MATH 4211/6211 - Optimization

 ReviewXiaojing Ye
Department of Mathematics \& Statistics
Georgia State University

Vector spaces and matrices

A column n-vector \boldsymbol{a} is denoted

$$
\boldsymbol{a}=\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right] \in \mathbb{R}^{n}
$$

or $\boldsymbol{a}^{\top}=\left[a_{1}, a_{2}, \ldots, a_{n}\right]$
Operations on vectors:

- Sum of two vectors: $a+b$.
- Scalar multiplication: $\lambda \boldsymbol{a}$.

A linear combination of vectors a_{1}, \ldots, a_{k} is:

$$
\lambda_{1} a_{1}+\lambda_{2} \boldsymbol{a}_{2}+\cdots+\lambda_{k} \boldsymbol{a}_{k}
$$

where $\lambda_{1}, \ldots, \lambda_{k} \in \mathbb{R}$ are called combination coefficients.

The set of linear combinations of a_{1}, \ldots, a_{k} is denoted by

$$
\operatorname{span}\left(\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{k}\right):=\left\{\sum_{i=1}^{k} \lambda_{i} \boldsymbol{a}_{i}: \lambda_{i} \in \mathbb{R}\right\}
$$

The span of vectors is a vector space \mathcal{V}.

Proposition. A set of vectors $\left\{a_{1}, \ldots, a_{k}\right\}$ are linearly dependent iff one of the vectors is a linear combination of the remaining vectors.
*"iff" stands for "if and only if".

Definition. $\left\{a_{1}, \ldots, a_{k}\right\}$ is called a basis of the vector space \mathcal{V} if they are linearly independent and $\mathcal{V}=\operatorname{span}\left(a_{1}, \ldots, a_{k}\right)$. The size k of a basis is called the dimension of \mathcal{V}.

Proposition. If $\left\{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{k}\right\}$ is a basis of \mathcal{V}, then any vector $\boldsymbol{a} \in \mathcal{V}$ can be represented uniquely as

$$
\boldsymbol{a}=\lambda_{1} \boldsymbol{a}_{1}+\lambda_{2} \boldsymbol{a}_{2}+\cdots+\lambda_{k} \boldsymbol{a}_{k}
$$

We often denote the natural basis of $\mathcal{V}=\mathbb{R}^{n}$ as e_{1}, \ldots, e_{n} where

$$
\boldsymbol{e}_{i}^{\top}=[0, \ldots, 0, \underbrace{1}_{i \text {-th }}, 0, \ldots, 0]
$$

Matrices

A matrix is a rectangular array of numbers:

$$
\boldsymbol{A}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \vdots & a_{2 n} \\
\vdots & \cdots & \ddots & \cdots \\
a_{m 1} & a_{m 2} & \vdots & a_{m n}
\end{array}\right] \in \mathbb{R}^{m \times n}
$$

Sum of two matrices and scalar multiplication are defined similarly.

Definition. The maximal number of linearly independent columns (or rows) of \boldsymbol{A} is called the rank of \boldsymbol{A}, denoted by $\operatorname{rank}(\boldsymbol{A})$.

The following operations do not change the rank of \boldsymbol{A} :

- Multiplying nonzero scalars to the columns of \boldsymbol{A}.
- Interchanging any two columns.
- Adding a linear combination of columns to another column.

The same types of row operations do not change $\operatorname{rank}(\boldsymbol{A})$ either.

Determinant

Let \boldsymbol{A} be a square matrix:

$$
\boldsymbol{A}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \vdots & a_{2 n} \\
\vdots & \cdots & \ddots & \cdots \\
a_{n 1} & a_{2 n} & \vdots & a_{n n}
\end{array}\right]
$$

The determinant of a square matrix \boldsymbol{A} is defined recursively as

$$
\operatorname{det}(\boldsymbol{A})=\sum_{i=1}^{n}(-1)^{i+1} a_{i 1} \operatorname{det}\left(\boldsymbol{A}_{i 1}\right)
$$

where $\boldsymbol{A}_{i j} \in \mathbb{R}^{(n-1) \times(n-1)}$ is \boldsymbol{A} with its i-th row and j-th column deleted, and $\operatorname{det}\left(A_{i j}\right)$ is called the principal minor.

