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Section 1

Initial Value Problems for ODEs
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IVP of ODE

We study numerical solution for initial value problem (IVP) of
ordinary differential equations (ODE).

▶ A basic IVP:

dy

dt
= f (t, y), for a ≤ t ≤ b

with initial value y(a) = α.

Remark
▶ f is given and called the defining function of IVP.

▶ α is given and called the initial value.
▶ y(t) is called the solution of the IVP if

▶ y(a) = α;
▶ y ′(t) = f (t, y(t)) for all t ∈ [a, b].
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IVP of ODE

Example

The following is a basic IVP:

y ′ = y − t2 + 1, t ∈ [0, 2], and y(0) = 0.5

▶ The defining function is f (t, y) = y − t2 + 1.

▶ Initial value is y(0) = 0.5.

▶ The solution is y(t) = (t + 1)2 − et

2 because:

▶ y(0) = (0 + 1)2 − e0

2 = 1− 1
2 = 1

2 ;▶ We can check that y ′(t) = f (t, y(t)):

y ′(t) = 2(t + 1)−
et

2

f (t, y(t)) = y(t)− t2 + 1 = (t + 1)2 −
et

2
− t2 + 1 = 2(t + 1)−

et

2
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IVP of ODE (cont.)

More general or complex cases:
▶ IVP of ODE system:

dy1
dt

= f1(t, y1, y2, . . . , yn)

dy2
dt

= f2(t, y1, y2, . . . , yn)

...

dyn
dt

= fn(t, y1, y2, . . . , yn)

for a ≤ t ≤ b

with initial value y1(a) = α1, . . . , yn(a) = αn.

▶ High-order ODE:

y (n) = f (t, y , y ′, . . . , y (n−1)) for a ≤ t ≤ b

with initial value y(a) = α1, y
′(a) = α2, . . . , y

(n−1)(a) = αn.
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Why numerical solutions for IVP?

▶ ODEs have extensive applications in real-world: science,
engineering, economics, finance, public health, etc.

▶ Analytic solution? Not with almost all ODEs.

▶ Fast improvement of computers.
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Some basics about IVP

Definition (Lipschitz functions)

A function f (t, y) defined on D = {(t, y) : t ∈ R+, y ∈ R} is
called Lipschitz with respect to y if there exists a constant L > 0

|f (t, y1)− f (t, y2)| ≤ L|y1 − y2|

for all t ∈ R+, and y1, y2 ∈ R.

Remark
We also call f is Lipschitz with respect to y with constant L, or
simply f is L-Lipschitz with respect to y .
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Some basics about IVP

Example

Function f (t, y) = t|y | is Lipschitz with respect to y on the set
D := {(t, y)|t ∈ [1, 2], y ∈ [−3, 4]}.

Solution: For any t ∈ [1, 2] and y1, y2 ∈ [−3, 4], we have

|f (t, y1)− f (t, y2)| =
∣∣t|y1| − t|y2|

∣∣ ≤ t|y1 − y2| ≤ 2|y1 − y2|.

So f (t, y) = t|y | is Lipschitz with respect to y with constant
L = 2.
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Some basics about IVP

Definition (Convex sets)

A set D ∈ R2 is convex if whenever (t1, y1), (t2, y2) ∈ D there is
(1− λ)(t1, y1) + λ(t2, y2) ∈ D for all λ ∈ [0, 1].

5.1 The Elementary Theory of Initial-Value Problems 261

Definition 5.1 A function f (t, y) is said to satisfy a Lipschitz condition in the variable y on a set D ⊂ R2

if a constant L > 0 exists with

|f (t, y1)− f (t, y2, )| ≤ L| y1 − y2|,

whenever (t, y1) and (t, y2) are in D. The constant L is called a Lipschitz constant for f .

Example 1 Show that f (t, y) = t| y| satisfies a Lipschitz condition on the interval D = {(t, y) | 1 ≤
t ≤ 2 and − 3 ≤ y ≤ 4}.
Solution For each pair of points (t, y1) and (t, y2) in D we have

|f (t, y1)− f (t, y2)| = |t| y1|− t| y2∥ = |t|∥ y1|− | y2∥ ≤ 2| y1 − y2|.

Thus f satisfies a Lipschitz condition on D in the variable y with Lipschitz constant 2. The
smallest value possible for the Lipschitz constant for this problem is L = 2, because, for
example,

|f (2, 1)− f (2, 0)| = |2 − 0| = 2|1− 0|.

Definition 5.2 A set D ⊂ R2 is said to be convex if whenever (t1, y1) and (t2, y2) belong to D, then
((1− λ)t1 + λt2, (1− λ)y1 + λy2) also belongs to D for every λ in [0, 1].

In geometric terms, Definition 5.2 states that a set is convex provided that whenever
two points belong to the set, the entire straight-line segment between the points also belongs
to the set. (See Figure 5.1.) The sets we consider in this chapter are generally of the form
D = {(t, y) | a ≤ t ≤ b and −∞ < y <∞} for some constants a and b. It is easy to verify
(see Exercise 7) that these sets are convex.

Figure 5.1

(t1, y1)

(t1, y1)(t 2, y2)
(t2, y2)

Convex Not convex

Theorem 5.3 Suppose f (t, y) is defined on a convex set D ⊂ R2. If a constant L > 0 exists with
∣∣∣∣
∂f

∂y
(t, y)

∣∣∣∣ ≤ L, for all (t, y) ∈ D, (5.1)

then f satisfies a Lipschitz condition on D in the variable y with Lipschitz constant L.

The proof of Theorem 5.3 is discussed in Exercise 6; it is similar to the proof of the
corresponding result for functions of one variable discussed in Exercise 27 of Section 1.1.

Rudolf Lipschitz (1832–1903)
worked in many branches of
mathematics, including number
theory, Fourier series, differential
equations, analytical mechanics,
and potential theory. He is best
known for this generalization of
the work of Augustin-Louis
Cauchy (1789–1857) and
Guiseppe Peano (1856–1932).

As the next theorem will show, it is often of significant interest to determine whether
the function involved in an initial-value problem satisfies a Lipschitz condition in its second
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Some basics about IVP

Theorem
If D ⊂ R2 is convex, and | ∂f∂y (t, y)| ≤ L for all (t, y) ∈ D, then f is
Lipschitz with respect to y with constant L.

Remark
This is a sufficient (but not necessary) condition for f to be
Lipschitz with respect to y .
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Some basics about IVP

Proof.
For any (t, y1), (t, y2) ∈ D, define function g by

g(λ) = f (t, (1− λ)y1 + λy2)

for λ ∈ [0, 1] (need convexity of D!). Then we have

g ′(λ) = ∂y f (t, (1− λ)y1 + λy2) · (y2 − y1)

So |g ′(λ)| ≤ L|y2 − y1|. Then we have

|g(1)− g(0)| =
∣∣∣∫ 1

0
g ′(λ) dλ

∣∣∣ ≤ L|y2 − y1|
∣∣∣∫ 1

0
dλ

∣∣∣ = L|y2 − y1|

Note that g(0) = f (t, y1) and g(1) = f (t, y2). This completes the
proof.
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Some basics about IVP

Theorem
Suppose D = [a, b]× R, a function f is continuous on D and
Lipschitz with respect to y , then the initial value problem
y ′ = f (t, y) for t ∈ [a, b] with initial value y(a) = α has a unique
solution y(t) for t ∈ [a, b].

Remark
This theorem says that there must be one and only one solution of
the IVP, provided that the defining f of the IVP is continuous and
Lipschitz with respect to y on D.
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Some basics about IVP

Example

Show that y ′ = 1 + t sin(ty) for t ∈ [0, 2] with y(0) = 0 has a
unique solution.

Solution: First, we know f (t, y) = 1 + t sin(ty) is continuous on
[0, 2]× R. Second, we can see∣∣∣∣∂f∂y

∣∣∣∣ = ∣∣∣t2 cos(ty)∣∣∣ ≤ |t2| ≤ 4

So f (t, y) is Lipschitz with respect to y (with constant 4). From
theorem above, we know the IVP has a unique solution y(t) on
[0, 2].
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Some basics about IVP

Definition (Well-posedness)

An IVP y ′ = f (t, y) for t ∈ [a, b] with y(a) = α is called
well-posed if

▶ It has a unique solution y(t);

▶ There exist ϵ0 > 0 and k > 0, such that ∀ϵ ∈ (0, ϵ0) and
function δ(t), which is continuous and satisfies |δ(t)| < ϵ for
all t ∈ [a, b], the perturbed problem z ′ = f (t, z) + δ(t) with
initial value z(a) = α+ δ0 (where |δ0| ≤ ϵ) satisfies

|z(t)− y(t)| < kϵ, ∀t ∈ [a, b].

Remark
This theorem says that a small perturbation on defining function f
by δ(t) and initial value y(a) by δ0 will only cause small change to
original solution y(t).
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Some basics about IVP

Theorem
Let D = [a, b]× R. If f is continuous on D and Lipschitz with
respect to y , then the IVP is well-posed.

Remark
Again, a sufficient but not necessary condition for well-posedness
of IVP.
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Euler’s method

Given an IVP y ′ = f (t, y) for t ∈ [a, b] and y(a) = α, we want to
compute y(t) on mesh points {t0, t1, . . . , tN} on [a, b].

To this end, we partition [a, b] into N equal segments: set
h = b−a

N , and define ti = a+ ih for i = 0, 1, . . . ,N. Here h is
called the step size.

268 C H A P T E R 5 Initial-Value Problems for Ordinary Differential Equations

The graph of the function highlighting y(ti) is shown in Figure 5.2. One step in Euler’s
method appears in Figure 5.3, and a series of steps appears in Figure 5.4.

Figure 5.2
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Example 1 Euler’s method was used in the first illustration with h = 0.5 to approximate the solution
to the initial-value problem

y′ = y − t2 + 1, 0 ≤ t ≤ 2, y(0) = 0.5.

Use Algorithm 5.1 with N = 10 to determine approximations, and compare these with the
exact values given by y(t) = (t + 1)2 − 0.5et .

Solution With N = 10 we have h = 0.2, ti = 0.2i, w0 = 0.5, and

wi+1 = wi + h(wi − t2
i + 1) = wi + 0.2[wi − 0.04i2 + 1] = 1.2wi − 0.008i2 + 0.2,

for i = 0, 1, . . . , 9. So

w1 = 1.2(0.5)− 0.008(0)2 + 0.2 = 0.8; w2 = 1.2(0.8)− 0.008(1)2 + 0.2 = 1.152;

and so on. Table 5.1 shows the comparison between the approximate values at ti and the
actual values.
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Euler’s method

From Taylor’s theorem, we have

y(ti+1) = y(ti ) + y ′(ti )(ti+1 − ti ) +
1

2
y ′′(ξi )(ti+1 − ti )

2

for some ξi ∈ (ti , ti+1). Note that ti+1 − ti = h and
y ′(ti ) = f (ti , y(ti )), we get

y(ti+1) ≈ y(ti ) + hf (t, y(ti ))

Denote wi = y(ti ) for all i = 0, 1, . . . ,N, we get the Euler’s
method: {

w0 = α

wi+1 = wi + hf (ti ,wi ), i = 0, 1, . . . ,N − 1
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Euler’s method
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Euler’s method

Example

Use Euler’s method with h = 0.5 for IVP y ′ = y − t2 + 1 for
t ∈ [0, 2] with initial value y(0) = 0.5.

Solution: We follow Euler’s method step-by-step:

t0 = 0 : w0 = y(0) = 0.5

t1 = 0.5 : w1 = w0 + hf (t0,w0) = 0.5 + 0.5× (0.5− 02 + 1) = 1.25

t2 = 1.0 : w2 = w1 + hf (t1,w1) = 1.25 + 0.5× (1.25− 0.52 + 1) = 2.25

t3 = 1.5 : w3 = w2 + hf (t2,w2) = 2.25 + 0.5× (2.25− 12 + 1) = 3.375

t4 = 2.0 : w4 = w3 + hf (t3,w3) = 3.375 + 0.5× (3.375− 1.52 + 1) = 4.4375
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Error bound of Euler’s method

Theorem
Suppose f (t, y) in an IVP is continuous on D = [a, b]× R and
Lipschitz with respect to y with constant L. If ∃M > 0 such that
|y ′′(t)| ≤ M (y(t) is the unique solution of the IVP), then for all
i = 0, 1, . . . ,N there is∣∣y(ti )− wi

∣∣ ≤ hM

2L

(
eL(ti−a) − 1

)

Remark
▶ Numerical error depends on h (also called O(h) error).

▶ Also depends on M, L of f .

▶ Error increases for larger ti .

Numerical Analysis II – Xiaojing Ye, Math & Stat, Georgia State University 20



Error bound of Euler’s method

Proof. Taking the difference of

y(ti+1) = y(ti ) + hf (ti , yi ) +
1

2
y ′′(ξi )(ti+1 − ti )

2

wi+1 = wi + hf (ti ,wi )

we get

|y(ti+1)− wi+1| ≤ |y(ti )− wi |+ h|f (ti , yi )− f (ti ,wi )|+
Mh2

2

≤ |y(ti )− wi |+ hL|yi − wi |+
Mh2

2

= (1 + hL)|yi − wi |+
Mh2

2
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Error bound of Euler’s method

Proof (cont).
Denote di = |y(ti )− wi |, then we have

di+1 ≤ (1 + hL)di +
Mh2

2
= (1 + hL)

(
di +

hM

2L

)
− hM

2L

for all i = 0, 1, . . . ,N − 1. So we obtain

di+1 +
hM

2L
≤ (1 + hL)

(
di +

hM

2L

)
≤ (1 + hL)2

(
di−1 +

hM

2L

)
≤ · · ·

≤ (1 + hL)i+1
(
d0 +

hM

2L

)
and hence di ≤ (1 + hL)i · hM2L −

hM
2L (since d0 = 0).
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Error bound of Euler’s method

Proof (cont).
Note that 1 + x ≤ ex for all x > −1, and hence (1 + x)a ≤ eax if
a > 0.
Based on this, we know (1 + hL)i ≤ e ihL = eL(ti−a) since
ih = ti − a. Therefore we get

di ≤ eL(ti−a) · hM
2L
− hM

2L
=

hM

2L
(eL(ti−a) − 1)

This completes the proof.
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Error bound of Euler’s method

Example

Estimate the error of Euler’s method with h = 0.2 for IVP
y ′ = y − t2 + 1 for t ∈ [0, 2] with initial value y(0) = 0.5.

Solution: We first note that ∂f
∂y = 1, so f is Lipschitz with respect

to y with constant L = 1. The IVP has solution
y(t) = (t − 1)2 − et

2 so |y ′′(t)| = | et2 − 2| ≤ e2

2 − 2 =: M. By
theorem above, the error of Euler’s method is

∣∣y(ti )− wi

∣∣ ≤ hM

2L

(
eL(ti−a) − 1

)
=

0.2(0.5e2 − 2)

2

(
eti − 1

)
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Error bound of Euler’s method

Example

Estimate the error of Euler’s method with h = 0.2 for IVP
y ′ = y − t2 + 1 for t ∈ [0, 2] with initial value y(0) = 0.5.

Solution: (cont) 5.2 Euler’s Method 269

Table 5.1 ti wi yi = y(ti) |yi − wi|
0.0 0.5000000 0.5000000 0.0000000
0.2 0.8000000 0.8292986 0.0292986
0.4 1.1520000 1.2140877 0.0620877
0.6 1.5504000 1.6489406 0.0985406
0.8 1.9884800 2.1272295 0.1387495
1.0 2.4581760 2.6408591 0.1826831
1.2 2.9498112 3.1799415 0.2301303
1.4 3.4517734 3.7324000 0.2806266
1.6 3.9501281 4.2834838 0.3333557
1.8 4.4281538 4.8151763 0.3870225
2.0 4.8657845 5.3054720 0.4396874

Note that the error grows slightly as the value of t increases. This controlled error
growth is a consequence of the stability of Euler’s method, which implies that the error is
expected to grow in no worse than a linear manner.

Maple has implemented Euler’s method as an option with the command Initial-
ValueProblem within the NumericalAnalysis subpackage of the Student package. To use
it for the problem in Example 1 first load the package and the differential equation.

with(Student[NumericalAnalysis]): deq := diff(y(t), t) = y(t)− t2 + 1

Then issue the command

C := InitialValueProblem(deq, y(0) = 0.5, t = 2, method = euler, numsteps = 10,
output = information, digits = 8)

Maple produces
⎡

⎢⎢⎣

1 . . 12× 1 . . 4 Array
Data Type: anything
Storage: rectangular
Order: Fortran_order

⎤

⎥⎥⎦

Double clicking on the output brings up a table that gives the values of ti, actual solution
values y(ti), the Euler approximations wi, and the absolute errors | y(ti)− wi|. These agree
with the values in Table 5.1.

To print the Maple table we can issue the commands

for k from 1 to 12 do
print(C[k, 1], C[k, 2], C[k, 3], C[k, 4])
end do

The options within the InitialValueProblem command are the specification of the first order
differential equation to be solved, the initial condition, the final value of the independent
variable, the choice of method, the number of steps used to determine that h = (2 − 0)/

(numsteps), the specification of form of the output, and the number of digits of rounding
to be used in the computations. Other output options can specify a particular value of t or
a plot of the solution.

Error Bounds for Euler’s Method

Although Euler’s method is not accurate enough to warrant its use in practice, it is sufficiently
elementary to analyze the error that is produced from its application. The error analysis for
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Round-off error of Euler’s method

Due to round-off errors in computer, we instead obtain{
u0 = α+ δ0

ui+1 = ui + hf (ti , ui ) + δi , i = 0, 1, . . . ,N − 1

Suppose ∃δ > 0 such that |δi | ≤ δ for all i , then we can show

∣∣y(ti )− ui
∣∣ ≤ 1

L

(hM
2

+
δ

h

)(
eL(ti−a) − 1

)
+ δeL(ti−a).

Note that hM
2 + δ

h does not approach 0 as h→ 0. hM
2 + δ

h reaches

minimum at h =
√

2δ
M (often much smaller than what we choose in

practice).

Numerical Analysis II – Xiaojing Ye, Math & Stat, Georgia State University 26



Higher-order Taylor’s method

Definition (Local truncation error)

We call the difference method{
w0 = α

wi+1 = wi + hϕ(ti ,wi ), i = 0, 1, . . . ,N − 1

to have local truncation error

τi+1(h) =
yi+1 − (yi + hϕ(ti , yi ))

h

where yi := y(ti ).

Example

Euler’s method has local truncation error

τi+1(h) =
yi+1 − (yi + hf (ti , yi ))

h
=

yi+1 − yi
h

− f (ti , yi )
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Higher-order Taylor’s method

Note that Euler’s method has local truncation error
τi+1(h) =

yi+1−yi
h − f (ti , yi ) =

hy ′′(ξi )
2 for some ξi ∈ (ti , ti+1). If

|y ′′| ≤ M we know |τi+1(h)| ≤ hM
2 = O(h).

Question: What if we use higher-order Taylor’s approximation?

y(ti+1) = y(ti ) + hy ′(ti ) +
h2

2
y ′′(ti ) + · · ·+

hn

n!
y (n)(ti ) + R

where R = hn+1

(n+1)!y
(n+1)(ξi ) for some ξi ∈ (ti , ti+1).
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Higher-order Taylor’s method

First note that we can always write y (n) using f (t, y(t)):

y ′(t) = f

y ′′(t) = f ′ = ∂t f + (∂y f )f

y ′′′(t) = f ′′ = ∂2
t f + (∂t∂y f + (∂2

y f )f )f + ∂y f (∂t f + (∂y f )f )

· · ·
y (n)(t) = f (n−1) = · · ·

albeit it’s quickly getting very complicated.
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Higher-order Taylor’s method

Now substitute them back to high-order Taylor’s approximation
(ignore residual R)

y(ti+1) = y(ti ) + hy ′(ti ) +
h2

2
y ′′(ti ) + · · ·+

hn

n!
y (n)(ti )

= y(ti ) + hf +
h2

2
f ′ + · · ·+ hn

n!
f (n−1)

We can get the n-th order Taylor’s method:{
w0 = α

wi+1 = wi + hT (n)(ti ,wi ), i = 0, 1, . . . ,N − 1

where

T (n)(ti ,wi ) = f (ti ,wi ) +
h

2
f ′(ti ,wi ) + · · ·+

hn−1

n!
f (n−1)(ti ,wi )
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Higher-order Taylor’s method

▶ Euler’s method is the first order Taylor’s method.

▶ High-order Taylor’s method is more accurate than Euler’s
method, but at much higher computational cost.

▶ Together with Hermite interpolating polynomials, it can be
used to interpolate values not on mesh points more accurately.
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Higher-order Taylor’s method

Theorem
If y(t) ∈ Cn+1[a, b], then the n-th order Taylor method has local
truncation error O(hn).
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Runge-Kutta (RK) method

Runge-Kutta (RK) method attains high-order local truncation error
without expensive evaluations of derivatives of f .
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Runge-Kutta (RK) method

To derive RK method, first recall Taylor’s formula for two variables
(t, y):

f (t, y) = Pn(t, y) + Rn(t, y)

where ∂n−k
t ∂k

y f = ∂nf (t0,y0)
∂tn−k∂yk and

Pn(t, y) = f (t0, y0) + (∂t f · (t − t0) + ∂y f · (y − y0))

+
1

2

(
∂2
t f · (t − t0)

2 + 2∂y∂t f · (t − t0)(y − y0) + ∂2
y f · (y − y0)

2
)

+ · · ·+ 1

n!

n∑
k=0

(
n

k

)
∂n−k
t ∂k

y f · (t − t0)
n−k(y − y0)

k

Rn(t, y) =
1

(n + 1)!

n+1∑
k=0

(
n + 1

k

)
∂n+1−k
t ∂k

y f (ξ, µ) · (t − t0)
n+1−k(y − y0)

k
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Runge-Kutta (RK) method

The second order Taylor’s method uses

T (2)(t, y) = f (t, y) +
h

2
f ′(t, y) = f (t, y) +

h

2
(∂t f + ∂y f · f )

to get O(h2) error. Suppose we use af (t + α, y + β) (with some

a, α, β to be determined) to reach the same order of error. To that
end, we first have

af (t + α, y + β) = a
(
f + ∂t f · α+ ∂y f · β + R

)
where R = 1

2(∂
2
t f (ξ, µ) · α2 + 2∂y∂t f (ξ, µ) · αβ + ∂2

y f (ξ, µ) · β2).
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Runge-Kutta (RK) method

Suppose we try to match the terms of these two formulas (ignore
R):

T (2)(t, y) = f +
h

2
∂t f +

hf

2
∂y f

af (t + α, y + β) = af + aα∂t f + aβ∂y f

then we have

a = 1, α =
h

2
, β =

h

2
f (t, y)

So instead of T (2)(t, y), we use

af (t + α, y + β) = f
(
t +

h

2
, y +

h

2
f (t, y)

)
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Runge-Kutta (RK) method

Note that R we ignored is

R =
1

2

(
∂2
t f (ξ, µ) ·

(h
2

)2

+ 2∂y∂t f (ξ, µ) ·
(h
2

)2

f + ∂2
y f (ξ, µ) ·

(h
2

)2

f 2
)

which means R = O(h2).

