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Vector spaces and matrices

A column n-vector a is denoted

a =


a1
a2...
an

 ∈ Rn

or a> = [a1, a2, . . . , an].

Operations on vectors:

• Sum of two vectors: a+ b.

• Scalar multiplication: λa.
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A linear combination of vectors a1, . . . ,ak is:

λ1a1 + λ2a2 + · · ·+ λkak,

where λ1, . . . , λk ∈ R are called combination coefficients.

The set of linear combinations of a1, . . . ,ak is denoted by

span(a1, . . . ,ak) :=
{ k∑
i=1

λiai : λi ∈ R
}
.

The span of vectors is a vector space V.

Proposition. A set of vectors {a1, . . . ,ak} are linearly dependent iff∗ one of
the vectors is a linear combination of the remaining vectors.

∗“iff” stands for “if and only if”.
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Definition. {a1, . . . ,ak} is called a basis of the vector space V if they are
linearly independent and V = span(a1, . . . ,ak). The size k of a basis is
called the dimension of V.

Proposition. If {a1, . . . ,ak} is a basis of V, then any vector a ∈ V can be
represented uniquely as

a = λ1a1 + λ2a2 + · · ·+ λkak.

We often denote the natural basis of V = Rn as e1, . . . , en where

e>i = [0, . . . ,0, 1︸︷︷︸
i-th

,0, . . . ,0].
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Matrices

A matrix is a rectangular array of numbers:

A =


a11 a12 · · · a1n
a21 a22

... a2n... · · · . . . · · ·
am1 am2

... amn

 ∈ Rm×n.

Sum of two matrices and scalar multiplication are defined similarly.
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Definition. The maximal number of linearly independent columns (or rows) of
A is called the rank of A, denoted by rank(A).

The following operations do not change the rank of A:

• Multiplying nonzero scalars to the columns of A.

• Interchanging any two columns.

• Adding a linear combination of columns to another column.

The same types of row operations do not change rank(A) either.
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Determinant

Let A be a square matrix:

A =


a11 a12 · · · a1n
a21 a22

... a2n... · · · . . . · · ·
an1 a2n

... ann

 .

The determinant of a square matrix A is defined recursively as

det(A) =
n∑
i=1

(−1)i+1ai1 det(Ai1),

where Aij ∈ R(n−1)×(n−1) is A with its i-th row and j-th column deleted,
and det(Aij) is called the principal minor.
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Definition. A square matrix A is called invertible (or nonsingular) if there
exists a matrix B such that AB = BA = I. We denote A−1 = B.

Proposition. det(A) 6= 0 iff rank(A) = n iff A is invertible.

Definition. Let A be a square matrix. Then

• A is symmetric if A = A>.

• A is orthogonal if AA> = A>A = I. Clearly an orthogonal matrix is
invertible.
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Inner Products and Norms

For x,y ∈ Rn, the inner product of x and y is

〈x,y〉 = x>y =
n∑
i=1

xiyi ∈ R.

Properties:

• Positivity: 〈x,x〉 ≥ 0; and = 0 iff x = 0.

• Symmetry: 〈x,y〉 = 〈y,x〉.

• Additivity: 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉.

• Homogeneity: 〈λx,y〉 = λ〈x,y〉 for any λ ∈ R.

Due to symmetry, additivity and homogeneity also hold for the second argu-
ment.
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Norms

The (Euclidean) norm of x is defined by ‖x‖ =
√
〈x,x〉.

Properties:

• Positivity: ‖x‖ ≥ 0; and = 0 iff x = 0.

• Homogeneity: ‖λx‖ = |λ|‖x‖ for any λ ∈ R.

• Triangle inequality: ‖x+ y‖ ≤ ‖x‖+ ‖y‖.
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Cauchy-Schwarz inequality. For any x,y ∈ Rn, there is

|〈x,y〉| ≤ ‖x‖‖y‖.

The equality holds iff x = λy for some λ ∈ R or y = 0.

Proposition. For any x,y ∈ Rn, there is

‖x+ y‖2 = ‖x‖2 +2〈x,y〉+ ‖x‖2.

General vector norms. We define p-norm of x as

‖x‖p =


(
|x1|p+ · · ·+ |xn|p

)1/p
, if 1 ≤ p <∞,

max
(
|x1| , . . . , |xn|

)
, if p =∞.
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Eigenvalues and eigenvectors

Definition. Let A be a square matrix. If λ ∈ C and nonzero x ∈ Cn are such
that

Ax = λx.

