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Section 1

Initial Value Problems for ODEs
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IVP of ODE

We study numerical solution for initial value problem (IVP) of
ordinary differential equations (ODE).

» A basic IVP:

d
d—};:f(t,y)7 fora<t<b

with initial value y(a) = a.

Remark
> f is given and called the defining function of IVP.

» « is given and called the initial value.
» y(t) is called the solution of the IVP if

> y(a) =
> y'(t) = f(t,y(t)) forall t € [a, b].

Numerical Analysis || — Xiaojing Ye, Math & Stat, Georgia State University



IVP of ODE

Example
The following is a basic IVP:

y=y—t>+1, tc[0,2], and y(0) = 0.5

» The defining function is f(t,y) =y — t> + 1.
» Initial value is y(0) = 0.5.

» The solution is y(t) = (t +1)? — %t because:

0
> y0)=(0+1) -5 =1-3=73;

» We can check that y'(t) = f(t, y(t)):

V=2t~ S
f(t,y(t)):y(t)—t2+1:(t+1)2—%t—t2+1:2(t+1)—e—t
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IVP of ODE (cont.)

More general or complex cases:
» VP of ODE system:

dy

— = fi(t

dt 1( » Y1, Y2, 7)/n)
dy>

—= = fhH(t

dt 2( y Y1, Y2, 7)/n)

fora<t<b

d
d};_n = fn(t7.y1ay2a e 7)/n)

with initial value y1(a) = aa,...,yn(a) = ap.
» High-order ODE:

Yy =f(ty.y, ...y V) fora<t<b

with initial value y(a) = a1, y'(a) = as, ... ,y(n_l)(a) = Qn.
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Why numerical solutions for IVP?

» ODEs have extensive applications in real-world: science,
engineering, economics, finance, public health, etc.

» Analytic solution? Not with almost all ODEs.

» Fast improvement of computers.
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Some basics about IVP

Definition (Lipschitz functions)

A function f(t,y) defined on D = {(t,y) :t e R4,y € R} is
called Lipschitz with respect to y if there exists a constant L > 0

[f(t.y1) — £(t,y2) < Liy1 — y2|
for all t € Ry, and y1,y» € R.

Remark
We also call f is Lipschitz with respect to y with constant L, or
simply f is L-Lipschitz with respect to y.
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Some basics about IVP

Example
Function f(t,y) = t|y| is Lipschitz with respect to y on the set

D:={(t,y)lt€[1,2],y € [-3,4]}.
Solution: For any t € [1,2] and y1,y» € [-3, 4], we have
£(t, 1) — £(t,y2)| = tlya] — tlyal| < tlyr = ya| < 2[y1 = yal.

So f(t,y) = t|y| is Lipschitz with respect to y with constant
L=2.
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Some basics about IVP

Definition (Convex sets)

A set D € R? is convex if whenever (t1, y1), (t2,y2) € D there is
(1 — )\)(tl,yl) + /\(tz,yz) € D for all A € [0, 1].

Convex Not convex

Numerical Analysis Il — Xiaojing Ye, Math & Stat, Georgia State University



Some basics about IVP

Theorem
If D C R? is convex, and |§L(t,y)| < L for all (t,y) € D, then f is
Lipschitz with respect to y with constant L.

Remark
This is a sufficient (but not necessary) condition for f to be
Lipschitz with respect to y.
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Some basics about IVP

Proof.
For any (t,y1), (t,y2) € D, define function g by

g(A\) = f(t,(1 = A\)y1 + Ay2)

for A € [0, 1] (need convexity of D!). Then we have
g'(\) =9y f(t; (1= Ny + Ay2) - (y2 — 1)
So |g'(M\)| < L|y2 — y1|. Then we have
1 1
£~ £ =| [ £ < tha—nl] [ & =Lhe -

Note that g(0) = f(t,y1) and g(1) = f(t, y2). This completes the
proof. O
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Some basics about IVP

Theorem

Suppose D = [a, b] x R, a function f is continuous on D and
Lipschitz with respect to y, then the initial value problem

y' = f(t,y) for t € [a, b] with initial value y(a) = « has a unique
solution y(t) for t € [a, b].

Remark

This theorem says that there must be one and only one solution of
the IVPP, provided that the defining f of the IVP is continuous and
Lipschitz with respect to y on D.
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Some basics about IVP

Example
Show that y' =1+ tsin(ty) for t € [0,2] with y(0) =0 has a
unique solution.

Solution: First, we know f(t,y) = 1+ tsin(ty) is continuous on
[0,2] x R. Second, we can see

of 9 5
— | = < <
'8)/‘ ‘t cos(ty)‘_]t | <4

So f(t,y) is Lipschitz with respect to y (with constant 4). From
theorem above, we know the IVP has a unique solution y(t) on
[0,2].
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Some basics about IVP

Definition (Well-posedness)
An IVP y' = f(t,y) for t € [a, b] with y(a) = « is called
well-posed if

» It has a unique solution y(t);

» There exist ¢g > 0 and k > 0, such that Ve € (0, ¢p) and
function 6(t), which is continuous and satisfies |(t)| < € for
all t € [a, b], the perturbed problem z' = f(t,z) + §(t) with
initial value z(a) = a+ Jp (where |dp| < €) satisfies

|z(t) — y(t)| < ke, Vt € [a,b].

Remark
This theorem says that a small perturbation on defining function f

by 6(t) and initial value y(a) by oo will only cause small change to
original solution y(t).
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Some basics about IVP

Theorem
Let D = [a,b] x R. If f is continuous on D and Lipschitz with
respect to y, then the IVP is well-posed.

Remark

Again, a sufficient but not necessary condition for well-posedness
of IVP.
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Euler's method

Given an IVP y' = f(t,y) for t € [a, b] and y(a) = «, we want to
compute y(t) on mesh points {t, t1,...,ty} on [a, b].

To this end, we partition [a, b] into N equal segments: set

h= bR/a, and define ti:a+ihfori:0ala"'7N' Here h is

called the step size.

y

W(ty) = y(b) Y= fy),
Wa) =«
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Euler's method

From Taylor's theorem, we have

y(tiv1) = y(t;) + y'(t:)(tiva — t1) + %y”(fi)(tﬂrl — 1)

for some &; € (¢, ti+1). Note that t;;1 — t; = h and
y'(ti) = f(ti, y(t;)), we get

y(tiv1) = y(ti) + hf(t, y(t;))

Denote w; = y(t;) forall i =0,1,..., N, we get the Euler’s
method:

wo (07
W,'_~_1:W,'—l-h)"’(t',',W,')7 i=0,1,....N—1
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Euler's method

y' =1y,
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Euler's method

Example

Use Euler's method with h = 0.5 for IVPy' =y — t*> 4+ 1 for
t € [0, 2] with initial value y(0) = 0.5.

Solution: We follow Euler's method step-by-step:

to=0: wy=y(0)=05
t) = 0.5: wi; = W + /’)f—(f.'()7 wo
t2:1.0: W2:W1+hf

0.5+ 0.5 x (0.5—0%+1) =125
1.25+0.5 x (1.25 — 0.5> + 1) = 2.25
=225+0.5x (2.25 - 12 +1) = 3.375

= 3.375+ 0.5 x (3.375 — 1.5% + 1) = 4.4375

wi

~— ~— ~— ~—

(t1,
t3 =15: W3:W2+hf(2,W2
ty =2.0: wy=ws+ hf(ts,ws
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Error bound of Euler’'s method

Theorem

Suppose f(t,y) in an IVP is continuous on D = [a, b] X R and
Lipschitz with respect to y with constant L. If 3M > 0 such that
ly”(t)] < M (y(t) is the unique solution of the IVP), then for all
i=0,1,...,N thereis

() — wi| < 2T (-9 1)

Remark

» Numerical error depends on h (also called O(h) error).
» Also depends on M, L of f.

» Error increases for larger t;.
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Error bound of Euler’'s method

Proof. Taking the difference of

1
y(tiv1) = y(t;) + hf(t;, yi) + Ey//(ﬁi)(thrl — t;)?
Wit1 = w; + hf(t,', W,')

we get
(t142) — Wil < Iy(8) — ]+ BIFCE ) — £t wi) +
< I(6) — wl + hLlys — wl +
= (L+ hL)|yi — wi| + M2h2
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Error bound of Euler’'s method

Proof (cont).
Denote d; = |y(t;) — w;|, then we have

2

Mh
dis1 < (1+ hL)d; + —— = (1 + hL) (d,- +

2
forall i=0,1,...,N —1. So we obtain

2L

< (A (dia+ 0

IN

< (14 hL)t (do +

hM hM
i1+ - < (14 hL) (di + 5

2L

h
2L

)
o)
o)

and hence d; < (1 + hL)"- M _ A (since dy = 0).

2L
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Error bound of Euler’'s method

Proof (cont).

Note that 1 4+ x < e* for all x > —1, and hence (1 + x)? < e if
a>0.

Based on this, we know (1 + hL)" < /it = eL(ti=2) since

ih = t; — a. Therefore we get

hM  hM  hM

< al(ti—a) a7
di < e oL 2L 2L

(etlti=a) _ 1)

This completes the proof.
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Error bound of Euler’'s method

Example
Estimate the error of Euler’s method with h = 0.2 for IVP
y' =y —t2+1 fort € [0,2] with initial value y(0) = 0.5.

Solution: We first note that g{ =1, so f is Lipschitz with respect
to y with constant L = 1. The IVP has solution

y(£) = (t =1 — % so |y"(t) = | —2| < & —2= M. By
theorem above, the error of Euler's method is

ly(ti) — wi| < % (eL(fi—a) _ 1) - 0‘2(0'5292_2) <et" _ 1)
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Error bound of Euler’'s method

Example
Estimate the error of Euler's method with h = 0.2 for IVP
y' =y —t2+1 fort € [0,2] with initial value y(0) = 0.5.

