Linearly independent functions

Definition
The set of functions {¢1,...,¢,} is called linearly independent
on [a, b] if

c1P1(x) + cpa(x) + -+ + chdn(x) =0, for all x € [a, b]

implies that ct = o =--- = ¢, = 0.

Otherwise the set of functions is called linearly dependent.
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Linearly independent functions

Example

Suppose ¢;(x) is a polynomial of degree j for j =0,1,...,n, then
{d0,...,0n} is linearly independent on any interval |a, b].

Proof.

Suppose there exist ¢y, ..., c, such that

codo(x) + -+ chon(x) =0

for all x € [a, b]. If ¢, # 0, then this is a polynomial of degree n
and can have at most n roots, contradiction. Hence ¢, = 0.
Repeat this to show that ¢ =--- = ¢, = 0. ]
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Linearly independent functions

Example

Suppose ¢o(x) = 2, d1(x) = x — 3, ¢o(x) = x*> + 2x + 7, and

Q(x) = ap + a1x + a»x%. Show that there exist constants cp, c1, ¢
such that Q(X) — C0¢0(X) + C1¢1(X) + C2¢2(X).

Solution. Substitute ¢; into Q(x), and solve for ¢y, c1, C2.
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Linearly independent functions

We denote N, = {ap + a;x + -+ apx" | ap, a1,...,an € R}, i.e.,
[1, is the set of polynomials of degree < n.

Theorem

Suppose {¢g, - ..,0n} is a collection of linearly independent
polynomials in I'l,, then any polynomial in Il,, can be written
uniquely as a linear combination of ¢o(x), ..., dn(X).

{do,...,¢n} is called a basis of I,

Numerical Analysis | — Xiaojing Ye, Math & Stat, Georgia State University 206



Orthogonal functions

Definition
An integrable function w is called a weight function on the
interval | if w(x) >0, for all x € I, but w(x) £ 0 on any

subinterval of /.
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Orthogonal functions

Example

Define a weight function w(x) = on interval (—1,1).

1—x?

w(x) A

) — o — o — —————

I
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Orthogonal functions

Suppose {¢o,...,on} is a set of linearly independent functions in
Cla, b] and w is a weight function on [a, b]. Given f(x) € C]|a, b],
we seek a linear combination

> adi(x)
k=0

to minimize the least squares error:

2

E(a) = [ "W [F00 = S akdlx)] o
a k=0

where a = (ag, ..., an).
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Orthogonal functions

As before, we need to solve a* from VE(a) = 0:

b n
g_éi = /a w(x) [f(x) — kz%akqbk(x)] di(x)dx =0

for all j =0,...,n. Then we obtain the normal equation

n

2 (/b w(x)Pi(x)j(x) dX) A = /ab w(x)f(x)¢;(x) dx

k=0 “?@

which is a linear system of n+ 1 equations about
a=(ag,...,an)".
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Orthogonal functions

If we chose the basis {¢g, ..., ®n} such that

0, whenj#k

oj, whenj=k

b
/a w ()i ()5 (x) dx = {

for some «; > 0, then the LHS of the normal equation simplifies to
oja;. Hence we obtain closed form solution aj:

b
= o [ wE0rs () dx

forj=0,...,n.
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Orthogonal functions

Definition
A set {¢g,...,¢Pn} is called orthogonal on the interval [a, b] with
respect to weight function w if

0, whenj#k

«j, when j =k

b
/ w ()i (x)5(x) dx = {

for some a;j > 0 for all j =0,...,n.

If in addition o;j =1 for all j =0,...,n, then the set is called
orthonormal with respect to w.

