MATH 4211/6211 – Optimization Review

Xiaojing Ye Department of Mathematics & Statistics Georgia State University

Vector spaces and matrices

A column *n*-vector \boldsymbol{a} is denoted

$$a = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} \in \mathbb{R}^n$$

or
$$a^{\top} = [a_1, a_2, \dots, a_n].$$

Operations on vectors:

- Sum of two vectors: a + b.
- Scalar multiplication: λa .

A linear combination of vectors a_1, \ldots, a_k is:

$$\lambda_1 a_1 + \lambda_2 a_2 + \dots + \lambda_k a_k,$$

where $\lambda_1, \ldots, \lambda_k \in \mathbb{R}$ are called combination coefficients.

The set of linear combinations of a_1, \ldots, a_k is denoted by

$$\operatorname{span}(a_1,\ldots,a_k) := \left\{ \sum_{i=1}^k \lambda_i a_i : \lambda_i \in \mathbb{R} \right\}.$$

The span of vectors is a **vector space** \mathcal{V} .

Proposition. A set of vectors $\{a_1, \ldots, a_k\}$ are linearly dependent iff^{*} one of the vectors is a linear combination of the remaining vectors.

*"iff" stands for "if and only if".

Definition. $\{a_1, \ldots, a_k\}$ is called a **basis** of the vector space \mathcal{V} if they are linearly independent and $\mathcal{V} = \text{span}(a_1, \ldots, a_k)$. The size k of a basis is called the dimension of \mathcal{V} .

Proposition. If $\{a_1, \ldots, a_k\}$ is a basis of \mathcal{V} , then any vector $a \in \mathcal{V}$ can be represented uniquely as

$$a = \lambda_1 a_1 + \lambda_2 a_2 + \dots + \lambda_k a_k.$$

We often denote the natural basis of $\mathcal{V} = \mathbb{R}^n$ as e_1, \ldots, e_n where

$$e_i^{\top} = [0, \ldots, 0, \underbrace{1}_{i-\text{th}}, 0, \ldots, 0].$$

Matrices

A matrix is a rectangular array of numbers:

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \vdots & a_{2n} \\ \vdots & \cdots & \ddots & \cdots \\ a_{m1} & a_{m2} & \vdots & a_{mn} \end{bmatrix} \in \mathbb{R}^{m \times n}$$

Sum of two matrices and scalar multiplication are defined similarly.

Definition. The maximal number of linearly independent columns (or rows) of A is called the **rank** of A, denoted by rank(A).

The following operations do not change the rank of A:

- Multiplying nonzero scalars to the columns of *A*.
- Interchanging any two columns.
- Adding a linear combination of columns to another column.

The same types of row operations do not change rank(A) either.

Determinant

Let A be a square matrix:

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \vdots & a_{2n} \\ \vdots & \cdots & \ddots & \cdots \\ a_{n1} & a_{2n} & \vdots & a_{nn} \end{bmatrix}$$

The **determinant** of a square matrix A is defined recursively as

$$\det(A) = \sum_{i=1}^{n} (-1)^{i+1} a_{i1} \det(A_{i1}),$$

where $A_{ij} \in \mathbb{R}^{(n-1)\times(n-1)}$ is A with its *i*-th row and *j*-th column deleted, and det (A_{ij}) is called the **principal minor**.

Definition. A square matrix A is called **invertible** (or **nonsingular**) if there exists a matrix B such that AB = BA = I. We denote $A^{-1} = B$.

Proposition. det(A) \neq 0 iff rank(A) = n iff A is invertible.

Definition. Let A be a square matrix. Then

- A is symmetric if $A = A^{\top}$.
- A is orthogonal if AA[⊤] = A[⊤]A = I. Clearly an orthogonal matrix is invertible.

Inner Products and Norms

For $x, y \in \mathbb{R}^n$, the inner product of x and y is

$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \boldsymbol{x}^{\top} \boldsymbol{y} = \sum_{i=1}^{n} x_i y_i \in \mathbb{R}.$$

Properties:

- Positivity: $\langle x,x
 angle \geq$ 0; and = 0 iff x = 0.
- Symmetry: $\langle \boldsymbol{x}, \boldsymbol{y}
 angle = \langle \boldsymbol{y}, \boldsymbol{x}
 angle.$
- Additivity: $\langle x+y,z
 angle=\langle x,z
 angle+\langle y,z
 angle.$
- Homogeneity: $\langle \lambda \boldsymbol{x}, \boldsymbol{y} \rangle = \lambda \langle \boldsymbol{x}, \boldsymbol{y} \rangle$ for any $\lambda \in \mathbb{R}$.

Due to symmetry, additivity and homogeneity also hold for the second argument.