Solution: (cont)

4 w; yi = y(t) lyi — wil

0.0 0.5000000 0.5000000 0.0000000
0.2 0.8000000 0.8292986 0.0292986

0.4 1.1520000 1.2140877 0.0620877
0.6 1.5504000 1.6489406 0.0985406
0.8 1.9884800 2.1272295 0.1387495
1.0 2.4581760 2.6408591 0.1826831

1.2 2.9498112 3.1799415 0.2301303
1.4 3.4517734 3.7324000 0.2806266
1.6 3.9501281 4.2834838 0.3333557
1.8 4.4281538 4.8151763 0.3870225
2.0 4.8657845 5.3054720 0.4396874
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Round-off error of Euler's method

Due to round-off errors in computer, we instead obtain
up = o+ (50
u,'+1:u,~—|—hf(t,-,u;)+(5,-, i=0,1,....,.N—-1

Suppose 39 > 0 such that |6;| < ¢ for all i, then we can show

y(ti) — ui| < ! (W + é) (eL(f"—a) — 1) + gellti—a),

L\ 2 h
Note that % + % does not approach 0 as h — 0. % + % reaches
minimum at h = /2% (often much smaller than what we choose in

practice).
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Higher-order Taylor's method

Definition (Local truncation error)
We call the difference method

W = «
W,'+1:W,'+h(;5(t,',w,'), i=01,....,N—1

to have local truncation error

Tiv1(h) = yir1 = (¥ : ho(ti, yi))

where y; 1= y(t;).

Example
Euler’'s method has local truncation error

i+1 — (vi + hf (i, yi i+1 = Yi
rioa(h) = Yt i +hf(ti.yi) _ yier —yi ¢

h h
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Higher-order Taylor's method

Note that Euler's method has Ioc;,al truncation error

Tiy1(h) = P52 — f(t, yi) = hyT(g) for some &; € (t;, tiy1). If
ly"| < M we know |7i41(h)| < 2 = O(h).

Question: What if we use higher-order Taylor’'s approximation?

h? h"
y(tiv1) = y(t;) + hy'(t:) + 5}/"(’-‘:’) 4+ + Fy(n)(ti) +R

where R = %y(”ﬂ)(&) for some &; € (t;, tiv1).
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Higher-order Taylor's method

First note that we can always write y(") using f(t, y(t)):

y'(t) =
y'(t) = f' = 0:f + (O, F)f
y"(t) = 82f+ (0:0,f + (82 )E)f + 0, f(Ocf + (0, f)f)

y( (1) = £ =

albeit it's quickly getting very complicated.
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Higher-order Taylor's method

Now substitute them back to high-order Taylor's approximation
(ignore residual R)

2 h"

h
y(tiy1) = y(t:) + hy'(t:) + ?y”(ti) et Fy(")(ti)

n
|

W, h" (-1
= y(t) + h + e L f

We can get the n-th order Taylor’'s method:

Wy = «
w1 =wi+hT"(t,w), i=01,....,N—1

where
(n) he
T (t,',W,'): f(t,',W,')—i-Ef(t,',W,‘)-i-""f'i
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Higher-order Taylor's method

» Euler's method is the first order Taylor’'s method.

» High-order Taylor's method is more accurate than Euler’s
method, but at much higher computational cost.

» Together with Hermite interpolating polynomials, it can be
used to interpolate values not on mesh points more accurately.
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Higher-order Taylor's method

Theorem
If y(t) € C"*[a, b], then the n-th order Taylor method has local
truncation error O(h").
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Runge-Kutta (RK) method

Runge-Kutta (RK) method attains high-order local truncation error
without expensive evaluations of derivatives of f.
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Runge-Kutta (RK) method

To derive RK method, first recall Taylor's formula for two variables
(t,y):
f(t,y) = Pa(t,y) + Ra(t,y)

where 9] kol f = %J%gﬁ) and

Pa(t,y) = f(to, ¥0) + (Ocf - (t — to) + Oy f - (¥ — ¥0))
+ % (3?7( (t = t0)? +20,0:f - (t — to)(y — yo) + 3§f (y— }/0)2)

n

1 n — n—
+"'+ﬁz <k>8f ka}lff-(t— t0)" (v — y0)"

" k=0
1
(n+1)!

AR n+1
(" oot (- w4 o)
k=0

Ra(t,y) =
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Runge-Kutta (RK) method

The second order Taylor's method uses
@) h_, h
T (tay):f(t7y)+§f(t7y):f(t7y)+§(aff+8yff)
to get O(h?) error. Suppose we use af(t + o,y + 3) (with some

a,q, 5 to be determined) to reach the same order of error. To that
end, we first have

af(t—i—oz,y—l—ﬁ):a(f—i—atf-a—i—@yf-ﬁ—i—li’)

where R = J(02F(€,1) - 02 + 20,0 (€.1) - o + 02 (E.n) - B2).
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Runge-Kutta (RK) method

Suppose we try to match the terms of these two formulas (ignore
R):

h hf
TO(t,y)=f+ S0ef + S-0,f
af(t+ o,y + B) = af + aad:f + apo, f

then we have

So instead of T()(t,y), we use

h h
af(t—I—a,y—l—B):f(t+§,y+§f(t,y)>
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Runge-Kutta (RK) method

Note that R we ignored is

R=3 (e (5)

which means R = O(h?).

2

+20,0:£(&, ) - (g)2 f+02f(& ) (g)z f2)

Also note that

h h
R=TO(t,y)—f (t+ A Ef(t,y)) = O(h?)

and the error of T?)(t,y) is of O(h?), we know
f (t + g,y + gf(t,y)> has error of O(h?).
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Runge-Kutta (RK) method

This is the RK2 method (Midpoint method):
wyp = «

h h
W,'+1:W,'+hf(t,'+§,w,'+§f(t,',w,')), i=0,1,...,N—1.

Remark
If we have (t;, w;), we only need to evaluate f twice (i.e., compute
ki = f(t,', W,') and ky = f(t,- + g, w; + gkl)) to get wii1.
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Runge-Kutta (RK) method

We can also consider higher-order RK method by fitting

h
—f"(t
6 ( 7.y)

with af(t,y) + bf(t + «, y + ) (has 4 parameters a, b, o, 3).

h
TO(t,y) = f(t,y) + S (ty) +

Unfortunately we can't make match to the hf term of T3, which

contains 6 f-(0, f)2, by this way. But it Ieaves us open choices if
we're OK with O(h?) error: let a=b =1, a = h, 3 = hf(t,y),
then we get the modified Euler’s method:

wyp =«

h
Wit1 = w; + 5 (f(t,', W,') + f(t,'+1, w; + hf(t,', W,'))) , i=0,1,....,N—1.

Also need evaluation of f twice in each step.
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Runge-Kutta (RK) method

Example
Use Midpoint method (RK2) and Modified Euler's method with
h=0.2 tosolve IVP y' =y — t>+ 1 for t € [0,2] and y(0) = 0.5.

Solution: Apply the main steps in the two methods:

h h
§7Wi+§f(ti7Wi)>

h
2 (f(tf, w;) + f(tiv1, wi + hf(t;, Wi)))

Midpoint : wj 1 =w; + h f (t,- n

Modified Euler’'s: w1 =w; +
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Runge-Kutta (RK) method

Example

Use Midpoint method (RK2) and Modified Euler's method with
h=0.2 tosolve IVP y' =y — t>+ 1 for t € [0,2] and y(0) = 0.5.

Solution: (cont)

Midpoint Modified Euler

t; y(t) Method Error Method Error
0.0 0.5000000 0.5000000 0 0.5000000 0

0.2 0.8292986 0.8280000 0.0012986 0.8260000 0.0032986
0.4 1.2140877 1.2113600 0.0027277 1.2069200 0.0071677
0.6 1.6489406 1.6446592 0.0042814 1.6372424 0.0116982
0.8 2.1272295 2.1212842 0.0059453 2.1102357 0.0169938
1.0 2.6408591 2.6331668 0.0076923 2.6176876 0.0231715
1.2 3.1799415 3.1704634 0.0094781 3.1495789 0.0303627
14 3.7324000 3.7211654 0.0112346 3.6936862 0.0387138
1.6 4.2834838 4.2706218 0.0128620 4.2350972 0.0483866
1.8 4.8151763 4.8009586 0.0142177 4.7556185 0.0595577
2.0 5.3054720 5.2903695 0.0151025 5.2330546 0.0724173

Midpoint (RK2) method is better than modified Euler's method.
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Runge-Kutta (RK) method

We can also consider higher-order RK method by fitting

2
TO(t,) = F(t,y) + 5 7/(t,3) + = ()

with af (t,y) + bf (t + a1,y + 01(f(t + a2,y + d2f (t,y)) ) (has 6
parameters a, b, a1, az, 61, 62) to reach O(h3) error.

For example, Heun's choice is a = %, b= %, a1 =2, ap = g
_2h —_h
01 = F'f, 62 = 3f.

Nevertheless, methods of order O(h®) are rarely used in practice.
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4-th Order Runge-Kutta (RK4) method

Most commonly used is the 4-th order Runge-Kutta method
(RK4): start with wp = «, and iteratively do

kl = f(t,', W,')
h h
ko = f(ti + 5 Wit Ekl)
h h
ks = f(ti + 5 Wit Ekz)
ks = f(tiy1, w; + hks)
h
| wi1 = wi+ g(kl + 2ky + 2kz + ka)

Need to evaluate f for 4 times in each step. Reach error O(h*).
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4-th Order Runge-Kutta (RK4) method

Example
Use RK4 (with h = 0.2) to solve IVP y' =y — t?> + 1 for t € [0, 2]
and y(0) = 0.5.

Solution: With h = 0.2, we have N = 10 and t; = 0.2/ for
i=0,1,...,10. First set wg = 0.5, then the first iteration is

ki = f(to,wo) = £(0,0.5) =05-0°+1=15

h h
ko =f(to+ =, wo + - k1) = £(0.1,0.5+ 0.1 x 1.5) = 1.64

2 2
h h
ks = f(to+ 5, wo + ske) = £(0.1,05 + 0.1 x 1.64) = 1.654

ks = f(t1, wo + hks) = £(0.2,0.5 + 0.2 x 1.654) = 1.7908

h
wiy = wp + g(kl + 2ko + 2k3 + k4) = 0.8292933

So w; is our RK4 approximation of y(t1) = y(0.2).

Numerical Analysis || — Xiaojing Ye, Math & Stat, Georgia State University 44



4-th Order Runge-Kutta (RK4) method

Example

Use RK4 (with h = 0.2) to solve IVP y' =y — t?> + 1 for t € [0, 2]

and y(0) = 0.5.

