
Linearly independent functions

Definition
The set of functions {φ1, . . . , φn} is called linearly independent
on [a, b] if

c1φ1(x) + c2φ2(x) + · · ·+ cnφn(x) = 0, for all x ∈ [a, b]

implies that c1 = c2 = · · · = cn = 0.

Otherwise the set of functions is called linearly dependent.
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Linearly independent functions

Example

Suppose φj(x) is a polynomial of degree j for j = 0, 1, . . . , n, then
{φ0, . . . , φn} is linearly independent on any interval [a, b].

Proof.
Suppose there exist c0, . . . , cn such that

c0φ0(x) + · · ·+ cnφn(x) = 0

for all x ∈ [a, b]. If cn 6= 0, then this is a polynomial of degree n
and can have at most n roots, contradiction. Hence cn = 0.
Repeat this to show that c0 = · · · = cn = 0.
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Linearly independent functions

Example

Suppose φ0(x) = 2, φ1(x) = x − 3, φ2(x) = x2 + 2x + 7, and
Q(x) = a0 + a1x + a2x2. Show that there exist constants c0, c1, c2

such that Q(x) = c0φ0(x) + c1φ1(x) + c2φ2(x).

Solution. Substitute φj into Q(x), and solve for c0, c1, c2.
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Linearly independent functions

We denote Πn = {a0 + a1x + · · ·+ anxn | a0, a1, . . . , an ∈ R}, i.e.,
Πn is the set of polynomials of degree ≤ n.

Theorem
Suppose {φ0, . . . , φn} is a collection of linearly independent
polynomials in Πn, then any polynomial in Πn can be written
uniquely as a linear combination of φ0(x), . . . , φn(x).

{φ0, . . . , φn} is called a basis of Πn.
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Orthogonal functions

Definition
An integrable function w is called a weight function on the
interval I if w(x) ≥ 0, for all x ∈ I , but w(x) 6≡ 0 on any
subinterval of I .
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Orthogonal functions

Example

Define a weight function w(x) = 1√
1−x2

on interval (−1, 1).

514 C H A P T E R 8 Approximation Theory

Orthogonal Functions

To discuss general function approximation requires the introduction of the notions of weight
functions and orthogonality.

Definition 8.4 An integrable function w is called a weight function on the interval I if w(x) ≥ 0, for all
x in I , but w(x) ̸≡ 0 on any subinterval of I .

The purpose of a weight function is to assign varying degrees of importance to approx-
imations on certain portions of the interval. For example, the weight function

w(x) = 1√
1− x2

places less emphasis near the center of the interval (−1, 1) and more emphasis when |x| is
near 1 (see Figure 8.8). This weight function is used in the next section.

Suppose {φ0,φ1, . . . ,φn} is a set of linearly independent functions on [a, b] and w is a
weight function for [a, b]. Given f ∈ C[a, b], we seek a linear combination

P(x) =
n∑

k=0

akφk(x)

to minimize the error

E = E(a0, . . . , an) =
∫ b

a
w(x)

[
f (x)−

n∑

k=0

akφk(x)
]2

dx.

This problem reduces to the situation considered at the beginning of this section in the

Figure 8.8
(x)

1!1

1

x

special case when w(x) ≡ 1 and φk(x) = xk , for each k = 0, 1, . . . , n.
The normal equations associated with this problem are derived from the fact that for

each j = 0, 1, . . . , n,

0 = ∂E
∂aj

= 2
∫ b

a
w(x)

[
f (x)−

n∑

k=0

akφk(x)
]
φj(x) dx.

The system of normal equations can be written
∫ b

a
w(x)f (x)φj(x) dx =

n∑

k=0

ak

∫ b

a
w(x)φk(x)φj(x) dx, for j = 0, 1, . . . , n.

If the functions φ0,φ1, . . . ,φn can be chosen so that
∫ b

a
w(x)φk(x)φj(x) dx =

{
0, when j ̸= k,
αj > 0, when j = k,

(8.7)

then the normal equations will reduce to
∫ b

a
w(x)f (x)φj(x) dx = aj

∫ b

a
w(x)[φj(x)]2 dx = ajαj,

for each j = 0, 1, . . . , n. These are easily solved to give

aj = 1
αj

∫ b

a
w(x)f (x)φj(x) dx.

