (where $Q \succ 0$) with step sizes α_k converges, i.e., $x^{(k)} \rightarrow x^*$ iff $\sum_{k=0}^{\infty} \gamma_k = +\infty$.

Proof. (Sketch) Use the inequalities

$$\gamma \leq -\log(1-\gamma) \leq 2\gamma$$

which hold for $\gamma \ge 0$ close to 0. Then use the squeeze theorem.

Rayleigh's inequality: given a symmetric $Q \succ 0$, there is $\lambda_{\min}(Q) \|x\|^2 \le x^{\top}Qx =: \|x\|_Q^2 \le \lambda_{\max}(Q) \|x\|^2$

for any x.

Here $\lambda_{\min}(Q)$ ($\lambda_{\max}(Q)$) are the minimum (maximum) eigenvalue of Q.

In addition, we can get the min/max eigenvalues of Q^{-1} :

$$\lambda_{\min}(Q^{-1}) = \frac{1}{\lambda_{\max}(Q)}$$
 and $\lambda_{\max}(Q^{-1}) = \frac{1}{\lambda_{\min}(Q)}$

Lemma. If $Q \succ 0$, then for any x, there is

$$\frac{\lambda_{\min}(\boldsymbol{Q})}{\lambda_{\max}(\boldsymbol{Q})} \leq \frac{\|\boldsymbol{x}\|^4}{\|\boldsymbol{x}\|^2_{\boldsymbol{Q}}\|\boldsymbol{x}\|^2_{\boldsymbol{Q}^{-1}}} \leq \frac{\lambda_{\max}(\boldsymbol{Q})}{\lambda_{\min}(\boldsymbol{Q})}$$

Proof. By Rayleigh's inequality, we have

$$egin{aligned} &\lambda_{\mathsf{min}}(m{Q})\|m{x}\|^2 \leq \|m{x}\|_{m{Q}}^2 \leq \lambda_{\mathsf{max}}(m{Q})\|m{x}\|^2 \ ext{and} \ rac{\|m{x}\|^2}{\lambda_{\mathsf{max}}(m{Q})} \leq \|m{x}\|_{m{Q}^{-1}}^2 \leq rac{\|m{x}\|^2}{\lambda_{\mathsf{min}}(m{Q})} \end{aligned}$$
 These imply

$$rac{1}{\lambda_{\mathsf{max}}(oldsymbol{Q})} \leq rac{\|oldsymbol{x}\|^2}{\|oldsymbol{x}\|^2_{oldsymbol{Q}}} \leq rac{1}{\lambda_{\mathsf{min}}(oldsymbol{Q})} \quad ext{and} \quad \lambda_{\mathsf{min}}(oldsymbol{Q}) \leq rac{\|oldsymbol{x}\|^2}{\|oldsymbol{x}\|^2_{oldsymbol{Q}^{-1}}} \leq \lambda_{\mathsf{max}}(oldsymbol{Q})$$

Multiplying the two yields the claim.

We can show the steepest descent method has α_k set to satisfy $\sum_k \gamma_k = +\infty$:

First recall that
$$\alpha_k = \frac{g^{(k)^{\top}}g^{(k)}}{g^{(k)^{\top}}Qg^{(k)}}$$
.

Then there is

$$\begin{split} \gamma_{k} &= \alpha_{k} \frac{\boldsymbol{g}^{(k)^{\top}} \boldsymbol{Q} \boldsymbol{g}^{(k)}}{\boldsymbol{g}^{(k)^{\top}} \boldsymbol{Q}^{-1} \boldsymbol{g}^{(k)}} \left(2 \frac{\boldsymbol{g}^{(k)^{\top}} \boldsymbol{g}^{(k)}}{\boldsymbol{g}^{(k)^{\top}} \boldsymbol{Q} \boldsymbol{g}^{(k)}} - \alpha_{k} \right) \\ &= \frac{(\boldsymbol{g}^{(k)^{\top}} \boldsymbol{g}^{(k)})^{2}}{\boldsymbol{g}^{(k)^{\top}} \boldsymbol{Q} \boldsymbol{g}^{(k)} \boldsymbol{g}^{(k)^{\top}} \boldsymbol{Q}^{-1} \boldsymbol{g}^{(k)}} \\ &= \frac{\|\boldsymbol{g}^{(k)}\|^{4}}{\|\boldsymbol{g}^{(k)}\|^{2}_{\boldsymbol{Q}} \|\boldsymbol{g}^{(k)}\|^{2}_{\boldsymbol{Q}^{-1}}} \ge \frac{\lambda_{\min}(\boldsymbol{Q})}{\lambda_{\max}(\boldsymbol{Q})} > 0 \end{split}$$

Therefore $\sum_k \gamma_k = +\infty$.