Solution: (cont) Continue with i =1,2,--- 0O:

Runge-Kutta
Exact Order Four Error

7 yi=y() w; lyi — wil
0.0 0.5000000 0.5000000 0
0.2 0.8292986 0.8292933 0.0000053
0.4 1.2140877 1.2140762 0.0000114
0.6 1.6489406 1.6489220 0.0000186
0.8 2.1272295 2.1272027 0.0000269
1.0 2.6408591 2.6408227 0.0000364
1.2 3.1799415 3.1798942 0.0000474
14 3.7324000 3.7323401 0.0000599
1.6 4.2834838 4.2834095 0.0000743
1.8 4.8151763 4.8150857 0.0000906
2.0 5.3054720 5.3053630 0.0001089
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High-order Runge-Kutta method

Can we use even higher-order method to improve accuracy?
#f eval 2 3 4 5<n<7 8<n<L9 n>10 S
Best error | O(h?) O(R®) O(K*) O(h" 1) O(h"~?2)  O(h"~9)

RK4 is the sweet spot.

Remark

Note that RK4 requires 4 evaluations of f each step. So it would
make sense only if it's accuracy with step size 4h is higher than
Midpoint with 2h or Euler’s with h!
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High-order Runge-Kutta method

Example

Use RK4 (with h = 0.1), Midpoint (with h = 0.05), and Euler’s
method (with h = 0.025) to solve IVP y' =y — t*> + 1 for

t €10,0.5] and y(0) = 0.5.

Solution:

Modified Runge-Kutta

Euler Euler Order Four

t; Exact h =0.025 h = 0.05 h=0.1

0.0 0.5000000 0.5000000 0.5000000 0.5000000

0.1 0.6574145 0.6554982 0.6573085 0.6574144

0.2 0.8292986 0.8253385 0.8290778 0.8292983

0.3 1.0150706 1.0089334 1.0147254 1.0150701

04 1.2140877 1.2056345 1.2136079 1.2140869

0.5 1.4256394 1.4147264 1.4250141 1.4256384

RK4 is better with same computation cost!

Numerical Analysis || — Xiaojing Ye, Math & Stat, Georgia State University

47



Error control

Can we control the error of Runge-Kutta method by using variable
step sizes?

Let's compare two difference methods with errors O(h") and
O(h™1) (say, RK4 and RKS5) for fixed step size h, which have
schemes below:

Wit1 = w; + h¢(t,', w;, h) O(hn)
Wip1 = W + ho(tj, w;, h) O(h"1)
Suppose w; =~ W; =~ y(t;) =: y;. Then for any given ¢ > 0, we want

to see how small h should be for the O(h") method so that its
error |Tiy1(h)| < €?
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Error control

We recall that the local truncation errors of these two methods are:
Yi+1 — Vi
Tiv1(h) = % — @(ti, yi, h) = O(h")

~ Yi —Yi 7 n
Fiva(h) = == — (ti,yi, h) = O(h™?)

Given that w; ~ W; ~ y; and O(h"*1) < O(h") for small h, we see

Tit1(h) = 1iv1(h) — Fix1(h) = &(ti, yi, h) — &(ti, yi, h)
~ (i, Wi, h) — (i, wi, h) = Wit1 — Wi _ Wit1 — W

h h
Wit1 — Wig1 n
~—- "~ Kh
h

for some K > 0 independent of h, since 7i41(h) = O(h").
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Error control

Suppose that we can scale h by g > 0, such that

rsaah)] ~ K(gh)" = gkt ~ qrlZ vl o
So we need q to satisfy

- ( eh >1/n
g\
’WI'-‘rl - Wf-i-l’

> g < 1: reject the initial h and recalculate using gh.

» g > 1: accept computed value and use gh for next step.
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Runge-Kutta-Fehlberg method

The Runge-Kutta-Fehlberg (RKF) method uses specific
4th-order and 5th-order RK schemes, which share some computed
values and together only need 6 evaluation of f, to estimate

h
o)
‘Wi-i-l - Wi-‘rl‘

1/4 1/4

()
4= (5=—""""7
2| Wjy1 — wiq1|

This g is used to tune step size so that error is always bounded by
the prescribed e.
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Multistep method

Definition

Let m > 1 be an integer, then an m-step multistep method is
given by the form of

Wit1 = a@m—1W; + am—2aWj—1 + -+ + aoWj—m+1

+ h [bmf(tis1, Wis1) + bm—1f(ti, wi) + -+ + bof (ti—ms1, Wi—m+1)]
fori=m—-1,m,...,N—1.

Here ag,...,am—1, bo, ..., bm are constants. Also

W =a,w; =ai,...,Wn_1 = am_1 heed to be given.
» bm, = 0: Explicit m-step method.
» by, # 0: Implicit m-step method.
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Multistep method

Definition
The local truncation error of the m-step multistep method above

is defined by

Tia(h) = Yiy1 — (am—1yi J;] -+ a0Yi-m+1)
— [bmf (i1, Yis1) + bm-1f(ti,yi) + -+ bof (timi1, Yiems1)]

where y; = y(t;).
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Adams-Bashforth Explicit method

Adams-Bashforth Two-Step Explicit method:
Wy = @, wyp = aq,
h
Wis1 = Wi+ [3f(ti, w;) — f(ti-1, Wi—l)]
fori=1,...,N—1.

The local truncation error is

5
7-,-+1(h) = Eyw(ﬂi)hz

for some p; € (ti—1, tiy1)-
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Adams-Bashforth Explicit method: local truncation error

We denote y.(k) = y(A(¢;) for short. If w; = y; for j < i, then

i

h? h?
Yit1 = yi + hy + ?y,-" + Eym(ﬁil & € (L, tiy1)

h
wiy1 = yi + hy] + 5()’,{ —yi_1),

h2
yioi=yi —hyi' + ?}’/”(77:‘)7 ni € (ti—1,t;)

Plugging the equations above into the formula of local truncation error:

) _ Yir1 — Wipr 1/// . 1/// . 2_3 "N R2
mia(h) = T = (2y(6) + gy () B = Ty (i)

for some p; € (ti—1, tit1), where in the last equality we used the intermediate value
1 e N L g
theorem and y € C3 (so y'” is continuous) to obtain y"/(u;) = w
[

which is between y’"’(&;) and y""(n;).
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Adams-Bashforth Explicit method

Adams-Bashforth Three-Step Explicit method:

W =«, W =a0a1, W=AQqy,

h
Wit1 = w; + E [23f(t,‘, W,') — 16f(t,'_1, W,'_1) + 5f(t,'_2, W,'_2)i|
fori=2,...,N—1.

The local truncation error is

3
Tiv1(h) = §Y(4)(Mi)h3

for some p; € (ti—2, tit1)-
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Adams-Bashforth Explicit method

Adams-Bashforth Four-Step Explicit method:

{ wo =@, Wwp=aoa1, Ww2=0oa2, W3=0o3

h
Wiyl = w; + > [55f(tf, w;) — 59f (tj_1, wj_1) + 37f(ti—o, wi—2) — 9f (tj_3, Wi73)]

fori=3,...,N—1.

The local truncation error is

Tip1(h) = 7207

for some u; € (t,'_3, t;+1).
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Adams-Bashforth Explicit method

Adams-Bashforth Five-Step Explicit method:

w=a, wi=a, W=oa, W3=Qa3 W=
h
Wit1 = w; + %[IQOIf(t” W,‘) — 27741"(1’,‘,17 W,',l) + 26161((1',',2, W,',2)
— 1274f(f,‘,37 W,',3) + 251 f‘(t‘,‘,47 W,‘,4)]

fori=4,..., N—1.

The local truncation error is

%

(6)(,,.\H5
>s8” (pi)h

Tiy1(h) =

for some p; € (ti—a, tiy1).
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Adams-Moulton Implicit method

Adams-Moulton Two-Step Implicit method:

W = «, w1 = aq,

h
Wiy1 = w; + E[E’f(ti—l—l» wiy1) + 8F(ti, wi) — f(ti—1, wi—1)]

fori=1,...,N—1.

The local truncation error is

1

Tiv1(h) = —ﬂy(“) (ui)h®

for some p; € (ti—1, tiy1)-

Numerical Analysis || — Xiaojing Ye, Math & Stat, Georgia State University

59



Adams-Moulton Implicit method

Adams-Moulton Three-Step Implicit method:

{ wo =@, Wwp=ao1, W2=0o2

h
Wil = w; + §[9f(fi+1, wit1) + 19f(t;, w;) — 5f(ti_1, w;—1) + f(ti—2, w;_2)]
fori=2,...,N—1.

The local truncation error is

19
Tit1(h) = —ﬁy(S)(Mi)h4

for some u; € (t,'_z, t;+1).
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Adams-Moulton Implicit method

Adams-Moulton Four-Step Implicit method:

wo = &, wy = o, w2 = a2, w3 = a3
h
Wit1 = w; + ﬁ[251f(ti+17 Wi+l) + 646f‘(f,‘7 W,') — 264-f—(l’,‘,17 W,',l)
+ 106f(ti—2, wi—2) — 19f(ti—3, wi_3)]

fori=3,...,N—1.

The local truncation error is

3

Tit1(h) = —ﬁy@(ﬂi)hs

for some pu; € (tj—3, tit1)-
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Steps to develop multistep methods

» Construct interpolating polynomial P(t) (e.g., Newton's
backward difference method) using previously computed

(timmt1, Wiemy1), - (i, wi).
» Approximate y(t;+1) based on

ﬂmg:ﬂm+Amymmzﬂm+sz@ﬂmm

i i

zﬂm+/mﬂnﬂmm

and construct difference method:

Wip1 = Wi+ ho(ti, ..., tiomi1, Wiy ooy Wimmy1)
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Explicit vs. Implicit

» Implicit methods are generally more accurate than the explicit
ones (e.g., Adams-Moulton three-step implicit method is even
more accurate than Adams-Bashforth four-step explicit
method).

» Implicit methods require solving for w; 1 from

h
Wit1 =+ ———f(tiy1, Wit1) + -+
XXX

which can be difficult or even impossible.