Norms

The (Euclidean) **norm** of x is defined by $||x|| = \sqrt{\langle x, x \rangle}$.

Properties:

- Positivity: $||x|| \ge 0$; and = 0 iff x = 0.
- Homogeneity: $\|\lambda x\| = |\lambda| \|x\|$ for any $\lambda \in \mathbb{R}$.
- Triangle inequality: $||x + y|| \le ||x|| + ||y||$.

Cauchy-Schwarz inequality. For any ${m x},{m y}\in \mathbb{R}^n$, there is

 $|\langle \boldsymbol{x}, \boldsymbol{y}
angle| \leq \| \boldsymbol{x} \| \| \boldsymbol{y} \|.$

The equality holds iff $x = \lambda y$ for some $\lambda \in \mathbb{R}$ or y = 0.

Proposition. For any ${m x}, {m y} \in \mathbb{R}^n$, there is

$$||x + y||^2 = ||x||^2 + 2\langle x, y \rangle + ||x||^2$$

General vector norms. We define p-norm of x as

$$||x||_{p} = \begin{cases} \left(|x_{1}|^{p} + \dots + |x_{n}|^{p}\right)^{1/p}, & \text{if } 1 \le p < \infty, \\ \max\left(|x_{1}|, \dots, |x_{n}|\right), & \text{if } p = \infty. \end{cases}$$

Eigenvalues and eigenvectors

Definition. Let A be a square matrix. If $\lambda \in \mathbb{C}$ and nonzero $x \in \mathbb{C}^n$ are such that

$$Ax = \lambda x.$$

Then λ and x are respectively called **eigenvalue** and **eigenvector** of A.

Note that $det(\lambda I - A)$ is a polynomial of λ of degree n. It is called the **characteristic polynomial** of A.

Proposition. λ is an eigenvalue of A iff det $(\lambda I - A) = 0$ (i.e., λ is a root of the characteristic polynomial of A).

Theorem. If det $(\lambda I - A) = 0$ has *n* distinct roots $\lambda_1, \ldots, \lambda_n$, then there exist *n* linearly independent eigenvectors v_1, \ldots, v_n such that

$$Av_i = \lambda_i v_i, \quad i = 1, \ldots, n.$$

Theorem. All eigenvalues of a symmetric matrix A are real. If in addition A is real, then all the corresponding eigenvectors are mutually orthogonal, i.e., $\langle v_i, v_j \rangle = 0$ for all $i \neq j$.

Orthogonal projections

Let \mathcal{V} be a linear subspace of \mathbb{R}^n . Then the **orthogonal complement** of \mathcal{V} is defined by

$$\mathcal{V}^{\perp} := \{ \boldsymbol{u} \in \mathbb{R}^n : \boldsymbol{v}^{\top} \boldsymbol{u} = \boldsymbol{0}, \ \forall \, \boldsymbol{v} \in \mathcal{V} \}.$$

Then any $x \in \mathbb{R}$ can be uniquely decomposed as

$$x = u + v, \quad v \in \mathcal{V}, \ u \in \mathcal{V}^{\perp}.$$

We also write $\mathbb{R}^n = \mathcal{V} \oplus \mathcal{V}^{\perp}$, called the direct sum of \mathcal{V} and \mathcal{V}^{\perp} .

We say $P \in \mathbb{R}^{n \times n}$ the **orthogonal projector** onto \mathcal{V} if for all $x \in \mathbb{R}^n$ we have $Px \in \mathcal{V}$ and $x - Px \in \mathcal{V}^{\perp}$.

Kernel and range of matrices

Let $A \in \mathbb{R}^{m \times n}$. Then the **range** of A is

$$\mathcal{R}(oldsymbol{A}):=\{oldsymbol{A}x:x\in\mathbb{R}^n\}\subset\mathbb{R}^m$$

which is the span of the columns of A. So $\mathcal{R}(A)$ is also called the **column** space of A.

The kernel of A is

$$\mathcal{N}(A):=\{x:Ax=0\}\subset \mathbb{R}^n$$

which is the orthogonal complement of the span of the rows of A. So $\mathcal{N}(A) = \mathcal{R}(A^{\top})^{\perp}$.

Theorem. *P* is an orthogonal projector (onto the subspace $\mathcal{V} = \mathcal{R}(P)$) iff $P^2 = P = P^{\top}$.

Quadratic forms

We call $f : \mathbb{R}^n \to \mathbb{R}$ a quadratic form if

$$f(x) = x^\top Q x$$

for some real square matrix Q.

Without loss of generality, we assume $Q = Q^{\top}$: if Q is not symmetric, then replace it with $\frac{1}{2}(Q + Q^{\top})$ because

$$x^{ op}Qx = x^{ op}Q^{ op}x = rac{1}{2}x^{ op}(Q+Q^{ op})x$$

for any x.