Now let's consider the gradient method with fixed step size $\alpha > 0$:

Theorem. If the step size $\alpha > 0$ is fixed, then the gradient method converges if and only if

$$0 < lpha < rac{2}{\lambda_{\sf max}(oldsymbol{Q})}$$

Proof. "⇐" Suppose
$$0 < \alpha < \frac{2}{\lambda_{\max}(Q)}$$
, then

$$\gamma_k = \alpha \frac{\|g^{(k)}\|_Q^2}{\|g^{(k)}\|_{Q^{-1}}^2} \left(2 \frac{\|g^{(k)}\|^2}{\|g^{(k)}\|_Q^2} - \alpha\right)$$

$$\geq \alpha \frac{\lambda_{\min}(Q)\|g^{(k)}\|^2}{\lambda_{\max}(Q^{-1})\|g^{(k)}\|^2} \left(\frac{2}{\lambda_{\max}(Q)} - \alpha\right)$$

$$= \alpha \lambda_{\min}^2(Q) \left(\frac{2}{\lambda_{\max}(Q)} - \alpha\right) > 0$$

Therefore $\sum_k \gamma_k = \infty$ and hence GM converges.

" \Rightarrow " Suppose GM converges but $\alpha \leq 0$ or $\alpha \geq \frac{2}{\lambda_{\max}(Q)}$. Then if $x^{(0)}$ is chosen such that $x^{(0)} - x^*$ is the eigenvector corresponding to the eigenvalue $\lambda_{\max}(Q)$ of Q, we have

$$egin{aligned} &x^{(k+1)}-x^* = x^{(k)}-lpha g^{(k)}-x^* \ &= x^{(k)}-lpha (Qx^{(k)}-b)-x^* \ &= x^{(k)}-lpha (Qx^{(k)}-Qx^*)-x^* \ &= (I-lpha Q)(x^{(k)}-x^*) \ &= (I-lpha Q)^{k+1}(x^{(0)}-x^*) \ &= (1-lpha\lambda_{\max}(Q))^{k+1}(x^{(0)}-x^*) \end{aligned}$$

Taking norm on both sides yields

$$\|x^{(k+1)} - x^*\| = |1 - \alpha \lambda_{\max}(Q)|^{k+1} \|x^{(0)} - x^*\|$$

where $|1 - \alpha \lambda_{\max}(Q)| \ge 1$ if $\alpha \le 0$ or $\alpha \ge \frac{2}{\lambda_{\max}(Q)}$. Contradiction.

Example. Find an appropriate α for the GM with fixed step size α for

$$f(x) = x^{\top} \begin{bmatrix} 4 & 2\sqrt{2} \\ 0 & 5 \end{bmatrix} x + x^{\top} \begin{bmatrix} 3 \\ 6 \end{bmatrix} + 24$$

Solution. First rewrite f into the standard quadratic form with symmetric Q:

$$f(x) = \frac{1}{2}x^{\top} \begin{bmatrix} 8 & 2\sqrt{2} \\ 2\sqrt{2} & 10 \end{bmatrix} x + x^{\top} \begin{bmatrix} 3 \\ 6 \end{bmatrix} + 24$$

we compute the eigenvalues of $Q = \begin{bmatrix} 8 & 2\sqrt{2} \\ 2\sqrt{2} & 10 \end{bmatrix}$:

$$|\lambda I - Q| = \begin{vmatrix} \lambda - 8 & -2\sqrt{2} \\ -2\sqrt{2} & \lambda - 10 \end{vmatrix} = (\lambda - 8)(\lambda - 10) - 8 = (\lambda - 6)(\lambda - 12)$$

Hence $\lambda_{\max}(Q) = 12$, and the range of α should be $(0, \frac{2}{12})$.

Xiaojing Ye, Math & Stat, Georgia State University

Then

Convergence rate of steepest descent method:

Recall that applying SD to $f(x) = \frac{1}{2}x^{\top}Qx + b^{\top}x$ with $Q \succ 0$ yields $V(x^{(k+1)}) \leq (1-\kappa)V(x^{(k)})$ where $V(x) := \frac{1}{2}(x - x^*)^{\top}Q(x - x^*)$, and $\kappa = \frac{\lambda_{\min}(Q)}{\lambda_{\max}(Q)}$.