Also note that

R = T (2)(t, y)− f
(
t +

h

2
, y +

h

2
f (t, y)

)
= O(h2)

and the error of T (2)(t, y) is of O(h2), we know

f
(
t + h

2 , y + h
2 f (t, y)

)
has error of O(h2).
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Runge-Kutta (RK) method

This is the RK2 method (Midpoint method):
w0 = α

wi+1 = wi + h f
(
ti +

h

2
,wi +

h

2
f (ti ,wi )

)
, i = 0, 1, . . . ,N − 1.

Remark
If we have (ti ,wi ), we only need to evaluate f twice (i.e., compute
k1 = f (ti ,wi ) and k2 = f (ti +

h
2 ,wi +

h
2k1)) to get wi+1.
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Runge-Kutta (RK) method

We can also consider higher-order RK method by fitting

T (3)(t, y) = f (t, y) +
h

2
f ′(t, y) +

h

6
f ′′(t, y)

with af (t, y) + bf (t + α, y + β) (has 4 parameters a, b, α, β).

Unfortunately we can’t make match to the hf ′′

6 term of T (3), which

contains h2

6 f · (∂y f )
2, by this way. But it leaves us open choices if

we’re OK with O(h2) error: let a = b = 1, α = h, β = hf (t, y),
then we get the modified Euler’s method:

w0 = α

wi+1 = wi +
h

2

(
f (ti ,wi ) + f (ti+1,wi + hf (ti ,wi ))

)
, i = 0, 1, . . . ,N − 1.

Also need evaluation of f twice in each step.
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Runge-Kutta (RK) method

Example

Use Midpoint method (RK2) and Modified Euler’s method with
h = 0.2 to solve IVP y ′ = y − t2 + 1 for t ∈ [0, 2] and y(0) = 0.5.

Solution: Apply the main steps in the two methods:

Midpoint : wi+1 =wi + h f
(
ti +

h

2
,wi +

h

2
f (ti ,wi )

)
Modified Euler’s : wi+1 =wi +

h

2

(
f (ti ,wi ) + f (ti+1,wi + hf (ti ,wi ))

)
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Runge-Kutta (RK) method

Example

Use Midpoint method (RK2) and Modified Euler’s method with
h = 0.2 to solve IVP y ′ = y − t2 + 1 for t ∈ [0, 2] and y(0) = 0.5.

Solution: (cont)

5.4 Runge-Kutta Methods 287

and

Midpoint method: w2 = 1.22(0.828)− 0.0088(0.2)2 − 0.008(0.2) + 0.218

= 1.21136;

Modified Euler method: w2 = 1.22(0.826)− 0.0088(0.2)2 − 0.008(0.2) + 0.216

= 1.20692,

Table 5.6 lists all the results of the calculations. For this problem, the Midpoint method
is superior to the Modified Euler method.

Table 5.6 Midpoint Modified Euler
ti y(ti) Method Error Method Error

0.0 0.5000000 0.5000000 0 0.5000000 0
0.2 0.8292986 0.8280000 0.0012986 0.8260000 0.0032986
0.4 1.2140877 1.2113600 0.0027277 1.2069200 0.0071677
0.6 1.6489406 1.6446592 0.0042814 1.6372424 0.0116982
0.8 2.1272295 2.1212842 0.0059453 2.1102357 0.0169938
1.0 2.6408591 2.6331668 0.0076923 2.6176876 0.0231715
1.2 3.1799415 3.1704634 0.0094781 3.1495789 0.0303627
1.4 3.7324000 3.7211654 0.0112346 3.6936862 0.0387138
1.6 4.2834838 4.2706218 0.0128620 4.2350972 0.0483866
1.8 4.8151763 4.8009586 0.0142177 4.7556185 0.0595577
2.0 5.3054720 5.2903695 0.0151025 5.2330546 0.0724173

Runge-Kutta methods are also options within the Maple command InitialValueProblem.
The form and output for Runge-Kutta methods are the same as available under the Euler’s
and Taylor’s methods, as discussed in Sections 5.1 and 5.2.

Higher-Order Runge-Kutta Methods

The term T (3)(t, y) can be approximated with error O(h3) by an expression of the form

f (t + α1, y + δ1f (t + α2, y + δ2f (t, y))),

involving four parameters, the algebra involved in the determination of α1, δ1,α2, and δ2 is
quite involved. The most common O(h3) is Heun’s method, given by

w0 = α

wi+1 = wi + h
4

(
f (ti, wi) + 3f

(
ti + 2h

3 , wi + 2h
3 f

(
ti + h

3 , wi + h
3f (ti, wi)

)))
,

for i = 0, 1, . . . , N − 1.

Karl Heun (1859–1929) was a
professor at the Technical
University of Karlsruhe. He
introduced this technique in a
paper published in 1900. [Heu]

Illustration Applying Heun’s method with N = 10, h = 0.2, ti = 0.2i, and w0 = 0.5 to approximate
the solution to our usual example,

y′ = y − t2 + 1, 0 ≤ t ≤ 2, y(0) = 0.5.
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Midpoint (RK2) method is better than modified Euler’s method.
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Runge-Kutta (RK) method

We can also consider higher-order RK method by fitting

T (3)(t, y) = f (t, y) +
h

2
f ′(t, y) +

h2

6
f ′′(t, y)

with af (t, y) + bf (t + α1, y + δ1(f (t + α2, y + δ2f (t, y)) ) (has 6
parameters a, b, α1, α2, δ1, δ2) to reach O(h3) error.

For example, Heun’s choice is a = 1
4 , b = 3

4 , α1 =
2h
3 , α2 =

h
3 ,

δ1 =
2h
3 f , δ2 =

h
3 f .

Nevertheless, methods of order O(h3) are rarely used in practice.
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4-th Order Runge-Kutta (RK4) method

Most commonly used is the 4-th order Runge-Kutta method
(RK4): start with w0 = α, and iteratively do

k1 = f (ti ,wi )

k2 = f (ti +
h

2
,wi +

h

2
k1)

k3 = f (ti +
h

2
,wi +

h

2
k2)

k4 = f (ti+1,wi + hk3)

wi+1 = wi +
h

6
(k1 + 2k2 + 2k3 + k4)

Need to evaluate f for 4 times in each step. Reach error O(h4).
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4-th Order Runge-Kutta (RK4) method

Example

Use RK4 (with h = 0.2) to solve IVP y ′ = y − t2 + 1 for t ∈ [0, 2]
and y(0) = 0.5.

Solution: With h = 0.2, we have N = 10 and ti = 0.2i for
i = 0, 1, . . . , 10. First set w0 = 0.5, then the first iteration is

k1 = f (t0,w0) = f (0, 0.5) = 0.5− 02 + 1 = 1.5

k2 = f (t0 +
h

2
,w0 +

h

2
k1) = f (0.1, 0.5 + 0.1× 1.5) = 1.64

k3 = f (t0 +
h

2
,w0 +

h

2
k2) = f (0.1, 0.5 + 0.1× 1.64) = 1.654

k4 = f (t1,w0 + hk3) = f (0.2, 0.5 + 0.2× 1.654) = 1.7908

w1 = w0 +
h

6
(k1 + 2k2 + 2k3 + k4) = 0.8292933

So w1 is our RK4 approximation of y(t1) = y(0.2).

Numerical Analysis II – Xiaojing Ye, Math & Stat, Georgia State University 44



4-th Order Runge-Kutta (RK4) method

Example

Use RK4 (with h = 0.2) to solve IVP y ′ = y − t2 + 1 for t ∈ [0, 2]
and y(0) = 0.5.

Solution: (cont) Continue with i = 1, 2, · · · , 9:

5.4 Runge-Kutta Methods 289

Step 1 Set h = (b− a)/N ;
t = a;
w = α;

OUTPUT (t, w).

Step 2 For i = 1, 2, . . . , N do Steps 3–5.

Step 3 Set K1 = hf (t, w);
K2 = hf (t + h/2, w + K1/2);
K3 = hf (t + h/2, w + K2/2);
K4 = hf (t + h, w + K3).

Step 4 Set w = w + (K1 + 2K2 + 2K3 + K4)/6; (Compute wi.)
t = a + ih. (Compute ti.)

Step 5 OUTPUT (t, w).

Step 6 STOP.

Example 3 Use the Runge-Kutta method of order four with h = 0.2, N = 10, and ti = 0.2i to obtain
approximations to the solution of the initial-value problem

y′ = y − t2 + 1, 0 ≤ t ≤ 2, y(0) = 0.5.

Solution The approximation to y(0.2) is obtained by

w0 = 0.5

k1 = 0.2f (0, 0.5) = 0.2(1.5) = 0.3

k2 = 0.2f (0.1, 0.65) = 0.328

k3 = 0.2f (0.1, 0.664) = 0.3308

k4 = 0.2f (0.2, 0.8308) = 0.35816

w1 = 0.5 + 1
6
(0.3 + 2(0.328) + 2(0.3308) + 0.35816) = 0.8292933.

The remaining results and their errors are listed in Table 5.8.

Table 5.8 Runge-Kutta
Exact Order Four Error

ti yi = y(ti) wi |yi − wi|
0.0 0.5000000 0.5000000 0
0.2 0.8292986 0.8292933 0.0000053
0.4 1.2140877 1.2140762 0.0000114
0.6 1.6489406 1.6489220 0.0000186
0.8 2.1272295 2.1272027 0.0000269
1.0 2.6408591 2.6408227 0.0000364
1.2 3.1799415 3.1798942 0.0000474
1.4 3.7324000 3.7323401 0.0000599
1.6 4.2834838 4.2834095 0.0000743
1.8 4.8151763 4.8150857 0.0000906
2.0 5.3054720 5.3053630 0.0001089
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High-order Runge-Kutta method

Can we use even higher-order method to improve accuracy?
#f eval 2 3 4 5 ≤ n ≤ 7 8 ≤ n ≤ 9 n ≥ 10
Best error O(h2) O(h3) O(h4) O(hn−1) O(hn−2) O(hn−3)

So

RK4 is the sweet spot.

Remark
Note that RK4 requires 4 evaluations of f each step. So it would
make sense only if it’s accuracy with step size 4h is higher than
Midpoint with 2h or Euler’s with h!
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High-order Runge-Kutta method

Example

Use RK4 (with h = 0.1), Midpoint (with h = 0.05), and Euler’s
method (with h = 0.025) to solve IVP y ′ = y − t2 + 1 for
t ∈ [0, 0.5] and y(0) = 0.5.

Solution:
5.4 Runge-Kutta Methods 291

Table 5.10 Modified Runge-Kutta
Euler Euler Order Four

ti Exact h = 0.025 h = 0.05 h = 0.1

0.0 0.5000000 0.5000000 0.5000000 0.5000000
0.1 0.6574145 0.6554982 0.6573085 0.6574144
0.2 0.8292986 0.8253385 0.8290778 0.8292983
0.3 1.0150706 1.0089334 1.0147254 1.0150701
0.4 1.2140877 1.2056345 1.2136079 1.2140869
0.5 1.4256394 1.4147264 1.4250141 1.4256384

E X E R C I S E S E T 5.4

1. Use the Modified Euler method to approximate the solutions to each of the following initial-value
problems, and compare the results to the actual values.
a. y′ = te3t − 2y, 0 ≤ t ≤ 1, y(0) = 0, with h = 0.5; actual solution y(t) = 1

5 te3t − 1
25 e3t +

1
25 e−2t .

b. y′ = 1 + (t − y)2, 2 ≤ t ≤ 3, y(2) = 1, with h = 0.5; actual solution y(t) = t + 1
1−t .

c. y′ = 1 + y/t, 1 ≤ t ≤ 2, y(1) = 2, with h = 0.25; actual solution y(t) = t ln t + 2t.
d. y′ = cos 2t + sin 3t, 0 ≤ t ≤ 1, y(0) = 1, with h = 0.25; actual solution y(t) =

1
2 sin 2t − 1

3 cos 3t + 4
3 .

2. Use the Modified Euler method to approximate the solutions to each of the following initial-value
problems, and compare the results to the actual values.
a. y′ = et−y, 0 ≤ t ≤ 1, y(0) = 1, with h = 0.5; actual solution y(t) = ln(et + e− 1).

b. y′ = 1 + t
1 + y

, 1 ≤ t ≤ 2, y(1) = 2, with h = 0.5; actual solution y(t) =
√

t2 + 2t + 6− 1.

c. y′ = −y + ty1/2, 2 ≤ t ≤ 3, y(2) = 2, with h = 0.25; actual solution y(t) =(
t − 2 +

√
2ee−t/2

)2
.

d. y′ = t−2(sin 2t − 2ty), 1 ≤ t ≤ 2, y(1) = 2, with h = 0.25; actual solution y(t) =
1
2 t−2(4 + cos 2 − cos 2t).

3. Use the Modified Euler method to approximate the solutions to each of the following initial-value
problems, and compare the results to the actual values.

a. y′ = y/t − (y/t)2, 1 ≤ t ≤ 2, y(1) = 1, with h = 0.1; actual solution y(t) = t/(1 + ln t).

b. y′ = 1 + y/t + (y/t)2, 1 ≤ t ≤ 3, y(1) = 0, with h = 0.2; actual solution y(t) = t tan(ln t).

c. y′ = −(y + 1)(y + 3), 0 ≤ t ≤ 2, y(0) = −2, with h = 0.2; actual solution y(t) =
−3 + 2(1 + e−2t)−1.

d. y′ = −5y+5t2 +2t, 0 ≤ t ≤ 1, y(0) = 1
3 , with h = 0.1; actual solution y(t) = t2 + 1

3 e−5t .

4. Use the Modified Euler method to approximate the solutions to each of the following initial-value
problems, and compare the results to the actual values.

a. y′ = 2 − 2ty
t2 + 1

, 0 ≤ t ≤ 1, y(0) = 1, with h = 0.1; actual solution y(t) = 2t + 1
t2 + 1

.

b. y′ = y2

1 + t
, 1 ≤ t ≤ 2, y(1) = −(ln 2)−1, with h = 0.1; actual solution y(t) = −1

ln(t + 1)
.

c. y′ = (y2 + y)/t, 1 ≤ t ≤ 3, y(1) = −2, with h = 0.2; actual solution y(t) = 2t
1− 2t

.

d. y′ = −ty + 4t/y, 0 ≤ t ≤ 1, y(0) = 1, with h = 0.1; actual solution y(t) =
√

4− 3e−t2 .
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Error control

Can we control the error of Runge-Kutta method by using variable
step sizes?

Let’s compare two difference methods with errors O(hn) and
O(hn+1) (say, RK4 and RK5) for fixed step size h, which have
schemes below:

wi+1 = wi + hϕ(ti ,wi , h) O(hn)

w̃i+1 = w̃i + hϕ̃(ti , w̃i , h) O(hn+1)

Suppose wi ≈ w̃i ≈ y(ti ) =: yi . Then for any given ϵ > 0, we want
to see how small h should be for the O(hn) method so that its
error |τi+1(h)| ≤ ϵ?
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Error control

We recall that the local truncation errors of these two methods are:

τi+1(h) =
yi+1 − yi

h
− ϕ(ti , yi , h) ≈ O(hn)

τ̃i+1(h) =
yi+1 − yi

h
− ϕ̃(ti , yi , h) ≈ O(hn+1)

Given that wi ≈ w̃i ≈ yi and O(hn+1)≪ O(hn) for small h, we see

τi+1(h) ≈ τi+1(h)− τ̃i+1(h) = ϕ̃(ti , yi , h)− ϕ(ti , yi , h)

≈ ϕ̃(ti , w̃i , h)− ϕ(ti ,wi , h) =
w̃i+1 − w̃i

h
− wi+1 − wi

h

≈ w̃i+1 − wi+1

h
≈ Khn

for some K > 0 independent of h, since τi+1(h) ≈ O(hn).
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Error control

Suppose that we can scale h by q > 0, such that

|τi+1(qh)| ≈ K (qh)n = qnKhn ≈ qn
|w̃i+1 − wi+1|

h
≤ ϵ

So we need q to satisfy

q ≤
( ϵh

|w̃i+1 − wi+1|

)1/n

▶ q < 1: reject the initial h and recalculate using qh.

▶ q ≥ 1: accept computed value and use qh for next step.
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Runge-Kutta-Fehlberg method

The Runge-Kutta-Fehlberg (RKF) method uses specific
4th-order and 5th-order RK schemes, which share some computed
values and together only need 6 evaluation of f , to estimate

q =
( ϵh

2|w̃i+1 − wi+1|

)1/4

= 0.84
( ϵh

|w̃i+1 − wi+1|

)1/4

This q is used to tune step size so that error is always bounded by
the prescribed ϵ.
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Multistep method

Definition
Let m > 1 be an integer, then an m-step multistep method is
given by the form of

wi+1 = am−1wi + am−2wi−1 + · · ·+ a0wi−m+1

+ h
[
bmf (ti+1,wi+1) + bm−1f (ti ,wi ) + · · ·+ b0f (ti−m+1,wi−m+1)

]
for i = m − 1,m, . . . ,N − 1.

Here a0, . . . , am−1, b0, . . . , bm are constants. Also
w0 = α,w1 = α1, . . . ,wm−1 = αm−1 need to be given.

▶ bm = 0: Explicit m-step method.

▶ bm ̸= 0: Implicit m-step method.
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Multistep method

Definition
The local truncation error of the m-step multistep method above
is defined by

τi+1(h) =
yi+1 − (am−1yi + · · ·+ a0yi−m+1)

h
−
[
bmf (ti+1, yi+1) + bm−1f (ti , yi ) + · · ·+ b0f (ti−m+1, yi−m+1)

]
where yi := y(ti ).
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Adams-Bashforth Explicit method

Adams-Bashforth Two-Step Explicit method:
w0 = α, w1 = α1,

wi+1 = wi +
h

2

[
3f (ti ,wi )− f (ti−1,wi−1)

]
for i = 1, . . . ,N − 1.

The local truncation error is

τi+1(h) =
5

12
y ′′′(µi )h

2

for some µi ∈ (ti−1, ti+1).
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Adams-Bashforth Explicit method: local truncation error

We denote y
(k)
i := y (k)(ti ) for short. If wj = yj for j ≤ i , then

yi+1 = yi + hy ′
i +

h2

2
y ′′
i +

h3

6
y ′′′(ξi ), ξi ∈ (ti , ti+1)

wi+1 = yi + hy ′
i +

h

2
(y ′

i − y ′
i−1),

y ′
i−1 = y ′

i − hy ′′
i +

h2

2
y ′′′(ηi ), ηi ∈ (ti−1, ti )

Plugging the equations above into the formula of local truncation error:

τi+1(h) =
yi+1 − wi+1

h
=
(1
6
y ′′′(ξi ) +

1

4
y ′′′(ηi )

)
h2 =

5

12
y ′′′(µi )h

2

for some µi ∈ (ti−1, ti+1), where in the last equality we used the intermediate value

theorem and y ∈ C3 (so y ′′′ is continuous) to obtain y ′′′(µi ) =
1
6
y′′′(ξi )+

1
4
y′′′(ηi )

1
6
+ 1

4

which is between y ′′′(ξi ) and y ′′′(ηi ).
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Adams-Bashforth Explicit method

Adams-Bashforth Three-Step Explicit method:
w0 = α, w1 = α1, w2 = α2,

wi+1 = wi +
h

12

[
23f (ti ,wi )− 16f (ti−1,wi−1) + 5f (ti−2,wi−2)

]
for i = 2, . . . ,N − 1.

The local truncation error is

τi+1(h) =
3

8
y (4)(µi )h

3

for some µi ∈ (ti−2, ti+1).
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Adams-Bashforth Explicit method

Adams-Bashforth Four-Step Explicit method:
w0 = α, w1 = α1, w2 = α2, w3 = α3

wi+1 = wi +
h

24

[
55f (ti ,wi )− 59f (ti−1,wi−1) + 37f (ti−2,wi−2)− 9f (ti−3,wi−3)

]
for i = 3, . . . ,N − 1.

The local truncation error is

τi+1(h) =
251

720
y (5)(µi )h

4

for some µi ∈ (ti−3, ti+1).
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Adams-Bashforth Explicit method

Adams-Bashforth Five-Step Explicit method:
w0 = α, w1 = α1, w2 = α2, w3 = α3, w4 = α4

wi+1 = wi +
h

720
[1901f (ti ,wi )− 2774f (ti−1,wi−1) + 2616f (ti−2,wi−2)

− 1274f (ti−3,wi−3) + 251f (ti−4,wi−4)]

for i = 4, . . . ,N − 1.

The local truncation error is

τi+1(h) =
95

288
y (6)(µi )h

5

for some µi ∈ (ti−4, ti+1).
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Adams-Moulton Implicit method

Adams-Moulton Two-Step Implicit method:
w0 = α, w1 = α1,

wi+1 = wi +
h

12
[5f (ti+1,wi+1) + 8f (ti ,wi )− f (ti−1,wi−1)]

for i = 1, . . . ,N − 1.

The local truncation error is

τi+1(h) = −
1

24
y (4)(µi )h

3

for some µi ∈ (ti−1, ti+1).
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Adams-Moulton Implicit method

Adams-Moulton Three-Step Implicit method:
w0 = α, w1 = α1, w2 = α2

wi+1 = wi +
h

24
[9f (ti+1,wi+1) + 19f (ti ,wi )− 5f (ti−1,wi−1) + f (ti−2,wi−2)]

for i = 2, . . . ,N − 1.

The local truncation error is

τi+1(h) = −
19

720
y (5)(µi )h

4

for some µi ∈ (ti−2, ti+1).
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Adams-Moulton Implicit method

Adams-Moulton Four-Step Implicit method:
w0 = α, w1 = α1, w2 = α2, w3 = α3

wi+1 = wi +
h

720
[251f (ti+1,wi+1) + 646f (ti ,wi )− 264f (ti−1,wi−1)

+ 106f (ti−2,wi−2)− 19f (ti−3,wi−3)]

for i = 3, . . . ,N − 1.

The local truncation error is

τi+1(h) = −
3

160
y (6)(µi )h

5

for some µi ∈ (ti−3, ti+1).
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Steps to develop multistep methods

▶ Construct interpolating polynomial P(t) (e.g., Newton’s
backward difference method) using previously computed
(ti−m+1,wi−m+1), . . . , (ti ,wi ).

▶ Approximate y(ti+1) based on

y(ti+1) = y(ti ) +

∫ ti+1

ti

y ′(t) dt = y(ti ) +

∫ ti+1

ti

f (t, y(t)) dt

≈ y(ti ) +

∫ ti+1

ti

f (t,P(t)) dt

and construct difference method:

wi+1 = wi + hϕ(ti , . . . , ti−m+1,wi , . . . ,wi−m+1)
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Explicit vs. Implicit

▶ Implicit methods are generally more accurate than the explicit
ones (e.g., Adams-Moulton three-step implicit method is even
more accurate than Adams-Bashforth four-step explicit
method).

