Definition

The set of functions $\{\phi_1,\ldots,\phi_n\}$ is called linearly independent on $[a, b]$ if

$$
c_1\phi_1(x)+c_2\phi_2(x)+\cdots+c_n\phi_n(x)=0, \text{ for all } x\in [a,b]
$$

implies that $c_1 = c_2 = \cdots = c_n = 0$.

Otherwise the set of functions is called linearly dependent.

Example

Suppose $\phi_j(\mathsf{x})$ is a polynomial of degree j for $j=0,1,\ldots,n$, then $\{\phi_0, \ldots, \phi_n\}$ is linearly independent on any interval $[a, b].$

Proof.

Suppose there exist c_0, \ldots, c_n such that

$$
c_0\phi_0(x)+\cdots+c_n\phi_n(x)=0
$$

for all $x \in [a,b]$. If $c_n \neq 0$, then this is a polynomial of degree n and can have at most *n* roots, contradiction. Hence $c_n = 0$. Repeat this to show that $c_0 = \cdots = c_n = 0$.

Example

Suppose $\phi_0(x) = 2, \phi_1(x) = x - 3, \phi_2(x) = x^2 + 2x + 7$, and $Q(x) = a_0 + a_1x + a_2x^2$. Show that there exist constants c_0, c_1, c_2 such that $Q(x)=c_0\phi_0(x)+c_1\phi_1(x)+c_2\phi_2(x)$.

Solution. Substitute ϕ_j into $Q(x)$, and solve for $c_0, c_1, c_2.$

We denote $\Pi_n = \{a_0 + a_1x + \cdots + a_nx^n \mid a_0, a_1, \ldots, a_n \in \mathbb{R}\}$, i.e., Π_n is the set of polynomials of degree $\leq n$.

Theorem Suppose $\{\phi_0, \ldots, \phi_n\}$ is a collection of linearly independent polynomials in Π_n , then any polynomial in Π_n can be written uniquely as a linear combination of $\phi_0(x), \ldots, \phi_n(x)$.

 $\{\phi_0,\ldots,\phi_n\}$ is called a **basis** of Π_n .

Definition

An integrable function w is called a weight function on the interval *I* if $w(x) \ge 0$, for all $x \in I$, but $w(x) \not\equiv 0$ on any subinterval of I.

Example

Define a weight function $w(x) = \frac{1}{\sqrt{1}}$ $\frac{1}{1-x^2}$ on interval $(-1,1)$. Suppose {φ0, φ1, *...* , φ*n*} is a set of linearly independent functions on [*a*, *b*] and *w* is a

Suppose $\{\phi_0, \ldots, \phi_n\}$ is a set of linearly independent functions in $C[a, b]$ and w is a weight function on [a, b]. Given $f(x) \in C[a, b]$, we seek a linear combination

$$
\sum_{k=0}^n a_k \phi_k(x)
$$

to minimize the least squares error:

$$
E(a) = \int_{a}^{b} w(x) \left[f(x) - \sum_{k=0}^{n} a_k \phi_k(x) \right]^2 dx
$$

where $a = (a_0, \ldots, a_n)$.

As before, we need to solve a^* from $\nabla E(a) = 0$:

$$
\frac{\partial E}{\partial a_j} = \int_a^b w(x) \left[f(x) - \sum_{k=0}^n a_k \phi_k(x) \right] \phi_j(x) dx = 0
$$

for all $j = 0, \ldots, n$. Then we obtain the normal equation

$$
\sum_{k=0}^n \left(\int_a^b w(x) \phi_k(x) \phi_j(x) dx \right) a_k = \int_a^b w(x) f(x) \phi_j(x) dx
$$

which is a linear system of $n + 1$ equations about $a=(a_0,\ldots,a_n)^\top$.

If we chose the basis $\{\phi_0, \ldots, \phi_n\}$ such that

$$
\int_{a}^{b} w(x)\phi_{k}(x)\phi_{j}(x) dx = \begin{cases} 0, & \text{when } j \neq k \\ \alpha_{j}, & \text{when } j = k \end{cases}
$$

for some $\alpha_i > 0$, then the LHS of the normal equation simplifies to α_j a $_j$. Hence we obtain closed form solution a $_j$:

$$
a_j = \frac{1}{\alpha_j} \int_a^b w(x) f(x) \phi_j(x) dx
$$

for $j = 0, \ldots, n$.