Remark. $\frac{\lambda_{\max}(Q)}{\lambda_{\min}(Q)} = \|Q\| \|Q^{-1}\|$ is called the **condition number** of Q.

Order of convergence

We say ${oldsymbol x}^{(k)} o {oldsymbol x}^*$ with order p if

$$0 < \lim_{k o \infty} rac{\|x^{(k+1)} - x^*\|}{\|x^{(k)} - x^*\|^p} < \infty$$

It can be shown that $p \ge 1$, and the larger p is, the faster the convergence is.

Example.

•
$$x^{(k)} = \frac{1}{k} \to 0$$
, then
 $\frac{|x^{(k+1)}|}{|x^{(k)}|^p} = \frac{k^p}{k+1} < \infty$
if $p \le 1$. Therefore $x^{(k)} \to 0$ with order 1.

•
$$x^{(k)} = q^k \to 0$$
 for some $q \in (0, 1)$, then

$$\frac{|x^{(k+1)}|}{|x^{(k)}|^p} = \frac{q^{k+1}}{q^{kp}} = q^{k(1-p)+1} < \infty$$
if $p \le 1$. Therefore $x^{(k)} \to 0$ with order 1.

Example.

•
$$x^{(k)} = q^{2^k} \to 0$$
, then
$$\frac{|x^{(k+1)}|}{|x^{(k)}|^p} = \frac{q^{2^{k+1}}}{q^{p2^k}} = q^{2^k(2-p)} < \infty$$
if $p \leq 2$. Therefore $x^{(k)} \to 0$ with order 2.

In general, we have the following result:

Theorem. If $||x^{(k+1)} - x^*|| = O(||x^{(k)} - x^*||^p))$, then the convergence is of order at least *p*.

Remark. Note that $p \ge 1$.

Descent method and line search

Given a descent direction $d^{(k)}$ of $f : \mathbb{R}^n \to \mathbb{R}$ at $x^{(k)}$ (e.g., $d^{(k)} = -g^{(k)}$), we need to decide the step size α_k in order to compute

$$\boldsymbol{x}^{(k+1)} = \boldsymbol{x}^{(k)} + \alpha_k \boldsymbol{d}^{(k)}$$

Exact line search computes α_k by solving for

 $\alpha_k = \arg\min_{\alpha} \phi_k(\alpha), \text{ where } \phi_k(\alpha) := f(x^{(k)} + \alpha d^{(k)}).$

Notice that $\phi : \mathbb{R}_+ \to \mathbb{R}$ and $\phi'(\alpha) = \nabla f(x^{(k)} + \alpha d^{(k)})d^{(k)}$. Hence we can use the secant method:

$$\alpha^{(l+1)} = \alpha^{(l)} - \frac{\alpha^{(l)} - \alpha^{(l-1)}}{\phi'_k(\alpha^{(l)}) - \phi'_k(\alpha^{(l-1)})} \phi'_k(\alpha^{(l)}).$$

with some initial guess $\alpha^{(0)}, \alpha^{(1)}$, and set α_k to $\lim_{l\to\infty} \alpha^{(l)}$.

In practice, it is not computationally economical to use exact line search.

Instead, we prefer inexact line search. That is, we do not exactly solve

$$\alpha_k = \arg\min_{\alpha} \phi_k(\alpha), \text{ where } \phi_k(\alpha) := f(x^{(k)} + \alpha d^{(k)}),$$

but only require α_k to satisfy certain conditions such that:

- easy to compute in practice.
- guarantees convergence.
- performs well in practice.

There are several commonly used conditions for α_k :

• Armijo condition: let $\varepsilon \in (0, 1)$, $\gamma > 1$ and

$$\phi_k(\alpha_k) \le \phi_k(0) + \varepsilon \alpha_k \phi'_k(0)$$
 (so α_k not too large)
 $\phi_k(\gamma \alpha_k) \ge \phi_k(0) + \varepsilon \gamma \alpha_k \phi'_k(0)$ (so α_k not too small)

• Armijo-Goldstein condition: let $0 < \varepsilon < \eta < 1$ and

$$\begin{split} \phi_k(\alpha_k) &\leq \phi_k(0) + \varepsilon \alpha_k \phi'_k(0) & \text{(so } \alpha_k \text{ not too large)} \\ \phi_k(\alpha_k) &\geq \phi_k(0) + \eta \alpha_k \phi'_k(0) & \text{(so } \phi'_k(\alpha_k) \text{ not too small)} \end{split}$$

• Wolfe condition: let $0 < \varepsilon < \eta < 1$ and

 $\begin{aligned} \phi_k(\alpha_k) &\leq \phi_k(0) + \varepsilon \alpha_k \phi'_k(0) & \text{(so } \alpha_k \text{ not too large)} \\ \phi'_k(\alpha_k) &\geq \eta \phi'_k(0) & \text{(so } \phi_k \text{ not too steep at } \alpha_k) \end{aligned}$

Strong-Wolfe condition: replaces the second condition with $|\phi'_k(\alpha_k)| \le \eta |\phi'_k(0)|$.