▶ Implicit methods require solving for wi+1 from

wi+1 = · · ·+
h

xxx
f (ti+1,wi+1) + · · ·

which can be difficult or even impossible.

▶ There could be multiple solutions of wi+1 when solving the
equation above in implicit methods.
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Predictor-Corrector method

Due to the aforementioned issues, implicit methods are often cast
in “predictor-corrector” form in practice.

In each step i :

▶ Prediction: Compute wi+1 using an explicit method ϕ to get
wi+1,p using

wi+1,p = wi + hϕ(ti ,wi , . . . , ti−m+1,wi−m+1)

▶ Correction: Substitute wi+1 by wi+1,p in the implicit method
ϕ̃ and compute wi+1 using

wi+1 = wi + hϕ̃(ti+1,wi+1,p, ti ,wi , . . . , ti−m+1,wi−m+1)
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Predictor-Corrector method

Example

Use the Adams-Bashforth 4-step explicit method and
Adams-Moulton 3-step implicit method to form the Adams
4th-order Predictor-Corrector method.

With initial value w0 = α, suppose we first generate w1,w2,w3

using RK4 method. Then for i = 3, 4, . . . ,N − 1:
▶ Use Adams-Bashforth 4-step explicit method to get a

predictor wi+1,p:

wi+1,p = wi+
h

24

[
55f (ti ,wi )− 59f (ti−1,wi−1) + 37f (ti−2,wi−2)− 9f (ti−3,wi−3)

]

▶ Use Adams-Moulton 3-step implicit method to get a corrector
wi+1:

wi+1 = wi +
h

24
[9f (ti+1,wi+1,p) + 19f (ti ,wi )− 5f (ti−1,wi−1) + f (ti−2,wi−2)]
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Predictor-Corrector method

Example

Use Adams Predictor-Corrector Method with h = 0.2 to solve IVP
y ′ = y − t2 + 1 for t ∈ [0, 2] and y(0) = 0.5.

5.6 Multistep Methods 313

= 2.1272056 + 0.0083333(9(2.6409314) + 19(2.4872056) − 5(2.2889220)

+ (2.0540762))

= 2.6408286.

In Example 1 we found that using the explicit Adams-Bashforth method alone produced
results that were inferior to those of Runge-Kutta. However, these approximations to y(0.8)

and y(1.0) are accurate to within

|2.1272295 − 2.1272056| = 2.39× 10− 5 and |2.6408286 − 2.6408591| = 3.05× 10− 5.

respectively, compared to those of Runge-Kutta, which were accurate, respectively, to within

|2.1272027 − 2.1272892| = 2.69× 10− 5 and |2.6408227 − 2.6408591| = 3.64× 10− 5.

The remaining predictor-corrector approximations were generated using Algorithm 5.4 and
are shown in Table 5.14.

Table 5.14 Error
ti yi = y(ti) wi |yi − wi|

0.0 0.5000000 0.5000000 0
0.2 0.8292986 0.8292933 0.0000053
0.4 1.2140877 1.2140762 0.0000114
0.6 1.6489406 1.6489220 0.0000186
0.8 2.1272295 2.1272056 0.0000239
1.0 2.6408591 2.6408286 0.0000305
1.2 3.1799415 3.1799026 0.0000389
1.4 3.7324000 3.7323505 0.0000495
1.6 4.2834838 4.2834208 0.0000630
1.8 4.8151763 4.8150964 0.0000799
2.0 5.3054720 5.3053707 0.0001013

Adams Fourth Order Predictor-Corrector method is implemented in Maple for the
example problem with

C := InitialValueProblem(deq, y(0) = 0.5, t = 2, method = adamsbashforthmoulton,
submethod = step4, numsteps = 10, output = information, digits = 8)

and generates the same values as in Table 5.14.
Other multistep methods can be derived using integration of interpolating polynomials

over intervals of the form [tj, ti+1], for j ≤ i − 1, to obtain an approximation to y(ti+1). When
an interpolating polynomial is integrated over [ti− 3, ti+1], the result is the explicit Milne’s
method:

wi+1 = wi− 3 + 4h
3

[2f (ti, wi) − f (ti− 1, wi− 1) + 2f (ti− 2, wi− 2)],

which has local truncation error 14
45 h4y(5)(ξi), for some ξi ∈ (ti− 3, ti+1).

Edward Arthur Milne
(1896–1950) worked in ballistic
research during World War I, and
then for the Solar Physics
Observatory at Cambridge. In
1929 he was appointed the
W. W. Rouse Ball chair at
Wadham College in Oxford.

Milne’s method is occasionally used as a predictor for the implicit Simpson’s method,

wi+1 = wi− 1 + h
3
[f (ti+1, wi+1) + 4f (ti, wi) + f (ti− 1, wi− 1)],

which has local truncation error − (h4/90)y(5)(ξi), for some ξi ∈ (ti− 1, ti+1), and is obtained
by integrating an interpolating polynomial over [ti− 1, ti+1].

Simpson’s name is associated
with this technique because it is
based on Simpson’s rule for
integration.
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Other Predictor-Corrector method

We can also use Milne’s 3-step explicit method and Simpson’s
2-step implicit method below:

wi+1,p = wi−3 +
4h

3

[
2f (ti ,wi )− f (ti−1,wi−1) + 2f (ti−2,wi−2)

]
wi+1 = wi−1 +

h

3
[f (ti+1,wi+1,p) + 4f (ti ,wi ) + f (ti−1,wi−1)]

This method is O(h4) and generally has better accuracy than
Adams PC method. However it is more likely to be vulnerable to
round-off error.
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Predictor-Corrector method

▶ PC methods have comparable accuracy as RK4, but often
require only 2 evaluations of f in each step.

▶ Need to store values of f for several previous steps.

▶ Sometimes are more restrictive on step size h, e.g., in the stiff
differential equation case later.
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Variable step-size multistep method

Now let’s take a closer look at the errors of the multistep methods.
Denote yi := y(ti ).

The Adams-Bashforth 4-step explicit method has error

τi+1(h) =
251

720
y (5)(µi )h

4

The Adams-Moulton 3-step implicit method has error

τ̃i+1(h) = −
19

720
y (5)(µ̃i )h

4

where µi ∈ (ti−3, ti+1) and µ̃i ∈ (ti−2, ti+1).

Question: Can we find a way to scale step size h so the error is
under control?
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Variable step-size multistep method

Consider the their local truncation errors:

yi+1 − wi+1,p =
251

720
y (5)(µi )h

5

yi+1 − wi+1 = −
19

720
y (5)(µ̃i )h

5

Assume y (5)(µi ) ≈ y (5)(µ̃i ), we take their difference to get

wi+1 − wi+1,p =
1

720
(19 + 251)y (5)(µi )h

5 ≈ 3

8
y (5)(µi )h

5

So the error of Adams-Moulton (corrector step) is

τ̃i+1(h) =
|yi+1 − wi+1|

h
≈

19|wi+1 − wi+1,p|
270h

= Kh4

where K is independent of h since τ̃i+1(h) = O(h4).
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Variable step-size multistep method

If we want to keep error under a prescribed ϵ, then we need to find
q > 0 such that with step size qh, there is

τ̃i+1(qh) =
|y(ti + qh)− wi+1|

qh
≈

19q4|wi+1 − wi+1,p|
270h

< ϵ

This implies that

q <
( 270hϵ

19|wi+1 − wi+1,p|

)1/4

≈ 2
( hϵ

|wi+1 − wi+1,p|

)1/4

To be conservative, we may replace 2 by 1.5 above.

In practice, we tune q (as less as possible) such that the estimated
error is between (ϵ/10, ϵ)
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System of differential equations

The IVP for a system of ODE has form

du1
dt

= f1(t, u1, u2, . . . , um)

du2
dt

= f2(t, u1, u2, . . . , um)

...

dum
dt

= fm(t, u1, u2, . . . , um)

for a ≤ t ≤ b

with initial value u1(a) = α1, . . . , um(a) = αm.

Definition
A set of functions u1(t), . . . , um(t) is a solution of the IVP above
if they satisfy both the system of ODEs and the initial values.
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System of differential equations

In this case, we will solve for u1(t), . . . , um(t) which are
interdependent according to the ODE system.

330 C H A P T E R 5 Initial-Value Problems for Ordinary Differential Equations

Let an integer N > 0 be chosen and set h= (b − a)/N . Partition the interval [a, b] into
N subintervals with the mesh points

tj = a + jh, for each j = 0, 1, . . . , N .

Use the notation wij, for each j = 0, 1, . . . , N and i = 1, 2, . . . , m, to denote an approx-
imation to ui(tj). That is, wij approximates the ith solution ui(t) of (5.45) at the jth mesh
point tj. For the initial conditions, set (see Figure 5.6)

w1,0 = α1, w2,0 = α2, . . . , wm,0 = αm. (5.48)

Figure 5.6

y

t
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w21

a ! t0 t1 t2 t3 a ! t0 t1 t2 t3
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u2(a) ! α2

u2(t)

u1(t)

y

t

wm3wm2

wm1

a ! t0 t1 t2 t3

um(t)

um(a) ! αm

Suppose that the values w1, j, w2, j, . . . , wm, j have been computed. We obtain w1, j+1,
w2, j+1, . . . , wm, j+1 by first calculating

k1,i = hfi(tj, w1, j, w2, j, . . . , wm, j), for each i = 1, 2, . . . , m; (5.49)

k2,i = hfi

(
tj + h

2
, w1, j + 1

2
k1,1, w2, j + 1

2
k1,2, . . . , wm, j + 1

2
k1,m

)
, (5.50)

for each i = 1, 2, . . . , m;

k3,i = hfi

(
tj + h

2
, w1, j + 1

2
k2,1, w2, j + 1

2
k2,2, . . . , wm, j + 1

2
k2,m

)
, (5.51)

for each i = 1, 2, . . . , m;

k4,i = hfi(tj + h, w1, j + k3,1, w2, j + k3,2, . . . , wm, j + k3,m), (5.52)

for each i = 1, 2, . . . , m; and then

wi, j+1 = wi, j + 1
6
(k1,i + 2k2,i + 2k3,i + k4,i), (5.53)

for each i = 1, 2, . . . , m. Note that all the values k1,1, k1,2, . . . , k1,m must be computed before
any of the terms of the form k2,i can be determined. In general, each kl,1, kl,2, . . . , kl,m must be
computed before any of the expressions kl+1,i. Algorithm 5.7 implements the Runge-Kutta
fourth-order method for systems of initial-value problems.
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System of differential equations

Definition
A function f is called Lipschitz with respect to u1, . . . , um on
D := [a, b]× Rm if there exists L > 0 s.t.

|f (t, u1, . . . , um)− f (t, z1, . . . , zm)| ≤ L
m∑
j=1

|uj − zj |

for all (t, u1, . . . , um), (t, z1, . . . , zm) ∈ D.
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System of differential equations

Theorem
If f ∈ C 1(D) and | ∂f∂uj

| ≤ L for all j , then f is Lipschitz with

respect to u = (u1, . . . , um) on D.

Proof.
Note that D is convex. For any (t, u1, . . . , um), (t, z1, . . . , zm) ∈ D,
define

g(λ) = f (t, (1− λ)u1 + λz1, . . . , (1− λ)um + λzm)

for all λ ∈ [0, 1]. Then from |g(1)− g(0)| ≤
∫ 1
0 |g

′(λ)| dλ and the
definition of g , the conclusion follows.
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System of differential equations

Theorem
If f ∈ C 1(D) and is Lipschitz with respect to u = (u1, . . . , um),
then the IVP with f as defining function has a unique solution.
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System of differential equations

Now let’s use vector notations below

a = (α1, . . . , αm)

y = (y1, . . . , ym)

w = (w1, . . . ,wm)

f(t,w) = (f1(t,w), . . . , fm(t,w))

Then the IVP of ODE system can be written as

y′ = f(t, y), t ∈ [a, b]

with initial value y(a) = a. So the difference methods developed

above, such as RK4, still apply.
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System of differential equations

Example

Use RK4 (with h = 0.1) to solve IVP for ODE system{
I ′1(t) = f1(t, I1, I2) = −4I1 + 3I2 + 6

I ′2(t) = f2(t, I1, I2) = −2.4I1 + 1.6I2 + 3.6

with initial value I1(0) = I2(0) = 0.

Solution: The exact solution is{
I1(t) = −3.375e−2t + 1.875e−0.4t + 1.5

I2(t) = −2.25e−2t + 2.25e−0.4t

for all t ≥ 0.
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System of differential equations

Example

Use RK4 (with h = 0.1) to solve IVP for ODE system{
I ′1(t) = f1(t, I1, I2) = −4I1 + 3I2 + 6

I ′2(t) = f2(t, I1, I2) = −2.4I1 + 1.6I2 + 3.6

with initial value I1(0) = I2(0) = 0.

Solution: (cont) The result by RK4 is

5.9 Higher-Order Equations and Systems of Differential Equations 333

As a consequence,

I1(0.1) ≈ w1,1 = w1,0 + 1
6
(k1,1 + 2k2,1 + 2k3,1 + k4,1)

= 0 + 1
6

(0.6 + 2(0.534) + 2(0.54072) + 0.4800912) = 0.5382552

and

I2(0.1) ≈ w2,1 = w2,0 + 1
6
(k1,2 + 2k2,2 + 2k3,2 + k4,2) = 0.3196263.

The remaining entries in Table 5.19 are generated in a similar manner. !

Table 5.19 tj w1,j w2,j |I1(tj) − w1,j| |I2(tj) − w2,j|
0.0 0 0 0 0

0.1 0.5382550 0.3196263 0.8285× 10− 5 0.5803× 10− 5

0.2 0.9684983 0.5687817 0.1514× 10− 4 0.9596× 10− 5

0.3 1.310717 0.7607328 0.1907× 10− 4 0.1216× 10− 4

0.4 1.581263 0.9063208 0.2098× 10− 4 0.1311× 10− 4

0.5 1.793505 1.014402 0.2193× 10− 4 0.1240× 10− 4

Recall that Maple reserves the
letter D to represent
differentiation.

Maple’s NumericalAnalysis package does not currently approximate the solution to
systems of initial value problems, but systems of first-order differential equations can by
solved using dsolve. The system in the Illustration is defined with

sys 2 := D(u1)(t) = − 4u1(t) + 3u2(t) + 6, D(u2)(t) = − 2.4u1(t) + 1.6u2(t) + 3.6

and the initial conditions with

init 2 := u1(0) = 0, u2(0) = 0

The system is solved with the command

sol 2 := dsolve({sys 2, init 2}, {u1(t), u2(t)})
and Maple responds with

{
u1(t) = − 27

8
e− 2t + 15

8
e−

5
2 t + 3

2
, u2(t) = − 9

4
e− 2t + 9

4
e−

5
2 t
}

To isolate the individual functions we use

r1 := rhs(sol 2[1]); r2 := rhs(sol 2[2])
producing

− 27
8

e− 2t+15
8

e−
5
2 t + 3

2

− 9
4

e− 2t+9
4

e−
5
2 t

and to determine the value of the functions at t = 0.5 we use

evalf (subs(t = 0.5, r1)); evalf (subs(t = 0.5, r2))

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Numerical Analysis II – Xiaojing Ye, Math & Stat, Georgia State University 79



High-order ordinary differential equations

A general IVP for mth-order ODE is

y (m) = f (t, y , y ′, . . . , y (m−1)), t ∈ [a, b]

with initial value y(a) = α1, y
′(a) = α2, . . . , y

(m−1)(a) = αm.

Definition
A function y(t) is a solution of IVP for the mth-order ODE
above if y(t) satisfies the differential equation for t ∈ [a, b] and all
initial value conditions at t = a.
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High-order ordinary differential equations

We can define a set of functions u1, . . . , um s.t.

u1(t) = y(t), u2(t) = y ′(t), . . . , um(t) = y (m−1)(t)

Then we can convert the mth-order ODE to a system of first-order
ODEs (total of m coupled ODEs):

u′1 = u2

u′2 = u3

...

u′m = f (t, u1, u2, . . . , um)

for a ≤ t ≤ b

with initial values u1(a) = α1, . . . , um(a) = αm.

Numerical Analysis II – Xiaojing Ye, Math & Stat, Georgia State University 81



High-order ordinary differential equations

Example

Use RK4 (with h = 0.1) to solve IVP for ODE system

y ′′ − 2y ′ + 2y = e2t sin t, t ∈ [0, 1]

with initial value y(0) = −0.4, y ′(0) = −0.6.
Solution: The exact solution is
y(t) = u1(t) = 0.2e2t(sin t − 2 cos t). Also u2(t) = y ′(t) = u′1(t)
but we don’t need it.
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High-order ordinary differential equations

Example

Use RK4 (with h = 0.1) to solve IVP for ODE system

y ′′ − 2y ′ + 2y = e2t sin t, t ∈ [0, 1]

with initial value y(0) = −0.4, y ′(0) = −0.6.
Solution: (cont) The result by RK4 is
336 C H A P T E R 5 Initial-Value Problems for Ordinary Differential Equations

Table 5.20

tj y(tj) = u1(tj) w1,j y′(tj) = u2(tj) w2,j |y(tj) − w1,j| |y′(tj) − w2,j|
0.0 − 0.40000000 − 0.40000000 − 0.6000000 − 0.60000000 0 0
0.1 − 0.46173297 − 0.46173334 − 0.6316304 − 0.63163124 3.7× 10− 7 7.75× 10− 7

0.2 − 0.52555905 − 0.52555988 − 0.6401478 − 0.64014895 8.3× 10− 7 1.01× 10− 6

0.3 − 0.58860005 − 0.58860144 − 0.6136630 − 0.61366381 1.39× 10− 6 8.34× 10− 7

0.4 − 0.64661028 − 0.64661231 − 0.5365821 − 0.53658203 2.03× 10− 6 1.79× 10− 7

0.5 − 0.69356395 − 0.69356666 − 0.3887395 − 0.38873810 2.71× 10− 6 5.96× 10− 7

0.6 − 0.72114849 − 0.72115190 − 0.1443834 − 0.14438087 3.41× 10− 6 7.75× 10− 7

0.7 − 0.71814890 − 0.71815295 0.2289917 0.22899702 4.05× 10− 6 2.03× 10− 6

0.8 − 0.66970677 − 0.66971133 0.7719815 0.77199180 4.56× 10− 6 5.30× 10− 6

0.9 − 0.55643814 − 0.55644290 1.534764 1.5347815 4.76× 10− 6 9.54× 10− 6

1.0 − 0.35339436 − 0.35339886 2.578741 2.5787663 4.50× 10− 6 1.34× 10− 5

In Maple the nth derivative y(n)(t)
is specified by (D@@n)(y)(t).

We can also use dsolve from Maple on higher-order equations. To define the differential
equation in Example 1, use

def 2 := (D@@2)(y)(t) − 2D(y)(t) + 2y(t) = e2t sin(t)

and to specify the initial conditions use

init 2 := y(0) = − 0.4, D(y)(0) = − 0.6

The solution is obtained with the command

sol 2 := dsolve({def 2, init 2}, y(t))

to obtain

y(t) = 1
5

e2t(sin(t) − 2 cos(t))

We isolate the solution in function form using

g := rhs(sol 2)

To obtain y(1.0) = g(1.0), enter

evalf (subs(t = 1.0, g))

which gives − 0.3533943574.
Runge-Kutta-Fehlberg is also available for higher-order equations via the dsolve com-

mand with the numeric option. It is employed in the same manner as illustrated for systems
of equations.

The other one-step methods can be extended to systems in a similar way. When error
control methods like the Runge-Kutta-Fehlberg method are extended, each component of
the numerical solution (w1j, w2j, . . . , wmj) must be examined for accuracy. If any of the
components fail to be sufficiently accurate, the entire numerical solution (w1j, w2j, . . . , wmj)

must be recomputed.
The multistep methods and predictor-corrector techniques can also be extended to

systems. Again, if error control is used, each component must be accurate. The extension
of the extrapolation technique to systems can also be done, but the notation becomes quite
involved. If this topic is of interest, see [HNW1].

Convergence theorems and error estimates for systems are similar to those considered
in Section 5.10 for the single equations, except that the bounds are given in terms of vector
norms, a topic considered in Chapter 7. (A good reference for these theorems is [Ge1],
pp. 45–72.)
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A brief summary

The difference methods we developed above, e.g., Euler’s,
midpoints, RK4, multistep explicit/implicit, predictor-corrector
methods, are

▶ based on step-by-step derivation and easy to understand;

▶ widely used in many practical problems;

▶ fundamental to more advanced and complex techniques.

Numerical Analysis II – Xiaojing Ye, Math & Stat, Georgia State University 84



Stability of difference methods

Definition (Consistency)

A difference method is called consistent if

lim
h→0

(
max
1≤i≤N

τi (h)
)
= 0

where τi (h) is the local truncation error of the method.

Remark
Since local truncation error τi (h) is defined assuming previous
wi = yi , it does not take error accumulation into account. So the
consistency definition above only considers how good ϕ(t,wi , h) in
the difference method is.
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Stability of difference methods

For any step size h > 0, the difference method
wi+1 = wi + hϕ(ti ,wi , h) can generate a sequence of wi which
depend on h. We call them {wi (h)}i . Note that wi gradually
accumulate errors as i = 1, 2, . . . ,N.

Definition (Convergent)

A difference method is called convergent if

lim
h→0

(
max
1≤i≤N

|yi − wi (h)|
)
= 0
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Stability of difference methods

Example

Show that Euler’s method is convergent.

Solution: We have showed before that for fixed h > 0 there is∣∣y(ti )− wi

∣∣ ≤ hM

2L

(
eL(ti−a) − 1

)
≤ hM

2L

(
eL(b−a) − 1

)
for all i = 0, . . . ,N. Therefore we have

max
1≤i≤N

∣∣y(ti )− wi

∣∣ ≤ hM

2L

(
eL(b−a) − 1

)
→ 0

as h→ 0. Therefore limh→0(max1≤i≤N

∣∣y(ti )− wi

∣∣) = 0.
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Stability of difference method

Definition
A numerical method is called stable if its results depend on the
initial data continuously.
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Stability of difference methods

Theorem
For a given IVP y ′ = f (t, y), t ∈ [a, b] with y(a) = α, consider a
difference method wi+1 = wi + hϕ(ti ,wi , h) with w0 = α. If there
exists h0 > 0 such that ϕ is continuous on [a, b]× R× [0, h0], and
ϕ is L-Lipschitz with respect to w , then

▶ The difference method is stable.

▶ The difference method is convergent if and only if it is
consistent (i.e., ϕ(t, y , 0) = f (t, y)).

▶ If there exists bound τ(h) such that |τi (h)| ≤ τ(h) for all
i = 1, . . . ,N, then |y(ti )− wi | ≤ τ(h)eL(ti−a)/L.
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Stability of difference methods

Proof.
Let h be fixed, then wi (α) generated by the difference method are
functions of α. For any two values α, α̂, there is

|wi+1(α)− wi+1(α̂)| = |(wi (α)− hϕ(ti ,wi (α), h))− (wi (α̂)− hϕ(ti ,wi (α̂), h))|
≤ |wi (α)− wi (α̂)|+ h|ϕ(ti ,wi (α), h)− ϕ(ti ,wi (α̂), h)|
≤ |wi (α)− wi (α̂)|+ hL|wi (α)− wi (α̂)|
= (1 + hL)|wi (α)− wi (α̂)|
≤ · · ·

≤ (1 + hL)i+1|w0(α)− w0(α̂)|

= (1 + hL)i+1|α− α̂|

≤ (1 + hL)N |α− α̂|

Therefore wi (α) is Lipschitz with respect to α (with constant at
most (1 + hL)N), and hence is continuous with respect to α. We
omit the proofs for the other two assertions here.