Hence the least squares approximation problem is greatly simplified when the functions
φ0,φ1, . . . ,φn are chosen to satisfy the orthogonality condition in Eq. (8.7). The remainder
of this section is devoted to studying collections of this type.

The word orthogonal means
right-angled. So in a sense,
orthogonal functions are
perpendicular to one another.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Numerical Analysis I – Xiaojing Ye, Math & Stat, Georgia State University 208



Orthogonal functions

Suppose {φ0, . . . , φn} is a set of linearly independent functions in
C [a, b] and w is a weight function on [a, b]. Given f (x) ∈ C [a, b],
we seek a linear combination

n∑

k=0

akφk(x)

to minimize the least squares error:

E (a) =

∫ b

a
w(x)

[
f (x)−

n∑

k=0

akφk(x)
]2

dx

where a = (a0, . . . , an).
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Orthogonal functions

As before, we need to solve a∗ from ∇E (a) = 0:

∂E

∂aj
=

∫ b

a
w(x)

[
f (x)−

n∑

k=0

akφk(x)
]
φj(x) dx = 0

for all j = 0, . . . , n. Then we obtain the normal equation

n∑

k=0

(∫ b

a
w(x)φk(x)φj(x) dx

)
ak =

∫ b

a
w(x)f (x)φj(x) dx

which is a linear system of n + 1 equations about
a = (a0, . . . , an)>.
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Orthogonal functions

If we chose the basis {φ0, . . . , φn} such that

∫ b

a
w(x)φk(x)φj(x) dx =

{
0, when j 6= k

αj , when j = k

for some αj > 0, then the LHS of the normal equation simplifies to
αjaj . Hence we obtain closed form solution aj :

aj =
1

αj

∫ b

a
w(x)f (x)φj(x) dx

for j = 0, . . . , n.
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Orthogonal functions

Definition
A set {φ0, . . . , φn} is called orthogonal on the interval [a, b] with
respect to weight function w if

∫ b

a
w(x)φk(x)φj(x) dx =

{
0, when j 6= k

αj , when j = k

for some αj > 0 for all j = 0, . . . , n.

If in addition αj = 1 for all j = 0, . . . , n, then the set is called
orthonormal with respect to w .

The definition above applies to general functions, but for now we
focus on orthogonal/orthonormal polynomials only.
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Gram-Schmidt process

Theorem
A set of orthogonal polynomials {φ0, . . . , φn} on [a, b] with respect
to weight function w can be constructed in the recursive way

I First define

φ0(x) = 1, φ1(x) = x −
∫ b
a xw(x) dx
∫ b
a w(x) dx

I Then for every k ≥ 2, define

φk(x) = (x − Bk)φk−1(x)− Ckφk−2(x)

where

Bk =

∫ b
a xw(x)[φk−1(x)]2 dx
∫ b
a w(x)[φk−1(x)]2 dx

, Ck =

∫ b
a xw(x)φk−1(x)φk−2(x) dx
∫ b
a w(x)[φk−2(x)]2 dx
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Orthogonal polynomials

Corollary

Let {φ0, . . . , φn} be constructed by the Gram-Schmidt process in
the theorem above, then for any polynomial Qk(x) of degree
k < n, there is ∫ b

a
w(x)φn(x)Qk(x) dx = 0

Proof.
Qk(x) can be written as a linear combination of φ0(x), . . . , φk(x),
which are all orthogonal to φn with respect to w .
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Legendre polynomials

Using weight function w(x) ≡ 1 on [−1, 1], we can construct
Legendre polynomials using the recursive process above to get

P0(x) = 1

P1(x) = x

P2(x) = x2 − 1

3

P3(x) = x3 − 3

5
x

P4(x) = x4 − 6

7
x2 +

3

35

P5(x) = x5 − 10

9
x3 +

5

21
x

...