Definition. A square matrix A is called invertible (or nonsingular) if there exists a matrix \boldsymbol{B} such that $\boldsymbol{A B}=\boldsymbol{B} \boldsymbol{A}=\boldsymbol{I}$. We denote $\boldsymbol{A}^{-1}=\boldsymbol{B}$.

Proposition. $\operatorname{det}(\boldsymbol{A}) \neq 0$ iff $\operatorname{rank}(A)=n$ iff A is invertible.

Definition. Let \boldsymbol{A} be a square matrix. Then

- \boldsymbol{A} is symmetric if $\boldsymbol{A}=\boldsymbol{A}^{\top}$.
- \boldsymbol{A} is orthogonal if $\boldsymbol{A} \boldsymbol{A}^{\top}=\boldsymbol{A}^{\top} \boldsymbol{A}=\boldsymbol{I}$. Clearly an orthogonal matrix is invertible.

Inner Products and Norms

For $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}$, the inner product of \boldsymbol{x} and \boldsymbol{y} is

$$
\langle\boldsymbol{x}, \boldsymbol{y}\rangle=\boldsymbol{x}^{\top} \boldsymbol{y}=\sum_{i=1}^{n} x_{i} y_{i} \in \mathbb{R}
$$

Properties:

- Positivity: $\langle\boldsymbol{x}, \boldsymbol{x}\rangle \geq 0$; and $=0$ iff $\boldsymbol{x}=\mathbf{0}$.
- Symmetry: $\langle\boldsymbol{x}, \boldsymbol{y}\rangle=\langle\boldsymbol{y}, \boldsymbol{x}\rangle$.
- Additivity: $\langle\boldsymbol{x}+\boldsymbol{y}, \boldsymbol{z}\rangle=\langle\boldsymbol{x}, \boldsymbol{z}\rangle+\langle\boldsymbol{y}, \boldsymbol{z}\rangle$.
- Homogeneity: $\langle\lambda \boldsymbol{x}, \boldsymbol{y}\rangle=\lambda\langle\boldsymbol{x}, \boldsymbol{y}\rangle$ for any $\lambda \in \mathbb{R}$.

Due to symmetry, additivity and homogeneity also hold for the second argument.

Norms

The (Euclidean) norm of x is defined by $\|x\|=\sqrt{\langle x, x\rangle}$.

Properties:

- Positivity: $\|x\| \geq 0$; and $=0$ iff $x=0$.
- Homogeneity: $\|\lambda x\|=|\lambda|\|x\|$ for any $\lambda \in \mathbb{R}$.
- Triangle inequality: $\|x+y\| \leq\|x\|+\|y\|$.

Cauchy-Schwarz inequality. For any $x, y \in \mathbb{R}^{n}$, there is

$$
|\langle\boldsymbol{x}, \boldsymbol{y}\rangle| \leq\|\boldsymbol{x}\|\|\boldsymbol{y}\| .
$$

The equality holds iff $\boldsymbol{x}=\lambda \boldsymbol{y}$ for some $\lambda \in \mathbb{R}$ or $\boldsymbol{y}=0$.

Proposition. For any $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}$, there is

$$
\|x+y\|^{2}=\|x\|^{2}+2\langle\boldsymbol{x}, \boldsymbol{y}\rangle+\|x\|^{2} .
$$

General vector norms. We define p-norm of x as

$$
\|x\|_{p}= \begin{cases}\left(\left|x_{1}\right|^{p}+\cdots+\left|x_{n}\right|^{p}\right)^{1 / p}, & \text { if } 1 \leq p<\infty \\ \max \left(\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right), & \text { if } p=\infty\end{cases}
$$

Eigenvalues and eigenvectors

Definition. Let \boldsymbol{A} be a square matrix. If $\lambda \in \mathbb{C}$ and nonzero $\boldsymbol{x} \in \mathbb{C}^{n}$ are such that

$$
\boldsymbol{A x}=\lambda \boldsymbol{x} .
$$

Then λ and x are respectively called eigenvalue and eigenvector of \boldsymbol{A}.