Numerical Analysis II – Xiaojing Ye, Math & Stat, Georgia State University 90



Stability of difference method

Example

Use the result of Theorem above to show that the Modified Euler’s
method is stable.

Solution: Recall the Modified Euler’s method is given by

wi+1 = wi +
h

2

(
f (ti ,wi ) + f (ti+1,wi + hf (ti ,wi ))

)
So we have ϕ(t,w , h) = 1

2(f (t,w) + f (t + h,w + hf (t,w))).
Now we want to show ϕ is continuous in (t,w , h), and Lipschitz
with respect to w .
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Stability of difference method

Solution: (cont) It is obvious that ϕ is continuous in (t,w , h)
since f (t,w) is continuous. Fix t and h. For any w , w̄ ∈ R, there is

|ϕ(t,w , h)− ϕ(t, w̄ , h)| ≤
1

2
|f (t,w)− f (t, w̄)|

+
1

2
|f (t + h,w + hf (t,w))− f (t + h, w̄ + hf (t, w̄))|

≤
L

2
|w − w̄ |+

L

2
|(w + hf (t,w))− (w̄ + hf (t, w̄))|

≤ L|w − w̄ |+
Lh

2
|f (t,w)− f (t, w̄)|

≤ L|w − w̄ |+
L2h

2
|w − w̄ |

= (L+
L2h

2
)|w − w̄ |

So ϕ is Lipschitz with respect to w . By first part of Theorem
above, the Modified Euler’s method is stable.
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Stability of multistep difference method

Definition
Suppose a multistep difference method given by

wi+1 = am−1wi + am−2wi−1 + · · ·+ a0wi−m+1 + hF (ti , h,wi+1, . . . ,wi−m+1)

Then we call the following the characteristic polynomial of the
method:

λm − (am−1λ
m−1 + · · ·+ a1λ+ a0)

Definition
A difference method is said to satisfy the root condition if all the
m roots λ1, . . . , λm of its characteristic polynomial have
magnitudes ≤ 1, and all of those which have magnitude =1 are
single roots.
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Stability of multistep difference method

Definition
▶ A difference method that satisfies root condition is called

strongly stable if the only root with magnitude 1 is λ = 1.

▶ A difference method that satisfies root condition is called
weakly stable if there are multiple roots with magnitude 1.

▶ A difference method that does not satisfy root condition is
called unstable.
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Stability of multistep difference method

Theorem
▶ A difference method is stable if and only if it satisfies the root

condition.

▶ If a difference method is consistent, then it is stable if and
only if it is convergent.
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Stability of multistep difference method

Example

Show that the Adams-Bashforth 4-step explicit method is strongly
stable.
Solution: Recall that the method is given by

wi+1 = wi +
h

24

[
55f (ti ,wi )− 59f (ti−1,wi−1) + 37f (ti−2,wi−2)− 9f (ti−3,wi−3)

]
So the characteristic polynomial is simply λ4 − λ3 = λ3(λ− 1),
which only has one root λ = 1 with magnitude 1. So the method
is strongly stable.
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Stability of multistep difference method

Example

Show that the Milne’s 4-step explicit method is weakly stable but
not strongly stable.
Solution: Recall that the method is given by

wi+1 = wi−3 +
4h

3

[
2f (ti ,wi )− f (ti−1,wi−1) + 2f (ti−2,wi−2)

]
So the characteristic polynomial is simply λ4 − 1, which have
roots λ = ±1,±i. So the method is weakly stable but not strongly
stable.

Remark
This is the reason we chose Adams-Bashforth-Moulton PC rather
than Milne-Simpsons PC since the former is strongly stable and
likely to be more robust.
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Stiff differential equations

Stiff differential equations have e−ct terms (c > 0 large) in their
solutions. These terms → 0 quickly, but their derivatives (of form
cne−ct) do not, especially at small t.

Recall that difference methods have errors proportional to the
derivatives, and hence they may be inaccurate for stiff ODEs.
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Stiff differential equations

Example

Use RK4 to solve the IVP for a system of two ODEs:
u′1 = 9u1 + 24u2 + 5 cos t − 1

3
sin t

u′2 = −24u1 − 51u2 − 9 cos t +
1

3
sin t

with initial values u1(0) = 4/3 and u2(0) = 2/3.

Solution: The exact solution is
u1(t) = 2e−3t − e−39t +

1

3
cos t

u2(t) = −e−3t + 2e−39t − 1

3
cos t

for all t ≥ 0.
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Stiff differential equations

Solution: (cont) When we apply RK4 to this stiff ODE, we obtain

5.11 Stiff Differential Equations 349

has the unique solution

u1(t) = 2e− 3t − e− 39t + 1
3

cos t, u2(t) = − e− 3t + 2e− 39t − 1
3

cos t.

The transient term e− 39t in the solution causes this system to be stiff. Applying Algorithm
5.7, the Runge-Kutta Fourth-Order Method for Systems, gives results listed in Table 5.22.
When h = 0.05, stability results and the approximations are accurate. Increasing the step
size to h= 0.1, however, leads to the disastrous results shown in the table. !

Table 5.22 w1(t) w1(t) w2(t) w2(t)
t u1(t) h= 0.05 h= 0.1 u2(t) h= 0.05 h= 0.1

0.1 1.793061 1.712219 − 2.645169 − 1.032001 − 0.8703152 7.844527
0.2 1.423901 1.414070 − 18.45158 − 0.8746809 − 0.8550148 38.87631
0.3 1.131575 1.130523 − 87.47221 − 0.7249984 − 0.7228910 176.4828
0.4 0.9094086 0.9092763 − 934.0722 − 0.6082141 − 0.6079475 789.3540
0.5 0.7387877 9.7387506 − 1760.016 − 0.5156575 − 0.5155810 3520.00
0.6 0.6057094 0.6056833 − 7848.550 − 0.4404108 − 0.4403558 15697.84
0.7 0.4998603 0.4998361 − 34989.63 − 0.3774038 − 0.3773540 69979.87
0.8 0.4136714 0.4136490 − 155979.4 − 0.3229535 − 0.3229078 311959.5
0.9 0.3416143 0.3415939 − 695332.0 − 0.2744088 − 0.2743673 1390664.
1.0 0.2796748 0.2796568 − 3099671. − 0.2298877 − 0.2298511 6199352.

Although stiffness is usually associated with systems of differential equations, the
approximation characteristics of a particular numerical method applied to a stiff system can
be predicted by examining the error produced when the method is applied to a simple test
equation,

y′ = λy, y(0) = α, where λ < 0. (5.64)

The solution to this equation is y(t) = αeλt , which contains the transient solution eλt . The
steady-state solution is zero, so the approximation characteristics of a method are easy to
determine. (A more complete discussion of the round-off error associated with stiff systems
requires examining the test equation when λ is a complex number with negative real part;
see [Ge1], p. 222.)

First consider Euler’s method applied to the test equation. Letting h= (b − a)/N and
tj = jh, for j = 0, 1, 2, . . . , N , Eq. (5.8) on page 266 implies that

w0 = α, and wj+1 = wj + h(λwj) = (1 + hλ)wj,

so

wj+1 = (1 + hλ)j+1w0 = (1 + hλ)j+1α, for j = 0, 1, . . . , N − 1. (5.65)

Since the exact solution is y(t) = αeλt , the absolute error is

| y(tj) − wj| =
∣∣ejhλ − (1 + hλ) j

∣∣ |α| =
∣∣(ehλ) j − (1 + hλ) j

∣∣ |α|,

and the accuracy is determined by how well the term 1+hλ approximates ehλ. When λ < 0,
the exact solution (ehλ) j decays to zero as j increases, but by Eq.(5.65), the approximation
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which can blow up for larger step size h.
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Stiff differential equations

Now let’s use a simple example to see why this happens: consider
an IVP y ′ = λy , t ≥ 0, and y(0) = α. Here λ < 0. We know the
problem has solution y(t) = αeλt .

Suppose we apply Euler’s method, which is

wi+1 = wi + hf (ti ,wi ) = wi + hλwi = (1 + λh)wi

= · · · = (1 + λh)i+1w0 = (1 + λh)i+1α

Therefore we simply have wi = (1 + λh)iα. So the error is

|y(ti )− wi | = |αeλih − (1 + λh)iα| = |eλih − (1 + λh)i ||α|

In order for the error not to blow up, we need at least |1+ λh| < 1,
which yields h < 2

|λ| . So h needs to be sufficiently small for large λ.
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Stiff differential equations

Similar issue occurs for other one-step methods, which for this IVP
can be written as wi+1 = Q(λh)wi = · · · = (Q(λh))i+1α. For the
solution not to blow up, we need |Q(λh)| < 1.

For example, in nth-order Taylor’s method, we need

|Q(λh)| =
∣∣∣1 + λh +

λ2h2

2
+ · · ·+ λnhn

n!

∣∣∣ < 1

which requires h to be very small.

The same issue occurs for multistep methods too.
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Stiff differential equations

A remedy of stiff ODE is using implicit method, e.g., the implicit
Trapezoid method:

wi+1 = wi +
h

2
(f (ti+1,wi+1) + f (ti ,wi ))

In each step, we need to solve for wi+1 from the equation above.
Namely, we need to solve for the root of F (w):

F (w) := w − wi −
h

2
(f (ti+1,w) + f (ti ,wi )) = 0

We can use fixed point iteration or Newton’s method to solve
F (x) = 0.
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Section 2

Direct Methods for Linear Systems
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Linear system of equations

In many real-world applications, we need to solve linear system of
n equations with n variables x1, . . . , xn:

E1 : a11x1 + a12x2 + · · ·+ a1nxn = b1

E2 : a21x1 + a22x2 + · · ·+ a2nxn = b2
...

En : an1x1 + an2x2 + · · ·+ annxn = bn

We’re given aij , 1 ≤ i , j ≤ n and bi , (1 ≤ i ≤ n), and want to find
x1, . . . , xn that satisfy the n equations E1, . . . ,En.

Numerical Analysis II – Xiaojing Ye, Math & Stat, Georgia State University 105



Linear system of equations

General approach: Gauss elimination.

We use three operations to simplify the linear system:

▶ Equation Ei can be multiplied by λEi for any λ ̸= 0: λEi → Ei

▶ Ej is multiplied by λ and added to Ei : λEj + Ei → Ei

▶ Switch Ei and Ej : Ei ↔ Ej

The goal is to simply the linear system into a triangular form, and
apply backward substitution to get x1, . . . , xn.
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Linear system of equations

Generally, we form the augmented matrix

Ã = [A b], where A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

 and b =


b1
b2
...
bn


and apply Gaussian elimination to get a triangular form of Ã then
apply backward substitution. Total cost is O(n3).
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Pivoting strategies

Standard Gauss elimination may not work properly in numerical
computations.

Example

Apply Gauss elimination to the system

E1 : 0.003000x1 + 59.14x2 = 59.17

E2 : 5.291x1 − 6.130x2 = 46.78

with four digits for arithmetic rounding. Compare the result to
exact solution x1 = 10.00 and x2 = 1.000.
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Pivoting strategies

Solution: We need to multiply E1 by 5.291
0.003000 = 1763.666̄ ≈ 1764,

then subtract it from E2 and get:

0.003000x1 + 59.14x2 ≈ 59.17

−104300x2 ≈ −104400

On the other hand, the exact system without rounding error:

0.003000x1 + 59.14x2 ≈ 59.17

−104309.376̄x2 ≈ −104309.376̄

Solving the former yields x2 = 1.001 (still close to exact solution
1.000), but x1 =

59.17−59.14x2
0.003000 = −10.00 (far from exact solution

10.00).

Numerical Analysis II – Xiaojing Ye, Math & Stat, Georgia State University 109



Pivoting strategies

6.2 Pivoting Strategies 373

contains the small error of 0.001 multiplied by

59.14
0.003000

≈ 20000.

This ruins the approximation to the actual value x1 = 10.00.
This is clearly a contrived example and the graph in Figure 6.1. shows why the error

can so easily occur. For larger systems it is much more difficult to predict in advance when
devastating round-off error might occur.

Figure 6.1

x1

E1

E2

10!10

Approximation
(!10, 1.001) Exact solution

(10, 1)

x 2

Partial Pivoting

Example 1 shows how difficulties can arise when the pivot element a(k)
kk is small relative to

the entries a(k)
i j , for k ≤ i ≤ nand k ≤ j ≤ n. To avoid this problem, pivoting is performed

by selecting an element a(k)
pq with a larger magnitude as the pivot, and interchanging the

kth and pth rows. This can be followed by the interchange of the kth and qth columns, if
necessary.

The simplest strategy is to select an element in the same column that is below the
diagonal and has the largest absolute value; specifically, we determine the smallest p ≥ k
such that

|a(k)
pk | = max

k≤i≤n
|a(k)

ik |

and perform (Ek)↔ (Ep). In this case no interchange of columns is used.

Example 2 Apply Gaussian elimination to the system

E1 : 0.003000x1 + 59.14x2 = 59.17

E2 : 5.291x1 − 6.130x2 = 46.78,

using partial pivoting and four-digit arithmetic with rounding, and compare the results to
the exact solution x1 = 10.00 and x2 = 1.000.

Solution The partial-pivoting procedure first requires finding

max
{
|a(1)

11 |, |a(1)
21 |
}

= max {|0.003000|, |5.291|} = |5.291| = |a(1)
21 |.

This requires that the operation (E2)↔ (E1) be performed to produce the equivalent system

E1 : 5.291x1 − 6.130x2 = 46.78,

E2 : 0.003000x1 + 59.14x2 = 59.17.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
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Partial pivoting

▶ The issue above comes up because the pivot akk is smaller
than the remaining aij (i , j > k).

▶ One remedy, called partial pivoting, is interchanging rows k
and p (where |aik | = max{|aik | : i = k , . . . , n}).

▶ Sometimes interchange columns can also be performed.

For example, when we are about to do pivoting for the k-th time
(i.e., akkxk term), we switch row p and current row k so that

p = argmax
k≤i≤n

|aik |

Redo the example above, we will get exact solution.
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Scaled partial pivoting

Consider the following example:

E1 : 30.00x1 + 591400x2 = 591700

E2 : 5.291x1 − 6.130x2 = 46.78

This is equivalent to example above, except that E1 is multiplied
by 104.

If we apply partial pivoting above, we will not exchange E1 and E2

since 30.00 > 5.291, and will end up with the same incorrect
answer x2 = 1.001 and x1 = −10.00.

To overcome this issue, we can scale the coefficients of each row i
by 1/si where si = max1≤j≤n |aij |. Then apply partial pivoting
based on the scaled values.
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Scaled partial pivoting

Applying scaled partial pivoting to the example above, we first have

s1 = max{30.00, 519400} = 519400, s2 = max{5.291, 6.130} = 6.130

Hence we get a11
s1

= 30.00
519400 ≈ 0.5073× 10−4, and

a21
s2

= 5.291
6.130 = 0.8631, the others are ±1. By comparing a11

s1
and

a21
s2
, we will exchange E1 and E2, and hence obtain

E1 : 5.291x1 − 6.130x2 = 46.78

E2 : 30.00x1 + 591400x2 = 591700

and apply Gauss elimination to obtain correct answer x2 = 1.000
and x1 = 10.00.
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Complete pivoting

For each of the n steps, find the largest magnitude among all
coefficients aij for k ≤ i , j ≤ n. Then switch rows and/or columns
so that the one with largest magnitude is in the pivot position.

This requires O(n3) comparisons. Only worth it if the accuracy
improvement justifies the cost.
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Linear algebra: quick review

We call A an m × n (m-by-n) matrix if A is an array of mn
numbers with m rows and n columns

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn


We may simply denote it by A = [aij ], when its size is clear in the
context.
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Linear algebra: quick review

▶ We call two matrices equal, i.e., A = B, if aij = bij for all i , j .

▶ The sum of two matrices of same size is: A± B = [aij ± bij ].

▶ Scalar multiplication of A by λ ∈ R is λA = [λaij ].

▶ We denote the matrix of all zeros by 0, and −A = [−aij ].
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Linear algebra: quick review

The set of all m × n matrices forms a vector space:

▶ A+ B = B + A

▶ (A+ B) + C = A+ (B + C )

▶ A+ 0 = 0 + A

▶ A+ (−A) = 0

▶ λ(A+ B) = λA+ λB

▶ (λ+ µ)A = λA+ µA

▶ λ(µA) = (λµ)A

▶ 1A = A
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Linear algebra: quick review

For matrix A of size m × n and (column) vector b of dimension n,
we define the matrix-vector multiplication (product) by

Ab =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn



b1
b2
...
bn

 =


∑n

j=1 a1jbj∑n
j=1 a2jbj

...∑n
j=1 amjbj
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Linear algebra: quick review

For matrix A of size m × n and matrix B of size n × k , we define
the matrix-matrix multiplication (product) by

AB =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn



b11 b12 · · · b1k
b21 b22 · · · b2k
...

...
. . .

...
bn1 bn2 · · · bnk



=


∑n

j=1 a1jbj1
∑n

j=1 a1jbj1 · · ·
∑n

j=1 a1jbjk∑n
j=1 a2jbj1

∑n
j=1 a2jbj1 · · ·

∑n
j=1 a2jbjk

...
...

. . .
...∑n

j=1 amjbj1
∑n

j=1 amjbj1 · · ·
∑n

j=1 amjbjk

 ∈ Rm×k

That is, if C = AB, then [cij ] = [
∑

r airbrj ] for all i , j .
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Linear algebra: quick review

Some properties of matrix product

▶ A(BC ) = (AB)C

▶ A(B + D) = AB + AD

▶ λ(AB) = (λA)B = A(λB)

Remark
Note that AB ̸= BA in general, even if both exists.
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Linear algebra: quick review

Some special matrices

▶ Square matrix: A is of size n × n

▶ Diagonal matrix: aij = 0 if i ̸= j .

▶ Identity matrix of order n: I = [δij ] where δij = 1 if i = j and
= 0 otherwise.

▶ Upper triangle matrix: aij = 0 if i > j .

▶ Lower triangle matrix: aij = 0 if i < j .
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Linear algebra: quick review

Definition (Inverse of matrix)

An n × n matrix A is said to be nonsingular (or invertible) if
there exists an n × n matrix, denoted by A−1, such that
A(A−1) = (A−1)A = I . Here A−1 is called the inverse of matrix A.

Definition
An n × n matrix A without an inverse is called singular (or
noninvertible)
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Linear algebra: quick review

Several properties of inverse matrix:

▶ A−1 is unique.

▶ (A−1)−1 = A.

▶ If B is also nonsingular, then (AB)−1 = B−1A−1.

Numerical Analysis II – Xiaojing Ye, Math & Stat, Georgia State University 123



Linear algebra: quick review

Definition (Transpose)

The transpose of an m × n matrix A = [aij ] is the n ×m matrix
A⊤ = [aji ].

Sometimes A⊤ is also written as At ,A′,AT .

▶ (A⊤)⊤ = A

▶ (AB)⊤ = B⊤A⊤

▶ (A+ B)⊤ = A⊤ + B⊤

▶ If A is nonsingular, then (A−1)⊤ = (A⊤)−1.
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Linear algebra: quick review

Definition (Determinant)

▶ If A = [a] is a 1× 1 matrix, then det(A) = a.

▶ If A is n × n where n > 1, then the minor Mij is the
determinant of the (n − 1)× (n − 1) submatrix of A by
deleting its ith row and jth column.

▶ The cofactor Aij associated with the minor Mij is defined by
Aij = (−1)i+jMij .

▶ The determinant of the n × n matrix A, denoted by det(A)
(or |A|), is given by either of the followings:

det(A) =
n∑

j=1

aijAij =
n∑

j=1

(−1)i+jaijMij , for any i = 1, . . . , n

det(A) =
n∑

i=1

aijAij =
n∑

j=1

(−1)i+jaijMij , for any j = 1, . . . , n
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Linear algebra: quick review

Some properties of determinant

▶ If A has any zero row or column, then det(A) = 0.

▶ If two rows (or columns) of A are the same, or one is a
multiple of the other, then det(A) = 0.

▶ Switching two rows (or columns) of A results in a matrix with
determinant − det(A).

▶ Multiplying a row (or column) of A by λ results in a matrix
with determinant λ det(A).

▶ (Ei + λEj)→ Ei results in a matrix of the same determinant.
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Linear algebra: quick review

Some properties of determinant

▶ det(AB) = det(A) det(B) if A and B are square matrices of
same size.

▶ det(A⊤) = det(A)

▶ A is singular if any only if det(A) = 0.

▶ If A is nonsingular, then det(A) ̸= 0 and
det(A−1) = det(A)−1.

▶ If A is an upper or lower triangular matrix, then
det(A) =

∏n
i=1 aii .
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Linear algebra: quick review

The following statements are equivalent:

▶ Ax = 0 has unique solution x = 0.

▶ Ax = b has a unique solution for every b.

▶ A is nonsingular, i.e., A−1 exists.

▶ det(A) ̸= 0.
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Matrix factorization

Gauss elimination can be used to compute LU factorization of a
square matrix A:

A = LU

where L is a lower triangular matrix, and U is an upper triangular
matrix.
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Matrix factorization

If we have LU factorization of A, then

Ax = LUx = L(Ux) = b

so we solve x easily:

1. Solve y from Ly = b by forward substitution;

2. Solve x from Ux = y by backward substitution.

Total cost is O(2n2).
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Matrix factorization

The cost reduction from O(n3/3) to O(2n2) is huge, especially for
large n:

n n3/3 2n2 % Reduction

10 3.3̄× 102 2× 102 40
100 3.3̄× 105 2× 104 94
1000 3.3̄× 108 2× 106 99.4

Unfortunately, LU factorization itself requires O(n3) in general.
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LU factorization

Now let’s see how to obtain LU factorization by Gauss elimination.

Suppose we can perform Gauss elimination without any row
exchange. In first round, we use a11 as the pivot and cancel each
of a21, . . . , an1 by

(Ej −mj1E1)→ Ej where mj1 =
aj1
a11

, j = 2, . . . , 4

This is equivalent to multiplying M(1) to A and get A(2) := M(1)A
where

M(1) =


1 0 · · · 0
−m21 1 · · · 0

...
...

. . .
...

−mn1 0 · · · 1

 and A(2) =


a11 ∗ · · · ∗
0 ∗ · · · ∗
...

...
. . .

...
0 ∗ · · · ∗
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LU factorization

In second round, we use current a22 as the pivot and cancel each
of a32, . . . , an2 by

(Ej −mj2E2)→ Ej where mj2 =
aj2
a22

, j = 3, . . . , 4

This is equivalent to multiplying M(2) to A(2) and get
A(3) := M(2)A(2) where

M(2) =


1 0 0 · · · 0
0 1 0 · · · 0
0 −m32 1 · · · 0
...