Definition

A set $\{\phi_0, \ldots, \phi_n\}$ is called **orthogonal** on the interval $[a, b]$ with respect to weight function w if

$$
\int_{a}^{b} w(x)\phi_{k}(x)\phi_{j}(x) dx = \begin{cases} 0, & \text{when } j \neq k \\ \alpha_{j}, & \text{when } j = k \end{cases}
$$

for some $\alpha_i > 0$ for all $j = 0, \ldots, n$.

If in addition $\alpha_j = 1$ for all $j = 0, \ldots, n$, then the set is called orthonormal with respect to w.

The definition above applies to general functions, but for now we focus on orthogonal/orthonormal polynomials only.

Gram-Schmidt process

Theorem

A set of orthogonal polynomials $\{\phi_0, \ldots, \phi_n\}$ on $[a, b]$ with respect to weight function w can be constructed in the recursive way

 \blacktriangleright First define

$$
\phi_0(x) = 1, \quad \phi_1(x) = x - \frac{\int_a^b x w(x) dx}{\int_a^b w(x) dx}
$$

► Then for every
$$
k \geq 2
$$
, define

$$
\phi_k(x) = (x - B_k)\phi_{k-1}(x) - C_k\phi_{k-2}(x)
$$

where

$$
B_k = \frac{\int_a^b x w(x) [\phi_{k-1}(x)]^2 dx}{\int_a^b w(x) [\phi_{k-1}(x)]^2 dx}, \ C_k = \frac{\int_a^b x w(x) \phi_{k-1}(x) \phi_{k-2}(x) dx}{\int_a^b w(x) [\phi_{k-2}(x)]^2 dx}
$$

Orthogonal polynomials

Corollary

Let $\{\phi_0, \ldots, \phi_n\}$ be constructed by the Gram-Schmidt process in the theorem above, then for any polynomial $Q_k(x)$ of degree $k < n$, there is

$$
\int_a^b w(x)\phi_n(x)Q_k(x)\,dx=0
$$

Proof.

 $Q_k(x)$ can be written as a linear combination of $\phi_0(x), \ldots, \phi_k(x)$, which are all orthogonal to ϕ_n with respect to w.

Legendre polynomials

Using weight function $w(x) \equiv 1$ on $[-1, 1]$, we can construct Legendre polynomials using the recursive process above to get

$$
P_0(x) = 1
$$

\n
$$
P_1(x) = x
$$

\n
$$
P_2(x) = x^2 - \frac{1}{3}
$$

\n
$$
P_3(x) = x^3 - \frac{3}{5}x
$$

\n
$$
P_4(x) = x^4 - \frac{6}{7}x^2 + \frac{3}{35}
$$

\n
$$
P_5(x) = x^5 - \frac{10}{9}x^3 + \frac{5}{21}x
$$

Use the Gram-Schmidt process to construct them by yourself.

Numerical Analysis I – Xiaojing Ye, Math & Stat, Georgia State University 215

. .

Legendre polynomials

The first few Legendre polynomials: 8.2 Orthogonal Polynomials and Least Squares Approximation **517**

Chebyshev polynomials

Using weight function $w(x) = \frac{1}{\sqrt{1}}$ $\frac{1}{1-x^2}$ on $(-1,1)$, we can construct Chebyshev polynomials using the recursive process above to get

$$
T_0(x) = 1
$$

\n
$$
T_1(x) = x
$$

\n
$$
T_2(x) = 2x^2 - 1
$$

\n
$$
T_3(x) = 4x^3 - 3x
$$

\n
$$
T_4(x) = 8x^4 - 8x^2 + 1
$$

\n
$$
\vdots
$$

It can be shown that $T_n(x) = \cos(n \arccos x)$ for $n = 0, 1, \ldots$

.

Chebyshev polynomials **520** CHAPTER 8 Approximation Theory

The first few Chebyshev polynomials:

Chebyshev polynomials

The Chebyshev polynomials $T_n(x)$ of degree $n \ge 1$ has *n* simple zeros in $[-1, 1]$ (from right to left) at

$$
\bar{x}_k = \cos\left(\frac{2k-1}{2n}\pi\right), \quad \text{for each } k = 1, 2, \ldots, n
$$

Moreover, \mathcal{T}_n has maximum/minimum (from right to left) at

$$
\bar{x}'_k = \cos\left(\frac{k\pi}{n}\right)
$$
 where $T_n(\bar{x}'_k) = (-1)^k$ for each $k = 0, 1, 2, ..., n$

Therefore $T_n(x)$ has *n* distinct roots and $n + 1$ extreme points on $[-1, 1]$. These $2n + 1$ points, from right to left, are max, zero, min, zero, max ...