Note that $\operatorname{det}(\lambda \boldsymbol{I}-\boldsymbol{A})$ is a polynomial of λ of degree n. It is called the characteristic polynomial of \boldsymbol{A}.

Proposition. λ is an eigenvalue of \boldsymbol{A} iff $\operatorname{det}(\lambda \boldsymbol{I}-\boldsymbol{A})=0$ (i.e., λ is a root of the characteristic polynomial of \boldsymbol{A}).

Theorem. If $\operatorname{det}(\lambda \boldsymbol{I}-\boldsymbol{A})=0$ has n distinct roots $\lambda_{1}, \ldots, \lambda_{n}$, then there exist n linearly independent eigenvectors $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}$ such that

$$
\boldsymbol{A} \boldsymbol{v}_{i}=\lambda_{i} \boldsymbol{v}_{i}, \quad i=1, \ldots, n
$$

Theorem. All eigenvalues of a symmetric matrix \boldsymbol{A} are real. If in addition \boldsymbol{A} is real, then all the corresponding eigenvectors are mutually orthogonal, i.e., $\left\langle\boldsymbol{v}_{i}, \boldsymbol{v}_{j}\right\rangle=0$ for all $i \neq j$.

Orthogonal projections

Let \mathcal{V} be a linear subspace of \mathbb{R}^{n}. Then the orthogonal complement of \mathcal{V} is defined by

$$
\mathcal{V}^{\perp}:=\left\{\boldsymbol{u} \in \mathbb{R}^{n}: \boldsymbol{v}^{\top} \boldsymbol{u}=0, \forall \boldsymbol{v} \in \mathcal{V}\right\} .
$$

Then any $\boldsymbol{x} \in \mathbb{R}$ can be uniquely decomposed as

$$
\boldsymbol{x}=\boldsymbol{u}+\boldsymbol{v}, \quad \boldsymbol{v} \in \mathcal{V}, \boldsymbol{u} \in \mathcal{V}^{\perp}
$$

We also write $\mathbb{R}^{n}=\mathcal{V} \oplus \mathcal{V}^{\perp}$, called the direct sum of \mathcal{V} and \mathcal{V}^{\perp}.

We say $\boldsymbol{P} \in \mathbb{R}^{n \times n}$ the orthogonal projector onto \mathcal{V} if for all $\boldsymbol{x} \in \mathbb{R}^{n}$ we have $\boldsymbol{P} \boldsymbol{x} \in \mathcal{V}$ and $\boldsymbol{x}-\boldsymbol{P} \boldsymbol{x} \in \mathcal{V}^{\perp}$.

Kernel and range of matrices

Let $\boldsymbol{A} \in \mathbb{R}^{m \times n}$. Then the range of \boldsymbol{A} is

$$
\mathcal{R}(\boldsymbol{A}):=\left\{\boldsymbol{A} \boldsymbol{x}: \boldsymbol{x} \in \mathbb{R}^{n}\right\} \subset \mathbb{R}^{m}
$$

which is the span of the columns of \boldsymbol{A}. So $\mathcal{R}(\boldsymbol{A})$ is also called the column space of \boldsymbol{A}.

The kernel of \boldsymbol{A} is

$$
\mathcal{N}(\boldsymbol{A}):=\{\boldsymbol{x}: \boldsymbol{A} \boldsymbol{x}=0\} \subset \mathbb{R}^{n}
$$

which is the orthogonal complement of the span of the rows of \boldsymbol{A}. So $\mathcal{N}(\boldsymbol{A})=$ $\mathcal{R}\left(\boldsymbol{A}^{\top}\right)^{\perp}$.

Theorem. \boldsymbol{P} is an orthogonal projector (onto the subspace $\mathcal{V}=\mathcal{R}(\boldsymbol{P})$) iff $P^{2}=P=P^{\top}$.

Quadratic forms

We call $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ a quadratic form if

$$
f(x)=\boldsymbol{x}^{\top} \boldsymbol{Q x}
$$

for some real square matrix \boldsymbol{Q}.