...
...

. . .
...

0 −mn2 0 · · · 1

 and A(3) =


a11 ∗ ∗ · · · ∗
0 ∗ ∗ · · · ∗
0 0 ∗ · · · ∗
...

...
...

. . .
...

0 0 ∗ · · · ∗
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LU factorization

When Gauss elimination finishes (total n − 1 rounds), we will get
an upper triangular matrix U:

U := M(n−1)M(n−2) · · ·M(1)A

Define matrix L

L = (M(n−1)M(n−2) · · ·M(1))−1 = (M(1))−1 · · · (M(n−2))−1(M(n−1))−1

Note that L is lower triangular (because each M is lower triangular,
and inverse and product of lower triangular matrices are still lower
triangular). So we get the LU factorization of A:

LU = (M(1))−1 · · · (M(n−2))−1(M(n−1))−1M(n−1)M(n−2) · · ·M(1)A = A
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LU factorization

It is easy to check that:

M(1) =


1 0 · · · 0
−m21 1 · · · 0

...
...

. . .
...

−mn1 0 · · · 1

 and (M(1))−1 =


1 0 · · · 0

m21 1 · · · 0
...

...
. . .

...
mn1 0 · · · 1



M(2) =


1 0 0 · · · 0
0 1 0 · · · 0
0 −m32 1 · · · 0
...

...
...

. . .
...

0 −mn2 0 · · · 1

 and (M(2))−1 =


1 0 0 · · · 0
0 1 0 · · · 0
0 m32 1 · · · 0
...

...
...

. . .
...

0 mn2 0 · · · 1
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LU factorization

and finally there is

L = (M(1))−1 · · · (M(n−2))−1(M(n−1))−1 =


1 0 0 · · · 0

m21 1 0 · · · 0
m31 m32 1 · · · 0
...

...
...

. . .
...

mn1 mn2 mn3 · · · 1


To summarize, the LU factorization of A gives L as above, and U
as the result of Gauss elimination of A.
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Gauss elimination row exchange

If Gauss elimination is done with row exchanges, then we will get
LU factorization of PA where P is some row permutation matrix.

For example, to switch rows 2 and 4 of a 4× 4 matrix A, the
permutation matrix P is

P =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0


Some properties of permutation matrices:

▶ If P1,P2 are permutations, then P2P1 is still permutation.

▶ P−1 = P⊤.
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Diagonally dominate matrices

Now we consider two types of matrices for which Gauss elimination
can be used effectively without row interchanges.

Definition (Diagonally dominate matrices)

An n × n matrix A is called diagonally dominate if

|aii | ≥
∑
j ̸=i

|aij |, ∀i = 1, 2, . . . , n

An n × n matrix A is called strictly diagonally dominate if

|aii | >
∑
j ̸=i

|aij |, ∀i = 1, 2, . . . , n
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Diagonally dominate matrices

Example

Consider the following matrices:

A =


1 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 1



B =

7 2 0
3 5 −1
0 5 −6

 C =

 6 4 −3
4 −2 0
−3 0 1


A (and A⊤) is diagonally dominate, B is strictly diagonally
dominate, B⊤,C ,C⊤ are not diagonally dominate.
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Diagonally dominate matrices

Theorem
If A is strictly diagonally dominant, then A is nonsingular.
Moreover, Gauss elimination can be performed without row
interchange to obtain the unique solution of Ax = b.
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Diagonally dominate matrices

Proof.
If A is singular, then Ax = 0 has nonzero solution x . Suppose xk is
the component of x with largest magnitude:

|xk | > 0 and |xk | ≥ |xj |, ∀j ̸= k

Then the product of x and the k-th row of A gives

akkxk +
∑
j ̸=k

akjxj = 0

From this we obtain

|akk | =
∣∣∣−∑

j ̸=k

akjxj
xk

∣∣∣ ≤∑
j ̸=k

|xj |
|xk |
|akj | ≤

∑
j ̸=k

|akj |

Contradiction. So A is nonsingular.
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Diagonally dominate matrices

Proof (cont.) Now let’s see how Gauss elimination works when A
is strictly diagonally dominant. Consider 1st and ith (i ≥ 2) rows
of A:

|a11| >
∑
j ̸=1

|a1j |, |aii | >
∑
j ̸=i

|aij |

If we perform Ei − ai1
a11

E1 → Ei , the new values in row i are

a
(2)
i1 = 0 and a

(2)
ij = aij − ai1

a11
a1j for j ≥ 2. Therefore

n∑
j=2
j ̸=i

|a(2)ij | ≤
n∑

j=2
j ̸=i

|aij |+
n∑

j=2
j ̸=i

∣∣∣ a1j
a11

∣∣∣ |ai1| < |aii | − |ai1|+
|a11| − |a1i |

|a11|
|ai1|

= |aii | −
|a1i |
|a11|

|ai1| ≤
∣∣∣|aii | − |a1i |

|a11|
|ai1|

∣∣∣ = |a(2)ii |

As i is arbitrary, we know A remains strictly diagonally dominant
after first round. By induction we know A stays as strictly
diagonally dominant and Gauss elimination can be performed
without row interexchange.
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Positive definite matrices

Definition (Positive definite matrix)

A matrix A is called positive definite (PD) if it is symmetric and
x⊤Ax > 0 for any x ̸= 0

Remark
In some texts, A is called positive definite as long as x⊤Ax > 0 for
any x ̸= 0, so A is not necessarily symmetric. In these texts, the
matrix in our definition above is called symmetric positive
definite (SPD).
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Positive definite matrices

We first have the following formula: if x = (x1, . . . , xn)
⊤ and

A = [aij ], then

x⊤Ax =
∑
i ,j

aijxixj
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Positive definite matrices

Example

Show that the matrix A below is PD:

A =

 2 −1 0
−1 2 −1
0 −1 2


Solution: First A is symmetric. For any x ∈ R3, we have

x⊤Ax = 2x21 − 2x1x2 + 2x22 − 2x2x3 + 2x23

= x21 + (x21 − 2x1x2 + x22 ) + (x22 − 2x2x3 + x23 ) + x23

= x21 + (x1 − x2)
2 + (x2 − x3)

2 + x23

Therefore x⊤Ax = 0 if and only if x1 = x2 = x3 = 0. So A is PD.
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Positive definite matrices

Theorem
If A is an n × n positive definite matrix, then

▶ A is nonsingular;

▶ aii > 0 for all i ;

▶ maxi ̸=j |aij | ≤ maxi |aii |;
▶ (aij)

2 < aiiajj for any i ̸= j .
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Positive definite matrices

Proof.
▶ If Ax = 0, then x⊤Ax = 0 and hence x = 0 since A is PD. So

A is nonsingular.

▶ Set x = ei , where ei ∈ Rn has 1 as the i-th component and
zeros elsewhere. Then x⊤Ax = e⊤i Aei = aii > 0.

▶ For any k , j , define x , z ∈ Rn such that xj = zk = zj = 1 and
xk = −1, and xi = zi = 0 if i ̸= k , j . Then we can show

0 < x⊤Ax = ajj + akk − akj − ajk

0 < z⊤Az = ajj + akk + akj + ajk

Note that akj = ajk , so we get |akj | <
ajj+akk

2 ≤ maxi aii .

▶ For any i ̸= j , set x ∈ Rn such that xi = α and xj = 1, and 0
elsewhere. Therefore 0 < x⊤Ax = aiiα

2 + 2aijα+ a2jj for any

α. This implies that 4a2ij − 4aiiajj < 0.
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Positive definite matrices

Definition (Leading principal submatrix)

A leading principal submatrix of A is the k × k upper left
submatrix

Ak =


a11 a12 · · · a1k
a21 a22 · · · a2k
...

...
. . .

...
ak1 ak2 · · · akk
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Positive definite matrices

Theorem
A symmetric matrix A is PD if and only if every leading principal
submatrix has a positive determinant.

Example

Use the Theorem above to check A is PD:

A =

 2 −1 0
−1 2 −1
0 −1 2
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Positive definite matrices

Theorem
A matrix A is PD if and only either of the followings is true:

▶ There exist a lower triangular matrix L with all 1 on its
diagonal and a diagonal matrix D with all diagonal entries
positive, such that A = LDL⊤.

▶ There exists a lower triangular matrix L with all diagonal
entries positive such that A = LL⊤ (Cholesky factorization).

▶ Gauss elimination of A without row interchanges can be
performed and all pivot elements are positive.
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Band matrices

Definition (Band matrix)

An n × n matrix A is called band matrix if there exist p, q such
that aij can be nonzero only if i − q ≤ j ≤ i + p. The band width
is defined by w = p + q + 1.

Definition (Tridiagonal matrix)

A band matrix with p = q = 1 is called tridiagonal matrix.

Numerical Analysis II – Xiaojing Ye, Math & Stat, Georgia State University 151



Crout factorization

The Crout factorization of a tridiagonal matrix is A = LU where
L is lower triangle, U is upper triangle, and both L,U are
tridiagonal:

L =


l11 0 · · · 0 0
l21 l22 · · · 0 0
...

...
. . .

...
...

0 0 · · · ln−1,n−1 0
0 0 · · · ln,n−1 lnn

 U =


1 u12 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 un−1,n

0 0 · · · 0 1


Note that a tridiagonal matrix A has 3n − 2 unknowns, and the L
and U together also have 3n − 2 unknowns.
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Crout factorization

Theorem
A tridiagonal matrix A has a Crout factorization if either of the
following statements is true:

▶ A is positive definite;

▶ A is strictly diagonally dominant;

▶ A is diagonally dominant, |a11| > |a12|, |ann| > |an,n−1|, and
ai ,i−1, ai ,i+1 ̸= 0 for all i = 2, . . . , n − 1.
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Crout factorization

With the special form of A, L and U, we can obtain the Crout
factorization A = LU by solving lij (i = 1, . . . , n and j = i − 1, i)
and ui ,i+1 (i = 1, . . . , n − 1) from

a11 =l11

ai ,i−1 =li ,i−1, for i = 2, . . . , n

ai ,i =li ,i−1ui−1,i + lii , for i = 2, . . . , n

ai ,i+1 =liiui ,i+1, for i = 1, . . . , n − 1

When we use Crout factorization to solve Ax = b, the cost is only
5n − 4 multiplications/divisions and 3n − 3 additions/subtractions.
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Section 3

Iterative Methods in Matrix Algebra
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Vector norm

Definition
A vector norm on Rn, denoted by ∥ · ∥, is a mapping from Rn to
R such that

▶ ∥x∥ ≥ 0 for all x ∈ Rn,

▶ ∥x∥ = 0 if and only if x = 0,

▶ ∥αx∥ = |α|∥x∥ for all α ∈ R and x ∈ Rn,

▶ ∥x + y∥ ≤ ∥x∥+ ∥y∥ for all x , y ∈ R.
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Vector norm

Definition (lp norms)

The lp (sometimes Lp or ℓp) norm of a vector is defined by

1 ≤ p <∞ : ∥x∥p =
( n∑
i=1

|xi |p
)1/p

p =∞ : ∥x∥∞ = max
1≤i≤n

|xi |

In particular, the l2 norm is also called the Euclidean norm.

Note that when 0 ≤ p < 1, ∥ · ∥p is not norm, strictly speaking,
but have some usages in specific applications.
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l2 norm

7.1 Norms of Vectors and Matrices 433

Note that each of these norms reduces to the absolute value in the case n = 1.
The l2 norm is called the Euclidean norm of the vector xbecause it represents the

usual notion of distance from the origin in case xis in R1 ≡ R, R2, or R3. For example, the
l2 norm of the vector x= (x1, x2, x3)

t gives the length of the straight line joining the points
(0, 0, 0) and (x1, x2, x3). Figure 7.1 shows the boundary of those vectors in R2 and R3 that
have l2 norm less than 1. Figure 7.2 is a similar illustration for the l∞ norm.

Figure 7.1
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l∞ norm

7.1 Norms of Vectors and Matrices 433

Note that each of these norms reduces to the absolute value in the case n = 1.
The l2 norm is called the Euclidean norm of the vector xbecause it represents the

usual notion of distance from the origin in case xis in R1 ≡ R, R2, or R3. For example, the
l2 norm of the vector x= (x1, x2, x3)

t gives the length of the straight line joining the points
(0, 0, 0) and (x1, x2, x3). Figure 7.1 shows the boundary of those vectors in R2 and R3 that
have l2 norm less than 1. Figure 7.2 is a similar illustration for the l∞ norm.

Figure 7.1

x2

x1

x2x1

x3

(0, 1)

(1, 0)(!1, 0)

(0, !1)

(1, 0, 0) (0, 1, 0)

(0, 0, 1)

The vectors in !2

with l2 norm less
than 1 are inside
this figure.

The vectors in the
first octant of !3

with l2 norm  less
than 1 are inside 
this figure.

Figure 7.2

(!1, 0)

(!1, 1) (0, 1) (1, 1)

(1, 0)

(1, !1)(0, !1)(!1, !1)

(0, 0, 1)

(1, 0, 1)

(0, 1, 0)

(1, 1, 0)

(0, 1, 1)

The vectors in the first
octant of !3 with l" norm 

less than 1 are inside
this figure.

The vectors in !2 with
l" norm less than 1 are

inside this figure.

(1, 0, 0)

x 2

x1

x2

x3

x1

(1, 1, 1)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.Numerical Analysis II – Xiaojing Ye, Math & Stat, Georgia State University 159



Vector norms

Example

Compute the l2 and l∞ norms of vector x = (1,−1, 2) ∈ R3.

Solution:

∥x∥2 =
√
|1|2 + | − 1|2 + |2|2 =

√
6

∥x∥∞ = max
1≤i≤3

|xi | = max{|1|, | − 1|, |2|} = 2
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Theorem (Cauchy-Schwarz inequality)

For any vectors x = (x1, . . . , xn)
⊤ ∈ Rn and

y = (y1, . . . , yn)
⊤ ∈ Rn, there is

|x⊤y | =
∣∣∣ n∑
i=1

xiyi

∣∣∣ ≤ ( n∑
i=1

|xi |2
)1/2 ( n∑

i=1

|yi |2
)1/2

= ∥x∥2∥y∥2

Proof.
It is obviously true for x = 0 or y = 0. If x , y ̸= 0, then for any
λ ∈ R, there is

0 ≤ ∥x − λy∥22 = ∥x∥22 − 2λx⊤y + λ2∥y∥22

and the equality holds when λ = ∥x∥2/∥y∥2.
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Distance between vectors

Definition (Distance between two vectors)

The lp distance (1 ≤ p ≤ ∞) between two vectors x , y ∈ Rn is
defined by ∥x − y∥p.

Definition (Convergence of a sequence of vectors)

A sequence {x (k)} is said to converge with respect to the lp
norm if for any given ϵ > 0, there exists an integer N(ϵ) such that

∥x (k) − x∥ < ϵ, for all k ≥ N(ϵ)
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Convergence of a sequence of vectors

Theorem
A sequence of vectors {x (k)} converges to x if and only if

x
(k)
i → xi for every i = 1, 2, . . . , n.
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Theorem
For any vector x ∈ Rn, there is

∥x∥∞ ≤ ∥x∥2 ≤
√
n∥x∥∞

Proof.

∥x∥∞ = max
i
|xi | =

√
max

i
|xi |2 ≤

√
|x1|2 + · · ·+ |xn|2 = ∥x∥2

∥x∥2 =
√
|x1|2 + · · ·+ |xn|2 ≤

√
nmax

i
|xi |2

=
√
n
√
max

i
|xi |2 =

√
nmax

i
|xi | =

√
n∥x∥∞
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Compare l2 and l∞ norms in R2

7.1 Norms of Vectors and Matrices 437

Proof Let xj be a coordinate of xsuch that ∥x∥∞ = max1≤i≤n |xi| = |xj|. Then

∥x∥2
∞ = |xj|2 = x2

j ≤
n∑

i=1

x2
i = ∥x∥2

2,

and

∥x∥∞ ≤ ∥x∥2.

So

∥x∥2
2 =

n∑

i=1

x2
i ≤

n∑

i=1

x2
j = n x2

j = n ||x||2∞,

and ∥x∥2 ≤
√

n ∥x∥∞.

Figure 7.3 illustrates this result when n = 2.

Figure 7.3
x2

x1

!x !! " 1

!x !2 " 1

#1 1

1

#1

!x !! " 
2
2

√

Example 4 In Example 3, we found that the sequence {x(k)}, defined by

x(k) =
(

1, 2 + 1
k

,
3
k2

, e−k sin k
)t

,

converges to x= (1, 2, 0, 0)t with respect to the l∞ norm. Show that this sequence also
converges to xwith respect to the l2 norm.

Solution Given any ε > 0, there exists an integer N(ε/2) with the property that

∥x(k) −x∥∞ <
ε

2
,

whenever k ≥ N(ε/2). By Theorem 7.7, this implies that

∥x(k) −x∥2 ≤
√

4∥x(k) −x∥∞ ≤ 2(ε/2) = ε,

when k ≥ N(ε/2). So {x(k)} also converges to xwith respect to the l2 norm.
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Matrix norm

Definition
A matrix norm on the set of n × n matrices is a real-valued
function, denoted by ∥ · ∥, that satisfies the follows for all
A,B ∈ Rn×n and α ∈ R:
▶ ∥A∥ ≥ 0

▶ ∥A∥ = 0 if and only if A = 0 the zero matrix,

▶ ∥αA∥ = |α|∥A∥
▶ ∥A+ B∥ ≤ ∥A∥+ ∥B∥
▶ ∥AB∥ ≤ ∥A∥∥B∥
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Distance between matrices

Definition
Suppose ∥ · ∥ is a norm defined on Rn×n. Then the distance
between two n × n matrices A and B with respect to ∥ · ∥ is
∥A− B∥ (check that it’s a distance)

Matrix norm can be induced by vector norms, and hence there are
many choices. Here we focus on those induced by l2 and l∞ vector
norms.
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Matrix norm

Definition
If ∥ · ∥ is a vector norm on Rn, then the norm defined below

∥A∥ = max
∥x∥=1

∥Ax∥

is called the matrix norm induced by vector norm ∥ · ∥.
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Matrix norm

Remark
▶ Induced norms are also called natural norms of matrices.

▶ Unless otherwise specified, by matrix norms most
books/papers refer to induced norms.

▶ The induced norm can be written equivalently as

∥A∥ = max
x ̸=0

∥Ax∥
∥x∥

▶ It can be easily extended to case A ∈ Rm×n.
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Matrix norm

Corollary

For any vector x ∈ Rn, there is ∥Ax∥ ≤ ∥A∥∥x∥.

Proof.
It is obvious for x = 0. If x ̸= 0, then

∥Ax∥
∥x∥

≤ max
x ′ ̸=0

∥Ax ′∥
∥x ′∥

= ∥A∥

Numerical Analysis II – Xiaojing Ye, Math & Stat, Georgia State University 170



Induced l2 matrix norm

7.1 Norms of Vectors and Matrices 439

The measure given to a matrix under a natural norm describes how the matrix stretches
unit vectors relative to that norm. The maximum stretch is the norm of the matrix. The
matrix norms we will consider have the forms

∥A∥∞ = max
∥x∥∞=1

∥Ax∥∞, the l∞ norm,

and ∥A∥2 = max
∥x∥2=1

∥Ax∥2, the l2 norm.

An illustration of these norms when n = 2 is shown in Figures 7.4 and 7.5 for the
matrix

A =
[

0 −2
2 0

]

Figure 7.4
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Induced l∞ matrix norm

7.1 Norms of Vectors and Matrices 439

The measure given to a matrix under a natural norm describes how the matrix stretches
unit vectors relative to that norm. The maximum stretch is the norm of the matrix. The
matrix norms we will consider have the forms

∥A∥∞ = max
∥x∥∞=1

∥Ax∥∞, the l∞ norm,

and ∥A∥2 = max
∥x∥2=1

∥Ax∥2, the l2 norm.

An illustration of these norms when n = 2 is shown in Figures 7.4 and 7.5 for the
matrix

A =
[

0 −2
2 0

]

Figure 7.4
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Matrix norm

Theorem
Suppose A = [aij ] ∈ Rn×n, then ∥A∥∞ = max1≤i≤n

∑n
j=1 |aij |.
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Matrix norm

Proof.
For any x with ∥x∥∞ = 1, i.e., maxi |xi | = 1, there is

∥Ax∥∞ = max
{∣∣∣∑

j

a1jxj

∣∣∣ , . . . ,∣∣∣∑
j

anjxj

∣∣∣}
≤ max

{∑
j

|a1j ||xj |, . . . ,
∑
j

|anj ||xj |
}

≤ max
{∑

j

|a1j |, . . . ,
∑
j

|anj |
}
= max

1≤i≤n

n∑
j=1

|aij |

Suppose i ′ is such that
∑n

j=1 |ai ′j | = max1≤i≤n
∑n

j=1 |aij |, then by
choosing x̂ such that x̂j = 1 if ai ′j ≥ 0 and −1 otherwise, we have∑n

j=1 ai ′j x̂j =
∑n

j=1 |ai ′j |. So ∥Ax̂∥∞ = max1≤i≤n
∑n

j=1 |aij |. Note
that ∥x̂∥∞ = 1. Therefore ∥A∥∞ = max1≤i≤n

∑n
j=1 |aij |.
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Eigenvalues and eigenvectors of square matrices

Definition
The characteristic polynomial of a square matrix A ∈ Rn×n is
defined by

p(λ) = det(A− λI )

We call λ an eigenvalue of A if λ is a root of p, i.e.,
det(A− λI ) = 0. Moreover, any nonzero solution x ∈ Rn of
(A− λI )x = 0 is called an eigenvector of A corresponding to the
eigenvalue λ.
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Eigenvalues and eigenvectors of square matrices

Remark
▶ p(λ) is a polynomial of degree n, and hence has n roots.

▶ x is an eigenvector of A corresponding to eigenvalue λ iff
(A− λI )x = 0, i.e., Ax = λx . This also means A applied to x
is stretching x by λ.

▶ If x is an eigenvector of A corresponding to λ, so is αx for
any α ̸= 0:

A(αx) = αAx = αλx = λ(αx)
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Eigenvalues and eigenvectors of square matrices

Definition
Let λ1, . . . , λn be the eigenvalues of A ∈ Rn×n, then the spectral
radius ρ(A) is defined by ρ(A) = maxi |λi | where | · | is the
absolute value (aka magnitude) of complex numbers.
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Eigenvalues and eigenvectors of square matrices

Some properties

Theorem
For a matrix A ∈ Rn×n, there are

▶ ∥A∥2 =
√
ρ(A⊤A)

▶ ρ(A) ≤ ∥A∥ for any norm ∥ · ∥ of A

Proof.
▶ We later will show that both sides = σ2

1, where σ1 is the
largest singular value of A.