Positive definite matrices

Definition. We say Q is **positive semidefinite** (denoted $Q \succeq 0$) if $x^{\top}Qx \ge 0$ for all $x \in \mathbb{R}$. If in addition = holds only at x = 0, then we say Q is **positive definite**, denoted $Q \succ 0$. We say Q is **negative (semi)definite** if -Q is positive (semi)definite.

Sylvester's criterion. A symmetric Q is positive definite iff all its leading principal minors are positive.

Theorem. A symmetric Q is positive definite (or positive semidefinite) iff all eigenvalues of Q are positive (or nonnegative).

Hyperplanes and half-spaces

Let $a \in \mathbb{R}^n$ and $b \in \mathbb{R}$, then

$$H := \{ x \in \mathbb{R}^n : a^\top x = b \}$$

is called a **hyperplane** in \mathbb{R}^n .

A hyperplane divides \mathbb{R}^n into two half-spaces:

$$H_+ := \{ x \in \mathbb{R}^n : a^\top x \ge b \}$$

 $H_- := \{ x \in \mathbb{R}^n : a^\top x \le b \}$

Linear varieties

Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$ be such that $b \in \mathcal{R}(A)$, then the **linear variety** is defined by

$$\{x\in \mathbb{R}^n:Ax=b\}.$$

If $\dim(\mathcal{N}(A)) = r$, the linear variety has dimension r.

It is obvious that

$$\{oldsymbol{x} \in \mathbb{R}^n : oldsymbol{A}oldsymbol{x} = oldsymbol{b}\} = igcap_{i=1}^m \{oldsymbol{x} \in \mathbb{R}^n : oldsymbol{a}_i^ op oldsymbol{x} = b_i\}$$

where $a_i^{ op}$ is the *i*-th row of A.

A linear variety is a subspace iff b = 0.

Convex sets

For any $x, y \in \mathbb{R}^n$, the **line segment** between x and y is

$$\{\lambda x + (1-\lambda)y : \lambda \in [0,1]\}$$

A set $C \subset \mathbb{R}^n$ is called **convex** if

$$\lambda x + (1 - \lambda)y \in C$$

for any $x, y \in C$ and $\lambda \in [0, 1]$.

In other words, C is convex iff the line segment between any two points in C lies in C.

Examples of convex sets include:

- the empty set
- a set consisting of a single point
- a line or a line segment
- a subspace
- hyperplane
- balls and ellipses

Theorem. Let C_1 and C_2 be two convex sets, then $C_1 \cap C_2$ is convex, and

$$C_1 + C_2 := \{x_1 + x_2 : x_1 \in C_1, x_2 \in C_2\}$$

is also convex.

Neighborhoods

A **neighborhood** of a point $x \in \mathbb{R}^n$ is defined by

 $B_{arepsilon}(oldsymbol{x}) := \{oldsymbol{y} \in \mathbb{R}^n : \|oldsymbol{y} - oldsymbol{x}\| < arepsilon \}$

for some $\varepsilon > 0$. Note that $B_{\varepsilon}(x)$ is open.

Let $S \subset \mathbb{R}^n$, then x is called an **interior point** of S if there exists $\varepsilon > 0$ such that $B_{\varepsilon}(x) \subset S$. The set of interior points of S is called the **interior** of S, denoted by int(S).

x is called a **boundary point** of S if any neighborhood of x contains a point in S and a point in S^c . A boundary point may or may not be in S. The set of boundary points of S is called the **boundary** of S.

Open sets, closed sets, compact sets

A set $S \subset \mathbb{R}^n$ is called **open** if all its point are an interior points. *S* is called **closed** if S^c is open. *S* is called **bounded** if $S \subset B_R(0)$ for some R > 0. *S* is called **compact** if *S* is closed and bounded.

Weierstrass theorem. Let $S \subset \mathbb{R}^n$ be compact and $f : S \to \mathbb{R}$ be continuous, then f attains maximum and minimum in S.

Polytopes and polyhedra

The intersection of finitely many half-spaces is called a **polytope**. Note that a polytope is convex, since all half-spaces are convex.

A nonempty bounded polytope is called a **polyhedron**.

Sequences and limits

Let $x^{(1)}, \ldots, x^{(k)}, \ldots$ be a sequence in \mathbb{R}^n , then we say $x^{(k)}$ converges to x^* if for any $\varepsilon > 0$, there exists $K \in \mathbb{N}$ (depending on ε) such that

$$\|m{x}_k - m{x}^*\| < arepsilon$$

for all $k \ge K$. This is denoted by $\lim_{k\to\infty} x^{(k)} = x^*$ or $x^{(k)} \to x^*$. x^* is called the **limit** of the sequence $(x^{(k)})_{k=1}^{\infty}$. If a sequence is convergent, then the limit is unique. Note that $x^{(k)} \to x^*$ iff $x_i^{(k)} \to x_i^*$ for all i = 1, ..., n.