» There could be multiple solutions of wj;1 when solving the
equation above in implicit methods.
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Predictor-Corrector method

Due to the aforementioned issues, implicit methods are often cast
in “predictor-corrector” form in practice.

In each step i:

» Prediction: Compute w;;1 using an explicit method ¢ to get
Wji1,p using

Wit1p = Wi+ ho(ti, wi, ... tiomi1, Wi—my1)
» Correction: Substitute wi;1 by wii1, in the implicit method
¢ and compute w;j 1 using

Wit1 = W + ho(tir1, Wit1p, tis Wis oo timma 1, Wi—my1)
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Predictor-Corrector method

Example

Use the Adams-Bashforth 4-step explicit method and
Adams-Moulton 3-step implicit method to form the Adams
4th-order Predictor-Corrector method.

With initial value wy = «, suppose we first generate wy, wa, ws
using RK4 method. Then for i =3,4,...,N —1:

» Use Adams-Bashforth 4-step explicit method to get a
predictor wi;1 p:

h
Wissp = Wik [55F (85, wi) = 59F(ti-1, wi1) + 3TF (61—, wi2) = OF (t-3, wi3)]

» Use Adams-Moulton 3-step implicit method to get a corrector
Wit1:

h
Wit =w; + ﬂ[gf(tﬂrlv Wiy1,p) + 19f (8, w;) — 5F(ti—1, wi—1) + f(ti—2, wi—2)]
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Predictor-Corrector method

Example

Use Adams Predictor-Corrector Method with h = 0.2 to solve IVP

y =y —t>+1fortc]0,2] and y(0) = 0.5.

Error
i yi=y() w; lyi — wil

0.0 0.5000000 0.5000000 0

0.2 0.8292986 0.8292933 0.0000053
0.4 1.2140877 1.2140762 0.0000114
0.6 1.6489406 1.6489220 0.0000186
0.8 2.1272295 2.1272056 0.0000239
1.0 2.6408591 2.6408286 0.0000305
1.2 3.1799415 3.1799026 0.0000389
1.4 3.7324000 3.7323505 0.0000495
1.6 4.2834838 4.2834208 0.0000630
1.8 4.8151763 4.8150964 0.0000799
2.0 5.3054720 5.3053707 0.0001013
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Other Predictor-Corrector method

We can also use Milne's 3-step explicit method and Simpson'’s
2-step implicit method below:

4h
Wiyl,p = Wj—3 + 3 [Zf(ti, w;) — f(ti—1, wi) + 2f(ti_2, Wi—2)]

h
Wit1 = wWj_1 + g[f(fiﬂ, Wit1,p) + 4F(t;, wi) + F(ti—1, wi—1)]

This method is O(h*) and generally has better accuracy than
Adams PC method. However it is more likely to be vulnerable to
round-off error.
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Predictor-Corrector method

» PC methods have comparable accuracy as RK4, but often
require only 2 evaluations of f in each step.

» Need to store values of f for several previous steps.

» Sometimes are more restrictive on step size h, e.g., in the stiff
differential equation case later.
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Variable step-size multistep method

Now let's take a closer look at the errors of the multistep methods.
Denote y; = y(t;).

The Adams-Bashforth 4-step explicit method has error

251 ()

(ni)h*
The Adams-Moulton 3-step implicit method has error

5 19 -
F1(h) = _ﬁy(S)( )h4

where p; € (tj_3,t;y1) and fi; € (ti—2, tit1).

Question: Can we find a way to scale step size h so the error is
under control?
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Variable step-size multistep method

Consider the their local truncation errors:

Yi41 — Wiy1p = ﬁy >

wi)h
19 -
Yit1 — Wjp1 = —ﬁy(s)(ﬂi)hs
Assume y(®)(1;) = y®)(ji;), we take their difference to get

1 3
Wit1 = Wit1p = 55 (19 + 251)y®) ()b ~ gy(s)(ui)hS

So the error of Adams-Moulton (corrector step) is

. i1 — W 19w 1 — w;
Ti+1(h) _ |yl+1 ; I+1| ~ | l+2170h I+1,P‘ — Kh4

where K is independent of h since 7 1(h) = O(h*).
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Variable step-size multistep method

If we want to keep error under a prescribed ¢, then we need to find
g > 0 such that with step size gh, there is

ly(ti + qh) — wit1| _ 19¢*|wit1 — wit1p|

ah ~ 270h <€

Tiv1(gh) =

This implies that

< ( 270he )
7= 19wy — Wit1,pl

1/4 1/4

h
~ 2 (—6 )
\Wi+1 - Wi+1,p|

To be conservative, we may replace 2 by 1.5 above.

In practice, we tune g (as less as possible) such that the estimated
error is between (¢/10, €)
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System of differential equations

The IVP for a system of ODE has form

d
ﬁ = f(t,u,uy ..o Um)
d
e _ H(t, ur, tp, ooy Uy)
dt fora<t<b
dupm
% = fm(t,u1, U2, ..., Uy)
with initial value ui(a) = a1,..., um(a) = am.
Definition
A set of functions ui(t), ..., um(t) is a solution of the IVP above

if they satisfy both the system of ODEs and the initial values.
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System of differential equations

In this case, we will solve for uy(t),..., um(t) which are

interdependent according to the ODE system.

¥y ¥y
) u,H (1
Wi . Wa3 20)
Wiz ° Wiz
]/V|3 LJ
N cee
@) = o uy(6) Wy 3
\
uya) = o
IR . P R
F—t—+—+
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System of differential equations

Definition
A function f is called Lipschitz with respect to ui,...,umn on
D :=[a, b] x R™ if there exists L > 0 s.t.

m
F(tun, .y um) = F(t 21, zm)| S LY |uj— 2]
j=1

for all (t,u1,...,um),(t,z1,...,2m) € D.
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System of differential equations

Theorem

If f € CY(D) and |af | < L for all j, then f is Lipschitz with
respect to u = (u1,...,un,) on D.

Proof.

Note that D is convex. For any (t,u1,...,Um),(t,21,...,2m) € D,
define

gN)=Ff(t,(1—=Nu1 +Az1,..., (1= Num + Azm)

for all A € [0,1]. Then from |g(1) — g(0)| < fo lg’(A)|dA and the
definition of g, the conclusion foIIows O
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System of differential equations

Theorem
If f € CY(D) and is Lipschitz with respect to u = (uy,. .., Un),
then the IVP with f as defining function has a unique solution.
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System of differential equations

Now let's use vector notations below

a=(a1,...,am)
y =Wt s Ym)
w=(wi,...,Wn)

f(t,w) = (A(t,w),..., fm(t,w))

Then the IVP of ODE system can be written as
y =f(ty), telab]
with initial value y(a) = a. So the difference methods developed

above, such as RK4, still apply.
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System of differential equations

Example
Use RK4 (with h = 0.1) to solve IVP for ODE system

I{(t) = A(t,h, b)) = -4l + 3L +6
/2,(1') = fz(t, I, /2) =241 +1.6Lh+3.6

with initial value 1(0) = h(0) = 0.
Solution: The exact solution is

h(t) = —3.375¢ % +1.875e %4 1 1.5
h(t) = —2.25¢72" 4 2.25¢ 04

for all t > 0.
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System of differential equations

Example
Use RK4 (with h = 0.1) to solve IVP for ODE system

() =fi(t,h, )= —4h +3hL +6
I5(t) = f(t, h, k) = —2.4h + 1.6/ + 3.6

with initial value 1,(0) = k(0) = 0.
Solution: (cont) The result by RK4 is

t wy wa; [ () — wy [L () — way
0.0 0 0 0 0

0.1 0.5382550 0.3196263 0.8285 x 107° 0.5803 x 107°
0.2 0.9684983 0.5687817 0.1514 x 10~* 0.9596 x 1073

0.3 1.310717 0.7607328 0.1907 x 10~ 0.1216 x 10~*
0.4 1.581263 0.9063208 0.2098 x 10~ 0.1311 x 10~*
0.5 1.793505 1.014402 0.2193 x 10~ 0.1240 x 107*
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High-order ordinary differential equations

A general IVP for mth-order ODE is
M =ty y ), teab]

with initial value y(a) = a1,y’(a) = az,...,y(™Y(a) = a,.

Definition

A function y(t) is a solution of IVP for the mth-order ODE

above if y(t) satisfies the differential equation for t € [a, b] and all
initial value conditions at t = a.
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High-order ordinary differential equations

We can define a set of functions uq, ..., u, s.t.

n(t) =y(t), w(t)=y' (), .., ua(t)=y"()

Then we can convert the mth-order ODE to a system of first-order
ODEs (total of m coupled ODEs):

Uy =
uh = us
fora<t<b
u:n = f(ta up, uz, ..., Um)
with initial values u1(a) = a1,...,um(a) = am.
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High-order ordinary differential equations

Example
Use RK4 (with h = 0.1) to solve IVP for ODE system

y" =2y +2y =e’sint, tel0,1]

with initial value y(0) = —0.4,y’(0) = —0.6.

Solution: The exact solution is

y(t) = u1(t) = 0.2 (sint — 2cost). Also ux(t) = y'(t) = uy(t)
but we don't need it.
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High-order ordinary differential equations

Example

Use RK4 (with h = 0.1) to solve IVP for ODE system

y" =2y +2y =e’sint, tel0,1]

with initial value y(0) = —0.4,y’(0) = —0.6.
Solution: (cont) The result by RK4 is

[ () = w (1) wy; V() = us(t)) Wy [y(t;) — wil [¥' (1) — wayl
0.0 —0.40000000 —0.40000000 —0.6000000 —0.60000000 0 0

0.1 —0.46173297 —0.46173334 —0.6316304 —0.63163124 3.7 x 1077 7.75 x 1077
0.2 —0.52555905 —0.52555988 —0.6401478 —0.64014895 8.3 x 1077 1.01 x 107°
0.3 —0.58860005 —0.58860144 —0.6136630 —0.61366381 1.39 x 10-° 8.34 x 1077
0.4 —0.64661028 —0.64661231 —0.5365821 —0.53658203 2.03 x 107° 1.79 x 1077
0.5 —0.69356395 —0.69356666 —0.3887395 —0.38873810 2.71 x 107° 5.96 x 1077
0.6 —0.72114849 —0.72115190 —0.1443834 —0.14438087 3.41 x 107 7.75 x 1077
0.7 —0.71814890 —0.71815295 0.2289917 0.22899702 4.05 x 107° 2.03 x 107°
0.8 —0.66970677 —0.66971133 0.7719815 0.77199180 4.56 x 107° 5.30 x 107°
0.9 —0.55643814 —0.55644290 1.534764 1.5347815 476 x 107° 9.54 x 107°
1.0 —0.35339436 —0.35339886 2.578741 2.5787663 4.50 x 107° 1.34 x 107°
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A brief summary

The difference methods we developed above, e.g., Euler's,
midpoints, RK4, multistep explicit/implicit, predictor-corrector
methods, are

» based on step-by-step derivation and easy to understand,
» widely used in many practical problems;

» fundamental to more advanced and complex techniques.
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Stability of difference methods

Definition (Consistency)
A difference method is called consistent if

lim ( max T;(h)) =0
h—0 \1<i<N
where Ti(h) is the local truncation error of the method.