Without loss of generality, we assume $Q=Q^{\top}$: if Q is not symmetric, then replace it with $\frac{1}{2}\left(\boldsymbol{Q}+\boldsymbol{Q}^{\top}\right)$ because

$$
x^{\top} Q x=x^{\top} Q^{\top} x=\frac{1}{2} x^{\top}\left(Q+Q^{\top}\right) x
$$

for any \boldsymbol{x}.

Positive definite matrices

Definition. We say \boldsymbol{Q} is positive semidefinite (denoted $\boldsymbol{Q} \succeq 0$) if $\boldsymbol{x}^{\top} \boldsymbol{Q} \boldsymbol{x} \geq 0$ for all $\boldsymbol{x} \in \mathbb{R}$. If in addition $=$ holds only at $x=0$, then we say Q is positive definite, denoted $Q \succ 0$. We say Q is negative (semi)definite if $-Q$ is positive (semi)definite.

Sylvester's criterion. A symmetric Q is positive definite iff all its leading principal minors are positive.

Theorem. A symmetric Q is positive definite (or positive semidefinite) iff all eigenvalues of Q are positive (or nonnegative).

Hyperplanes and half-spaces

Let $\boldsymbol{a} \in \mathbb{R}^{n}$ and $b \in \mathbb{R}$, then

$$
H:=\left\{\boldsymbol{x} \in \mathbb{R}^{n}: \boldsymbol{a}^{\top} \boldsymbol{x}=b\right\}
$$

is called a hyperplane in \mathbb{R}^{n}.

A hyperplane divides \mathbb{R}^{n} into two half-spaces:

$$
\begin{aligned}
H_{+} & :=\left\{\boldsymbol{x} \in \mathbb{R}^{n}: \boldsymbol{a}^{\top} \boldsymbol{x} \geq b\right\} \\
H_{-} & :=\left\{\boldsymbol{x} \in \mathbb{R}^{n}: \boldsymbol{a}^{\top} \boldsymbol{x} \leq b\right\}
\end{aligned}
$$

Linear varieties

Let $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ and $\boldsymbol{b} \in \mathbb{R}^{m}$ be such that $\boldsymbol{b} \in \mathcal{R}(\boldsymbol{A})$, then the linear variety is defined by

$$
\left\{x \in \mathbb{R}^{n}: A x=b\right\} .
$$

If $\operatorname{dim}(\mathcal{N}(\boldsymbol{A}))=r$, the linear variety has dimension r.

It is obvious that

$$
\left\{\boldsymbol{x} \in \mathbb{R}^{n}: \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}\right\}=\bigcap_{i=1}^{m}\left\{\boldsymbol{x} \in \mathbb{R}^{n}: \boldsymbol{a}_{i}^{\top} \boldsymbol{x}=b_{i}\right\}
$$

where $\boldsymbol{a}_{i}^{\top}$ is the i-th row of \boldsymbol{A}.

A linear variety is a subspace iff $b=0$.

Convex sets

For any $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}$, the line segment between \boldsymbol{x} and \boldsymbol{y} is

$$
\{\lambda \boldsymbol{x}+(1-\lambda) \boldsymbol{y}: \lambda \in[0,1]\}
$$

A set $C \subset \mathbb{R}^{n}$ is called convex if

$$
\lambda \boldsymbol{x}+(1-\lambda) \boldsymbol{y} \in C
$$

for any $\boldsymbol{x}, \boldsymbol{y} \in C$ and $\lambda \in[0,1]$.

In other words, C is convex iff the line segment between any two points in C lies in C.

Examples of convex sets include:

- the empty set
- a set consisting of a single point
- a line or a line segment
- a subspace
- hyperplane
- balls and ellipses

Theorem. Let C_{1} and C_{2} be two convex sets, then $C_{1} \cap C_{2}$ is convex, and

$$
C_{1}+C_{2}:=\left\{x_{1}+x_{2}: x_{1} \in C_{1}, x_{2} \in C_{2}\right\}
$$

is also convex.

Neighborhoods

A neighborhood of a point $x \in \mathbb{R}^{n}$ is defined by

$$
B_{\varepsilon}(\boldsymbol{x}):=\left\{\boldsymbol{y} \in \mathbb{R}^{n}:\|\boldsymbol{y}-\boldsymbol{x}\|<\varepsilon\right\}
$$

for some $\varepsilon>0$. Note that $B_{\varepsilon}(\boldsymbol{x})$ is open.