Use the Gram-Schmidt process to construct them by yourself.
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Legendre polynomials

The first few Legendre polynomials:
8.2 Orthogonal Polynomials and Least Squares Approximation 517

Figure 8.9
y

x

y = P1(x)

y = P2(x)

y = P3(x)
y = P4(x)
y = P5(x)

1

!1

!1

!0.5

0.5

1

For example, the Maple command int is used to compute the integrals B3 and C3:

B3 :=
int
(

x
(
x2 − 1

3

)2
, x = −1..1

)

int
((

x2 − 1
3

)2
, x = −1..1

) ; C3 := int
(
x
(
x2 − 1

3

)
, x = −1..1

)

int(x2, x = −1..1)

0

4
15

Thus

P3(x) = xP2(x)−
4
15

P1(x) = x3 − 1
3

x − 4
15

x = x3 − 3
5

x.

The next two Legendre polynomials are

P4(x) = x4 − 6
7

x2 + 3
35

and P5(x) = x5 − 10
9

x3 + 5
21

x. !

The Legendre polynomials were introduced in Section 4.7, where their roots, given on
page 232, were used as the nodes in Gaussian quadrature.
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Chebyshev polynomials

Using weight function w(x) = 1√
1−x2

on (−1, 1), we can construct

Chebyshev polynomials using the recursive process above to get

T0(x) = 1

T1(x) = x

T2(x) = 2x2 − 1

T3(x) = 4x3 − 3x

T4(x) = 8x4 − 8x2 + 1

...

It can be shown that Tn(x) = cos(n arccos x) for n = 0, 1, . . .
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Chebyshev polynomials

The first few Chebyshev polynomials:

520 C H A P T E R 8 Approximation Theory

Figure 8.10

x

y = T1(x)

y = T2(x)

y = T3(x) y = T4(x)
1

1

!1

!1

y

To show the orthogonality of the Chebyshev polynomials with respect to the weight
function w(x) = (1− x2)−1/2, consider

∫ 1

−1

Tn(x)Tm(x)√
1− x2

dx =
∫ 1

−1

cos(n arccos x) cos(m arccos x)√
1− x2

dx.

Reintroducing the substitution θ = arccos x gives

dθ = − 1√
1− x2

dx

and
∫ 1

−1

Tn(x)Tm(x)√
1− x2

dx = −
∫ 0

π

cos(nθ) cos(mθ) dθ =
∫ π

0
cos(nθ) cos(mθ) dθ .

Suppose n ̸= m. Since

cos(nθ) cos(mθ) = 1
2
[cos(n + m)θ + cos(n− m)θ ],

we have
∫ 1

−1

Tn(x)Tm(x)√
1− x2

dx = 1
2

∫ π

0
cos((n + m)θ) dθ + 1

2

∫ π

0
cos((n− m)θ) dθ

=
[

1
2(n + m)

sin((n + m)θ) + 1
2(n− m)

sin((n− m)θ)

]π

0
= 0.

By a similar technique (see Exercise 9), we also have
∫ 1

−1

[Tn(x)]2

√
1− x2

dx = π

2
, for each n ≥ 1. (8.10)

The Chebyshev polynomials are used to minimize approximation error. We will see
how they are used to solve two problems of this type:
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Chebyshev polynomials

The Chebyshev polynomials Tn(x) of degree n ≥ 1 has n simple
zeros in [−1, 1] (from right to left) at

x̄k = cos
(2k − 1

2n
π
)
, for each k = 1, 2, . . . , n

Moreover, Tn has maximum/minimum (from right to left) at

x̄ ′k = cos
(kπ

n

)
where Tn(x̄ ′k) = (−1)k for each k = 0, 1, 2, . . . , n

Therefore Tn(x) has n distinct roots and n + 1 extreme points on
[−1, 1]. These 2n + 1 points, from right to left, are max, zero,
min, zero, max ...
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Monic Chebyshev polynomials

The monic Chebyshev polynomials T̃n(x) are given by T̃0 = 1 and

T̃n =
1

2n−1
Tn(x)

for n ≥ 1.

522 C H A P T E R 8 Approximation Theory

The recurrence relationship satisfied by the Chebyshev polynomials implies that

T̃2(x) = xT̃1(x)−
1
2

T̃0(x) and (8.12)

T̃n+1(x) = xT̃n(x)−
1
4

T̃n−1(x), for each n ≥ 2.