The monic Chebyshev polynomials $\tilde{\mathcal{T}}_n(x)$ are given by $\tilde{\mathcal{T}}_0=1$ and

$$
\tilde{\mathsf{T}}_n = \frac{1}{2^{n-1}} \, \mathsf{T}_n(x)
$$

for $n \geq 1$.

The monic Chebyshev polynomials are

$$
\tilde{T}_0(x) = 1
$$
\n
$$
\tilde{T}_1(x) = x
$$
\n
$$
\tilde{T}_2(x) = x^2 - \frac{1}{2}
$$
\n
$$
\tilde{T}_3(x) = x^3 - \frac{3}{4}x
$$
\n
$$
\tilde{T}_4(x) = x^4 - x^2 + \frac{1}{8}
$$

. . .

The monic Chebyshev polynomials $\widetilde{T}_n(x)$ of degree $n \geq 1$ has n simple zeros in $[-1, 1]$ at

$$
\bar{x}_k = \cos\left(\frac{2k-1}{2n}\pi\right), \quad \text{for each } k = 1, 2, \ldots, n
$$

Moreover, τ_n has maximum/minimum at

$$
\bar{x}'_k = \cos\left(\frac{k\pi}{n}\right)
$$
 where $T_n(\bar{x}'_k) = \frac{(-1)^k}{2^{n-1}}$, for each $k = 0, 1, ..., n$

Therefore $\tilde{T}_n(x)$ also has n distinct roots and $n+1$ extreme points on $[-1, 1]$.

Denote $\tilde{\Pi}_n$ be the set of monic polynomials of degree n.

Theorem For any $P_n \in \tilde{\Pi}_n$, there is

$$
\frac{1}{2^{n-1}} = \max_{x \in [-1,1]} |\tilde{T}_n(x)| \le \max_{x \in [-1,1]} |P_n(x)|
$$

The "=" holds only if $P_n \equiv \tilde{T}_n$.

Proof.

Assume not, then
$$
\exists P_n(x) \in \tilde{\Pi}_n
$$
, s.t. $\max_{x \in [-1,1]} |P_n(x)| < \frac{1}{2^{n-1}}$.

Let $Q(x) := \tilde{T}_n(x) - P_n(x)$. Since $\tilde{T}_n, P_n \in \tilde{\Pi}_n$, we know $Q(x)$ is a ploynomial of degree at most $n-1$. At the $n+1$ extreme points $\bar{\mathsf{x}}'_\mathsf{k}$ k'_{k} = cos $\left(\frac{k\pi}{n}\right)$ n) for $k = 0, 1, \ldots, n$, there are

$$
Q(\bar{x}'_k) = \tilde{T}_n(\bar{x}'_k) - P_n(\bar{x}'_k) = \frac{(-1)^k}{2^{n-1}} - P_n(\bar{x}'_k)
$$

Hence $Q(\bar{\mathsf{x}}_k^{\prime})$ $k \choose k > 0$ when k is even and < 0 when k odd. By intermediate value theorem, Q has at least n distinct roots, contradiction to deg(Q) $\leq n-1$.

Minimizing Lagrange interpolation error

Let x_0, \ldots, x_n be $n + 1$ distinct points on $[-1, 1]$ and $f(x) \in C^{n+1}[-1,1]$, recall that the Lagrange interpolating polynomial $P(x) = \sum_{i=0}^{n} f(x_i) L_i(x)$ satisfies

$$
f(x) - P(x) = \frac{f^{(n+1)}(\xi(x))}{(n+1)!}(x-x_0)(x-x_1)\cdots(x-x_n)
$$

for some $\xi(x) \in (-1,1)$ at every $x \in [-1,1]$.