▶ Let λ := ρ(A) be the eigenvalue with largest magnitude.
Then there exists eigenvector x such that

(∥A∥ ≥)∥Ax∥
∥x∥

=
∥λx∥
∥x∥

=
|λ|∥x∥
∥x∥

= |λ|
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Convergent matrix

Definition
A matrix A ∈ Rn×n is said to be convergent if

lim
k→∞

Ak = 0

Theorem
The following statements are equivalent:

1. A is convergent.

2. limk→∞ ∥Ak∥ = 0 for any norm ∥ · ∥.
3. ρ(A) < 1.

4. limk→∞ Akx = 0 for any x ∈ R.
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Jacobi iterative method

To solve x from Ax = b where A ∈ Rn×n and b ∈ Rn, the Jacobi
iterative method is

▶ Initialize x (0) ∈ Rn. Set D = diag(A), R = A− D.

▶ Repeat the following for k = 0, 1, . . . until convergence:

x (k+1) = D−1(b − Rx (k))

Remark
▶ Needs nonzero diagonal entries, i.e., aii ̸= 0 for all i .

▶ Usually faster convergence with larger |aii |.
▶ Stopping criterion can be ∥x(k)−x(k−1)∥

∥x(k)∥ ≤ ϵ for some prescribed

ϵ > 0.
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Gauss-Seidel iterative method

To solve x from Ax = b where A ∈ Rn×n and b ∈ Rn, the
Gauss-Seidel iterative method is

▶ Initialize x (0) ∈ Rn. Set L to the lower triangular part
(including diagonal) of A and U = A− L.

▶ Repeat the following for k = 0, 1, . . . until convergence:

x (k+1) = L−1(b − Ux (k))

Remark
▶ Inverse of L requires forward substitution.

▶ Again needs nonzero diagonal entries, i.e., aii ̸= 0 for all i .

▶ Stopping criterion can be ∥x(k)−x(k−1)∥
∥x(k)∥ ≤ ϵ for some prescribed

ϵ > 0.

▶ Faster than Jacobi iterative method most of times.
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General iterative methods

Lemma (ρ(T ) < 1⇒ I − T invertible)

If ρ(T ) < 1, then (I − T )−1 exists and

(I − T )−1 = I + T + T 2 + · · · =
∞∑
j=0

T j
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General iterative methods

Proof.
We first show that I − T is invertible, i.e., (I − T )x = 0 has
unique solution x = 0. If not, then ∃x ̸= 0 such that (I −T )x = 0,
i.e., Tx = x , or x is an e.v. corresponding to e.w. 1, contradiction
to ρ(T ) < 1.

Define Sm = I + T + · · ·+ Tm. Then (I − T )Sm = I − Tm+1.
Note ρ(T ) < 1 implies limm→∞ Tm = 0, and hence

(I − T ) lim
m→∞

Sm = lim
m→∞

(I − T )Sm = lim
m→∞

(I − Tm+1) = I

That is,
∑∞

m=0 T
m = limm→∞ Sm = (I − T )−1.
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General iterative methods

General iterative method has form x (k) = Tx (k−1) + c for
k = 1, 2, . . . .

Example (Jacobi and GS are iterative methods)

▶ Jacobi iterative method:

x (k) = D−1(b − Rx (k−1)) = −(D−1R)x (k−1) + D−1b

So T = −D−1R and c = D−1b.

▶ Gauss-Seidel iterative method:

x (k) = L−1(b − Ux (k−1)) = −(L−1U)x (k−1) + L−1b

So T = −L−1U and c = L−1b.
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General iterative methods

Theorem (Sufficient and necessary condition of convergence)

For any initial x (0), the sequence {x (k)}k defined by

x (k) = Tx (k−1) + c

converges to the unique solution of x = Tx + c iff ρ(T ) < 1.

Proof.
(⇐) Suppose ρ(T ) < 1. Then

x (k) = Tx (k−1) + c = T (Tx (k−2) + c) + c = T 2x (k−2) + (I + T )c

= · · · = T kx (0) + (I + T + · · ·+ T k)c

Note ρ(T ) < 1⇒ T k → 0 and (I + T + · · ·+ T k)→ (I − T )−1,
so x (k) → (I − T )−1c , the unique solution of x = Tx + c .

Numerical Analysis II – Xiaojing Ye, Math & Stat, Georgia State University 185



General iterative methods

Proof.
(⇒) Let x∗ be the unique solution of x = Tx + c . Then for any
z ∈ Rn, we set initial x (0) = x∗ − z . Then

x∗ − x (k) = (Tx∗ + c)− (Tx (k−1) + c) = T (x∗ − x (k−1))

= · · · = T k(x∗ − x (0)) = T kz → 0

This implies ρ(T ) < 1.
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General iterative methods

Corollary (Linear convergence rate)

If ∥T∥ < 1 for any matrix norm ∥ · ∥, and c is given, then {x (k)
generated by x (k) = Tx (k−1) + c converges to the unique solution
x∗ of x = Tx + c . Moreover

1. ∥x∗ − x (k)∥ ≤ ∥T∥k∥x∗ − x (0)∥.

2. ∥x∗ − x (k)∥ ≤ ∥T∥k
1−∥T∥∥x

(1) − x (0)∥.

Proof.

1. Note ρ(T ) ≤ ∥T∥ < 1. Follow (⇒) part of the theorem
above.

2. Note that ∥x∗ − x (1)∥ ≤ ∥T∥∥x∗ − x (0)∥ and hence
∥x (1)−x (0)∥ ≥ ∥x∗−x (0)∥−∥x∗−x (1)∥ ≥ (1−∥T∥)∥x∗−x (0)∥.
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General iterative methods

Theorem (Jacobi and GS are convergent)

If A is strictly diagonally dominant, then from any initial x (0) both
Jacobi and Gauss-Seidel iterative methods generate sequences that
converge to the unique solution of Ax = b.

Proof.
For Jacobi, we can show ρ(D−1R) < 1: if not, then exists ew λ
such that |λ| = ρ(D−1R) ≥ 1, and ev x ̸= 0 such that
D−1Rx = λx , i.e., (R + λD)x = 0 or R + λD invertible,
contradiction to A = D + R strictly diagonally dominant given
|λ| ≥ 1. Similar for GS.
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Relaxation techniques

The theory of general iterative methods suggest using a matrix T
with smaller spectrum ρ(T ). To this end, we can use the
relaxation technique to modify the iterative scheme.

▶ Original Gauss-Seidel iterative method:

x (k) = −(L−1U)x (k−1) + L−1b

▶ Successive Over-Relaxation1 (SOR) for Gauss-Seidel
iterative method (ω > 1):

x (k) = (D − ωL)−1[(1− ω)D + ωU]x (k−1) + ω(D − ωL)−1b

where D,−L,−U are the diagonal, strict lower, and strict
upper triangular parts of A, respectively.

1Ax = b ⇔ ω(−L+D−U)x = ωb ⇔ (D−ωL)x = ((1−ω)D+ωU)x+ωb.
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Relaxation techniques

Example

Compare Gauss-Seidel and SOR with ω = 1.25, both using
x (0) = (1, 1, 1)⊤ as initial, to solve the system:

4x1 + 3x2 = 24

3x1 + 4x2 − x3 = 30

−x2 + 4x3 = −24
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Relaxation techniques

Solution: Compare with true solution (3, 4,−5)⊤, we get:

Gauss-Seidel:
k 0 1 2 3 4 5 6 7

x
(2)
1 1 5.250000 3.1406250 3.0878906 3.0549316 3.0343323 3.0214577 3.0134110

x
(2)
2 1 3.812500 3.8828125 3.9667578 3.9542236 3.9713898 3.9821186 3.9888241

x
(2)
3 1 -5.046875 -5.0292969 -5.0183105 -5.0114441 -5.0071526 -5.0044703 -5.0027940

Successive Over-Relaxation:
k 0 1 2 3 4 5 6 7

x
(k)
1 1 6.312500 2.6223145 3.1333027 2.9570512 3.0037211 2.9963276 3.0000498

x
(k)
2 1 3.5195313 3.9585266 4.0102646 4.0074838 4.0029250 4.0009262 4.0002586

x
(k)
3 1 -6.6501465 -4.6004238 -5.0966863 -4.9734897 -5.0057135 -4.9982822 -5.0003486

The 5th iteration of SOR is better than 7th of GS.
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Relaxation techniques

Theorem (Kahan’s theorem)

If all diagonal entries of A are nonzero, then ρ(Tω) ≥ |ω − 1|,
where Tω = (D − ωL)−1[(1− ω)D + ωU].

Proof.
Let λ1, . . . , λn be the ew of Tω, then

n∏
i=1

λi = det(Tω) = det(D)−1 det((1− ω)D) = (1− ω)n

since D − ωL and (1− ω)D + ωU are lower/upper triangular
matrices. Hence ρ(Tω)

n ≥
∏n

i=1 |λi | = |1− ω|n.

This result says that SOR can converge only if |ω − 1| < 1.
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Relaxation techniques

Theorem (Ostrowski-Reich theorem)

If A is positive definite and |ω − 1| < 1, then the SOR converges
starting from any initial x (0).

Theorem
If A is positive definite and tridiagonal, then ρ(Tg ) = [ρ(Tj)]

2 < 1,
where Tg and Tj are the T matrices of GS and Jacobi methods
respectively, and the optimal ω for SOR is

ω =
2

1 +
√
1− (ρ(Tj))2

With this choice of ω, the spectrum ρ(Tω) = ω − 1.
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Iterative refinement

Definition (Residual)

Let x̃ be an approximation to the solution x of linear system
Ax = b. Then r = b − Ax̃ is called the residual of approximation
x̃ .

Remark
It seems intuitive that a small residual r implies a close
approximation x̃ to x . However, it is not always true.
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Iterative refinement

Example (small residual ⇏ small approximation error)

The linear system Ax = b is given by[
1 2

1.0001 2

][
x1
x2

]
=

[
3

3.0001

]

has a unique solution x = (1, 1)⊤. Determine the residual vector r
of a poor approximation x̃ = (3,−0.0001)⊤.
Solution: The residual is

r = b − Ax̃ =

[
3

3.0001

]
−

[
1 2

1.0001 2

][
3

−0.0001

]
=

[
0.0002

0

]

So ∥r∥∞ = 0.0002 is small but ∥x̃ − x∥∞ = 2 is large.
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Iterative refinement

Theorem (Relation between residual and error)

Suppose A is nonsingular, and x̃ is an approximation to the
solution x of Ax = b, and r = b − Ax̃ is the residual vector of x̃ ,
then for any norm, there is

∥x − x̃∥ ≤ ∥r∥ · ∥A−1∥

Moreover, if x ̸= 0 and b ̸= 0, then there is

∥x − x̃∥
∥x∥

≤ ∥A∥ · ∥A−1∥ · ∥r∥
∥b∥

If ∥A∥∥A−1∥ is large, then small ∥r∥ does not guarantee small
∥x − x̃∥.
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Iterative refinement

Proof.
Since x is a solution, we have Ax = b, we have
r = b − Ax̃ = Ax − Ax̃ = A(x − x̃). Since A is nonsingular, we
have x − x̃ = A−1r , and hence

∥x − x̃∥ = ∥A−1r∥ ≤ ∥r∥ · ∥A−1∥

If x ̸= 0 and b ̸= 0, from ∥b∥ = ∥Ax∥ ≤ ∥A∥ · ∥x∥ we have
1/∥x∥ ≤ ∥A∥/∥b∥. Multiplying this to the inequality above, we get

∥x − x̃∥
∥x∥

≤ ∥A∥ · ∥A−1∥ · ∥r∥
∥b∥
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Iterative refinement

The number ∥A∥ · ∥A−1∥ provide an indication between the error
of approximation ∥x − x̃∥ and size of residual r . So the larger
∥A∥ · ∥A−1∥ is, the less power we have to control error using
residual.

Definition (Condition number)

The condition number of a nonsingular matrix A relative to a
norm ∥ · ∥p is

Kp(A) = ∥A∥p · ∥A−1∥p

The subscript p is often omitted if it’s clear from context or it’s
not important.
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Condition number

Remark
▶ The condition number K (A) ≥ 1:

1 = ∥I∥ = ∥AA−1∥ ≤ ∥A∥ · ∥A−1∥ = K (A)

▶ A matrix A is called well-conditioned if K (A) is close to 1.

▶ A matrix A is called ill-conditioned if K (A)≫ 1.
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Condition number

Example (Condition number)

Determine the condition number of matrix

A =

[
1 2

1.0001 2

]
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Condition number

Solution: Let’s use l∞ norm. Then

∥A∥∞ = max{|1|+ |2|, |1.0001|+ |2|} = 3.0001

Furthermore, there is

A−1 =

[
−10000 10000
5000.5 −5000

]

and hence ∥A−1∥∞ = 20000. Therefore

K (A) = ∥A∥ · ∥A−1∥ = 3.0001× 20000 = 60002
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Iterative refinement

Suppose x̃ is our current approximation to x . Let ỹ = x − x̃ , then
Aỹ = A(x − x̃) = Ax − Ax̃ = b − Ax̃ = r . If we can solve for ỹ
here, we would get a new approximation x̃ + ỹ , expectedly to
approximate x better.

This procedure is called iterative refinement.
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Iterative refinement

Given A and b, Iterative Refinement first applies Gauss
eliminations to Ax = b and obtains approximation x .

Then, for each iteration k = 1, 2, . . . ,N, do the following:

▶ Compute residual r = b − Ax ;

▶ Solve y from Ay = r using the same Gauss elimination steps.

▶ Set x ← x + y

The actual Iterative Refinement algorithm can also find
approximation of condition number K∞(A) (See textbook).
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Perturbed linear system

In reality, A and b may be perturbed by noise or rounding errors
δA and δb. Therefore, we are actually solving

(A+ δA)x = b + δb

rather than Ax = b. This won’t cause much issue if A is
well-conditioned, but could be a problem otherwise.
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Perturbed linear system

Theorem
Suppose A is nonsingular and ∥δA∥ < 1

∥A−1∥ , then the solution x̃ of

perturbed linear system (A+ δA)x = b + δb has an error estimate
given by

∥x − x̃∥
∥x∥

≤ K (A)∥A∥
∥A∥ − K (A)∥δA∥

(∥δb∥
∥b∥

+
∥δA∥
∥A∥

)
where x is the solution of the original linear system Ax = b.

Note that K (A)∥δA∥ = ∥A∥∥A−1∥∥δA∥ < ∥A∥ so the denominator
is positive.
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Conjugate gradient method

Conjugate gradient (CG) method is particularly efficient for solving
linear systems with large, sparse, and positive definite matrix A.

Equipped with proper preconditioning, CG can often reach very
good result in

√
n iterations (n the size of system).

The per-iteration cost is also low when A is sparse.
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An alternate perspective of linear system

Theorem
Let A be positive definite, then x∗ is the solution of Ax = b iff x∗

is the minimizer of

g(x) =
1

2
x⊤Ax − b⊤x

Proof.
Note that ∇g(x) = Ax − b and ∇2g(x) = A ≻ 0, so
g(x∗) = Ax∗ − b = 0 iff x∗ is a minimizer of g(x).
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An alternate perspective of linear system

We have following observations:

▶ r = b − Ax = −∇g(x) is the residual and also the steepest
descent direction of g(x) (recall that ∇g(x) is the steepest
ascent direction).

▶ It seems intuitive to update x ← x + t · r = x − t∇g(x) with
proper step size t.

▶ It turns out that we can find such t that makes the most
progress.

▶ This method is called the “steepest descent method”.

▶ However, it converges slowly and exhibits “zigzag” path for
ill-conditioned A.
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A-orthogonal

Conjugate gradient method amends this issue of steepest descent.
To derive CG, we first present the following concept:

Definition
Two vectors v and w are called A-orthogonal if ⟨v ,Aw⟩ = 0.

Theorem
If A is positive definite, then there exists a set of independent
vectors {v (1), · · · , v (n)} such that ⟨v (i),Av (j)⟩ = 0 for all i ̸= j .
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Key idea of CG

Given previous estimate x (k−1) and a “search direction” v (k), CG
will find scalars tk and sk to update x and v :

x (k) = x (k−1) + tkv
(k)

v (k+1) = r (k) + skv
(k)

(where r (k) = b − Ax (k)), such that:

⟨v (k+1),Av (j)⟩ = 0, ∀j ≤ k

⟨r (k), v (j)⟩ = 0, ∀j ≤ k

If this can be done, then {v (1), · · · , v (n)} is A-orthogonal.
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Derivation of tk and sk

The main tool is mathematical induction: given x (0), first set
v (0) = 0, r (0) = b − Ax (0), v (1) = r (0). So

⟨v (k+1),Av (j)⟩ = 0, ∀j ≤ k

⟨r (k), v (j)⟩ = 0, ∀j ≤ k

is true for k = 0. Assume they hold for k − 1, we need to find tk
and sk such that they also hold for k .

Numerical Analysis II – Xiaojing Ye, Math & Stat, Georgia State University 211



Derivation of tk and sk

We first find tk : note that

r (k) = b − Ax (k) = b − A(x (k−1) + tkv
(k)) = r (k−1) − tkAv

(k)

Therefore, by induction hypothesis, there is

⟨r (k), v (j)⟩ = ⟨r (k−1) − tkAv
(k), v (j)⟩

=

{
0 if j ≤ k − 1,

⟨r (k−1), v (k)⟩ − tk⟨v (k),Av (k)⟩, if j = k

So we just need

tk =
⟨r (k−1), v (k)⟩
⟨v (k),Av (k)⟩

to make ⟨r (k), v (j)⟩ = 0.
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Derivation of tk and sk

Then we find sk : by the update of v (k+1), we have

⟨v (k+1),Av (j)⟩ = ⟨r (k) + skv
(k),Av (j)⟩

=

{
⟨r (k),Av (j)⟩, if j ≤ k − 1

⟨r (k),Av (k)⟩+ sk⟨v (k),Av (k)⟩, if j = k

Note that Av (j) = Ax(j)−Ax(j−1)

tj
= r (j−1)−r (j)

tj
, and r (j−1) − r (j) is

linear combination of v (j−1), v (j), v (j+1), so ⟨r (k),Av (j)⟩ = 0 for
j ≤ k − 1 due to induction hypothesis. Hence we just need

sk = −⟨r
(k),Av (k)⟩
⟨v (k),Av (k)⟩

to make ⟨r (k),Av (j)⟩ = 0 for all j ≤ k .
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Derivation of tk and sk

We can further simply tk and sk :

Since that v (k) = r (k−1) + sk−1v
(k−1) and ⟨r (k−1), v (k−1)⟩ = 0, we

have

tk =
⟨r (k−1), v (k)⟩
⟨v (k),Av (k)⟩

=
⟨r (k−1), r (k−1)⟩
⟨v (k),Av (k)⟩

Since r (k−1) = v (k) − sk−1v
(k−1), we have ⟨r (k), r (k−1)⟩ = 0. Since

Av (k) = Ax(k)−Ax(k−1)

tk
= r (k−1)−r (k)

tk
, we have

⟨r (k),Av (k)⟩ = − ⟨r (k),r (k)⟩
tk

. Combining tk expression above, we have

sk = −⟨r
(k),Av (k)⟩
⟨v (k),Av (k)⟩

= −
− ⟨r (k),r (k)⟩

tk
⟨r (k−1),r (k−1)⟩

tk

=
⟨r (k), r (k)⟩
⟨r (k−1), r (k−1)⟩
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Conjugate gradient method

Since ⟨r (n), v (k)⟩ = 0 for all k = 1, . . . , n and the A-orthogonal set
{v (1), · · · , v (n)} is independent when A is positive definite, we
know r (n) = b − Ax (n) = 0, i.e., x (n) is the solution.

This shows that CG converges in at most n steps, assuming all
arithmetics are exact.
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Conjugate gradient method

▶ Input: x (0), r (0) = b − Ax (0), v (1) = r (0).

▶ Repeat the following for k = 1, . . . , n until r (k) = 0:

tk =
⟨r (k−1), r (k−1)⟩
⟨v (k),Av (k)⟩

x (k) = x (k−1) + tkv
(k)

r (k) = r (k−1) − tkAv
(k)

sk =
⟨r (k), r (k)⟩
⟨r (k−1), r (k−1)⟩

v (k+1) = r (k) + skv
(k)

▶ Output: x (k).
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Preconditioning

The convergence rate of CG can be greatly improved by
preconditioning. Preconditioning reduces condition number of A
first if A is ill-conditioned. With preconditioning, CG usually
converges in

√
n steps.

The preconditioning is done by using some nonsingular matrix C ,
we can get Ã = C−1A(C−1)⊤ such that K (Ã)≪ K (A).

Now by defining x̃ = C⊤x and b̃ = C−1b, we obtain a new linear
system Ãx̃ = b̃, which is equivalent to Ax = b. Then we can apply
CG to the new system Ãx̃ = b̃.
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Preconditioner

There are various methods to choose the preconditioner C .

▶ Choose C = diag(
√
a11, . . . ,

√
ann).

▶ Approximate Cholesky’s factorization LL⊤ ≈ A (by ignoring
small values in A) and set C = L (then
C−1A(C−1)⊤ ≈ L−1(LL⊤)L−T = I ).

▶ Many others...
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Preconditioned conjugate gradient method

▶ Input: Preconditioner C , x (0), r (0) = b − Ax (0),
w (0) = C−1r (0), v (1) = C−Tw (0).

▶ Repeat the following for k = 1, . . . , n until r (k) = 0:

t̃k =
⟨w (k−1),w (k−1)⟩
⟨v (k),Av (k)⟩

x (k) = x (k−1) + t̃kv
(k)

r (k) = r (k−1) − t̃kAv
(k)

w (k) = C−1r (k)

s̃k =
⟨w (k),w (k)⟩
⟨w (k−1),w (k−1)⟩

v (k+1) = C−⊤w (k) + s̃kv
(k)

▶ Output: x (k).
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A comparison

Example

Given A and b below, we use the methods above to solve Ax = b.

A =


0.2 0.1 1 1 0
0.1 4 −1 1 −1
1 −1 60 0 −2
1 1 0 8 4
0 −1 −2 4 700

 , b =


1
2
3
4
5


True solution is

x∗ =


7.859713071
0.4229264082
−0.07359223906
−0.5406430164
0.01062616286
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A comparison

A comparison of Jacobi, Gauss-Seidel, SOR, CG, and PCG on the
problem above.

7.6 The Conjugate Gradient Method 491

Maple gives these as

Eigenvalues of A :700.031, 60.0284, 0.0570747, 8.33845, 3.74533

Eigenvalues of AH :1.88052, 0.156370, 0.852686, 1.10159, 1.00884

The condition numbers of A and AH in the l∞ norm are found with

ConditionNumber(A); ConditionNumber(AH)

which Maple gives as 13961.7 for A and 16.1155 for AH . It is certainly true in this case that
AH is better conditioned that the original matrix A.

Illustration The linear system Ax = b with

A =

⎡

⎢⎢⎢⎢⎣

0.2 0.1 1 1 0
0.1 4 − 1 1 − 1
1 − 1 60 0 − 2
1 1 0 8 4
0 − 1 − 2 4 700

⎤

⎥⎥⎥⎥⎦
and b =

⎡

⎢⎢⎢⎢⎣

1
2
3
4
5

⎤

⎥⎥⎥⎥⎦

has the solution

x∗ = (7.859713071, 0.4229264082, − 0.07359223906, − 0.5406430164, 0.01062616286)t .