The graphs of T̃1, T̃2, T̃3, T̃4, and T̃5 are shown in Figure 8.11.

Figure 8.11

x1

1

!1

!1

y

y = T2(x)
!

y = T1(x)
!

y = T3(x)
!

y = T4(x)
!y = T5(x)

!

Because T̃n(x) is just a multiple of Tn(x), Theorem 8.9 implies that the zeros of T̃n(x)
also occur at

x̄k = cos
(

2k − 1
2n

π

)
, for each k = 1, 2, . . . , n,

and the extreme values of T̃n(x), for n ≥ 1, occur at

x̄′k = cos
(

kπ
n

)
, with T̃n(x̄′k) = (−1)k

2n−1
, for each k = 0, 1, 2, . . . , n. (8.13)

Let
∏̃

n denote the set of all monic polynomials of degree n. The relation expressed
in Eq. (8.13) leads to an important minimization property that distinguishes T̃n(x) from the
other members of

∏̃
n.

Theorem 8.10 The polynomials of the form T̃n(x), when n ≥ 1, have the property that

1
2n−1

= max
x∈[−1,1]

|T̃n(x)| ≤ max
x∈[−1, 1]

|Pn(x)|, for all Pn(x) ∈
∏̃

n
.

Moreover, equality occurs only if Pn ≡ T̃n.
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Monic Chebyshev polynomials

The monic Chebyshev polynomials are

T̃0(x) = 1

T̃1(x) = x

T̃2(x) = x2 − 1

2

T̃3(x) = x3 − 3

4
x

T̃4(x) = x4 − x2 +
1

8
...
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Monic Chebyshev polynomials

The monic Chebyshev polynomials T̃n(x) of degree n ≥ 1 has n
simple zeros in [−1, 1] at

x̄k = cos
(2k − 1

2n
π
)
, for each k = 1, 2, . . . , n

Moreover, Tn has maximum/minimum at

x̄ ′k = cos
(kπ

n

)
where Tn(x̄ ′k) =

(−1)k

2n−1
, for each k = 0, 1, . . . , n

Therefore T̃n(x) also has n distinct roots and n + 1 extreme points
on [−1, 1].
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Monic Chebyshev polynomials

Denote Π̃n be the set of monic polynomials of degree n.

Theorem
For any Pn ∈ Π̃n, there is

1

2n−1
= max

x∈[−1,1]
|T̃n(x)| ≤ max

x∈[−1,1]
|Pn(x)|

The “=” holds only if Pn ≡ T̃n.
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Monic Chebyshev polynomials

Proof.
Assume not, then ∃Pn(x) ∈ Π̃n, s.t. maxx∈[−1,1] |Pn(x)| < 1

2n−1 .

Let Q(x) := T̃n(x)− Pn(x). Since T̃n,Pn ∈ Π̃n, we know Q(x) is
a ploynomial of degree at most n − 1. At the n + 1 extreme points
x̄ ′k = cos

(
kπ
n

)
for k = 0, 1, . . . , n, there are

Q(x̄ ′k) = T̃n(x̄ ′k)− Pn(x̄ ′k) =
(−1)k

2n−1
− Pn(x̄ ′k)

Hence Q(x̄ ′k) > 0 when k is even and < 0 when k odd. By
intermediate value theorem, Q has at least n distinct roots,
contradiction to deg(Q) ≤ n − 1.
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Minimizing Lagrange interpolation error

Let x0, . . . , xn be n + 1 distinct points on [−1, 1] and
f (x) ∈ Cn+1[−1, 1], recall that the Lagrange interpolating
polynomial P(x) =

∑n
i=0 f (xi )Li (x) satisfies

f (x)− P(x) =
f (n+1)(ξ(x))

(n + 1)!
(x − x0)(x − x1) · · · (x − xn)

for some ξ(x) ∈ (−1, 1) at every x ∈ [−1, 1].

We can control the size of (x − x0)(x − x1) · · · (x − xn) since it
belongs to Π̃n+1: set (x − x0)(x − x1) · · · (x − xn) = T̃n+1(x).