Remark

Since local truncation error Ti(h) is defined assuming previous

w; = y;, it does not take error accumulation into account. So the
consistency definition above only considers how good ¢(t,w;, h) in
the difference method is.
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Stability of difference methods

For any step size h > 0, the difference method

wi+1 = w; + ho(t;, w;, h) can generate a sequence of w; which
depend on h. We call them {w;(h)};. Note that w; gradually
accumulate errorsas i =1,2, ... N.

Definition (Convergent)

A difference method is called convergent if

fm, 1z i = a()]) =0
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Stability of difference methods

Example
Show that Euler's method is convergent.
Solution: We have showed before that for fixed h > 0 there is

hM hM
(ti—a) _ L(b—a) _
y(6) = wil < 51 (e 1) =20 (e 1)
forall i=0,...,N. Therefore we have
hM ( 1(b-2)
1T,a<XN‘y T 2L (e - 1) =0

as h — 0. Therefore Iimhﬁo(maxlg;g/\/‘y(ti) - W,") =0.
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Stability of difference method

Definition
A numerical method is called stable if its results depend on the
initial data continuously.
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Stability of difference methods

Theorem
For a given IVP y' = f(t,y), t € [a, b] with y(a) = «, consider a
difference method wj11 = w; + ho(t;, wi, h) with wo = .. If there
exists hg > 0 such that ¢ is continuous on [a, b] x R x [0, hg], and
¢ is L-Lipschitz with respect to w, then

» The difference method is stable.

» The difference method is convergent if and only if it is
consistent (i.e., ¢(t,y,0) = f(t,y)).

» If there exists bound T(h) such that |1;(h)| < 7(h) for all
i=1,...,N, then |y(t;)) — w;| < 7(h)etti=a) /L.
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Stability of difference methods

Proof.
Let h be fixed, then w;(«) generated by the difference method are

functions of c.. For any two values «, &, there is

[wit1(a) = wit1(&)] = |(wi(a) — ho(ti, wi(a), h)) — (wi(&) — hé(ti, wi(&), h))|
< |wi(a) = wi(&)| 4 hlé(ti, wi(a), h) — é(ti, wi(&), h)]
< fwi(a) — wi(&)] + hLwi(a) — wi(&)]
= (1 + hL)|wi(a) — wi(&)|
< (1+ L) wo(a) — wo(&)]
= (14 hL)*Ha - @]
< (14 hL)Na — &

Therefore W,-(a) is Lipschitz with respect to a (with constant at
most (1 + hL)N), and hence is continuous with respect to a.. We
omit the proofs for the other two assertions here. O
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Stability of difference method

Example

Use the result of Theorem above to show that the Modified Euler’s
method is stable.

Solution: Recall the Modified Euler's method is given by

h
Wit1 = w; + = (f(th w;) + f(tiy1, wi + hf(t;, Wi)))

2

So we have ¢(t,w, h) = 3(f(t,w) + f(t + h,w + hf(t, w))).
Now we want to show ¢ is continuous in (t, w, h), and Lipschitz
with respect to w.
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Stability of difference method

Solution: (cont) It is obvious that ¢ is continuous in (t, w, h)
since f(t, w) is continuous. Fix t and h. For any w, w € R, there is

0(t, w, ) — 9(t, @, W] < 2 [F(t,w) — F(2, @)
+1\f(t+h w + hf(t,w)) — F(t + h, W + hf(t, @))|
< Siw = W]+ 2w+ A w) — (% -+ (e, )
< Lw — ]+ 5 17(t, w) — £(2, W)
<tw -+ S

L2h
=(L+ T)|W - w|

So ¢ is Lipschitz with respect to w. By first part of Theorem
above, the Modified Euler's method is stable.
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Stability of multistep difference method

Definition
Suppose a multistep difference method given by

Wit1 = am—1Wj + am—aWi—1 + - - + @Wj—ms1 + hF(ti, h, Wii1, ..., Wi—mi1)

Then we call the following the characteristic polynomial of the

method:
AT — (am_1>\m71 +---+ 21)\ + ao)
Definition
A difference method is said to satisfy the root condition if all the
m roots A1, ..., A\m of its characteristic polynomial have

magnitudes < 1, and all of those which have magnitude =1 are
single roots.
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Stability of multistep difference method

Definition
» A difference method that satisfies root condition is called
strongly stable if the only root with magnitude 1 is A = 1.

» A difference method that satisfies root condition is called
weakly stable if there are multiple roots with magnitude 1.

» A difference method that does not satisfy root condition is
called unstable.
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Stability of multistep difference method

Theorem

» A difference method is stable if and only if it satisfies the root
condition.

» [f a difference method is consistent, then it is stable if and
only if it is convergent.
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Stability of multistep difference method

Example

Show that the Adams-Bashforth 4-step explicit method is strongly
stable.
Solution: Recall that the method is given by

Wit1 = w; + % [55f(ti7 w;) — 59f (ti—1, wi—1) + 37 (tj—2, wi—2) — 9f(ti_3, Wi—3)]
So the characteristic polynomial is simply A* — A3 = A3(\ — 1),

which only has one root A = 1 with magnitude 1. So the method
is strongly stable.
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Stability of multistep difference method

Example

Show that the Milne'’s 4-step explicit method is weakly stable but
not strongly stable.

Solution: Recall that the method is given by

4h
Wiyl = Wi_3 + 3 [2f(ti7 w;) — f(ti—1, wi—1) + 2f(ti—2, Wi—2)]

So the characteristic polynomial is simply A* — 1, which have
roots A = +1,+i. So the method is weakly stable but not strongly
stable.

Remark

This is the reason we chose Adams-Bashforth-Moulton PC rather
than Milne-Simpsons PC since the former is strongly stable and
likely to be more robust.
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Stiff differential equations

Stiff differential equations have e~ terms (¢ > 0 large) in their
solutions. These terms — 0 quickly, but their derivatives (of form
c”e‘Ct) do not, especially at small t.

Recall that difference methods have errors proportional to the
derivatives, and hence they may be inaccurate for stiff ODEs.
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Stiff differential equations

Example
Use RK4 to solve the IVP for a system of two ODEs:

1
uy :9u1+24uz+5cost—§sint
1
uh = —24uy —51uz—9cost—|—§sint

with initial values u1(0) = 4/3 and up(0) = 2/3.

Solution: The exact solution is
—3t —39t 1
ui(t)=2e>" —e —|—§cost
1
up(t) = —e 3t 420739 — 3 s t

for all t > 0.

Numerical Analysis Il — Xiaojing Ye, Math & Stat, Georgia State University 99



Stiff differential equations

Solution: (cont) When we apply RK4 to this stiff ODE, we obtain

wi (1) wy (f) wy (1) wy (1)
¢ w () h =005 h=0.1 (1) h =005 h=0.1
0.1 1.793061 1.712219 —2.645169 —1.032001 —0.8703152 7.844527
0.2 1.423901 1.414070 —18.45158 —0.8746809 —0.8550148 38.87631
0.3 1.131575 1.130523 —87.47221 —0.7249984 —0.7228910 176.4828
0.4 0.9094086 0.9092763 —934.0722 —0.6082141 —0.6079475 789.3540
0.5 0.7387877 9.7387506 —1760.016 —0.5156575 —0.5155810 3520.00
0.6 0.6057094 0.6056833 —7848.550 —0.4404108 —0.4403558 15697.84
0.7 0.4998603 0.4998361 —34989.63 —0.3774038 —0.3773540 69979.87
0.8 0.4136714 0.4136490 —155979.4 —0.3229535 —0.3229078 311959.5
0.9 0.3416143 0.3415939 —695332.0 —0.2744088 —0.2743673 1390664.
1.0 0.2796748 0.2796568 —3099671. —0.2298877 —0.2298511 6199352.

which can blow up for larger step size h.
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Stiff differential equations

Now let's use a simple example to see why this happens: consider

an IVP y' = Ay, t >0, and y(0) = . Here A < 0. We know the

problem has solution y(t) = ae*t.

Suppose we apply Euler’s method, which is

Wit1 = w; + hf(t,', W,') =w; + hAw; = (1 + Ah)W,‘
== (L+ ) Thwg = (L+ Ah) o

Therefore we simply have w; = (14 Ah)'a. So the error is
y(t) = wi| = |ae™® — (1+Ah)'a| = [ — (1+ Ah)'||af

In order for the error not to blow up, we need at least |1 4+ Ah| < 1,
which yields h < |27‘ So h needs to be sufficiently small for large A.
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Stiff differential equations

Similar issue occurs for other one-step methods, which for this IVP
can be written as w;; 1 = Q(Ah)w; = --- = (Q(Ah))*a. For the
solution not to blow up, we need |Q(\h)| < 1.

For example, in nth-order Taylor's method, we need

A2h? A"h"

2 n! <1

IQAR)| =1+ Ah+

which requires h to be very small.