Table 7.5 lists the results obtained by using the Jacobi, Gauss-Seidel, and SOR (with ω =
1.25) iterative methods applied to the system with A with a tolerance of 0.01, as well as
those when the Conjugate Gradient method is applied both in its unpreconditioned form
and using the preconditioning matrix described in Example 3. The preconditioned conjugate
gradient method not only gives the most accurate approximations, it also uses the smallest
number of iterations. !

Table 7.5

Number
Method of Iterations x(k) ∥x∗ − x(k)∥∞
Jacobi 49 (7.86277141, 0.42320802, − 0.07348669, 0.00305834

− 0.53975964, 0.01062847)t

Gauss-Seidel 15 (7.83525748, 0.42257868, − 0.07319124, 0.02445559
− 0.53753055, 0.01060903)t

SOR (ω = 1.25) 7 (7.85152706, 0.42277371, − 0.07348303, 0.00818607
− 0.53978369, 0.01062286)t

Conjugate Gradient 5 (7.85341523, 0.42298677, − 0.07347963, 0.00629785
− 0.53987920, 0.008628916)t

Conjugate Gradient 4 (7.85968827, 0.42288329, − 0.07359878, 0.00009312
(Preconditioned) − 0.54063200, 0.01064344)t

The preconditioned conjugate gradient method is often used in the solution of large
linear systems in which the matrix is sparse and positive definite. These systems must be
solved to approximate solutions to boundary-value problems in ordinary-differential equa-
tions (Sections 11.3, 11.4, 11.5). The larger the system, the more impressive the conjugate
gradient method becomes because it significantly reduces the number of iterations required.
In these systems, the preconditioning matrix C is approximately equal to L in the Cholesky
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Section 4

Boundary Value Problems for ODEs
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BVP for ODE

We study numerical solution for boundary value problem (BVP).

If the BVP involves first-order ODE, then

y ′(x) = f (x , y(x)), a ≤ x ≤ b, y(a) = α.

This reduces to an initial value problem we learned before.

So we start by considering second-order ODE:{
y ′′(x) = f (x , y(x), y ′(x)), a ≤ x ≤ b

y(a) = α, y(b) = β
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Existence of solutions

Consider the BVP with second-order ODE:{
y ′′(x) = f (x , y(x), y ′(x)), a ≤ x ≤ b

y(a) = α, y(b) = β

Theorem (Existence and uniqueness of solution)

Let D = [a, b]× R× R. Suppose f (x , y , y ′) satisfies:

1. f is continuous on D,

2. ∂f
∂y > 0 in D,

3. ∃M > 0 such that | ∂f∂y ′ | ≤ M in D.

Then the BVP has unique solution.
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Existence of solutions

Example (Existence and uniqueness of solution)

Show that the BVP below has unique solution:{
y ′′(x) = −e−xy + sin(y ′), 1 ≤ x ≤ 2

y(a) = 0, y(b) = 0

Solution: We have f (x , y , y ′) = −e−xy − sin(y ′). It is obvious
that f is continuous. Moreover ∂y f = xe−xy > 0, and
|∂y ′f | = | − cos(y ′)| ≤ 1. So the BVP has unique solution by the
theorem above.
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BVP with linear ODE

Now we first consider a linear second-order ODE:{
y ′′ = p(x)y ′ + q(x)y + r(x), a ≤ x ≤ b

y(a) = α, y(b) = β

where p, q, r : [a, b]→ R are given functions.

Corollary

If p, q, r are continuous on [a, b], q > 0 for all x , then the BVP
with linear ODE above has a unique solution.

Proof.
Set f = py ′ + qy + r . Note that p is bounded since it is
continuous on [a, b]. Hence the theorem (check the 3 conditions)
above applies.
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Linear shooting method

Now we consider how to solve BVP with linear ODE:{
y ′′ = py ′ + qy + r , a ≤ x ≤ b

y(a) = α, y(b) = β

We consider two associated initial value problems:{
y ′′1 = py ′1 + qy1 + r , a ≤ x ≤ b

y1(a) = α, y ′1(a) = 0{
y ′′2 = py ′2 + qy2, a ≤ x ≤ b

y2(a) = 0, y ′2(a) = 1
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Linear shooting method

Suppose the solution y to the BVP can be written as y = y1 + cy2
for some constant c (to be determined soon), where y1, y2 are the
solutions to the two IVPs. Then y satisfies the ODE:

y ′′ = (y1 + cy2)
′′ = y ′′1 + cy ′′2

= (py ′1 + qy1 + r) + c(py ′2 + qy2)

= p(y1 + cy2)
′ + q(y1 + cy2) + r

= py ′ + qy + r

To make y satisfy the boundary conditions, we need c such that

y(a) = y1(a) + cy2(a) = y1(a) = α

y(b) = y1(b) + cy2(b) = β

So we just need to set c = β−y1(b)
y2(b)

.
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Linear shooting method

674 C H A P T E R 11 Boundary-Value Problems for Ordinary Differential Equations

Moreover,

y(a) = y1(a) + β − y1(b)

y2(b)
y2(a) = α + β − y1(b)

y2(b)
· 0 = α

and

y(b) = y1(b) + β − y1(b)

y2(b)
y2(b) = y1(b) + β − y1(b) = β.

Linear Shooting

The Shooting method for linear equations is based on the replacement of the linear boundary-
value problem by the two initial-value problems (11.3) and (11.4). Numerous methods are
available from Chapter 5 for approximating the solutions y1(x) and y2(x), and once these
approximations are available, the solution to the boundary-value problem is approximated
using Eq. (11.5). Graphically, the method has the appearance shown in Figure 11.1.

This “shooting” hits the target
after one trial shot. In the next
section we see that nonlinear
problems require multiple shots.

Figure 11.1

x

y

y2(x)

y1(x)

y(x) ! y1(x) "
β # y1(b)
y2(b)

y2(x)

a b

α

β

Algorithm 11.1 uses the fourth-order Runge-Kutta technique to find the approximations
to y1(x) and y2(x), but other techniques for approximating the solutions to initial-value
problems can be substituted into Step 4.

The algorithm has the additional feature of obtaining approximations for the derivative
of the solution to the boundary-value problem as well as to the solution of the problem
itself. The use of the algorithm is not restricted to those problems for which the hypotheses
of Corollary 11.2 can be verified; it will work for many problems that do not satisfy these
hypotheses. One such example can be found in Exercise 4.

ALGORITHM

11.1
Linear Shooting

To approximate the solution of the boundary-value problem

−y′′ + p(x)y′ + q(x)y + r(x) = 0, for a ≤ x ≤ b, with y(a) = α and y(b) = β,

(Note: Equations (11.3) and (11.4) are written as first-order systems and solved.)

INPUT endpoints a, b; boundary conditions α,β; number of subintervals N .

OUTPUT approximations w1,i to y(xi); w2,i to y′(xi) for each i = 0, 1, . . . , N .
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Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Here y1, y2 are two shot trajectories based on their initial height
and angle. Their linear combination y1 +

β−y1(b)
y2(b)

y2 is the solution
y .
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Linear shooting method

Steps of the linear shooting method:

1. Partition [a, b] into N equal subintervals.

2. Solve y1 and y2 from their own IVPs (e.g., using RK4)
(u1 = y1, u2 = y ′1, v1 = y2, v2 = y ′2), and get
{u1,i , v1,i : 0 ≤ i ≤ N}

3. Set c = (β − u1,N)/v1,N , and set w1,i = u1,i + cv1,i for
0 ≤ i ≤ N.
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Linear shooting method

Example (Linear shooting method)

Solve the BVP with N = 10.{
y ′′ = − 2

x y
′ + 2

x2
y + sin(ln x)

x2
, 1 ≤ x ≤ 2

y(1) = 1, y(2) = 2

Solution: Partition [1, 2] into N = 10 subintervals, and solve{
y ′′1 = − 2

x y
′
1 +

2
x2
y1 +

sin(ln x)
x2

, 1 ≤ x ≤ 2

y1(1) = 1, y ′1(1) = 0{
y ′′2 = − 2

x y
′
2 +

2
x2
y2, 1 ≤ x ≤ 2

y2(1) = 0, y ′2(1) = 1

Then set wi = u1,i +
2−u1,N
v1,N

v1,i for i = 0, . . . , 10.
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Linear shooting method

Numerical result:

xi u1,i ≈ y1 (xi ) v1,i ≈ y2 (xi ) wi ≈ y (xi ) y (xi ) |y (xi )− wi |
1.0 1.00000000 0.00000000 1.00000000 1.00000000
1.1 1.00896058 0.09117986 1.09262917 1.09262930 1.43× 10−7

1.2 1.03245472 0.16851175 1.18708471 1.18708484 1.34× 10−7

1.3 1.06674375 0.23608704 1.28338227 1.28338236 9.78× 10−8

1.4 1.10928795 0.29659067 1.38144589 1.38144595 6.02× 10−8

1.5 1.15830000 0.35184379 1.48115939 1.48115942 3.06× 10−8

1.6 1.21248372 0.40311695 1.58239245 1.58239246 1.08× 10−8

1.7 1.27087454 0.45131840 1.68501396 1.68501396 5.43× 10−10

1.8 1.33273851 0.49711137 1.78889854 1.78889853 5.05× 10−9

1.9 1.39750618 0.54098928 1.89392951 1.89392951 4.41× 10−9

2.0 1.46472815 0.58332538 2.00000000 2.00000000

This accurate result is due to O(h4) of RK4 used for the two IVPs.
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Round-off error in linear shooting method

If y1(x) grows too fast such that y1(b)≫ β, then

β − y1(b)

y2(b)
≈ −y1(b)

y2(b)

which is prone to round-off error.

In this case, we can solve the two IVPs backward in x :{
y ′′1 = py ′1 + qy1 + r , a ≤ x ≤ b

y1(b) = β, y ′1(b) = 0{
y ′′2 = py ′2 + qy2, a ≤ x ≤ b

y2(b) = 0, y ′2(b) = 1

and set y(x) = y1(x) +
α−y1(a)
y2(a)

y2(x) for a ≤ x ≤ b
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Nonlinear shooting method

Consider the BVP with nonlinear ODE (f is a nonlinear function):{
y ′′ = f (x , y , y ′), a ≤ x ≤ b

y(a) = α, y(b) = β

Suppose we try to solve the IVP with some given t:{
y ′′ = f (x , y , y ′), a ≤ x ≤ b

y(a) = α, y ′(a) = t

and obtain solution y(x , t) (since the solution depends on t) for
a ≤ x ≤ b.

Then we hope to find t such that y(b, t) = β.
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Secant method for nonlinear shooting

Suppose we have two initials t0, t1, then we use the secant method
to solve y(b, t)− β = 0 by iterating

tk = tk−1 −
(y(b, tk−1)− β)(tk−1 − tk−2)

y(b, tk−1)− y(b, tk−2)

For each k , we need to compute y(b, tk) by solving the IVP:{
y ′′ = f (x , y , y ′), a ≤ x ≤ b

y(a) = α, y ′(a) = tk
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Nonlinear shooting method
680 C H A P T E R 11 Boundary-Value Problems for Ordinary Differential Equations

Figure 11.3
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Newton Iteration

To use the more powerful Newton’s method to generate the sequence {tk}, only one initial
approximation, t0, is needed. However, the iteration has the form

tk = tk−1 −
y(b, tk−1)− β

dy
dt (b, tk−1)

, (11.9)

and it requires the knowledge of (dy/dt)(b, tk−1). This presents a difficulty because an
explicit representation for y(b, t) is not known; we know only the values y(b, t0), y(b, t1),
. . . , y(b, tk−1).

Suppose we rewrite the initial-value problem (11.7), emphasizing that the solution
depends on both x and the parameter t:

y′′(x, t) = f (x, y(x, t), y′(x, t)), for a ≤ x ≤ b, with y(a, t) = α and y(a, t) = t.
(11.10)

We have retained the prime notation to indicate differentiation with respect to x. We need
to determine (dy/dt)(b, t) when t = tk−1, so we first take the partial derivative of (11.10)
with respect to t. This implies that

∂y′′

∂t
(x, t) = ∂f

∂t
(x, y(x, t), y′(x, t))

= ∂f

∂x
(x, y(x, t), y′(x, t))

∂x
∂t

+ ∂f

∂y
(x, y(x, t), y′(x, t))

∂y
∂t

(x, t)

+ ∂f

∂y′
(x, y(x, t), y′(x, t))

∂y′

∂t
(x, t).

Since x and t are independent,we have ∂x/∂t = 0 and the equation simplifies to

∂y′′

∂t
(x, t) = ∂f

∂y
(x, y(x, t), y′(x, t))

∂y
∂t

(x, t) + ∂f

∂y′
(x, y(x, t), y′(x, t))

∂y′

∂t
(x, t), (11.11)

for a ≤ x ≤ b. The initial conditions give

∂y
∂t

(a, t) = 0 and
∂y′

∂t
(a, t) = 1.
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Here y(x , tk) is “shooting” at an angle (with slope tk) and try to
“hit” β at x = b.
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Newton’s method for nonlinear shooting

We can also consider Newton’s method to y(b, t)− β = 0 for
fewer iterations:

tk = tk−1 −
y(b, tk−1)− β

∂ty(b, tk−1)

However, we need to know ∂ty(b, t) ...

We denote the solution of IVP below by y(x , t):{
y ′′(x , t) = f (x , y(x , t), y ′(x , t)), a ≤ x ≤ b

y(a, t) = α, y ′(a, t) = t

where y ′ = ∂xy and y ′′ = ∂2
xy (i.e., the ′ is on x).
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Newton’s method for nonlinear shooting

Taking partial derivatives with respect to t above yields:{
∂ty

′′ = ∂y f · ∂ty + ∂y ′f · ∂ty ′, a ≤ x ≤ b

∂ty(a, t) = 0, ∂ty
′(a, t) = 1

Denote z(x , t) = ∂ty(x , t). Suppose ∂x and ∂t can exchange, then{
z ′′(x , t) = ∂y f · z(x , t) + ∂y ′f · z ′(x , t), a ≤ x ≤ b

z(a, t) = 0, z ′(a, t) = 1

and set ∂ty(b, t) = z(b, t).
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Newton’s method for nonlinear shooting

Steps of Newton’s method for nonlinear shooting:

1. Initialize t0 (e.g. t0 =
β−α
b−a ). Set k = 1.

2. For t = tk−1, solve y(x , t) and z(x , t) from{
y ′′(x , t) = f (x , y(x , t), y ′(x , t)), a ≤ x ≤ b

y(a, t) = α, y ′(a, t) = t{
z ′′(x , t) = ∂y f · z(x , t) + ∂y ′f · z ′(x , t), a ≤ x ≤ b

z(a, t) = 0, z ′(a, t) = 1

and set tk = tk−1 − y(b,tk−1)−β
z(b,tk−1)

.

3. Set k ← k + 1 and go to Step 2.
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Newton’s method for nonlinear shooting

Example (Newton’s method for nonlinear BVP)

Solve the BVP with nonlinear ODE using Newton’s method with
N = 20 for maximal of 10 iterations or |wN(tk)− y(3)| ≤ 10−5:{

y ′′ = 1
8

(
32 + 2x3 − yy ′

)
, 1 ≤ x ≤ 3

y(1) = 17, y(3) = 43
3

Solution: Note that ∂y f = −1
8y

′ and ∂y ′f = −1
8y . For every t,

the two IVPs are (note z depends on y but not vice versa):{
y ′′ = 1

8

(
32 + 2x3 − yy ′

)
, 1 ≤ x ≤ 3

y(1) = 17, y ′(1) = t{
z ′′ = −1

8(y
′z + yz ′), 1 ≤ x ≤ 3

z(1) = 0, z ′(1) = 1
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Nonlinear shooting using Newton’s method

xi w1,i y (xi ) |w1,i − y(xi )|
1.0 17.000000 17.000000

1.1 15.755495 15.755455 4.06 × 10−5

1.2 14.773389 14.773333 5.60 × 10−5

1.3 13.997752 13.997692 5.94 × 10−5

1.4 13.388629 13.388571 5.71 × 10−5

1.5 12.916719 12.916667 5.23 × 10−5

1.6 12.560046 12.560000 4.64 × 10−5

1.7 12.301805 12.301765 4.02 × 10−5

1.8 12.128923 12.128889 3.14 × 10−5

1.9 12.031081 12.031053 2.84 × 10−5

2.0 12.000023 12.000000 2.32 × 10−5

2.1 12.029066 12.029048 1.84 × 10−5

2.2 12.112741 12.112727 1.40 × 10−5

2.3 12.246532 12.246522 1.01 × 10−5

2.4 12.426673 12.426667 6.68 × 10−6

2.5 12.650004 12.650000 3.61 × 10−6

2.6 12.913847 12.913845 9.17 × 10−7

2.7 13.215924 13.215926 1.43 × 10−6

2.8 13.554282 13.554286 3.46 × 10−6

2.9 13.927236 13.927241 5.21 × 10−6

3.0 14.333327 14.333333 6.69 × 10−6

Netwon’s method requires solving two IVPs in each iteration, but converges much faster than secant method. Still

sensitive to round-off errors if y or z increases rapidly.
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Finite-difference method for linear problems

Idea: Partition [a, b] into N + 1 subintervals with nodes
a = x0 < · · · < xN+1 = b and step size h = b−a

N+1 . Then
approximate y ′, y ′′ by finite differences, and solve wi = y(xi ) for
0 ≤ i ≤ N + 1.

Recall the centered-difference approximation of y ′(xi ):

y(xi+1) = y(xi + h) = y(xi ) + hy ′(xi ) +
h2

2
y ′′(xi ) +

h3

6
y ′′′(η+i )

y(xi−1) = y(xi − h) = y(xi )− hy ′(xi ) +
h2

2
y ′′(xi )−

h3

6
y ′′′(η−i )

where η±i is between xi and xi±1. Then subtracting the two above:

y ′(xi ) =
y(xi+1)− y(xi−1)

2h
− h2

6
y ′′′(ηi )

for some ηi ∈ (xi−1, xi+1) due to IVT and y ∈ C 3.
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Finite-difference method for linear problems

Similarly, we have the centered-difference approximation of y ′′(xi ):

y(xi+1) = y(xi + h) = y(xi ) + hy ′(xi ) +
h2

2
y ′′(xi ) +

h3

6
y ′′′(xi ) +

h4

24
y (4)(ξ+i )

y(xi−1) = y(xi − h) = y(xi )− hy ′(xi ) +
h2

2
y ′′(xi )−

h3

6
y ′′′(xi ) +

h4

24
y (4)(ξ−i )

where ξ±i is between xi and xi±1. Then adding the two above:

y ′′(xi ) =
y(xi+1)− 2y(xi ) + y(xi−1)

h2
− h2

12
y (4)(ξi )

for some ξi ∈ (xi−1, xi+1) due to IVT and y ∈ C 4.
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Finite-difference method for linear problems

Plugging the two identities about y ′(xi ) and y ′′(xi ) above into
y ′′ = py ′ + qy + r :

y (xi+1)− 2y (xi ) + y
(
xi−1

)
h2

=p (xi )

[
y (xi+1)− y

(
xi−1

)
2h

]
+ q (xi ) y (xi )

+ r (xi )−
h2

12

[
2p (xi ) y

′′′ (ηi )− y (4) (ξi )
]

which has truncation error O(h2).

Now we approximate y(xi ) by wi for 0 ≤ i ≤ N + 1. Note that
w0 = y(a) = α and wN+1 = y(b) = β, and for i = 1, . . . ,N:

(
−wi+1 + 2wi − wi−1

h2

)
+ p (xi )

(
wi+1 − wi−1

2h

)
+ q (xi )wi = −r (xi )
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Finite-difference method for linear problems

The equation above can be rearranged into

−
(
1 +

h

2
p (xi )

)
wi−1 +

(
2 + h2q (xi )

)
wi −

(
1−

h

2
p (xi )

)
wi+1 = −h2r (xi )

This is a linear system Aw = b where w = (w1, . . . ,wN)
⊤, A is

tridiagonal, and b is known.

Theorem
Suppose that p, q, r are continuous on [a, b] and q ≥ 0, then the
tridiagonal linear system Aw = b has a unique solution provided
that h < 2/L where L = maxa≤x≤b |p(x)|.
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Finite-difference method for linear problems

Example (Finite-difference method for linear problems)

Solve the BVP below using finite difference method with N = 9:{
y ′′ = − 2

x y
′ + 2

x2
y + sin(ln x)

x2
, 1 ≤ x ≤ 2

y(1) = 1, y(2) = 2

Solution: Note that p(x) = −2/x , q(x) = 2/x2, and
r(x) = sin(ln x)/x2. Step size h = (b − a)/(N + 1) = 0.1.
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Finite-difference method for linear problems

xi wi y (xi ) |wi − y (xi ) |
1.0 1.00000000 1.00000000
1.1 1.09260052 1.09262930 2.88× 10−5

1.2 1.18704313 1.18708484 4.17× 10−5

1.3 1.28333687 1.28338236 4.55× 10−5

1.4 1.38140205 1.38144595 4.39× 10−5

1.5 1.48112026 1.48115942 3.92× 10−5

1.6 1.58235990 1.58239246 3.26× 10−5

1.7 1.68498902 1.68501396 2.49× 10−5

1.8 1.78888175 1.78889853 1.68× 10−5

1.9 1.89392110 1.89392951 8.41× 10−6

2.0 2.00000000 2.00000000

The error is O(h2), which is worse than the linear shooting method.
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Finite-difference method for linear problems

We can improve the error order by Richardson’s extrapolation since
the truncation errors are in even orders of h.

Consider the same example above, we use step sizes h = 0.1, 0.05,
and 0.025 to compute w(h = 0.1), w(h = 0.05) and
w(h = 0.025), and compute

Ext1i =
4wi (h = 0.05)− wi (h = 0.1)

3

Ext2i =
4wi (h = 0.025)− wi (h = 0.05)

3

Ext3i =
16Ext2i − Ext1i

15

Numerical Analysis II – Xiaojing Ye, Math & Stat, Georgia State University 248



Finite-difference method for linear problems

xi wi (h = 0.05) wi (h = 0.025) Ext1i Ext2i Ext3i
1.0 1.00000000 1.00000000 1.00000000 1.00000000 1.00000000
1.1 1.09262207 1.09262749 1.09262925 1.09262930 1.09262930
1.2 1.18707436 1.18708222 1.18708477 1.18708484 1.18708484
1.3 1.28337094 1.28337950 1.28338230 1.28338236 1.28338236
1.4 1.38143493 1.38144319 1.38144589 1.38144595 1.38144595
1.5 1.48114959 1.48115696 1.48115937 1.48115941 1.48115942
1.6 1.58238429 1.58239042 1.58239242 1.58239246 1.58239246
1.7 1.68500770 1.68501240 1.68501393 1.68501396 1.68501396
1.8 1.78889432 1.78889748 1.78889852 1.78889853 1.78889853
1.9 1.89392740 1.89392898 1.89392950 1.89392951 1.89392951
2.0 2.00000000 2.00000000 2.00000000 2.00000000 2.00000000

The error reduces to 6.3× 10−11 which significantly improves the
case with h = 0.1 (about 10−5).
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Finite-difference method for nonlinear problems

Consider the BVP with nonlinear ODE:{
y ′′ = f (x , y , y ′), a ≤ x ≤ b

y(a) = α, y(b) = β

Theorem
Let D = [a, b]× R× R. If f satisfies the following conditions:

1. f is continuous on D,

2. ∃δ > 0 such that ∂y f (x , y , y
′) ≥ δ on D,

3. ∃L > 0 such that |∂y f |, |∂y ′f | ≤ L on D.