We can control the size of $(x - x_0)(x - x_1) \cdots (x - x_n)$ since it belongs to $\tilde{\Pi}_{n+1}$: set $(x - x_0)(x - x_1) \cdots (x - x_n) = \tilde{T}_{n+1}(x)$. That is, set $x_k = \cos \left(\frac{2k-1}{2n} \right)$ $\frac{k-1}{2n}\pi$), the kth root of $\tilde{\mathcal{T}}_{n+1}(x)$ for $k = 1, \ldots, n + 1$. This results in the minimal max_{x∈[-1,1]} $|(x-x_0)(x-x_1)\cdots(x-x_n)| = \frac{1}{2^n}$ $rac{1}{2^n}$.

Corollary

Let $P(x)$ be the Lagrange interpolating polynomial with $n + 1$ points chosen as the roots of $\tilde{\mathcal{T}}_{n+1}(\mathsf{x})$, there is

$$
\max_{x \in [-1,1]} |f(x) - P(x)| \le \frac{1}{2^n(n+1)!} \max_{x \in [-1,1]} |f^{(n+1)}(x)|
$$

If the interval of apporximation is on $[a, b]$ instead of $[-1, 1]$, we can apply change of variable

$$
\tilde{x}=\frac{1}{2}[(b-a)x+(a+b)]
$$

Hence, we can convert the roots \bar{x}_k on $[-1,1]$ to \tilde{x}_k on $[a,b]$,

Example

Let $f(x) = xe^x$ on [0, 1.5]. Find the Lagrange interpolating polynomial using

- 1. the 4 equally spaced points $0, 0.5, 1, 1.5$.
- 2. the 4 points transformed from roots of \tilde{T}_4 .

Minimizing Lagrange interpolation error

Solution. For each of the four points $x_0=0, x_1=0.5, x_2=1, x_3=1.5,$ we obtain $L_i(x)=\frac{1}{2}$ $\overline{\Pi}$ $\frac{j\neq i}(x-x_j)$ $\overline{\Pi}$ $\frac{j\neq i}(x_i-x_j)}{j\neq i}(x_i-x_j)$ for $i = 0, 1, 2, 3$:

$$
L_0(x) = -1.3333x^3 + 4.0000x^2 - 3.6667x + 1,
$$

\n
$$
L_1(x) = 4.0000x^3 - 10.000x^2 + 6.0000x,
$$

\n
$$
L_2(x) = -4.0000x^3 + 8.0000x^2 - 3.0000x,
$$

\n
$$
L_3(x) = 1.3333x^3 - 2.000x^2 + 0.66667x
$$

so the Lagrange interpolating polynomial is

$$
P_3(x) = \sum_{i=0}^{3} f(x_i) L_i(x) = 1.3875x^3 + 0.057570x^2 + 1.2730x.
$$

Minimizing Lagrange interpolation error

Solution. (cont.) The four roots of $\tilde{T}_4(x)$ on $[-1,1]$ are $\bar{x}_k = \cos(\frac{2k-1}{8}\pi)$ for $k=1,2,3,4.$ Shifting the points using $\tilde{\mathsf{x}}=\frac{1}{2}$ $\frac{1}{2}(1.5 \times + 1.5)$, we obtain four points

$$
\tilde{x}_0=1.44291, \tilde{x}_1=1.03701, \tilde{x}_2=0.46299, \tilde{x}_3=0.05709
$$

with the same procedure as above to get $\tilde{L}_0,\ldots,\tilde{L}_3$ using these 4 points, and then the Lagrange interpolating polynomial:

$$
\tilde{P}_3(x) = 1.3811x^3 + 0.044652x^2 + 1.3031x - 0.014352.
$$

Minimizing Lagrange interpolation error *x*¹ = 0.5 0.824361 *x*˜¹ = 1.03701 2.92517 *<u>x* imizing Lagrange interpolation error</u> **x**³ = 1.6 \cdot 1.6 $\$

Now compare the approximation accuracy of the two polynomials For part a. 8 shows a comparison and the values of $\frac{1}{2}$

$$
P_3(x) = 1.3875x^3 + 0.057570x^2 + 1.2730x
$$

$$
\tilde{P}_3(x) = 1.3811x^3 + 0.044652x^2 + 1.3031x - 0.014352
$$

Minimizing Lagrange interpolation error \overline{a} \overline{b} \overline{c} \overline{c} ange meer polation end.

The approximation using $\tilde{P}_3(x)$ \tilde{D} 1.588 1.588 1.572 1.572 1.573 1.573 1.573 1.573 1.573 1.571 1.572 1.572 1.572 1.572 1.571 1. ϵ approximation using $r_{3(x)}$

$$
\tilde{P}_3(x)=1.3811x^3+0.044652x^2+1.3031x-0.014352
$$

Numerical Analysis I – Xiaojing Ye, Math & Stat, Georgia State University 232

As Chebyshev polynomials are efficient in approximating functions, we may use approximating polynomials of smaller degree for a given error tolerance.