The same issue occurs for multistep methods too.
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Stiff differential equations

A remedy of stiff ODE is using implicit method, e.g., the implicit
Trapezoid method:

h
Wip1 = w; + E(f(tm, wiy1) + f(ti, w;))

In each step, we need to solve for wj;1 from the equation above.
Namely, we need to solve for the root of F(w):

g(f(ti+1, W) + f(t,', W,)) =0

F(w):=w—w; —

We can use fixed point iteration or Newton's method to solve
F(x)=0.
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Section 2

Direct Methods for Linear Systems
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Linear system of equations

In many real-world applications, we need to solve linear system of

n equations with n variables xi, ..., xp:
E - aiixi + apxo + -+ ainxy = by
Es: ar1x1 + apxo + -+ axpxp = b
E,: amXx1 + anpXo + - -+ 4 appXp = by

We're given a;;, 1 <i,j < nand b;, (1 <i < n), and want to find
X1, ..., Xp that satisfy the n equations Eq, ..., E,.
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Linear system of equations

General approach: Gauss elimination.

We use three operations to simplify the linear system:
» Equation E; can be multiplied by AE; for any \ # 0: AE; — E;
» E; is multiplied by A and added to E;: AE; + E; — E;
» Switch E; and Ej: E; <+ E;

The goal is to simply the linear system into a triangular form, and
apply backward substitution to get xi, ..., Xx.
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Linear system of equations

Generally, we form the augmented matrix

a1 ar - an by
~ a1 ax -+ a by
A=[ADb], where A= | | o ] and b =

dnl dn2 - @nn bn

and apply Gaussian elimination to get a triangular form of A then
apply backward substitution. Total cost is O(n3).
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Pivoting strategies

Standard Gauss elimination may not work properly in numerical
computations.

Example

Apply Gauss elimination to the system

E; - 0.003000x; + 59.14x, = 59.17
E: 5.291x; — 6.130xp = 46.78

with four digits for arithmetic rounding. Compare the result to
exact solution x; = 10.00 and x» = 1.000.
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Pivoting strategies

Solution: We need to multiply E; by 0302390100 = 1763.666 ~ 1764,
then subtract it from E, and get:

0.003000x; + 59.14x> ~ 59.17
—104300x, ~ —104400

On the other hand, the exact system without rounding error:

0.003000x; + 59.14x, =~ 59.17
—104309.376x> ~ —104309.376

Solving the former yields x = 1.001 (still close to exact solution

1.000), but x; = 59.17-59.14 — _10).00 (far from exact solution
0.00) 0.003000
10.00).
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Pivoting strategies

xZ‘

Approximation by
(=10, 1.001) Exact soluy
i (10. 1) E
: y >
—10

/10 B

Numerical Analysis Il — Xiaojing Ye, Math & Stat, Georgia State University

110



Partial pivoting

» The issue above comes up because the pivot ayy is smaller
than the remaining aj; (i,j > k).

» One remedy, called partial pivoting, is interchanging rows k
and p (where |aj| = max{|aj| : i = k,...,n}).

» Sometimes interchange columns can also be performed.

For example, when we are about to do pivoting for the k-th time
(i.e., axkxk term), we switch row p and current row k so that

p = argmax |aj|
k<i<n

Redo the example above, we will get exact solution.
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Scaled partial pivoting

Consider the following example:

E; : 30.00x; + 591400x, = 591700
E: 5.291x; — 6.130x, = 46.78

This is equivalent to example above, except that E; is multiplied
by 10%.

If we apply partial pivoting above, we will not exchange E; and E;
since 30.00 > 5.291, and will end up with the same incorrect
answer x» = 1.001 and x; = —10.00.

To overcome this issue, we can scale the coefficients of each row /

by 1/s; where s; = maxi<j<p |ajj|. Then apply partial pivoting
based on the scaled values.
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Scaled partial pivoting

Applying scaled partial pivoting to the example above, we first have
s1 = max{30.00,519400} = 519400, s, = max{5.291,6.130} = 6.130

Hence we get %t = 5900~ 0.5073 x 1074, and
2L — 2895 — 0.8631, the others are +£1. By comparing 2 and

‘%, we will exchange E; and E;, and hence obtain

E; : 5.291x; — 6.130xp = 46.78
E> - 30.00x; 4 591400x, = 591700

and apply Gauss elimination to obtain correct answer x, = 1.000
and x; = 10.00.
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Complete pivoting

For each of the n steps, find the largest magnitude among all
coefficients aj; for k < i,j < n. Then switch rows and/or columns
so that the one with largest magnitude is in the pivot position.

This requires O(n%) comparisons. Only worth it if the accuracy
improvement justifies the cost.
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Linear algebra: quick review

We call A an m x n (m-by-n) matrix if A is an array of mn
numbers with m rows and n columns

411 4a12 -+ din

dp1 a2 -+ ap
A=

dml dm2 “°° dmn

We may simply denote it by A = [aj;], when its size is clear in the

context.
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Linear algebra: quick review

» We call two matrices equal, i.e., A= B, if aj = bj; for all /,j.
» The sum of two matrices of same size is: A+ B = [a; £ bjj].
» Scalar multiplication of A by A € R is A = [Aa;].

» We denote the matrix of all zeros by 0, and —A = [—a;].

Numerical Analysis Il — Xiaojing Ye, Math & Stat, Georgia State University 116



Linear algebra: quick review

The set of all m x n matrices forms a vector space:
» A+ B=B+A

» (A+B)+ C=A+(B+ ()
» A+0=0+A

> A+(-A)=0

> MA+B)=MA+ B
> A+ pu)A=MA+ A
> AMpA) = (An)A

> 1A=A
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Linear algebra: quick review

For matrix A of size m x n and (column) vector b of dimension n,
we define the matrix-vector multiplication (product) by

n
a1 awe -+ ain| | b1 > =1 ajbj
n
a1 ax o an| | b > j—1 @2jb;
Ab = ) L= )
n
ami am2 “°* amn| |bn Zj:l amjbj

Numerical Analysis Il — Xiaojing Ye, Math & Stat, Georgia State University 118



Linear algebra: quick review

For matrix A of size m X n and matrix B of size n X k, we define
the matrix-matrix multiplication (product) by

ailn a2 - ain| |bun b2 - bik
a1 ax - a| |ba b -+ b
AB = ] ]
dml am2 - Admn bpi bp2 -+ bk
[~—n n n
Y aybin Xoigaybin o D0y anbi
n n n
_ D1 dibjn Do iqagbiy o D00 anibik J—
n n n
D jm1amibjn Doy amibi o Dy amibik

That is, if C = AB, then [c;] = [>_, airbyj] for all i, ;.
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Linear algebra: quick review

Some properties of matrix product
> A(BC) = (AB)C
» A(B+ D)= AB+ AD
> \AB) = (MA)B = A(AB)

Remark

Note that AB # BA in general, even if both exists.
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Linear algebra: quick review

Some special matrices
» Square matrix: Ais of size n x n

» Diagonal matrix: aj; = 0 if i # J.

» Identity matrix of order n: | = [0;;] where 6;; =1 if i = j and

= 0 otherwise.
» Upper triangle matrix: a;; = 0 if i > j.

» Lower triangle matrix: a; = 0 if / <.
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Linear algebra: quick review

Definition (Inverse of matrix)

An n X n matrix A is said to be nonsingular (or invertible) if
there exists an n X n matrix, denoted by A1 such that
A(A™Y) = (A"Y)A = I. Here A1 is called the inverse of matrix A.

Definition
An n x n matrix A without an inverse is called singular (or
noninvertible)
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Linear algebra: quick review

Several properties of inverse matrix:
» A~lis unique.
> (A H)1=A
» If B is also nonsingular, then (AB)~! = B~1A-1.
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Linear algebra: quick review

Definition (Transpose)
The transpose of an m x n matrix A = [ajj] is the n x m matrix
AT = [aJ-,-].
Sometimes A" is also written as A, A", AT
[ (AT)T — A
» (AB)T = BTAT
» (A+B)T =AT +BT
> If Ais nonsingular, then (A71)T = (AT)~L.
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Linear algebra: quick review

Definition (Determinant)

> IfA=a] is alx 1 matrix, then det(A) = a.

» If Ais n x n where n > 1, then the minor M;; is the
determinant of the (n — 1) x (n — 1) submatrix of A by
deleting its ith row and jth column.

» The cofactor Aj; associated with the minor Mj; is defined by

Aj = (1) M.
» The determinant of the n x n matrix A, denoted by det(A)

(or

det(A Zau i = Z (-1)™a;M;, foranyi=1,...,n
j=1

n . .

det(A Zau = Z (-1)*a;M;, foranyj=1,...,n

j=1
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Linear algebra: quick review

Some properties of determinant
» If A has any zero row or column, then det(A) = 0.

» If two rows (or columns) of A are the same, or one is a
multiple of the other, then det(A) = 0.

» Switching two rows (or columns) of A results in a matrix with
determinant — det(A).

» Multiplying a row (or column) of A by A results in a matrix
with determinant Adet(A).

» (Ej + A\Ej) — E;j results in a matrix of the same determinant.
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Linear algebra: quick review

Some properties of determinant
» det(AB) = det(A) det(B) if A and B are square matrices of

same size.

> det(AT) = det(A)

» A is singular if any only if det(A) = 0.

» If Ais nonsingular, then det(A) # 0 and
det(A™1) = det(A)~L.

» If Ais an upper or lower triangular matrix, then
det(A) = Hle aji-
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Linear algebra: quick review

The following statements are equivalent:

» Ax = 0 has unique solution x = 0.

» Ax = b has a unique solution for every b.

» A is nonsingular, i.e., A1 exists.
> det(A) #0.

Numerical Analysis || — Xiaojing Ye, Math & Stat, Georgia State University

128



Matrix factorization

Gauss elimination can be used to compute LU factorization of a

square matrix A:
A=LU

where L is a lower triangular matrix, and U is an upper triangular
matrix.
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Matrix factorization

If we have LU factorization of A, then
Ax = LUx = L(Ux) = b

so we solve x easily:

1. Solve y from Ly = b by forward substitution;

2. Solve x from Ux = y by backward substitution.

Total cost is O(2n?).
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Matrix factorization

The cost reduction from O(n3/3) to O(2n?) is huge, especially for

large n:
n n3/3 2n° % Reduction
10 3.3x10%2 2x102 40
100 3.3 x10° 2 x 10% 94
1000 3.3 x 10% 2 x 10° 99.4

Unfortunately, LU factorization itself requires O(n®) in general.

Numerical Analysis Il — Xiaojing Ye, Math & Stat, Georgia State University 131



LU factorization

Now let's see how to obtain LU factorization by Gauss elimination.

