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A standard minimization problem is written as

minimize f(x)
xel2

where €2 is a subset of R".

e f(x) is called the objective function or cost function;

e (2 = R™: unconstrained minimization;

e (2 C R"™ explicitly given: set constrained minimization;

e Q ={x e R": g(x) =0,h(x) < 0}: functional constrained minimiza-
tion.
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e Local minimizer: x* is called a local minimizer of f if 3¢ > 0 such that
f(x) > f(x*) forall x € B(x™,¢).

e Global minimizer: x* is called a global minimizer of f if f(x) > f(x*)
for all x € <2.

e Strict local minimizer: x* is called a strict local minimizer of f if 3¢ > O
such that f(x) > f(x*) forallx € B(x*,¢) \ {x*}.

e Strict global minimizer: x* is called a strict global minimizer of f if
f(x) > f(x*) forallx € Q\ {x*}.

e (Strict) local/global maximizers are defined similarly.
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e d € R" is called a feasible direction at x € 2 if 3¢ > 0 such that
x4+ ad € Q forall o € [0, €].

e Directional derivative of f in the direction d is defined by

a—0 Q
11 1\*
E le. Let f : R3 — R defined b = candd=(=,=,— | .
xample. Let f — Rdefinedby f(x) = z12523 (2 5 \5)
Compute the directional derivative of f in the direction of d:

T
11 1 xox3z + x1x3 + \@xlxg
\V4 T g = , : — o) =
f (x) (223,123, T127) (2 5 \5> 5
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Suppose f is differentiable.

e First order necessary condition (FONC): x* is a local minimizer, then
for any feasible direction d at «*, there is d' V f(z*) > 0.

e If * is an interior point of 2, then FONC reduces to V f(x*) = 0.
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Example. Consider the problem

minimize  f(x) := 2% 4 0.525 + 3z, + 4.5, subjectto z1, x5 > O.
1. Is the FONC for a local minimizer satisfied at ¢ = (1,3) ' ?
2. Is the FONC for a local minimizer satisfied at x = (0,3) ' ?
3. Is the FONC for a local minimizer satisfied at ¢ = (1,0) ' ?
4. |s the FONC for a local minimizer satisfied at ¢ = (0,0) ' ?

Idea: First compute Vf(x) = (2z1, 2> + 3) . If  is interior point, check if
V f(z) = 0; otherwise, check if d' V f(z) > 0 for all feasible direction d.
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Suppose f is twice differentiable.

e Second order necessary condition (SONC): x* is a local minimizer,
then for any feasible direction d at «* such that d' V f(x*) = 0, there is
d'V2f(x*)d > 0.

e If * is an interior point of €2, then SONC reduces to Vf(x*) = 0 and
V2f(x*) = 0.
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Note that these conditions are necessary but not sufficient. This means  may
not be a local minimizer even if FONC or SONC is satisfied.

Example. Consider f(z) = z3 for € R, then f/(0) = 0, f/(0) = 0. So
x = 0 satisfies FONC (and even SONC), but it is not a local minimizer.

Example. Let f(x) = z3 — 23, then the gradient is V f(x) = (21, —2z5)
and the Hessian is
> 12 0

which is not positive semi-definite. So & = (0,0) ' does not satisfy SONC
and hence is not a local minimizer of f.
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Let's see a sufficient condition of interior local minimizer. Suppose f is twice
differentiable.

Second order sufficient condition (SOSC): if x is an interior point and sat-
isfies both V f(z*) = 0 and V2f(z*) = 0, then z is a strict local minimizer

of f.
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Example. Let f(x) = :c% + a:% then the gradient is Vf(z) = (2z1,2x5) "
and the Hessian is
> 120

So x = (0,0) " satisfies SOSC and hence is a strict local minimizer of f.
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Let’s take a look of the Newton’s method for univariate functions:
minimize f(x)
reR

Suppose we obtained (k). Now approximate f(z) nearby x(¥) by a quadratic
function q(x):

a(2) = f@0) + /@O (@ 20 + @) (@ - o®)?
Note that g(+(?) = f(z(®), ¢ (1)) = f'(®) and ¢" (2 ®)) = §" (1),
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If ¢ approximates f well (we know it’s true nearby m(k)), then we can minimize
g(x) instead of f(x). To this end, we compute

d(2) = f'(") + #(®)(z — 2y =0

and solve for x to use as our next iterate z(¥+1) j.e.

(k)
1) _ (k) J (@)
RN Q)

In practice, we give an initial guess z(0), and iterate the formula above to
generate {z(¥) : k = 0,1,...}. Then z(*) — z* quickly (under some condi-
tions).
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Example. Use Newton’s method to find the minimizer of

f(x) = %:1:2 —sin

with initial value z(®) = 0.5. Stop when |z(¥+1) — z(F)| < 105,

Solution. We first compute
f'(x) =x—cosz, f'(z)=1+sinz
So the Newton’s method gives
(k) — cos z(F)
1 + sin z(k)

Apply this iteratively, we obtain (%) = 0.5, (1) = 0.7552, 2(2) = 0.7391,
+(3) = 0.7390, z(4) = 0.7390 and terminate.

(k1) (k)

Note that f”(z(*)) = 1.673 > 0, so we expect z(*) to be a strict local
minimizer.
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Newton’s method can also be used for root-finding: if g(z) = f'(z) for all «,
then finding the roots of g is equivalent to finding the critical points of f.

So for root-finding, Newton’s method iterates

k
k1) — (k) g(=(k))
g'(x(k))

and (k) — z* (under conditions) such that g(z*) = O.
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A variation of the Newton’s method is called the secant method, where f”(x(k))

. Nx(R)Y— £ (£ (k—=1)
is replaced by £ (xx(kg_i(%jl) ).

F(@F)) — f(a(k=1))
B p(k=1) £ (2 (k)) — £ (k) (5 (k=1))

f'(@B) — f!(a(k=1))

Need initials (9 and z(1) to start.

2D — () _

The secant method does not need computations of f”/(x) at the expense of
more iterations.
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Consider a general optimization problem

minimize f(x)
el

If we have z(¥), then we want to find d‘¥) (descent direction) and o, (step
size) to obtain

2D — (8 4 o g0

such that f(z(*11)) reduces from #(x(¥)) as much as possible.
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e How to find d(¥)? Often times d(*) = —v #(x(¥)) but better choices may
exist.

e Given d(*), how to find o ? This is an optimization with oy, € Ry :
minimize ¢(a) := f(z*F) + ad(F)
a>0

which is called line search.

e We need ¢/(a) = Vf(z*) 4+ ad(*))Td(*) and probably also ¢”(a) =
(d*N T2 £ (k) 4 ad(*))d(K) . This can be computationally expensive.

e We may not need to find the best a every step. Sometimes we should
allocate more cost to find a better d(%).

These issues will be considered in depth later in the class.
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