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A standard minimization problem is written as

minimize
x∈Ω

f(x)

where Ω is a subset of Rn.

• f(x) is called the objective function or cost function;

• Ω = Rn: unconstrained minimization;

• Ω ⊂ Rn explicitly given: set constrained minimization;

• Ω = {x ∈ Rn : g(x) = 0, h(x) ≤ 0}: functional constrained minimiza-
tion.
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• Local minimizer: x∗ is called a local minimizer of f if ∃ε > 0 such that
f(x) ≥ f(x∗) for all x ∈ B(x∗, ε).

• Global minimizer: x∗ is called a global minimizer of f if f(x) ≥ f(x∗)
for all x ∈ Ω.

• Strict local minimizer: x∗ is called a strict local minimizer of f if ∃ε > 0

such that f(x) > f(x∗) for all x ∈ B(x∗, ε) \ {x∗}.

• Strict global minimizer: x∗ is called a strict global minimizer of f if
f(x) > f(x∗) for all x ∈ Ω \ {x∗}.

• (Strict) local/global maximizers are defined similarly.
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• d ∈ Rn is called a feasible direction at x ∈ Ω if ∃ε > 0 such that
x + αd ∈ Ω for all α ∈ [0, ε].

• Directional derivative of f in the direction d is defined by

lim
α→0

f(x + αd)− f(x)

α
= (∇f(x))>d

Example. Let f : R3 → R defined by f(x) = x1x2x3, and d =

(
1

2
,
1

2
,

1√
2

)T
.

Compute the directional derivative of f in the direction of d:

∇f (x)T d = (x2x3, x1x3, x1x2)

(
1

2
,
1

2
,

1√
2

)T
=
x2x3 + x1x3 +

√
2x1x2

2
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Suppose f is differentiable.

• First order necessary condition (FONC): x∗ is a local minimizer, then
for any feasible direction d at x∗, there is d>∇f(x∗) ≥ 0.

• If x∗ is an interior point of Ω, then FONC reduces to ∇f(x∗) = 0.

Xiaojing Ye, Math & Stat, Georgia State University 4



Example. Consider the problem

minimize f(x) := x2
1 + 0.5x2

2 + 3x2 + 4.5, subject to x1, x2 ≥ 0.

1. Is the FONC for a local minimizer satisfied at x = (1,3)>?

2. Is the FONC for a local minimizer satisfied at x = (0,3)>?

3. Is the FONC for a local minimizer satisfied at x = (1,0)>?

4. Is the FONC for a local minimizer satisfied at x = (0,0)>?

Idea: First compute ∇f(x) = (2x1, x2 + 3)>. If x is interior point, check if
∇f(x) = 0; otherwise, check if d>∇f(x) ≥ 0 for all feasible direction d.
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Suppose f is twice differentiable.

• Second order necessary condition (SONC): x∗ is a local minimizer,
then for any feasible direction d at x∗ such that d>∇f(x∗) = 0, there is
d>∇2f(x∗)d ≥ 0.

• If x∗ is an interior point of Ω, then SONC reduces to ∇f(x∗) = 0 and
∇2f(x∗) � 0.
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Note that these conditions are necessary but not sufficient. This means x may
not be a local minimizer even if FONC or SONC is satisfied.

Example. Consider f(x) = x3 for x ∈ R, then f ′(0) = 0, f ′′(0) = 0. So
x = 0 satisfies FONC (and even SONC), but it is not a local minimizer.

Example. Let f(x) = x2
1− x

2
2, then the gradient is∇f(x) = (2x1,−2x2)>

and the Hessian is

∇2f(x) =

[
2 0
0 −2

]

which is not positive semi-definite. So x = (0,0)> does not satisfy SONC
and hence is not a local minimizer of f .
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Let’s see a sufficient condition of interior local minimizer. Suppose f is twice
differentiable.