Let $S \subset \mathbb{R}^{n}$, then \boldsymbol{x} is called an interior point of S if there exists $\varepsilon>0$ such that $B_{\varepsilon}(\boldsymbol{x}) \subset S$. The set of interior points of S is called the interior of S, denoted by $\operatorname{int}(S)$.
\boldsymbol{x} is called a boundary point of S if any neighborhood of \boldsymbol{x} contains a point in S and a point in S^{c}. A boundary point may or may not be in S. The set of boundary points of S is called the boundary of S.

Open sets, closed sets, compact sets

A set $S \subset \mathbb{R}^{n}$ is called open if all its point are an interior points. S is called closed if S^{c} is open. S is called bounded if $S \subset B_{R}(0)$ for some $R>0 . S$ is called compact if S is closed and bounded.

Weierstrass theorem. Let $S \subset \mathbb{R}^{n}$ be compact and $f: S \rightarrow \mathbb{R}$ be continuous, then f attains maximum and minimum in S.

Polytopes and polyhedra

The intersection of finitely many half-spaces is called a polytope. Note that a polytope is convex, since all half-spaces are convex.

A nonempty bounded polytope is called a polyhedron.

Sequences and limits

Let $\boldsymbol{x}^{(1)}, \ldots, \boldsymbol{x}^{(k)}, \ldots$ be a sequence in \mathbb{R}^{n}, then we say $\boldsymbol{x}^{(k)}$ converges to \boldsymbol{x}^{*} if for any $\varepsilon>0$, there exists $K \in \mathbb{N}$ (depending on ε) such that

$$
\left\|\boldsymbol{x}_{k}-\boldsymbol{x}^{*}\right\|<\varepsilon
$$

for all $k \geq K$. This is denoted by $\lim _{k \rightarrow \infty} \boldsymbol{x}^{(k)}=\boldsymbol{x}^{*}$ or $\boldsymbol{x}^{(k)} \rightarrow \boldsymbol{x}^{*}$. \boldsymbol{x}^{*} is called the limit of the sequence $\left(\boldsymbol{x}^{(k)}\right)_{k=1}^{\infty}$. If a sequence is convergent, then the limit is unique. Note that $\boldsymbol{x}^{(k)} \rightarrow \boldsymbol{x}^{*}$ iff $x_{i}^{(k)} \rightarrow x_{i}^{*}$ for all $i=1, \ldots, n$.

Theorem. A convergent sequence is bounded. A bounded sequence has at least one convergent subsequence.

Theorem. A sequence $\left(\boldsymbol{x}^{(k)}\right)_{k=1}^{\infty}$ converges to \boldsymbol{x}^{*} iff every subsequence of $\left(\boldsymbol{x}^{(k)}\right)_{k=1}^{\infty}$ converges to \boldsymbol{x}^{*}.

Continuous functions

We say $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is continuous at $\boldsymbol{x} \in \mathbb{R}^{n}$ if

$$
f\left(\boldsymbol{x}^{(k)}\right) \rightarrow f(x)
$$

for any sequence $\boldsymbol{x}^{(k)} \rightarrow \boldsymbol{x}$.

We say f is continuous on $S \subset \mathbb{R}^{n}$ if f is continuous at every point of S.

Gradient and Jacobian

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, then the gradient of f at \boldsymbol{x} is

$$
\nabla f(x):=\left[\frac{\partial f}{\partial x_{1}}(x), \ldots, \frac{\partial f}{\partial x_{n}}(x)\right] \in \mathbb{R}^{1 \times n}
$$

where $\frac{\partial f}{\partial x_{i}}(x)$ is the i-th partial derivative of f at x :

$$
\frac{\partial f}{\partial x_{i}}(\boldsymbol{x}):=\lim _{h \rightarrow 0} \frac{f\left(\boldsymbol{x}+h \boldsymbol{e}_{i}\right)-f(\boldsymbol{x})}{h} .
$$