That is, set xk = cos
(

2k−1
2n π

)
, the kth root of T̃n+1(x) for

k = 1, . . . , n + 1. This results in the minimal
maxx∈[−1,1] |(x − x0)(x − x1) · · · (x − xn)| = 1

2n .
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Minimizing Lagrange interpolation error

Corollary

Let P(x) be the Lagrange interpolating polynomial with n + 1
points chosen as the roots of T̃n+1(x), there is

max
x∈[−1,1]

|f (x)− P(x)| ≤ 1

2n(n + 1)!
max

x∈[−1,1]
|f (n+1)(x)|
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Minimizing Lagrange interpolation error

If the interval of apporximation is on [a, b] instead of [−1, 1], we
can apply change of variable

x̃ =
1

2
[(b − a)x + (a + b)]

Hence, we can convert the roots x̄k on [−1, 1] to x̃k on [a, b],
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Minimizing Lagrange interpolation error

Example

Let f (x) = xex on [0, 1.5]. Find the Lagrange interpolating
polynomial using

1. the 4 equally spaced points 0, 0.5, 1, 1.5.

2. the 4 points transformed from roots of T̃4.
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Minimizing Lagrange interpolation error

Solution. For each of the four points

x0 = 0, x1 = 0.5, x2 = 1, x3 = 1.5, we obtain Li (x) =
∏

j 6=i (x−xj )∏
j 6=i (xi−xj )

for

i = 0, 1, 2, 3:

L0(x) = −1.3333x3 + 4.0000x2 − 3.6667x + 1,

L1(x) = 4.0000x3 − 10.000x2 + 6.0000x ,

L2(x) = −4.0000x3 + 8.0000x2 − 3.0000x ,

L3(x) = 1.3333x3 − 2.000x2 + 0.66667x

so the Lagrange interpolating polynomial is

P3(x) =
3∑

i=0

f (xi )Li (x) = 1.3875x3 + 0.057570x2 + 1.2730x .

Numerical Analysis I – Xiaojing Ye, Math & Stat, Georgia State University 229



Minimizing Lagrange interpolation error

Solution. (cont.) The four roots of T̃4(x) on [−1, 1] are
x̄k = cos( 2k−1

8 π) for k = 1, 2, 3, 4. Shifting the points using
x̃ = 1

2 (1.5x + 1.5), we obtain four points

x̃0 = 1.44291, x̃1 = 1.03701, x̃2 = 0.46299, x̃3 = 0.05709

with the same procedure as above to get L̃0, . . . , L̃3 using these 4
points, and then the Lagrange interpolating polynomial:

P̃3(x) = 1.3811x3 + 0.044652x2 + 1.3031x − 0.014352.
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Minimizing Lagrange interpolation error

Now compare the approximation accuracy of the two polynomials

P3(x) = 1.3875x3 + 0.057570x2 + 1.2730x

P̃3(x) = 1.3811x3 + 0.044652x2 + 1.3031x − 0.014352

8.3 Chebyshev Polynomials and Economization of Power Series 525

The functional values required for these polynomials are given in the last two columns
of Table 8.7. The interpolation polynomial of degree at most 3 is

P̃3(x) = 1.3811x3 + 0.044652x2 + 1.3031x−0.014352.

Table 8.7 x f (x) = xex x̃ f (x̃) = xex

x0 = 0.0 0.00000 x̃0 = 1.44291 6.10783
x1 = 0.5 0.824361 x̃1 = 1.03701 2.92517
x2 = 1.0 2.71828 x̃2 = 0.46299 0.73560
x3 = 1.5 6.72253 x̃3 = 0.05709 0.060444

For comparison, Table 8.8 lists various values of x, together with the values of
f (x), P3(x), and P̃3(x). It can be seen from this table that, although the error using P3(x) is
less than using P̃3(x) near the middle of the table, the maximum error involved with using
P̃3(x), 0.0180, is considerably less than when using P3(x), which gives the error 0.0290.
(See Figure 8.12.)