Theorem. A convergent sequence is bounded. A bounded sequence has at least one convergent subsequence.

Theorem. A sequence $(x^{(k)})_{k=1}^{\infty}$ converges to x^* iff every subsequence of $(x^{(k)})_{k=1}^{\infty}$ converges to x^* .

Continuous functions

We say $f: \mathbb{R}^n
ightarrow \mathbb{R}^m$ is continuous at $x \in \mathbb{R}^n$ if

$$f(\boldsymbol{x}^{(k)}) \to f(\boldsymbol{x})$$

for any sequence $x^{(k)}
ightarrow x.$

We say f is continuous on $S \subset \mathbb{R}^n$ if f is continuous at every point of S.

Gradient and Jacobian

Let $f : \mathbb{R}^n \to \mathbb{R}$, then the **gradient** of f at x is

$$\nabla f(x) := \left[\frac{\partial f}{\partial x_1}(x), \dots, \frac{\partial f}{\partial x_n}(x)\right] \in \mathbb{R}^{1 \times n}$$

where $\frac{\partial f}{\partial x_i}(x)$ is the *i*-th partial derivative of f at x:

$$\frac{\partial f}{\partial x_i}(x) := \lim_{h \to 0} \frac{f(x + he_i) - f(x)}{h}$$

Let $f : \mathbb{R}^n \to \mathbb{R}^m$, then the Jacobian of $f = [f_1, \dots, f_m]^\top$ at x is $Df(x) = \begin{bmatrix} \nabla f_1(x) \\ \vdots \\ \nabla f_m(x) \end{bmatrix} \in \mathbb{R}^{m \times n}$

Differentiation rules

Chain rule. Let $f : \mathbb{R}^n \to \mathbb{R}^m$ and $g : \mathbb{R}^m \to \mathbb{R}^k$, then their composition is $g \circ f : \mathbb{R}^n \to \mathbb{R}^k$, and the Jacobian of $g \circ f$ at x is

$$D(\boldsymbol{g}\circ \boldsymbol{f})(\boldsymbol{x}) = \underbrace{D\boldsymbol{g}(\boldsymbol{f}(\boldsymbol{x}))}_{k imes m} \underbrace{D\boldsymbol{f}(\boldsymbol{x})}_{m imes n} \in \mathbb{R}^{k imes n}.$$

Product rule. Let $f,g:\mathbb{R}^n o\mathbb{R}^m$, then $f(x)^ op g(x)\in\mathbb{R}$ for any $x\in\mathbb{R}^n$ and

$$abla(f(x)^{ op}g(x)) = \underbrace{f(x)^{ op}}_{1 imes m} \underbrace{Dg(x)}_{m imes n} + \underbrace{g(x)^{ op}}_{1 imes m} \underbrace{Df(x)}_{m imes n} \in \mathbb{R}^{1 imes n}$$

Level sets

The **level set** of a function $f : \mathbb{R}^n \to \mathbb{R}$ at level $c \in \mathbb{R}$ is

$$S_c := \{ x \in \mathbb{R}^n : f(x) = c \}$$

If n = 2 then S_c is a curve. If n = 3 then S_c is a surface.

Theorem. For any c, $\nabla f(x)$ is orthogonal to the tangent of S_c at $x \in S_c$.

In fact, $\frac{\nabla f(x)}{\|\nabla f(x)\|}$ is the direction of fastest increase (steepest ascent direction) of *f* at *x* (if $\nabla f(x) \neq 0$).

Taylor theorem

Let $f : \mathbb{R} \to \mathbb{R}$ and $f \in \mathcal{C}^m$, and denote h = b - a, then

$$f(b) = f(a) + \frac{h}{1!} f^{(1)}(a) + \frac{h^2}{2!} f^{(2)}(a) + \dots + \frac{h^{m-1}}{(m-1)!} f^{(m-1)}(a) + R_m$$

where $f^{(i)}$ is the *i*-th derivative of *f* and

$$R_m = \frac{h^m (1-\theta)^{m-1}}{(m-1)!} f^{(m)}(a+\theta h) = \frac{h^m}{m!} f^{(m)}\left(a+\theta' h\right)$$

with $\theta, \theta' \in (0, 1)$.

Let $f : \mathbb{R}^n \to \mathbb{R}$ and $f \in C^2$, and denote h = b - a, then $f(b) = f(a) + Df(a)h + \frac{1}{2}h^{\top}D^2f(a)h + o(||h||^2),$ where $\lim_{\|h\|\to 0} o(||h||^2)/\|h\|^2 = 0$.