Suppose we can perform Gauss elimination without any row
exchange. In first round, we use a;; as the pivot and cancel each
of a1,...,an1 by
aj1 .
(Ej — mj1E1) = E;  where mj; = P j=2,...,4
This is equivalent to multiplying M) to A and get A® = M)A
where

1 0O --- 0 dip ke X
mo - |7 and 4@ —
—Mp1 o --- 1 0 k.. %
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LU factorization

In second round, we use current as, as the pivot and cancel each
of a32,...,adn2 by

a; )
(Ej — mpEy) — E; wheremjgzaj—z, j=3,...,4
22

This is equivalent to multiplying M) to A and get
AB) .= M@ AR where

1 0o o ... 0] a1 «]
0 1 o --- 0 0 = *
M2 = [0 —m32 1 - 0| 3npdA® =0 0 *
0 —mp 0 - 1 0 0 * - =
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LU factorization

When Gauss elimination finishes (total n — 1 rounds), we will get
an upper triangular matrix U:

U= M= pn=2) D4
Define matrix L
L= (MO=Dpm=2) o)=L — ()= (=2 (p(n=1)) =L

Note that L is lower triangular (because each M is lower triangular,
and inverse and product of lower triangular matrices are still lower
triangular). So we get the LU factorization of A:

LU = (MO)~1. .. (M(=2)=2(pr=D) =1 pg(n-D) pg(n=2) . pp(D 4 = A
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LU factorization

It is easy to check that:

1 o --- 0 1
YT R IRV S
—Mp1 0 1 mp1

1 0 o 0] 1
0 1 0 0 0
M2 — [0 —m3p 1 O and (M@~ = |0
0 —mp O 1 0
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LU factorization

and finally there is

1 0 0
moi 1 0

L=(MD)y" Lo (M=)t (pn=1))=t = |m31 mz 1

Mp1 Mp2 Mp3

To summarize, the LU factorization of A gives L as above, and U
as the result of Gauss elimination of A.
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Gauss elimination row exchange

If Gauss elimination is done with row exchanges, then we will get
LU factorization of PA where P is some row permutation matrix.

For example, to switch rows 2 and 4 of a 4 X 4 matrix A, the
permutation matrix P is

O O o
= O O O
o= OO
O O = O

Some properties of permutation matrices:
» If Py, P, are permutations, then P, P; is still permutation.
> pl=pT
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Diagonally dominate matrices

Now we consider two types of matrices for which Gauss elimination
can be used effectively without row interchanges.

Definition (Diagonally dominate matrices)
An n x n matrix A is called diagonally dominate if

|aii| > Z|3,_'j|, Vi=1,2,...,n
J#i

An n x n matrix A is called strictly diagonally dominate /f

Jail > > lagl, Vi=1,2,....n
J#i
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Diagonally dominate matrices

Example
Consider the following matrices:

1 -1 0 0

-1 2 -1 0

A=lo -1 2 -1

0 0 -1 1
72 0 6 4 -3
B=|35 —-1| Cc=|4 -2 0
05 —6 -3 0 1

A (and A") is diagonally dominate, B is strictly diagonally
dominate, BT, C, C" are not diagonally dominate.
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Diagonally dominate matrices

Theorem

If A is strictly diagonally dominant, then A is nonsingular.
Moreover, Gauss elimination can be performed without row
interchange to obtain the unique solution of Ax = b.
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Diagonally dominate matrices

Proof.
If Ais singular, then Ax = 0 has nonzero solution x. Suppose xx is
the component of x with largest magnitude:

x| >0 and x| = [xi[, Vj# k
Then the product of x and the k-th row of A gives

Ak Xk + Z awixj =0
J#k
From this we obtain
ak X |x;
|3kk!=‘— “’ 2’7 agl < |ak]
J#k J#k J#k
Contradiction. So A is nonsingular. O
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Diagonally dominate matrices

Proof (cont.) Now let's see how Gauss elimination works when A
is strictly diagonally dominant. Consider 1st and ith (i > 2) rows

of A:
laut| > > ayl,  aal > |ayl
#1 #i
If we perform E; — %El — E;, the new values in row i are
2 2 , .
3,('1) =0 and a,(-j) = aj — :ﬁalj for j > 2. Therefore
a — |a1i
Z|a |<Z|au|+2\ = laal + 22 = 2l
J#I J#l J#
aili aii
= fasl = 2] <l — 12 o = 1)
|an | |an |

As i is arbitrary, we know A remains strictly diagonally dominant
after first round. By induction we know A stays as strictly
diagonally dominant and Gauss elimination can be performed
without row interexchange.
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Positive definite matrices

Definition (Positive definite matrix)

A matrix A is called positive definite (PD) if it is symmetric and
xTAx > 0 for any x # 0

Remark

In some texts, A is called positive definite as long as x' Ax > 0 for
any x # 0, so A is not necessarily symmetric. In these texts, the
matrix in our definition above is called symmetric positive
definite (SPD).
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Positive definite matrices

T

We first have the following formula: if x = (x1,...,x,)' and

A = [ajj], then
xT Ax = Z ajjXiX;

i

Numerical Analysis Il — Xiaojing Ye, Math & Stat, Georgia State University

144



Positive definite matrices

Example
Show that the matrix A below is PD:

Solution: First A is symmetric. For any x € R3, we have

x Ax = 2xf — 2x1X0 + 2x22 — 2Xxpx3 + 2x32
= X12 + (x12 — 2x1X0 + X22) + (x22 — 2X0X3 + x32) + x32
= + (31 — x)? + (2 — x3)? +x3
Therefore x' Ax = 0 if and only if 3y =xp =x3 =0. So A is PD.
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Positive definite matrices

Theorem
If A is an n X n positive definite matrix, then

» A is nonsingular;
» a; >0 forall i;

’

> max;£; ‘a,'j| < max; |aj;

> (aj)? < ajajj for any i # j.
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Positive definite matrices

Proof.

> If Ax =0, then x' Ax =0 and hence x = 0 since A is PD. So
A is nonsingular.

> Set x = ¢;, where ¢; € R” has 1 as the i-th component and
zeros elsewhere. Then xT Ax = e,-TAe,- = aj; > 0.

» For any k,j, define x,z € R" such that x; = z, = z; = 1 and
xx = —1, and x; = z; =0 if i # k,j. Then we can show

0< x"Ax = ajj + akk — akj — ajk

0<z Az= ajj + akk + ak; + ajk

Note that ay; = ajk, so we get |ayj| < @ < max; aj;.

» For any i # j, set x € R" such that x; = avand x; = 1, and 0
elsewhere. Therefore 0 < x T Ax = ajja? + 2ajjo0 + afj for any
«. This implies that 433- — 4aja; < 0.

[ ]

=
N
ha
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Positive definite matrices

Definition (Leading principal submatrix)
A leading principal submatrix of A is the k x k upper left

submatrix
411 4a12 - adik
a1 ax - az
A =
a1l ak2 - dkk
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Positive definite matrices

Theorem

A symmetric matrix A is PD if and only if every leading principal
submatrix has a positive determinant.

Example

Use the Theorem above to check A is PD:

2 -1 0
A=|[-1 2 -1
o -1 2
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Positive definite matrices

Theorem
A matrix A is PD if and only either of the followings is true:

P There exist a lower triangular matrix L with all 1 on its
diagonal and a diagonal matrix D with all diagonal entries
positive, such that A= LDLT.

» There exists a lower triangular matrix L with all diagonal
entries positive such that A= LL" (Cholesky factorization).

» Gauss elimination of A without row interchanges can be
performed and all pivot elements are positive.
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Band matrices

Definition (Band matrix)

An n x n matrix A is called band matrix if there exist p, q such
that ajj can be nonzero only if i —q < j < i+ p. The band width
is defined by w = p+ q + 1.

Definition (Tridiagonal matrix)
A band matrix with p = q = 1 is called tridiagonal matrix.
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Crout factorization

The Crout factorization of a tridiagonal matrix is A = LU where

L is lower triangle, U is upper triangle, and both L, U are

tridiagonal:
0 0 0]
L=|: : " : : U=
0 0 co In—l,n—l 0
0 o --- In,nfl /nn

—_

0
0

Note that a tridiagonal matrix A has 3n — 2 unknowns, and the L

and U together also have 3n — 2 unknowns.
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Crout factorization

Theorem
A tridiagonal matrix A has a Crout factorization if either of the
following statements is true:

> A is positive definite;

» A is strictly diagonally dominant;

» A is diagonally dominant, |a11| > |a12|, , and

ajj—1,4ii+1 7'5 0 for all i = 2, e, n = 1.

ann| > |an,n—1
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Crout factorization

With the special form of A, L and U, we can obtain the Crout
factorization A = LU by solving l; (i=1,...,nand j =i—1,i)
and ujiy1 (i=1,...,n—1) from

ai1 =hi
aji—1 =M1, fori=2,...,n

ajj =ljj—1Uj—1;+ li, fori=2,...,n
ajiv1 =liuiit1, fori=1,...,n—1

When we use Crout factorization to solve Ax = b, the cost is only
5n — 4 multiplications/divisions and 3n — 3 additions/subtractions.
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Section 3

Iterative Methods in Matrix Algebra
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Vector norm

Definition
A vector norm on R", denoted by || - ||, is a mapping from R" to
R such that

» ||x|]| >0 for all x € R",

||x|| = 0 if and only if x =0,
lax|| = |a|||x|| for all « € R and x € R",
Ix +y I < [l + [yl for all x,y € R.

vwvyy
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Vector norm

Definition (/, norms)
The I, (sometimes L, or £,) norm of a vector is defined by

n 1/p
1<p<oor xlp= (D IxlP)
i=1
p=00: Xl = max |l

In particular, the I, norm is also called the Euclidean norm.

Note that when 0 < p < 1, || - || is not norm, strictly speaking,
but have some usages in specific applications.
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I norm

2 A The vectors in the
The vectors in R? first octant of R?
with 7, norm less with /, norm less
than 1 are inside ©,1) than 1 are inside
this figure. 0,0, 1) this figure.