Table 8.8 x f (x) = xex P3(x) |xex−P3(x)| P̃3(x) |xex−P̃3(x)|
0.15 0.1743 0.1969 0.0226 0.1868 0.0125
0.25 0.3210 0.3435 0.0225 0.3358 0.0148
0.35 0.4967 0.5121 0.0154 0.5064 0.0097
0.65 1.245 1.233 0.012 1.231 0.014
0.75 1.588 1.572 0.016 1.571 0.017
0.85 1.989 1.976 0.013 1.974 0.015
1.15 3.632 3.650 0.018 3.644 0.012
1.25 4.363 4.391 0.028 4.382 0.019
1.35 5.208 5.237 0.029 5.224 0.016

Figure 8.12
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Minimizing Lagrange interpolation error
The approximation using P̃3(x)

P̃3(x) = 1.3811x3 + 0.044652x2 + 1.3031x − 0.014352

8.3 Chebyshev Polynomials and Economization of Power Series 525

The functional values required for these polynomials are given in the last two columns
of Table 8.7. The interpolation polynomial of degree at most 3 is

P̃3(x) = 1.3811x3 + 0.044652x2 + 1.3031x − 0.014352.

Table 8.7 x f (x) = xex x̃ f (x̃) = xex

x0 = 0.0 0.00000 x̃0 = 1.44291 6.10783
x1 = 0.5 0.824361 x̃1 = 1.03701 2.92517
x2 = 1.0 2.71828 x̃2 = 0.46299 0.73560
x3 = 1.5 6.72253 x̃3 = 0.05709 0.060444

For comparison, Table 8.8 lists various values of x, together with the values of
f (x), P3(x), and P̃3(x). It can be seen from this table that, although the error using P3(x) is
less than using P̃3(x) near the middle of the table, the maximum error involved with using
P̃3(x), 0.0180, is considerably less than when using P3(x), which gives the error 0.0290.
(See Figure 8.12.)

Table 8.8 x f (x) = xex P3(x) |xex − P3(x)| P̃3(x) |xex − P̃3(x)|
0.15 0.1743 0.1969 0.0226 0.1868 0.0125
0.25 0.3210 0.3435 0.0225 0.3358 0.0148
0.35 0.4967 0.5121 0.0154 0.5064 0.0097
0.65 1.245 1.233 0.012 1.231 0.014
0.75 1.588 1.572 0.016 1.571 0.017
0.85 1.989 1.976 0.013 1.974 0.015
1.15 3.632 3.650 0.018 3.644 0.012
1.25 4.363 4.391 0.028 4.382 0.019
1.35 5.208 5.237 0.029 5.224 0.016

Figure 8.12
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Reducing the degree of approximating polynomials

As Chebyshev polynomials are efficient in approximating functions,
we may use approximating polynomials of smaller degree for a
given error tolerance.

For example, let Qn(x) = a0 + · · ·+ anxn be a polynomial of
degree n on [−1, 1]. Can we find a polynomial of degree n − 1 to
approximate Qn?
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Reducing the degree of approximating polynomials

So our goal is to find Pn−1(x) ∈ Πn−1 such that

max
x∈[−1,1]

|Qn(x)− Pn−1(x)|

is minimized. Note that 1
an

(Qn(x)− Pn−1(x)) ∈ Π̃n, we know the

best choice is 1
an

(Qn(x)− Pn−1(x)) = T̃n(x), i.e.,

Pn−1 = Qn − anT̃n. In this case, we have approximation error

max
x∈[−1,1]

|Qn(x)− Pn−1(x)| = max
x∈[−1,1]

|anT̃n| =
|an|
2n−1
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Reducing the degree of approximating polynomials

Example

Recall that Q4(x) be the 4th Maclaurin polynomial of f (x) = ex

about 0 on [−1, 1]. That is

Q4(x) = 1 + x +
x2

2
+

x3

6
+

x4

24

which has a4 = 1
24 and truncation error

|R4(x)| = | f
(5)(ξ(x))x5

5!
| = |e

ξ(x)x5

5!
| ≤ e

5!
≈ 0.023

for x ∈ (−1, 1). Given error tolerance 0.05, find the polynomial of
small degree to approximate f (x).
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Reducing the degree of approximating polynomials

Solution. Let’s first try Π3. Note that T̃4(x) = x4 − x2 + 1
8 , so we

can set

P3(x) = Q4(x)− a4T̃4(x)