Then λ and x are respectively called eigenvalue and eigenvector of A.

Note that det(λI − A) is a polynomial of λ of degree n. It is called the
characteristic polynomial of A.
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Proposition. λ is an eigenvalue of A iff det(λI −A) = 0 (i.e., λ is a root of
the characteristic polynomial of A).

Theorem. If det(λI − A) = 0 has n distinct roots λ1, . . . , λn, then there
exist n linearly independent eigenvectors v1, . . . ,vn such that

Avi = λivi, i = 1, . . . , n.

Theorem. All eigenvalues of a symmetric matrix A are real. If in addition A

is real, then all the corresponding eigenvectors are mutually orthogonal, i.e.,
〈vi,vj〉 = 0 for all i 6= j.
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Orthogonal projections

Let V be a linear subspace of Rn. Then the orthogonal complement of V is
defined by

V⊥ := {u ∈ Rn : v>u = 0, ∀v ∈ V}.

Then any x ∈ R can be uniquely decomposed as

x = u+ v, v ∈ V, u ∈ V⊥.

We also write Rn = V ⊕ V⊥, called the direct sum of V and V⊥.

We say P ∈ Rn×n the orthogonal projector onto V if for all x ∈ Rn we have
Px ∈ V and x− Px ∈ V⊥.
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Kernel and range of matrices

Let A ∈ Rm×n. Then the range of A is

R(A) := {Ax : x ∈ Rn} ⊂ Rm

which is the span of the columns of A. So R(A) is also called the column
space of A.

The kernel of A is

N (A) := {x : Ax = 0} ⊂ Rn

which is the orthogonal complement of the span of the rows of A. SoN (A) =

R(A>)⊥.

Theorem. P is an orthogonal projector (onto the subspace V = R(P )) iff
P 2 = P = P>.
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Quadratic forms

We call f : Rn → R a quadratic form if

f(x) = x>Qx

for some real square matrix Q.

Without loss of generality, we assume Q = Q>: if Q is not symmetric, then
replace it with 1

2(Q+Q>) because

x>Qx = x>Q>x =
1

2
x>(Q+Q>)x

for any x.
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Positive definite matrices

Definition. We say Q is positive semidefinite (denoted Q � 0) if x>Qx ≥ 0

for all x ∈ R. If in addition = holds only at x = 0, then we say Q is positive
definite, denoted Q � 0. We say Q is negative (semi)definite if −Q is
positive (semi)definite.

Sylvester’s criterion. A symmetric Q is positive definite iff all its leading
principal minors are positive.

Theorem. A symmetric Q is positive definite (or positive semidefinite) iff all
eigenvalues of Q are positive (or nonnegative).
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Hyperplanes and half-spaces

Let a ∈ Rn and b ∈ R, then

H := {x ∈ Rn : a>x = b}

is called a hyperplane in Rn.

A hyperplane divides Rn into two half-spaces:

H+ := {x ∈ Rn : a>x ≥ b}
H− := {x ∈ Rn : a>x ≤ b}
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Linear varieties

Let A ∈ Rm×n and b ∈ Rm be such that b ∈ R(A), then the linear variety
is defined by

{x ∈ Rn : Ax = b}.

If dim(N (A)) = r, the linear variety has dimension r.

It is obvious that

{x ∈ Rn : Ax = b} =
m⋂
i=1

{x ∈ Rn : a>i x = bi}

where a>i is the i-th row of A.

A linear variety is a subspace iff b = 0.
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Convex sets

For any x,y ∈ Rn, the line segment between x and y is

{λx+ (1− λ)y : λ ∈ [0,1]}

A set C ⊂ Rn is called convex if

λx+ (1− λ)y ∈ C

for any x,y ∈ C and λ ∈ [0,1].

In other words, C is convex iff the line segment between any two points in C
lies in C.
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Examples of convex sets include:

• the empty set

• a set consisting of a single point

• a line or a line segment

• a subspace

• hyperplane

• balls and ellipses

Theorem. Let C1 and C2 be two convex sets, then C1 ∩ C2 is convex, and

C1 + C2 := {x1 + x2 : x1 ∈ C1, x2 ∈ C2}

is also convex.
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Neighborhoods

A neighborhood of a point x ∈ Rn is defined by

Bε(x) := {y ∈ Rn : ‖y − x‖ < ε}

for some ε > 0. Note that Bε(x) is open.