The definition above applies to general functions, but for now we
focus on orthogonal/orthonormal polynomials only.
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Gram-Schmidt process

Theorem
A set of orthogonal polynomials {¢q, ..., on} on [a, b] with respect
to weight function w can be constructed in the recursive way

» First define

» Then for every k > 2, define

Pk(x) = (x = Bi)pk—1(x) — Ckpr—2(x)

where

o w()oa (P dx - w(x)dka(x)dk-2(x) dx
L2 w(x)[bx—1(x)]2dx 2 w()[dr_2(x)] dx
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Orthogonal polynomials

Corollary

Let {¢o,...,0n} be constructed by the Gram-Schmidt process in
the theorem above, then for any polynomial Qx(x) of degree
k < n, there is

b
/ w () (x) Qu(x) dx = 0

Proof.
Qk(x) can be written as a linear combination of ¢g(x), ..., dk(x),
which are all orthogonal to ¢, with respect to w. ]
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Legendre polynomials

Using weight function w(x) =1 on [—1, 1], we can construct
Legendre polynomials using the recursive process above to get

Po(X) =1
P1(x) = x
1
P> (x) = x2 — 3
P3(x) = x3 — gx
6 3
Py(x) = x* — ?XQ + 35
1
Ps(x) = x> — EOX3 + %X

Use the Gram-Schmidt process to construct them by yourself.
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Legendre polynomials

The first few Legendre polynomials:

Y A
I T y =P
Y = Py(x)
05 +
Y = P3(x)
Yy =P,yx)
l\ /ly = P5(x)
I 1 -
_1 1 X
—05 +
_1 €
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Chebyshev polynomials

1
[ ] L] 1_X2 .
Chebyshev polynomials using the recursive process above to get

Using weight function w(x) = on (—1,1), we can construct

TO(X) =1
T1(x) = x
To(x) =2x* -1

T3(x) = 4x> — 3x
Ta(x) = 8x* —8x% + 1

It can be shown that T,(x) = cos(narccosx) for n=0,1,...
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Chebyshev polynomials

The first few Chebyshev polynomials:

YV A
. y=T(x)
Y = T5(x)
Yy = Tyx)
% % % % % % % % % % >
—1 1 X
—1 |y =Tx)
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Chebyshev polynomials

The Chebyshev polynomials T,(x) of degree n > 1 has n simple
zeros in [—1, 1] (from right to left) at

2k — 1
2n

Xk:cos( 7T>, foreach k=1,2,....n

Moreover, T, has maximum/minimum (from right to left) at

k
X} = COS (—W) where T,(X;) = (—1)* for each k =0,1,2,...,n

n

Therefore T,(x) has n distinct roots and n + 1 extreme points on

[—1,1]. These 2n+ 1 points, from right to left, are max, zero,
min, zero, max ...
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Monic Chebyshev polynomials

The monic Chebyshev polynomials 7~'n(x) are given by To = 1 and

1
2n—1

7~',, — Th(x)

forn > 1.

= T\(%)

1 = Tz(x)
| Yy = 73(x)
\ y = Ty(x) /ﬁ=ﬂ®

—1 1 X
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Monic Chebyshev polynomials

The monic Chebyshev polynomials are

7~_0(X) =1
7~_1(X) = X
To(x) = x° —

WN| =

T3(x) = x> — 2
. 1
Ta(x) = x* —x* + 3
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Monic Chebyshev polynomials

The monic Chebyshev polynomials T,(x) of degree n > 1 has n
simple zeros in [—1,1] at

2k — 1
2n

Xk:cos( w), foreach k=1,2,....n

Moreover, T, has maximum/minimum at

k —1)k
X} = COS (—W) where T,(Xx;) = (2n_)1 , foreach k=0,1,...,n
n

Therefore T,(x) also has n distinct roots and n+ 1 extreme points
on [—1,1].
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Monic Chebyshev polynomials

Denote I, be the set of monic polynomials of degree n.