=
(

1 + x +
x2

2
+

x3

6
+

x4

24

)
− 1

24

(
x4 − x2 +

1

8

)

=
191

192
+ x +

13

24
x2 +

1

6
x3 ∈ Π3

Therefore, the approximating error is bounded by

|f (x)− P3(x)| ≤ |f (x)− Q4(x)|+ |Q4(x)− P3(x)|

≤ 0.023 +
|a4|
23

= 0.023 +
1

192
≤ 0.0283.
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Reducing the degree of approximating polynomials

Solution. (cont.) We can further try Π2. Then we need to
approximate P3 (note a3 = 1

6 ) above by the following P2 ∈ Π2:

P2(x) = P3(x)− a3T̃3(x)

=
191

192
+ x +

13

24
x2 +

1

6
x3 − 1

6

(
x3 − 3

4
x
)

=
191

192
+

9

8
x +

13

24
x2 ∈ Π2

Therefore, the approximating error is bounded by

|f (x)− P2(x)| ≤ |f (x)− Q4(x)|+ |Q4(x)− P3(x)|+ |P3(x)− P2(x)|

≤ 0.0283 +
|a3|
22

= 0.0283 +
1

24
= 0.0703.

Unfortunately this is larger than 0.05.
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Reducing the degree of approximating polynomials

Although the error bound is larger than 0.05, the actual error is
much smaller:

8.3 Chebyshev Polynomials and Economization of Power Series 527

With this choice, we have

|P4(x)− P3(x)| = |a4T̃4(x)| ≤
1

24
· 1

23
= 1

192
≤ 0.0053.

Adding this error bound to the bound for the Maclaurin truncation error gives

0.023 + 0.0053 = 0.0283,

which is within the permissible error of 0.05.

The polynomial of degree 2 or less that best uniformly approximates P3(x) on [−1, 1] is

P2(x) = P3(x)−
1
6

T̃3(x)

= 191
192

+ x + 13
24

x2 + 1
6

x3 − 1
6
(x3 − 3

4
x) = 191

192
+ 9

8
x + 13

24
x2.

However,

|P3(x)− P2(x)| =
∣∣∣∣
1
6

T̃3(x)
∣∣∣∣ = 1

6

(
1
2

)2

= 1
24
≈ 0.042,

which—when added to the already accumulated error bound of 0.0283—exceeds the tol-
erance of 0.05. Consequently, the polynomial of least degree that best approximates ex on
[−1, 1] with an error bound of less than 0.05 is

P3(x) = 191
192

+ x + 13
24

x2 + 1
6

x3.

Table 8.9 lists the function and the approximating polynomials at various points in [−1, 1].
Note that the tabulated entries for P2 are well within the tolerance of 0.05, even though the
error bound for P2(x) exceeded the tolerance. !

Table 8.9 x ex P4(x) P3(x) P2(x) |ex − P2(x)|
−0.75 0.47237 0.47412 0.47917 0.45573 0.01664
−0.25 0.77880 0.77881 0.77604 0.74740 0.03140

0.00 1.00000 1.00000 0.99479 0.99479 0.00521
0.25 1.28403 1.28402 1.28125 1.30990 0.02587
0.75 2.11700 2.11475 2.11979 2.14323 0.02623

E X E R C I S E S E T 8.3

1. Use the zeros of T̃3 to construct an interpolating polynomial of degree 2 for the following functions
on the interval [−1, 1].
a. f (x) = ex b. f (x) = sin x c. f (x) = ln(x + 2) d. f (x) = x4

2. Use the zeros of T̃4 to construct an interpolating polynomial of degree 3 for the functions in Exercise 1.
3. Find a bound for the maximum error of the approximation in Exercise 1 on the interval [−1, 1].
4. Repeat Exercise 3 for the approximations computed in Exercise 3.
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Pros and cons of polynomial approxiamtion

Advantages:

I Polynomials can approximate continuous function to arbitrary
accuracy;

I Polynomials are easy to evaluate;

I Derivatives and integrals are easy to compute.

Disadvantages:

I Significant oscillations;

I Large max absolute error in approximating;

I Not accurate when approximating discontinuous functions.
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