Second order sufficient condition (SOSC): if x is an interior point and sat-
isfies both ∇f(x∗) = 0 and ∇2f(x∗) � 0, then x is a strict local minimizer
of f .
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Example. Let f(x) = x2
1 + x2

2, then the gradient is ∇f(x) = (2x1,2x2)>

and the Hessian is

∇2f(x) =

[
2 0
0 2

]

So x = (0,0)> satisfies SOSC and hence is a strict local minimizer of f .
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Let’s take a look of the Newton’s method for univariate functions:

minimize
x∈R

f(x)

Suppose we obtained x(k). Now approximate f(x) nearby x(k) by a quadratic
function q(x):

q(x) = f(x(k)) + f ′(x(k))(x− x(k)) +
1

2
f ′′(x(k))(x− x(k))2

Note that q(x(k)) = f(x(k)), q′(x(k)) = f ′(x(k)) and q′′(x(k)) = f ′′(x(k)).
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If q approximates f well (we know it’s true nearby x(k)), then we can minimize
q(x) instead of f(x). To this end, we compute

q′(x) = f ′(x(k)) + f ′′(x(k))(x− x(k)) = 0

and solve for x to use as our next iterate x(k+1), i.e.,

x(k+1) = x(k) −
f ′(x(k))

f ′′(x(k))

In practice, we give an initial guess x(0), and iterate the formula above to
generate {x(k) : k = 0,1, . . . }. Then x(k) → x∗ quickly (under some condi-
tions).
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Example. Use Newton’s method to find the minimizer of

f(x) =
1

2
x2 − sinx

with initial value x(0) = 0.5. Stop when |x(k+1) − x(k)| < 10−5.

Solution. We first compute

f ′(x) = x− cosx, f ′′(x) = 1 + sinx

So the Newton’s method gives

x(k+1) = x(k) −
x(k) − cosx(k)

1 + sinx(k)

Apply this iteratively, we obtain x(0) = 0.5, x(1) = 0.7552, x(2) = 0.7391,
x(3) = 0.7390, x(4) = 0.7390 and terminate.

Note that f ′′(x(4)) = 1.673 > 0, so we expect x(4) to be a strict local
minimizer.
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Newton’s method can also be used for root-finding: if g(x) = f ′(x) for all x,
then finding the roots of g is equivalent to finding the critical points of f .

So for root-finding, Newton’s method iterates

x(k+1) = x(k) −
g(x(k))

g′(x(k))

and x(k) → x∗ (under conditions) such that g(x∗) = 0.
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A variation of the Newton’s method is called the secant method, where f ′′(x(k))

is replaced by f ′(x(k))−f ′(x(k−1))
x(k)−x(k−1) :

x(k+1) = x(k) −
(x(k) − x(k−1))f ′(x(k))

f ′(x(k))− f ′(x(k−1))

=
x(k−1)f ′(x(k))− x(k)f ′(x(k−1))

f ′(x(k))− f ′(x(k−1))

Need initials x(0) and x(1) to start.

The secant method does not need computations of f ′′(x) at the expense of
more iterations.
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Consider a general optimization problem

minimize
x∈Ω

f(x)

If we have x(k), then we want to find d(k) (descent direction) and αk (step
size) to obtain

x(k+1) = x(k) + αkd
(k)

such that f(x(k+1)) reduces from f(x(k)) as much as possible.
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• How to find d(k)? Often times d(k) = −∇f(x(k)) but better choices may
exist.

• Given d(k), how to find αk? This is an optimization with αk ∈ R+:

minimize
α>0

φ(α) := f(x(k) + αd(k))

which is called line search.

• We need φ′(α) = ∇f(x(k) + αd(k))>d(k) and probably also φ′′(α) =

(d(k))>∇2f(x(k) +αd(k))d(k). This can be computationally expensive.

• We may not need to find the best α every step. Sometimes we should
allocate more cost to find a better d(k).

These issues will be considered in depth later in the class.
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