Theorem
For any P, € [1,,, there is

1 ~
- Ta(x)| < P,
o1 A, [ Ta(X)] < nax, |Pn(x)]

The “=" holds only if P, = T,.
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Monic Chebyshev polynomials

Proof. i
Assume not, then 3P,(x) € l,, s.t. max

Let Q(x) := Tp(x) — Py(x). Since Ty, P, € M, we know Q(x) is
a ploynomial of degree at most n — 1. At the n 4+ 1 extreme points
Xk:COS( ) for k=0,1,...,n, there are

N 1)k
Q%) = Toleh) — Polet) = U200 — Pol)

Hence Q(X;) > 0 when k is even and < 0 when k odd. By
intermediate value theorem, @ has at least n distinct roots,
contradiction to deg(Q) < n—1. ]
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Minimizing Lagrange interpolation error

Let xg,...,x, be n+ 1 distinct points on [—1,1] and
f(x) € C"1[—1,1], recall that the Lagrange interpolating
polynomial P(x) = >_"_, f(xi)Li(x) satisfies

_ IMIE())

f(x) — P(x) = (nt 1) (x —x0)(x — x1) -+ - (x — xp)

for some £(x) € (—1,1) at every x € [—1,1].

We can control the size of (x — xg)(x — x1) -+ - (x — x,) since it

belongs to M,41: set (x — xp)(x — x1) -+ - (X — xp) = Thr1(x).
That is, set x, = cos (%TF) the kth root of T,41(x) for
k=1,...,n+ 1. This results in the minimal

MaXxe[—1,1] (X = Xx0)(x = x1) -+ (x = xn)| = %

Numerical Analysis | — Xiaojing Ye, Math & Stat, Georgia State University 225



Minimizing Lagrange interpolation error

Corollary

Let P(x) be the Lagrange interpolating polynomial with n+ 1
points chosen as the roots of T,y1(x), there is

1
XE[—ai(,l] |f(X) (X)’ 2”(/7 -+ 1)' XE[—aifl] |f (X)’
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Minimizing Lagrange interpolation error

If the interval of apporximation is on [a, b] instead of [—1, 1], we
can apply change of variable

% = %[(b—a)x+(a+b)]

Hence, we can convert the roots X, on [—1,1] to X, on [a, b,
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Minimizing Lagrange interpolation error

Example
Let f(x) = xe* on [0, 1.5]. Find the Lagrange interpolating
polynomial using

1. the 4 equally spaced points 0,0.5,1,1.5.

2. the 4 points transformed from roots of Ta.
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Minimizing Lagrange interpolation error

Solution. For each of the four points

HJ#I(X XJ) for

X = O,X]_ — O.5,X2 — 1,X3 — 15, we Obtain L,’(X) — HJ;A,(XI XJ)

1=0,1,2,3:

Lo(x) = —1.3333x> + 4.0000x° — 3.6667x + 1,

L1(x) = 4.0000x> — 10.000x2 + 6.0000x,

L5(x) = —4.0000x> 4 8.0000x* — 3.0000x,
L3(x) = 1.3333x3 — 2.000x2 + 0.66667x

so the Lagrange interpolating polynomial is

3
P3(x) = » f(x;)Li(x) = 1.3875x> 4 0.057570x> + 1.2730x.
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Minimizing Lagrange interpolation error

Solution. (cont.) The four roots of T4(x) on [—1,1] are
X = cos(%w) for k =1,2,3,4. Shifting the points using
X = %(1.5X + 1.5), we obtain four points

Xo = 1.44291, x; = 1.03701, X, = 0.46299, X3 = 0.05709

with the same procedure as above to get Lo, ..., L3 using these 4
points, and then the Lagrange interpolating polynomial:

~

P3(x) = 1.3811x> + 0.044652x + 1.3031x — 0.014352.
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Minimizing Lagrange interpolation error

Now compare the approximation accuracy of the two polynomials

P3(x) = 1.3875x> + 0.057570x° + 1.2730x
P3(x) = 1.3811x> + 0.044652x° + 1.3031x — 0.014352

X f(x) = xe* P3(x) [xe* — P3(x)] P3(x) [xe* — P3(x)|
0.15 0.1743 0.1969 0.0226 0.1868 0.0125
0.25 0.3210 0.3435 0.0225 0.3358 0.0148
0.35 0.4967 0.5121 0.0154 0.5064 0.0097
0.65 1.245 1.233 0.012 1.231 0.014
0.75 1.588 1.572 0.016 1.571 0.017
0.85 1.989 1.976 0.013 1.974 0.015
1.15 3.632 3.650 0.018 3.644 0.012
1.25 4.363 4.391 0.028 4.382 0.019
1.35 5.208 5.237 0.029 5.224 0.016
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Minimizing Lagrange interpolation error

The approximation using Ps(x)

P3(x) = 1.3811x> + 0.044652x° + 1.3031x — 0.014352

Y :133(35)

0.5 1.0 1.5

=Y
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Reducing the degree of approximating polynomials

As Chebyshev polynomials are efficient in approximating functions,
we may use approximating polynomials of smaller degree for a
given error tolerance.