For example, let $Q_n(x) = a_0 + \cdots + a_n x^n$ be a polynomial of degree n on $[-1, 1]$. Can we find a polynomial of degree $n - 1$ to approximate Q_n ?

So our goal is to find $P_{n-1}(x) \in \Pi_{n-1}$ such that

$$
\max_{x \in [-1,1]} |Q_n(x) - P_{n-1}(x)|
$$

is minimized. Note that $\frac{1}{a_n}(Q_n(x)-P_{n-1}(x))\in \tilde{\Pi}_n$, we know the best choice is $\frac{1}{a_n}(Q_n(x) - P_{n-1}(x)) = \tilde{T}_n(x)$, i.e., $P_{n-1} = Q_n - a_n \tilde{T}_n$. In this case, we have approximation error

$$
\max_{x \in [-1,1]} |Q_n(x) - P_{n-1}(x)| = \max_{x \in [-1,1]} |a_n \tilde{T}_n| = \frac{|a_n|}{2^{n-1}}
$$

Example

Recall that $Q_4(x)$ be the 4th Maclaurin polynomial of $f(x) = e^x$ about 0 on $[-1, 1]$. That is

$$
Q_4(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24}
$$

which has $a_4=\frac{1}{24}$ and truncation error

$$
|R_4(x)| = |\frac{f^{(5)}(\xi(x))x^5}{5!}| = |\frac{e^{\xi(x)}x^5}{5!}| \le \frac{e}{5!} \approx 0.023
$$

for $x \in (-1, 1)$. Given error tolerance 0.05, find the polynomial of small degree to approximate $f(x)$.

Solution. Let's first try Π_3 . Note that $\tilde{T}_4(x) = x^4 - x^2 + \frac{1}{8}$ $\frac{1}{8}$, so we can set

$$
P_3(x) = Q_4(x) - a_4 \tilde{T}_4(x)
$$

= $\left(1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24}\right) - \frac{1}{24} \left(x^4 - x^2 + \frac{1}{8}\right)$
= $\frac{191}{192} + x + \frac{13}{24}x^2 + \frac{1}{6}x^3 \in \Pi_3$

Therefore, the approximating error is bounded by

$$
|f(x) - P_3(x)| \le |f(x) - Q_4(x)| + |Q_4(x) - P_3(x)|
$$

$$
\le 0.023 + \frac{|a_4|}{2^3} = 0.023 + \frac{1}{192} \le 0.0283.
$$

Solution. (cont.) We can further try Π_2 . Then we need to approximate P_3 (note $a_3=\frac{1}{6}$ $\frac{1}{6}$) above by the following $P_2 \in \Pi_2$:

$$
P_2(x) = P_3(x) - a_3 \tilde{T}_3(x)
$$

= $\frac{191}{192} + x + \frac{13}{24}x^2 + \frac{1}{6}x^3 - \frac{1}{6}(x^3 - \frac{3}{4}x)$
= $\frac{191}{192} + \frac{9}{8}x + \frac{13}{24}x^2 \in \Pi_2$

Therefore, the approximating error is bounded by

$$
|f(x) - P_2(x)| \le |f(x) - Q_4(x)| + |Q_4(x) - P_3(x)| + |P_3(x) - P_2(x)|
$$

\$\le 0.0283 + \frac{|a_3|}{2^2} = 0.0283 + \frac{1}{24} = 0.0703.

Unfortunately this is larger than 0.05.

Reducing the degree of approximating polynomials եր
3
13 ²⁴*x*² ⁺ l *x*3 .

Although the error bound is larger than 0.05, the actual error is much smaller: error bound for *P*2*(x)* exceeded the tolerance.

Pros and cons of polynomial approxiamtion

Advantages:

- \blacktriangleright Polynomials can approximate continuous function to arbitrary accuracy;
- \blacktriangleright Polynomials are easy to evaluate;
- Derivatives and integrals are easy to compute.

Disadvantages:

- \triangleright Significant oscillations;
- \blacktriangleright Large max absolute error in approximating;
- \blacktriangleright Not accurate when approximating discontinuous functions.