Then the BVP has a unique solution.
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Finite-difference method for nonlinear problems

We apply the same partition of [a, b] into N + 1 subintervals and
centered-difference approximations for y ′(xi ) and y ′′(xi ): w0 = α,
wN+1 = β, and for i = 1, . . . ,N

−
wi+1 − 2wi + wi−1

h2
+ f

(
xi ,wi ,

wi+1 − wi−1

2h

)
= 0

This is a system of N nonlinear equations of (w1, . . . ,wN):

2w1 − w2 + h2f

(
x1,w1,

w2 − α

2h

)
− α = 0

−w1 + 2w2 − w3 + h2f

(
x2,w2,

w3 − w1

2h

)
= 0

...

−wN−2 + 2wN−1 − wN + h2f

(
xN−1,wN−1,

wN − wN−2

2h

)
= 0

−wN−1 + 2wN + h2f

(
xN ,wN ,

β − wN−1

2h

)
− β = 0
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Finite-difference method for nonlinear problems

We can write the system as F (w) = 0 (note that F : RN → RN).

To solve this system, we can apply the Newton’s method:

w (k) = w (k−1) − J(w (k−1))−1F (w (k−1))

starting from some initial value w (0). Here J(w) ∈ RN×N is the
Jacobian of F (w).

The key is to solve v = J(w)−1F (w) from J(w)v = F (w) for
given w .
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Finite-difference method for nonlinear problems

Recall that F (w) = (F1(w), . . . ,FN(w))⊤ ∈ RN where

Fi (w) = −wi−1 + 2wi − wi+1 + h2f

(
xi ,wi ,

wi+1 − wi−1

2h

)
Jacobian J(w) = [∂Fi (w)

∂wj
] ∈ RN×N is tridiagonal:

J (w1, . . . ,wN)ij =
∂Fi (w)

∂wj

=


−1 + h

2
fy′
(
xi ,wi ,

wi+1−wi−1

2h

)
, for i = j − 1 and j = 2, . . . ,N

2 + h2fy
(
xi ,wi ,

wi+1−wi−1

2h

)
, for i = j and j = 1, . . . ,N

−1− h
2
fy′
(
xi ,wi ,

wi+1−wi−1

2h

)
, for i = j + 1 and j = 1, . . . ,N − 1

0, for |i − j | > 1
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Finite-difference method for nonlinear problems

Example (Finite-difference method for nonlinear BVP)

Solve the BVP with nonlinear ODE using finite difference method
with h = 0.1:{

y ′′ = 1
8

(
32 + 2x3 − yy ′

)
, 1 ≤ x ≤ 3

y(1) = 17, y(3) = 43
3
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Finite-difference method for nonlinear problems

xi wi y (xi ) |wi − y (xi ) |
1.0 17.000000 17.000000
1.1 15.754503 15.755455 9.520× 10−4

1.2 14.771740 14.773333 1.594× 10−3

1.3 13.995677 13.997692 2.015× 10−3

1.4 13.386297 13.388571 2.275× 10−3

1.5 12.914252 12.916667 2.414× 10−3

1.6 12.557538 12.560000 2.462× 10−3

1.7 12.299326 12.301765 2.438× 10−3

1.8 12.126529 12.128889 2.360× 10−3

1.9 12.028814 12.031053 2.239× 10−3

2.0 11.997915 12.000000 2.085× 10−3

2.1 12.027142 12.029048 1.905× 10−3

2.2 12.111020 12.112727 1.707× 10−3

2.3 12.245025 12.246522 1.497× 10−3

2.4 12.425388 12.426667 1.278× 10−3

2.5 12.648944 12.650000 1.056× 10−3

2.6 12.913013 12.913846 8.335× 10−4

2.7 13.215312 13.215926 6.142× 10−4

2.8 13.553885 13.554286 4.006× 10−4

2.9 13.927046 13.927241 1.953× 10−4

3.0 14.333333 14.333333
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Finite-difference method for nonlinear problems

The error order again can be improved by Richardson’s
extrapolation: solve the problem with h = 0.1, 0.05, and 0.025,
and then use extrapolation as before. Accuracy can be improved
from 10−3 to 10−10.
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Rayleigh-Ritz method

Idea: Convert the BVP to an integral minimization problem, and
then find the minimizer from the function space spanned by a set
of basis functions.

We consider a standard BVP with second-order ODE:− d
dx

(
p(x)dydx

)
+ q(x)y = f , 0 ≤ x ≤ 1

y(0) = 0, y(1) = 0

Problems with general interval [a, b] and boundary conditions
y(a) = α, y(b) = β can be converted into the standard one above.

For example, if y(0) = α, y(1) = β, then set
z(x) = y(x)− ((1− x)α+ xβ) and derive the ODE of z with
boundary value z(0) = z(1) = 0.
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Rayleigh-Ritz method

Theorem (Variational form of BVP)

Suppose p ∈ C 1, q, f ∈ C , p ≥ δ for some δ > 0 and q ≥ 0 on
[0, 1], and y ∈ C 2

0 , then y is the unique solution to

− d

dx

(
p(x)

dy

dx

)
+ q(x)y = f , 0 ≤ x ≤ 1 ODE

if and only if y is the unique function that minimizes I [·] where

I [u] =

∫ 1

0

(
p(x)[u′(x)]2 + q(x)[u(x)]2 − 2f (x)u(x)

)
dx Energy
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Rayleigh-Ritz method

Proof.
1. A solution y to (ODE) satisfies:

∫ 1

0
f (x)u(x)dx =

∫ 1

0
p(x)

dy

dx
(x)

du

dx
(x)+q(x)y(x)u(x)dx , ∀u ∈ C1

0 [0, 1] Weak

This can be verified by multiplying u on both sides of ODE, taking integral, and
integrating by part.

2. y minimizes Energy iff y satisfies Weak: For any y , u ∈ C1
0 [0, 1], define

g(ϵ) = I [y + ϵu], then g ′′(ϵ) ≥ 0, so I is a convex functional. Therefore y
minimizes Energy iff g ′(0) = 0 for all u (i.e., y satisfies Weak).

3. Weak admits at most one solution: if y1, y2 both satisfies Weak, then
y = y1 − y2 satisfies Weak with f = 0, i.e., y minimizes

J[u] =
∫ 1
0 (p(u

′)2 + qu2)dx . Hence y ≡ 0 (since J[u] ≥ 0 and = 0 only if u ≡ 0).
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Rayleigh-Ritz method

Now we know BVP is equivalent to an energy minimization
problem:

I [u] =

∫ 1

0

(
p(x)[u′(x)]2 + q(x)[u(x)]2 − 2f (x)u(x)

)
dx

Steps of Rayleigh-Ritz method:

1. Create a set of basis functions {ϕi | 1 ≤ i ≤ n}, and set
approximation ϕ =

∑
i ciϕi to y = argminu I [u].

2. Find c by minimizing I [ϕ] = I [
∑

i ciϕi ], i.e., ∂ci I [
∑

i ciϕi ] = 0
for all i .
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Rayleigh-Ritz method

Step 2 above yields a linear normal equation of c , denoted by
Ac = b, where A = [aij ] ∈ Rn×n and b ∈ Rn with

aij =

∫ 1

0

[
p(x)ϕ′

i (x)ϕ
′
j(x) + q(x)ϕi (x)ϕj(x)

]
dx

bi =

∫ 1

0
f (x)ϕi (x)dx

Once c is solved, the minimizer of I can be set to ϕ =
∑

i ciϕi .

Now the key is the design of basis functions in Step 1. If properly
designed, A will be a band matrix (and even tridiagonal matrix).
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Piecewise-linear basis

Steps to create a piecewise linear basis:

1. Partition [0, 1] into n + 1 subintervals:

0 = x0 < x1 < · · · < xn+1 = 1

Step size hi = xi+1 − xi for i = 0, . . . , n.

2. Set {ϕi} for i = 1, . . . , n by:

ϕi (x) =


0, if 0 ≤ x ≤ xi−1
1

hi−1
(x − xi−1) , if xi−1 < x ≤ xi

1
hi
(xi+1 − x) , if xi < x ≤ xi+1

0, if xi+1 < x ≤ 1
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Piecewise linear basis

Namely, ϕi (x) is 1 at x = xi and linearly decays to 0 at x = xi±1,
then stays as 0 outside of [xi−1, xi+1].

Example of piecewise linear basis functions:

11.5 The Rayleigh-Ritz Method 699

Piecewise-Linear Basis

The simplest choice of basis functions involves piecewise-linear polynomials. The first step
is to form a partition of [0, 1] by choosing points x0, x1, . . . , xn+1 with

0 = x0 < x1 < · · · < xn < xn+1 = 1.

Letting hi = xi+1 − xi, for each i = 0, 1, . . . , n, we define the basis functions φ1(x),
φ2(x), . . . ,φn(x) by

φi(x) =






0, if 0 ≤ x ≤ xi−1,

1
hi−1

(x − xi−1), if xi−1 < x ≤ xi,

1
hi

(xi+1 − x), if xi < x ≤ xi+1,

0, if xi+1 < x ≤ 1,

(11.29)

for each i = 1, 2, . . . , n. (See Figure 11.4.)

Figure 11.4

y

y = φi(x)

xxi!1 xi xi"1

0

1

1

y

y = φn(x)

xxn!1 xn

0

1

1

y

y = φ1(x)

xx1 x2

0
1

1

The functions φi are piecewise-linear, so the derivatives φ′i , while not continuous, are
constant on (xj, xj+1), for each j = 0, 1, . . . , n, and

φ′i(x) =






0, if 0 < x < xi−1,

1
hi−1

, if xi−1 < x < xi,

− 1
hi

, if xi < x < xi+1,

0, if xi+1 < x < 1,

(11.30)

for each i = 1, 2, . . . , n.
Because φi and φ′i are nonzero only on (xi−1, xi+1),

φi(x)φj(x) ≡ 0 and φ′i(x)φ
′
j(x) ≡ 0,
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Piecewise linear basis

Several properties about piecewise linear basis:

1. ϕi is differentiable except at xi−1, xi , xi+1:

ϕ′
i (x) =


0, if 0 < x < xi−1
1

hi−1
, if xi−1 < x < xi

− 1
hi
, if xi < x < xi+1

0, if xi+1 < x < 1

2. ϕi and ϕj do not interfere if |i − j | > 1:

ϕi (x)ϕj(x) ≡ 0 and ϕ′
i (x)ϕ

′
j(x) ≡ 0

Hence A = [aij ] in the normal equation Ac = b is a tridiagonal
matrix.
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Piecewise linear basis

aii =

∫ 1

0

{
p(x)

[
ϕ′
i (x)

]2
+ q(x)

[
ϕi (x)

]2}
dx

=

(
1

hi−1

)2 ∫ xi

xi−1

p(x)dx +

(
−1

hi

)2 ∫ xi+1

xi

p(x)dx

+

(
1

hi−1

)2 ∫ xi

xi−1

(
x − xi−1

)2
q(x)dx +

(
1

hi

)2 ∫ xi+1

xi

(xi+1 − x)2 q(x)dx

ai,i+1 =

∫ 1

0

{
p(x)ϕ′

i (x)ϕ
′
i+1(x) + q(x)ϕi (x)ϕi+1(x)

}
dx

= −
(

1

hi

)2 ∫ xi+1

xi

p(x)dx +

(
1

hi

)2 ∫ xi+1

xi

(xi+1 − x) (x − xi ) q(x)dx

ai,i−1 =

∫ 1

0

{
p(x)ϕ′

i (x)ϕ
′
i−1(x) + q(x)ϕi (x)ϕi−1(x)

}
dx

= −
(

1

hi−1

)2 ∫ xi

xi−1

p(x)dx +

(
1

hi−1

)2 ∫ xi

xi−1

(xi − x)
(
x − xi−1

)
q(x)dx

bi =

∫ 1

0
f (x)ϕi (x)dx =

1

hi−1

∫ xi

xi−1

(
x − xi−1

)
f (x)dx +

1

hi

∫ xi+1

xi

(xi+1 − x) f (x)dx
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Piecewise linear bassis

There are 6n integrals to evaluate:

Q1,i =

(
1

hi

)2 ∫ xi+1

xi

(xi+1 − x) (x − xi ) q(x)dx , for each i = 1, 2, . . . , n − 1

Q2,i =

(
1

hi−1

)2 ∫ xi

xi−1

(
x − xi−1

)2
q(x)dx , for each i = 1, 2, . . . , n

Q3,i =

(
1

hi

)2 ∫ xi+1

xi

(xi+1 − x)2 q(x)dx , for each i = 1, 2, . . . , n

Q4,i =

(
1

hi−1

)2 ∫ xi

xi−1

p(x)dx , for each i = 1, 2, . . . , n + 1

Q5,i =
1

hi−1

∫ xi

xi−1

(
x − xi−1

)
f (x)dx , for each i = 1, 2, . . . , n

Q6,i =
1

hi

∫ xi+1

xi

(xi+1 − x) f (x)dx , for each i = 1, 2, . . . , n
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Piecewise linear basis

Then A and b are computed as

ai ,i = Q4,i + Q4,i+1 + Q2,i + Q3,i , for each i = 1, 2, . . . , n

ai ,i+1 = −Q4,i+1 + Q1,i , for each i = 1, 2, . . . , n − 1

ai ,i−1 = −Q4,i + Q1,i−1, for each i = 2, 3, . . . , n

bi = Q5,i + Q6,i , for each i = 1, 2, . . . , n

We can show that A is positive definite.
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Piecewise linear basis

Two ways to approximate the 6n integrals Q’s:

1. Quadratures such as Simpson’s rule.
2. Approximate p, q, r by piecewise linear functions and compute

integrals. For example, p(x) ≈
∑

i p(xi )ϕi (x) etc., then

Q1,i ≈
hi

12
[q(xi ) + q(xi+1)]

Q2,i ≈
hi−1

12

[
3q (xi ) + q

(
xi−1

)]
,

Q3,i ≈
hi

12

[
3q (xi ) + q (xi+1)

]
Q4,i ≈

hi−1

2

[
p (xi ) + p

(
xi−1

)]
Q5,i ≈

hi−1

6

[
2f (xi ) + f

(
xi−1

)]
Q6,i ≈

hi

6

[
2f (xi ) + f (xi+1)

]
Each approximation has error order O(h3i ).
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Piecewise linear basis

Example (Rayleigh-Ritz method with piecewise linear basis)

Solve the BVP below using Rayleigh-Ritz method and piecewise
linear basis with hi = h = 0.1:

−y ′′ + π2y = 2π2 sin(πx), 0 ≤ x ≤ 1, y(0) = 0, y(1) = 0

Solution: We have p(x) ≡ 1, q(x) ≡ π2, f (x) = 2π2 sin(πx).
Then apply the formula above to obtain Q1,i , . . . ,Q6,i for
i = 0, . . . , 9, and then A and b. Then solve c from Ac = b, and
obtain ϕ(x) =

∑
i ciϕi (x) (note that ϕ(x) is piecewise linear

function and ϕ(xi ) = ci ).
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Piecewise linear basis

i xi ϕ (xi ) y (xi ) |ϕ (xi )− y (xi ) |
1 0.1 0.3102866742 0.3090169943 0.00127
2 0.2 0.5902003271 0.5877852522 0.00241
3 0.3 0.8123410598 0.8090169943 0.00332
4 0.4 0.9549641896 0.9510565162 0.00390
5 0.5 1.0041087710 1.0000000000 0.00411
6 0.6 0.9549641893 0.9510565162 0.00390
7 0.7 0.8123410598 0.8090169943 0.00332
8 0.8 0.5902003271 0.5877852522 0.00241
9 0.9 0.3102866742 0.3090169943 0.00127

The error order is O(h2) due to the nature of linear (first-order)
approximation of the integand.
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B-spline basis

We can create C 2 basis functions using the idea of cubic splines.
These are called the B-splines (basis splines).

We start from the cubic spline function S :

S(x) =



0, if x ≤ −2
1
4(2 + x)3, if − 2 ≤ x ≤ −1
1
4

[
(2 + x)3 − 4(1 + x)3

]
, if − 1 < x ≤ 0

1
4

[
(2− x)3 − 4(1− x)3

]
, if 0 < x ≤ 1

1
4(2− x)3, if 1 < x ≤ 2

0, if 2 < x
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B-spline basis

Then construct B-spline basis functions {ϕi | 0 ≤ i ≤ n + 1}:

ϕi (x) =



S
(
x
h

)
− 4S

(
x+h
h

)
, if i = 0

S
(
x−h
h

)
− S

(
x+h
h

)
, if i = 1

S
(
x−ih
h

)
, if 2 ≤ i ≤ n − 1

S
(
x−nh
h

)
− S

(
x−(n+2)h

h

)
, if i = n

S
(
x−(n+1)h

h

)
− 4S

(
x−(n+2)h

h

)
, if i = n + 1

▶ ϕi ∈ C 2
0 [0, 1].

▶ {ϕi} are independent.
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B-spline basis

ϕi (x) for 2 ≤ i ≤ n − 1 (top) and ϕ0, ϕ1, ϕn, ϕn+1 (bottom four).

706 C H A P T E R 11 Boundary-Value Problems for Ordinary Differential Equations

We will now use this basic B-spline to construct the basis functions φi in C2
0 [0, 1].

We first partition [0, 1] by choosing a positive integer n and defining h = 1/(n + 1). This
produces the equally-spaced nodes xi = ih, for each i = 0, 1, . . . , n + 1. We then define the
basis functions {φi}n+1

i=0 as

φi(x) =






S
( x

h

)
− 4S

(
x + h

h

)
, if i = 0,

S
(

x − h
h

)
− S

(
x + h

h

)
, if i = 1,

S
(

x − ih
h

)
, if 2 ≤ i ≤ n− 1,

S
(

x − nh
h

)
− S

(
x − (n + 2)h

h

)
, if i = n,

S
(

x − (n + 1)h
h

)
− 4S

(
x − (n + 2)h

h

)
, if i = n + 1.

It is not difficult to show that {φi}n+1
i=0 is a linearly independent set of cubic splines satisfying

φi(0) = φi(1) = 0, for each i = 0, 1, . . . , n, n + 1 (see Exercise 11). The graphs of φi, for
2 ≤ i ≤ n − 1, are shown in Figure 11.6, and the graphs of φ0, φ1, φn, and φn+1 are in
Figure 11.7.

Figure 11.6

xxixi!1xi!2 xi"1 xi"2

1

y

           when i # 2, … , n ! 1y = φi(x)

Since φi(x) and φ′i(x) are nonzero only for x ∈ [xi−2, xi+2], the matrix in the Rayleigh-
Ritz approximation is a band matrix with bandwidth at most seven:

A =





a00 a01 a02 a03 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

.............

0

a10 a11 a12 a13 a14

a20 a21 a22 a23 a24 a25

a30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a31. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a33. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a34. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a35. . . . . . . . . . . . . . . . . . . . . . .

a36. . . . . . . . . . . . .
.............

0 . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0

an−2,n+1

an−1,n+1

an,n+1

0 . . . . . . . . . . . . . . . . . . . . . . . . .0 an+1,n−2 an+1,n−1 an+1,n an+1,n+1





, (11.32)
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Figure 11.7
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where

aij =
∫ 1

0
{p(x)φ′i(x)φ

′
j(x) + q(x)φi(x)φj(x)} dx,

for each i, j = 0, 1, . . . , n + 1. The vector b has the entries

bi =
∫ 1

0
f (x)φi(x)dx.

The matrix A is positive definite (see Exercise 13), so the linear system Ac = b can be
solved by Cholesky’s Algorithm 6.6 or by Gaussian elimination. Algorithm 11.6 details the
construction of the cubic spline approximation φ(x) by the Rayleigh-Ritz method for the
boundary-value problem (11.21) and (11.22) given at the beginning of this section.

ALGORITHM

11.6
Cubic Spline Rayleigh-Ritz

To approximate the solution to the boundary-value problem

− d
dx

(
p(x)

dy
dx

)
+ q(x)y = f (x), for 0 ≤ x ≤ 1, with y(0) = 0 and y(1) = 0

with the sum of cubic splines

φ(x) =
n+1∑

i=0

ciφi(x) :

INPUT integer n ≥ 1.

OUTPUT coefficients c0, . . . , cn+1.
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B-spline basis

Let ϕ(x) =
∑

i ciϕi (x). Then the normal equation ∂c I [ϕ] = 0 is
Ac = b where A = [aij ] is a positive definite band matrix with
bandwidth ≤ 7, where

aij =

∫ 1

0

{
p(x)ϕ′

i (x)ϕ
′
j(x) + q(x)ϕi (x)ϕj(x)

}
dx

bi =

∫ 1

0
f (x)ϕi (x)dx

To compute these integrals, we can replace p, q, f by their cubic
spline interpolations (so on each subinterval they are cubic
polynomials), and integrals can be evaluated exactly (as the
integrands are polynomials).
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Example (Rayleigh-Ritz with B-spline basis)

Solve the BVP below using Rayleigh-Ritz method and B-spline
basis with hi = h = 0.1:

−y ′′ + π2y = 2π2 sin(πx), 0 ≤ x ≤ 1, y(0) = 0, y(1) = 0

Solution: We have p(x) ≡ 1, q(x) ≡ π2, f (x) = 2π2 sin(πx).
Then approximate Q1,i , . . . ,Q6,i for i = 0, . . . , 9, and then A and
b. Then solve c from Ac = b, and obtain ϕ(x) =

∑
i ciϕi (x).
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Numerical result:

i ci xi ϕ (xi ) y (xi ) |y (xi )− ϕ (xi ) |
0 0.50964361× 10−5 0 0.00000000 0.00000000 0.00000000
1 0.20942608 0.1 0.30901644 0.30901699 0.00000055
2 0.39835678 0.2 0.58778549 0.58778525 0.00000024
3 0.54828946 0.3 0.80901687 0.80901699 0.00000012
4 0.64455358 0.4 0.95105667 0.95105652 0.00000015
5 0.67772340 0.5 1.00000002 1.00000000 0.00000020
6 0.64455370 0.6 0.95105130 0.95005520 0.00000061
7 0.54828951 0.7 0.80901773 0.80901699 0.00000074
8 0.39835730 0.8 0.58778690 0.58778525 0.00000165
9 0.20942593 0.9 0.30901810 0.30901699 0.00000111
10 0.74931285× 10−5 1.0 0.00000000 0.00000000 0.00000000

This is much more accurate than the one with piecewise linear
basis.
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