For example, let Q,(x) = ag + - - - + a,x" be a polynomial of

degree n on [—1,1]. Can we find a polynomial of degree n — 1 to
approximate Q,?
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Reducing the degree of approximating polynomials

So our goal is to find P,_1(x) € M,_1 such that

n T 'Dn—
ax 1Qn(x) = Po-a(x)

is minimized. Note that +(Qn(x) — Pp—1(x)) € M,, we know the

dn

best choice is l(NQ,,(X) — Pp_1(x)) = Ta(x), ie.,

dn
Pn_1 = Qn, — an T,. In this case, we have approximation error

> |an]
oy L) = P bl gy ol =
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Reducing the degree of approximating polynomials

Example

Recall that Q4(x) be the 4th Maclaurin polynomial of f(x) = &~
about 0 on [—1,1]. That is

2 X3 X4

— 1 S _ _
Q4(X) + X + 5 + 6 ‘|‘24

which has a4 = 2—14 and truncation error

f(5) £(x) o 5

[Ra(x)| = |

for x € (—1,1). Given error tolerance 0.05, find the polynomial of
small degree to approximate f(x).
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Reducing the degree of approximating polynomials

Solution. Let's first try M3. Note that T4(x) = x* — x% + %, SO we
can set

P3(X) = Q4(X) — dy4 7~_4(X)

(1+ +x2+x3+x4) 1 (4 2+1)

— X+ —+"—+—) - = (x"—x"+=
2 6 24 24 3
191 13, 1,

_ Pl isden
102 T X TeX &I

Therefore, the approximating error is bounded by

F(x) = Ps(x)| < [f(x) = Qa(x)| 4 |Qa(x) — P3(x)]

1
24l _ 00034 1 < 0.0083.

< 0. —
< 0.023+ 3 %
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Reducing the degree of approximating polynomials

Solution. (cont.) We can further try I1,. Then we need to
approximate P3 (note a3 = z) above by the following P, € My:

P2(X) — P3(X) — d3 7~_3(X)

191 s 13X2+1X3_}(X3_§X)
102 24 6 6 4
—ﬂ—l—gx%— EX2E [

— 192 8" " 24 2

Therefore, the approximating error is bounded by

F(x) = Pa(x)| < [f(x) = Qa(x)| + [Qa(x) = P3(x)| + [P3(x) — P2(x)]

a3

1
< 0.0283 + '—>' = 0.0283 + — = 0.0703.
< 0.0283 + 5 = 0.0283 + . = 0.0703

Unfortunately this is larger than 0.05.
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Reducing the degree of approximating polynomials

Although the error bound is larger than 0.05, the actual error is
much smaller:

x e’ P4(x) P3(x) P> (x) " — P (x)]
—0.75 0.47237 0.47412 0.47917 0.45573 0.01664
—0.25 0.77880 0.77881 0.77604 0.74740 0.03140

0.00 1.00000 1.00000 0.99479 0.99479 0.00521
0.25 1.28403 1.28402 1.28125 1.30990 0.02587
0.75 2.11700 2.11475 2.11979 2.14323 0.02623
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Pros and cons of polynomial approxiamtion

Advantages:

» Polynomials can approximate continuous function to arbitrary
accuracy;

» Polynomials are easy to evaluate;

» Derivatives and integrals are easy to compute.
Disadvantages:

» Significant oscillations;

» Large max absolute error in approximating;

» Not accurate when approximating discontinuous functions.
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