MATH 4211/6211 - Optimization Basics of Optimization Problems

Xiaojing Ye
Department of Mathematics \& Statistics
Georgia State University

A standard minimization problem is written as

$$
\underset{\boldsymbol{x} \in \Omega}{\operatorname{minimize}} f(\boldsymbol{x})
$$

where Ω is a subset of \mathbb{R}^{n}.

- $f(x)$ is called the objective function or cost function;
- $\Omega=\mathbb{R}^{n}$: unconstrained minimization;
- $\Omega \subset \mathbb{R}^{n}$ explicitly given: set constrained minimization;
- $\Omega=\left\{x \in \mathbb{R}^{n}: g(x)=0, h(x) \leq 0\right\}$: functional constrained minimization.
- Local minimizer: \boldsymbol{x}^{*} is called a local minimizer of f if $\exists \epsilon>0$ such that $f(\boldsymbol{x}) \geq f\left(\boldsymbol{x}^{*}\right)$ for all $\boldsymbol{x} \in B\left(\boldsymbol{x}^{*}, \epsilon\right)$.
- Global minimizer: \boldsymbol{x}^{*} is called a global minimizer of f if $f(\boldsymbol{x}) \geq f\left(\boldsymbol{x}^{*}\right)$ for all $x \in \Omega$.
- Strict local minimizer: \boldsymbol{x}^{*} is called a strict local minimizer of f if $\exists \epsilon>0$ such that $f(\boldsymbol{x})>f\left(\boldsymbol{x}^{*}\right)$ for all $\boldsymbol{x} \in B\left(\boldsymbol{x}^{*}, \epsilon\right) \backslash\left\{\boldsymbol{x}^{*}\right\}$.
- Strict global minimizer: x^{*} is called a strict global minimizer of f if $f(\boldsymbol{x})>f\left(\boldsymbol{x}^{*}\right)$ for all $\boldsymbol{x} \in \Omega \backslash\left\{\boldsymbol{x}^{*}\right\}$.
- (Strict) local/global maximizers are defined similarly.
- $\boldsymbol{d} \in \mathbb{R}^{n}$ is called a feasible direction at $\boldsymbol{x} \in \Omega$ if $\exists \epsilon>0$ such that $\boldsymbol{x}+\alpha \boldsymbol{d} \in \Omega$ for all $\alpha \in[0, \epsilon]$.
- Directional derivative of f in the direction \boldsymbol{d} is defined by

$$
\lim _{\alpha \rightarrow 0} \frac{f(\boldsymbol{x}+\alpha \boldsymbol{d})-f(\boldsymbol{x})}{\alpha}=(\nabla f(\boldsymbol{x}))^{\top} \boldsymbol{d}
$$

Example. Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ defined by $f(\boldsymbol{x})=x_{1} x_{2} x_{3}$, and $\boldsymbol{d}=\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{\sqrt{2}}\right)^{T}$.
Compute the directional derivative of f in the direction of d :
$\nabla f(\boldsymbol{x})^{T} \boldsymbol{d}=\left(x_{2} x_{3}, x_{1} x_{3}, x_{1} x_{2}\right)\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{\sqrt{2}}\right)^{T}=\frac{x_{2} x_{3}+x_{1} x_{3}+\sqrt{2} x_{1} x_{2}}{2}$

Suppose f is differentiable.

- First order necessary condition (FONC): x^{*} is a local minimizer, then for any feasible direction \boldsymbol{d} at \boldsymbol{x}^{*}, there is $\boldsymbol{d}^{\top} \nabla f\left(\boldsymbol{x}^{*}\right) \geq 0$.
- If \boldsymbol{x}^{*} is an interior point of Ω, then FONC reduces to $\nabla f\left(\boldsymbol{x}^{*}\right)=0$.

Example. Consider the problem

$$
\text { minimize } f(x):=x_{1}^{2}+0.5 x_{2}^{2}+3 x_{2}+4.5, \quad \text { subject to } x_{1}, x_{2} \geq 0 .
$$

1. Is the FONC for a local minimizer satisfied at $x=(1,3)^{\top}$?
2. Is the FONC for a local minimizer satisfied at $x=(0,3)^{\top}$?
3. Is the FONC for a local minimizer satisfied at $x=(1,0)^{\top}$?
4. Is the FONC for a local minimizer satisfied at $x=(0,0)^{\top}$?