Backtracking line search

In practice, we often use the following backtracking line search:

Backtracking: choose initial guess $\alpha^{(0)}$ and $\tau \in (0, 1)$ (e.g., $\tau = 0.5$), then set $\alpha = \alpha^{(0)}$ and repeat:

- 1. Check whether $\phi_k(\alpha) \le \phi_k(0) + \varepsilon \alpha \phi'_k(0)$ (first Armijo condition). If yes, then terminate.
- 2. Shrink α to $\tau \alpha$.

In other words, we find the smallest integer $m \in \mathbb{N}_0$ such that $\alpha_k = \tau^m \alpha^{(0)}$ satisfies the first Armijo condition $\phi_k(\alpha_k) \le \phi_k(0) + \varepsilon \alpha_k \phi'_k(0)$.

Why line search guarantees convergence?

First, note that here by convergence we mean $\|\nabla f(x^{(k)})\| \to 0$.

We take Wolfe condition and $d^{(k)} = -g^{(k)}$ for simplicity. Assume ∇f is *L*-Lipschitz continuous. Now

$$\begin{aligned} x^{(k+1)} &= x^{(k)} - \alpha_k g^{(k)} \\ \phi_k(\alpha_k) &= f(x^{(k+1)}) \\ \phi'_k(\alpha_k) &= -\nabla f(x^{(k+1)}) g^{(k)} \\ \phi_k(0) &= f(x^{(k)}) \\ \phi'_k(0) &= -\nabla f(x^{(k)}) g^{(k)} \end{aligned}$$

Moreover, *L*-Lipschitz continuity of ∇f implies

$$\pm \langle
abla f(m{x}) -
abla f(m{y}), m{x} - m{y}
angle \leq \|
abla f(m{x}) -
abla f(m{y}) \| \| m{x} - m{y} \| \leq L \| m{x} - m{y} \|^2$$
 for any $m{x}, m{y}$.

Claim.
$$\alpha_k \geq \frac{1-\eta}{L}$$
.

Proof of Claim. The second Wolfe condition $\phi'_k(\alpha_k) \ge \eta \phi'_k(0)$ implies $\phi'_k(\alpha_k) - \phi'_k(0) \ge (\eta - 1)\phi'_k(0)$, which is $-\langle \nabla f(x^{(k+1)}) - \nabla f(x^{(k)}), g^{(k)} \rangle \ge (1 - \eta) \|g^{(k)}\|^2$. Note that $g^{(k)} = \frac{x^{(k+1)} - x^{(k)}}{\alpha_k}$, we know $-\langle \nabla f(x^{(k+1)}) - \nabla f(x^{(k)}), g^{(k)} \rangle \le \frac{L}{\alpha_k} \|x^{(k+1)} - x^{(k)}\|^2 = L\alpha_k \|g^{(k)}\|^2$

Combining the two inequalities above yields the claim.

The first Wolfe condition (Armijo condition) implies

$$f(x^{(k+1)}) \le f(x^{(k)}) - \varepsilon \alpha_k \|g^{(k)}\|^2 \le f(x^{(k)}) - \frac{\varepsilon(1-\eta)}{L} \|g^{(k)}\|^2$$

Taking telescope sum yields

$$f(x^{(K)}) \le f(x^{(0)}) - \frac{\varepsilon(1-\eta)}{L} \sum_{k=0}^{K-1} ||g^{(k)}||^2$$

which implies

$$\frac{\varepsilon(1-\eta)}{L} \sum_{k=0}^{K-1} \|\boldsymbol{g}^{(k)}\|^2 \le f(\boldsymbol{x}^{(0)}) - f(\boldsymbol{x}^{(K)}) < \infty$$

for any K (we assume f is bounded below). Notice that $\frac{\varepsilon(1-\eta)}{L} > 0$.

Therefore $\|g^{(k)}\| = \|\nabla f(x^{(k)})\| \to 0.$