Let S ⊂ Rn, then x is called an interior point of S if there exists ε > 0 such
that Bε(x) ⊂ S. The set of interior points of S is called the interior of S,
denoted by int(S).

x is called a boundary point of S if any neighborhood of x contains a point
in S and a point in Sc. A boundary point may or may not be in S. The set of
boundary points of S is called the boundary of S.
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Open sets, closed sets, compact sets

A set S ⊂ Rn is called open if all its point are an interior points. S is called
closed if Sc is open. S is called bounded if S ⊂ BR(0) for some R > 0. S is
called compact if S is closed and bounded.

Weierstrass theorem. Let S ⊂ Rn be compact and f : S → R be continuous,
then f attains maximum and minimum in S.
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Polytopes and polyhedra

The intersection of finitely many half-spaces is called a polytope. Note that a
polytope is convex, since all half-spaces are convex.

A nonempty bounded polytope is called a polyhedron.
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Sequences and limits

Let x(1), . . . ,x(k), . . . be a sequence in Rn, then we say x(k) converges to
x∗ if for any ε > 0, there exists K ∈ N (depending on ε) such that

‖xk − x∗‖ < ε

for all k ≥ K. This is denoted by limk→∞x(k) = x∗ or x(k) → x∗. x∗ is
called the limit of the sequence (x(k))∞k=1. If a sequence is convergent, then

the limit is unique. Note that x(k) → x∗ iff x(k)i → x∗i for all i = 1, . . . , n.

Theorem. A convergent sequence is bounded. A bounded sequence has at
least one convergent subsequence.

Theorem. A sequence (x(k))∞k=1 converges to x∗ iff every subsequence of
(x(k))∞k=1 converges to x∗.
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Continuous functions

We say f : Rn → Rm is continuous at x ∈ Rn if

f(x(k))→ f(x)

for any sequence x(k) → x.

We say f is continuous on S ⊂ Rn if f is continuous at every point of S.
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Gradient and Jacobian

Let f : Rn → R, then the gradient of f at x is

∇f(x) :=
[
∂f

∂x1
(x), . . . ,

∂f

∂xn
(x)

]
∈ R1×n

where ∂f
∂xi

(x) is the i-th partial derivative of f at x:

∂f

∂xi
(x) := lim

h→0

f(x+ hei)− f(x)
h

.

Let f : Rn → Rm, then the Jacobian of f = [f1, . . . , fm]> at x is

Df(x) =

∇f1(x)...
∇fm(x)

 ∈ Rm×n
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Differentiation rules

Chain rule. Let f : Rn → Rm and g : Rm → Rk, then their composition is
g ◦ f : Rn → Rk, and the Jacobian of g ◦ f at x is

D(g ◦ f)(x) = Dg(f(x))︸ ︷︷ ︸
k×m

Df(x)︸ ︷︷ ︸
m×n

∈ Rk×n.

Product rule. Let f , g : Rn → Rm, then f(x)>g(x) ∈ R for any x ∈ Rn and

∇(f(x)>g(x)) = f(x)>︸ ︷︷ ︸
1×m

Dg(x)︸ ︷︷ ︸
m×n

+ g(x)>︸ ︷︷ ︸
1×m

Df(x)︸ ︷︷ ︸
m×n

∈ R1×n
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Level sets

The level set of a function f : Rn → R at level c ∈ R is

Sc := {x ∈ Rn : f(x) = c}

If n = 2 then Sc is a curve. If n = 3 then Sc is a surface.

Theorem. For any c, ∇f(x) is orthogonal to the tangent of Sc at x ∈ Sc.

In fact, ∇f(x)‖∇f(x)‖ is the direction of fastest increase (steepest ascent direction)
of f at x (if ∇f(x) 6= 0).
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Taylor theorem

Let f : R→ R and f ∈ Cm, and denote h = b− a, then

f(b) = f(a)+
h

1!
f(1)(a)+

h2

2!
f(2)(a)+ · · ·+

hm−1

(m− 1)!
f(m−1)(a)+Rm

where f(i) is the i-th derivative of f and

Rm =
hm(1− θ)m−1

(m− 1)!
f(m)(a+ θh) =

hm

m!
f(m)

(
a+ θ′h

)
with θ, θ′ ∈ (0,1).

Let f : Rn → R and f ∈ C2, and denote h = b− a, then

f(b) = f(a) +Df(a)h+
1

2
h>D2f(a)h+ o(‖h‖2),

where lim‖h‖→0 o(‖h‖2)/‖h‖2 = 0.
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