Idea: First compute $\nabla f(\boldsymbol{x})=\left(2 x_{1}, x_{2}+3\right)^{\top}$. If \boldsymbol{x} is interior point, check if $\nabla f(\boldsymbol{x})=0$; otherwise, check if $\boldsymbol{d}^{\top} \nabla f(\boldsymbol{x}) \geq 0$ for all feasible direction \boldsymbol{d}.

Suppose f is twice differentiable.

- Second order necessary condition (SONC): \boldsymbol{x}^{*} is a local minimizer, then for any feasible direction \boldsymbol{d} at \boldsymbol{x}^{*} such that $\boldsymbol{d}^{\top} \nabla f\left(\boldsymbol{x}^{*}\right)=0$, there is $d^{\top} \nabla^{2} f\left(x^{*}\right) d \geq 0$.
- If x^{*} is an interior point of Ω, then SONC reduces to $\nabla f\left(x^{*}\right)=0$ and $\nabla^{2} f\left(x^{*}\right) \succeq 0$.

Note that these conditions are necessary but not sufficient. This means x may not be a local minimizer even if FONC or SONC is satisfied.

Example. Consider $f(x)=x^{3}$ for $x \in \mathbb{R}$, then $f^{\prime}(0)=0, f^{\prime \prime}(0)=0$. So $x=0$ satisfies FONC (and even SONC), but it is not a local minimizer.

Example. Let $f(\boldsymbol{x})=x_{1}^{2}-x_{2}^{2}$, then the gradient is $\nabla f(\boldsymbol{x})=\left(2 x_{1},-2 x_{2}\right)^{\top}$ and the Hessian is

$$
\nabla^{2} f(x)=\left[\begin{array}{cc}
2 & 0 \\
0 & -2
\end{array}\right]
$$

which is not positive semi-definite. So $x=(0,0)^{\top}$ does not satisfy SONC and hence is not a local minimizer of f.

Let's see a sufficient condition of interior local minimizer. Suppose f is twice differentiable.

Second order sufficient condition (SOSC): if x is an interior point and satisfies both $\nabla f\left(x^{*}\right)=0$ and $\nabla^{2} f\left(x^{*}\right) \succ 0$, then x is a strict local minimizer of f.

Example. Let $f(\boldsymbol{x})=x_{1}^{2}+x_{2}^{2}$, then the gradient is $\nabla f(\boldsymbol{x})=\left(2 x_{1}, 2 x_{2}\right)^{\top}$ and the Hessian is

$$
\nabla^{2} f(x)=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]
$$

So $x=(0,0)^{\top}$ satisfies SOSC and hence is a strict local minimizer of f.

Let's take a look of the Newton's method for univariate functions:

$$
\underset{x \in \mathbb{R}}{\operatorname{minimize}} f(x)
$$

Suppose we obtained $x^{(k)}$. Now approximate $f(x)$ nearby $x^{(k)}$ by a quadratic function $q(x)$:

$$
q(x)=f\left(x^{(k)}\right)+f^{\prime}\left(x^{(k)}\right)\left(x-x^{(k)}\right)+\frac{1}{2} f^{\prime \prime}\left(x^{(k)}\right)\left(x-x^{(k)}\right)^{2}
$$

Note that $q\left(x^{(k)}\right)=f\left(x^{(k)}\right), q^{\prime}\left(x^{(k)}\right)=f^{\prime}\left(x^{(k)}\right)$ and $q^{\prime \prime}\left(x^{(k)}\right)=f^{\prime \prime}\left(x^{(k)}\right)$.

If q approximates f well (we know it's true nearby $x^{(k)}$), then we can minimize $q(x)$ instead of $f(x)$. To this end, we compute

$$
q^{\prime}(x)=f^{\prime}\left(x^{(k)}\right)+f^{\prime \prime}\left(x^{(k)}\right)\left(x-x^{(k)}\right)=0
$$

and solve for x to use as our next iterate $x^{(k+1)}$, i.e.,

$$
x^{(k+1)}=x^{(k)}-\frac{f^{\prime}\left(x^{(k)}\right)}{f^{\prime \prime}\left(x^{(k)}\right)}
$$

In practice, we give an initial guess $x^{(0)}$, and iterate the formula above to generate $\left\{x^{(k)}: k=0,1, \ldots\right\}$. Then $x^{(k)} \rightarrow x^{*}$ quickly (under some conditions).