Let $\boldsymbol{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, then the Jacobian of $f=\left[f_{1}, \ldots, f_{m}\right]^{\top}$ at \boldsymbol{x} is

$$
D \boldsymbol{f}(\boldsymbol{x})=\left[\begin{array}{c}
\nabla f_{1}(\boldsymbol{x}) \\
\vdots \\
\nabla f_{m}(\boldsymbol{x})
\end{array}\right] \in \mathbb{R}^{m \times n}
$$

Differentiation rules

Chain rule. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $g: \mathbb{R}^{m} \rightarrow \mathbb{R}^{k}$, then their composition is $\boldsymbol{g} \circ \boldsymbol{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$, and the Jacobian of $\boldsymbol{g} \circ \boldsymbol{f}$ at \boldsymbol{x} is

$$
D(\boldsymbol{g} \circ \boldsymbol{f})(\boldsymbol{x})=\underbrace{D \boldsymbol{g}(\boldsymbol{f}(\boldsymbol{x}))}_{k \times m} \underbrace{D \boldsymbol{f}(\boldsymbol{x})}_{m \times n} \in \mathbb{R}^{k \times n} .
$$

Product rule. Let $\boldsymbol{f}, \boldsymbol{g}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, then $\boldsymbol{f}(\boldsymbol{x})^{\top} \boldsymbol{g}(\boldsymbol{x}) \in \mathbb{R}$ for any $\boldsymbol{x} \in \mathbb{R}^{n}$ and

$$
\nabla\left(f(x)^{\top} \boldsymbol{g}(\boldsymbol{x})\right)=\underbrace{\boldsymbol{f}(\boldsymbol{x})^{\top}}_{1 \times m} \underbrace{D \boldsymbol{g}(\boldsymbol{x})}_{m \times n}+\underbrace{\boldsymbol{g}(\boldsymbol{x})^{\top}}_{1 \times m} \underbrace{D \boldsymbol{f}(\boldsymbol{x})}_{m \times n} \in \mathbb{R}^{1 \times n}
$$

Level sets

The level set of a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ at level $c \in \mathbb{R}$ is

$$
S_{c}:=\left\{\boldsymbol{x} \in \mathbb{R}^{n}: f(\boldsymbol{x})=c\right\}
$$

If $n=2$ then S_{c} is a curve. If $n=3$ then S_{c} is a surface.

Theorem. For any $c, \nabla f(\boldsymbol{x})$ is orthogonal to the tangent of S_{c} at $\boldsymbol{x} \in S_{c}$.
In fact, $\frac{\nabla f(\boldsymbol{x})}{\|\nabla f(\boldsymbol{x})\|}$ is the direction of fastest increase (steepest ascent direction) of f at \boldsymbol{x} (if $\nabla f(x) \neq 0$).

Taylor theorem

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and $f \in \mathcal{C}^{m}$, and denote $h=b-a$, then
$f(b)=f(a)+\frac{h}{1!} f^{(1)}(a)+\frac{h^{2}}{2!} f^{(2)}(a)+\cdots+\frac{h^{m-1}}{(m-1)!} f^{(m-1)}(a)+R_{m}$
where $f^{(i)}$ is the i-th derivative of f and

$$
R_{m}=\frac{h^{m}(1-\theta)^{m-1}}{(m-1)!} f^{(m)}(a+\theta h)=\frac{h^{m}}{m!} f^{(m)}\left(a+\theta^{\prime} h\right)
$$

with $\theta, \theta^{\prime} \in(0,1)$.

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $f \in \mathcal{C}^{2}$, and denote $\boldsymbol{h}=\boldsymbol{b}-\boldsymbol{a}$, then

$$
f(\boldsymbol{b})=f(\boldsymbol{a})+D f(\boldsymbol{a}) \boldsymbol{h}+\frac{1}{2} \boldsymbol{h}^{\top} D^{2} f(\boldsymbol{a}) \boldsymbol{h}+o\left(\|\boldsymbol{h}\|^{2}\right)
$$

where $\lim _{\|\boldsymbol{h}\| \rightarrow 0^{o}} o\left(\|\boldsymbol{h}\|^{2}\right) /\|\boldsymbol{h}\|^{2}=0$.