Example. Use Newton's method to find the minimizer of

$$
f(x)=\frac{1}{2} x^{2}-\sin x
$$

with initial value $x^{(0)}=0.5$. Stop when $\left|x^{(k+1)}-x^{(k)}\right|<10^{-5}$.

Solution. We first compute

$$
f^{\prime}(x)=x-\cos x, \quad f^{\prime \prime}(x)=1+\sin x
$$

So the Newton's method gives

$$
x^{(k+1)}=x^{(k)}-\frac{x^{(k)}-\cos x^{(k)}}{1+\sin x^{(k)}}
$$

Apply this iteratively, we obtain $x^{(0)}=0.5, x^{(1)}=0.7552, x^{(2)}=0.7391$, $x^{(3)}=0.7390, x^{(4)}=0.7390$ and terminate.

Note that $f^{\prime \prime}\left(x^{(4)}\right)=1.673>0$, so we expect $x^{(4)}$ to be a strict local minimizer.

Newton's method can also be used for root-finding: if $g(x)=f^{\prime}(x)$ for all x, then finding the roots of g is equivalent to finding the critical points of f.

So for root-finding, Newton's method iterates

$$
x^{(k+1)}=x^{(k)}-\frac{g\left(x^{(k)}\right)}{g^{\prime}\left(x^{(k)}\right)}
$$

and $x^{(k)} \rightarrow x^{*}$ (under conditions) such that $g\left(x^{*}\right)=0$.

A variation of the Newton's method is called the secant method, where $f^{\prime \prime}\left(x^{(k)}\right)$ is replaced by $\frac{f^{\prime}\left(x^{(k)}\right)-f^{\prime}\left(x^{(k-1)}\right)}{x^{(k)}-x^{(k-1)}}$:

$$
\begin{aligned}
x^{(k+1)} & =x^{(k)}-\frac{\left(x^{(k)}-x^{(k-1)}\right) f^{\prime}\left(x^{(k)}\right)}{f^{\prime}\left(x^{(k)}\right)-f^{\prime}\left(x^{(k-1)}\right)} \\
& =\frac{x^{(k-1)} f^{\prime}\left(x^{(k)}\right)-x^{(k)} f^{\prime}\left(x^{(k-1)}\right)}{f^{\prime}\left(x^{(k)}\right)-f^{\prime}\left(x^{(k-1)}\right)}
\end{aligned}
$$

Need initials $x^{(0)}$ and $x^{(1)}$ to start.

The secant method does not need computations of $f^{\prime \prime}(x)$ at the expense of more iterations.

Consider a general optimization problem

$$
\underset{\boldsymbol{x} \in \Omega}{\operatorname{minimize}} f(\boldsymbol{x})
$$

If we have $\boldsymbol{x}^{(k)}$, then we want to find $\boldsymbol{d}^{(k)}$ (descent direction) and α_{k} (step size) to obtain

$$
\boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(k)}+\alpha_{k} \boldsymbol{d}^{(k)}
$$

such that $f\left(\boldsymbol{x}^{(k+1)}\right)$ reduces from $f\left(\boldsymbol{x}^{(k)}\right)$ as much as possible.

- How to find $\boldsymbol{d}^{(k)}$? Often times $\boldsymbol{d}^{(k)}=-\nabla f\left(\boldsymbol{x}^{(k)}\right)$ but better choices may exist.
- Given $\boldsymbol{d}^{(k)}$, how to find α_{k} ? This is an optimization with $\alpha_{k} \in \mathbb{R}_{+}$:

$$
\underset{\alpha>0}{\operatorname{minimize}} \phi(\alpha):=f\left(\boldsymbol{x}^{(k)}+\alpha \boldsymbol{d}^{(k)}\right)
$$

which is called line search.

- We need $\phi^{\prime}(\alpha)=\nabla f\left(\boldsymbol{x}^{(k)}+\alpha \boldsymbol{d}^{(k)}\right)^{\top} \boldsymbol{d}^{(k)}$ and probably also $\phi^{\prime \prime}(\alpha)=$ $\left(\boldsymbol{d}^{(k)}\right)^{\top} \nabla^{2} f\left(\boldsymbol{x}^{(k)}+\alpha \boldsymbol{d}^{(k)}\right) \boldsymbol{d}^{(k)}$. This can be computationally expensive.
- We may not need to find the best α every step. Sometimes we should allocate more cost to find a better $\boldsymbol{d}^{(k)}$.

These issues will be considered in depth later in the class.