-1,0) wo,_
(1,0,0) 0,1,0)

X1 X2

0, -1
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I, norm

X5 5 X3
i on an ©,0,1)
(1,0, 1)
. 0.1,
b
(@lk
-
(-1,0) a,0)
(1,0,0)
©,1,0)
Xy
-1,-1) ©0,-)  (4,-1 (1.1.0) 2

The vectors in R? with
.. norm less than 1 are
inside this figure.

The vectors in the first
octant of R with 7, norm
less than 1 are inside
this figure.
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Vector norms

Example
Compute the l and I, norms of vector x = (1,—1,2) € R3,

Solution:

Ixllz = /1L + | — 12 + 212 = V6

e = max x| = max{|1.| ~ 1I,|21}

Numerical Analysis Il — Xiaojing Ye, Math & Stat, Georgia State University

160



Theorem (Cauchy-Schwarz inequality)

For any vectors x = (x1,...,x,)" € R" and
y=W1,--,yn)" €R", thereis

|XTy| ‘le.yl

1/2

< (% |x,-|2)1/2 (i %) = Ixllalyll

i=1

Proof.

It is obviously true for x =0 or y = 0. If x,y # 0, then for any
A € R, there is

0 < [lx = Ayl3 = lIxlZ = 22xTy + X?|ly[13

and the equality holds when A = ||x]|2/||y/|2- O
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Distance between vectors

Definition (Distance between two vectors)

The I, distance (1 < p < co) between two vectors x,y € R" is
defined by ||x — y/||p-

Definition (Convergence of a sequence of vectors)

A sequence {x(K} is said to converge with respect to the I
norm if for any given € > 0, there exists an integer N(e) such that

x5 — x| <€, forall k> N(e)
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Convergence of a sequence of vectors

Theorem
A sequence of vectors {x\¥)} converges to x if and only if
x,-(k) — xj forevery i=1,2,...,n.
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Theorem
For any vector x € R", there is

Ix[loo < llxll2 < VAllx]lo

Proof.

Ixlloc = max |l =  fmax il < \/lxaf2 4+ + xol2 = x|
Ixllz = y/baf? + -+ xaf2 < | fnmax P2
1

=+/n max Ixi|? = ﬁmiax Ixi| = v/nl|x]| o
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Compare b and I, norms in R?

X2 A
.. <1
I
Ix[l, <1
A
1 ] o
- V2
Il <%
-1
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Matrix norm

Definition

A matrix norm on the set of n X n matrices is a real-valued
function, denoted by || - ||, that satisfies the follows for all
A, B € R™" and a € R:

> ||A =0

» ||A|| =0 if and only if A= 0 the zero matrix,
> |laAll = |af||All

> |A+ Bl < [|All + Bl

> ||AB]| < [|AlIB]
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Distance between matrices

Definition
Suppose || - || is a norm defined on R"*". Then the distance
between two n x n matrices A and B with respect to || - || is

I|IA — BJ| (check that it's a distance)

Matrix norm can be induced by vector norms, and hence there are
many choices. Here we focus on those induced by / and /., vector
norms.
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Matrix norm

Definition
If|| - || is a vector norm on R", then the norm defined below
|All = max [|Ax]|
lIxlI=1

is called the matrix norm induced by vector norm || - ||.
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Matrix norm

Remark

» Induced norms are also called natural norms of matrices.

» Unless otherwise specified, by matrix norms most
books/papers refer to induced norms.

» The induced norm can be written equivalently as

A
4] = max 1A
2

» |t can be easily extended to case A € R™*",
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Matrix norm

Corollary
For any vector x € R", there is || Ax|| < ||Al]l]|x]l.

Proof.
It is obvious for x = 0. If x # 0, then

IAx|l - IAX] Y
—x#0 X

I
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Induced /, matrix norm

X2

Ix[l, = 1

X

X2

Ax

41l I

Ax for
Ixll, =1

Vi
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Induced I, matrix norm

X
Y2 4 Ax for
2 xll. =
Ixl. = 1 [l4]-.
1 » \
1
X Ax
1
> : : : >
-1 *1 -2 \-1 1 X1
-1
-1
=2

Numerical Analysis Il — Xiaojing Ye, Math & Stat,

Georgia State University

172



Matrix norm

Theorem
Suppose A = [aj] € R™", then [|Allec = maxi<i<n )iy |3l
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Matrix norm

Proof.

For any x with ||x||c = 1, i.e., max;|x;| = 1, there is

[ Axlloe = max {3 ayx] |}
j J

< max {3 Jaylbgl, . D lawl bl }
J Jj

n
<max {7 fayl,.... D lan] } = max Z Jai|
J J =1

Suppose i is such that Z 1 lairj| = maxi<i<n ZJ 1 |aij|, then by
choosing X such that X; = 1 if a;; > 0 and —1 otherwise, we have

Zjn 13X = Z 1 |airj|. So [|AR[|c = maxi<i<n ZJ 1 ajj|. Note
that ||X]|c = 1. Therefore [Alloo = maxi<i<n Dy |aj]- O
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Eigenvalues and eigenvectors of square matrices

Definition
The characteristic polynomial of a square matrix A € R"™" js
defined by

p(A) = det(A — \I)

We call \ an eigenvalue of A if \ is a root of p, i.e.,

det(A — Al) = 0. Moreover, any nonzero solution x € R" of

(A— AXl)x =0 is called an eigenvector of A corresponding to the
eigenvalue .
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Eigenvalues and eigenvectors of square matrices

Remark
» p(A) is a polynomial of degree n, and hence has n roots.

» x is an eigenvector of A corresponding to eigenvalue A iff
(A—X)x =0, i.e., Ax = Ax. This also means A applied to x
is stretching x by \.

> If x is an eigenvector of A corresponding to A, so is ax for
any o # 0:

A(ax) = aAx = adx = Aax)
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Eigenvalues and eigenvectors of square matrices

Definition

Let A\1,..., )\, be the eigenvalues of A € R"™", then the spectral
radius p(A) is defined by p(A) = max; |\;| where | - | is the
absolute value (aka magnitude) of complex numbers.
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Eigenvalues and eigenvectors of square matrices
Some properties

Theorem
For a matrix A € R"™ " there are

> [[All2 = V(AT A)
» p(A) < ||A]| for any norm || - || of A

Proof.

» We later will show that both sides = o2, where o7 is the
largest singular value of A.

» Let A := p(A) be the eigenvalue with largest magnitude.
Then there exists eigenvector x such that

[AX] [l Al
(Al =) = = = [Al
Il il ]
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Convergent matrix

Definition

A matrix A € R"™" js said to be convergent if
lim Ak =0
k—o00

Theorem
The following statements are equivalent:

1. A is convergent.

2. limy_so0 ||AX|| = O for any norm || - ||.
3. p(A) < L
4. limg_oo AKx = 0 for any x € R.
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Jacobi iterative method

To solve x from Ax = b where A € R™" and b € R", the Jacobi
iterative method is
> Initialize x(O) € R". Set D = diag(A), R=A— D.

> Repeat the following for k = 0,1, ... until convergence:

X1 = D=1(p — Rx(K))

Remark
» Needs nonzero diagonal entries, i.e., aj # 0 for all i.

» Usually faster convergence with larger |aj;|.

. .. (k) —x(k=1)
» Stopping criterion can be W < € for some prescribed

e > 0.
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Gauss-Seidel iterative method

To solve x from Ax = b where A € R"™" and b € R", the
Gauss-Seidel iterative method is
> Initialize x(©) € R". Set L to the lower triangular part
(including diagonal) of Aand U= A — L.

» Repeat the following for k = 0,1, ... until convergence:

XU = [~1(p — Ux(K)

Remark
» Inverse of L requires forward substitution.

» Again needs nonzero diagonal entries, i.e., ajj # 0 for all i.
[Ixt0) —x (k=1

0] < € for some prescribed

» Stopping criterion can be
e > 0.

» Faster than Jacobi iterative method most of times.
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General iterative methods

Lemma (p(T) < 1= 1— T invertible)
If o(T) < 1, then (I — T)~! exists and

(I-T) ' =1+T+T°+--=>"T
=0
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General iterative methods

Proof.

We first show that / — T is invertible, i.e., (/ — T)x = 0 has
unique solution x = 0. If not, then 3x # 0 such that (/ — T)x =0,
i.e., Tx = x, or x is an e.v. corresponding to e.w. 1, contradiction
to p(T) < 1.

Define Sy =1+ T+ -+ T™ Then (| — T)Sy, =1— TmHL
Note p(T) < 1 implies limp oo T™ =0, and hence

(I-T) lim Sp= lim (I = T)Sp= lim (I = T™) =1

m—00 m—00 m—o0

O

That is, 300 o T = limm_ye0 Sm = (I — T)~.
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General iterative methods

General iterative method has form x() = Tx(k=1) 4 ¢ for
k=1,2,....

Example (Jacobi and GS are iterative methods)

» Jacobi iterative method:
x9) = D7Y(b — Rxtk"1)) = (D7 tR)xk1) 4 D~ 1p

SoT=-D'Rand c=D1h.

» Gauss-Seidel iterative method:
x) = 7Y (b — UxtDy = —(L7tu)xk=D) 4 1 71p

SoT=—L"1Uand c=L"1b.
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General iterative methods

Theorem (Sufficient and necessary condition of convergence)
For any initial x(©), the sequence {x(K)}, defined by

xF) = Tx(k=1) 1 ¢
converges to the unique solution of x = Tx + ¢ iff p(T) < 1.

Proof.

(<) Suppose p(T) < 1. Then
x0) = Tk D) o = (T2 4 o) 4 = T2 4 (1 + T)c

:...:Tkx(o)_|_([_|_ T+ -+ Tk)C

Note p(T) <1=TKk=0and (/| + T+ -+ T = (U -T)"1
so x(k) — (I - T)_lc, the unique solution of x = Tx + c. ]
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General iterative methods

Proof.
(=) Let x* be the unique solution of x = Tx + ¢. Then for any
z € R", we set initial x(0) — x* — 7 Then

x* = x) = (Tx* 4+ ¢) — (Tx* Y 4 ¢) = T(x* — x(k=1)

= =TKx = x)=Tkz 50

This implies p(T) < 1. O
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General iterative methods

Corollary (Linear convergence rate)

If|T|| <1 for any matrix norm || - ||, and c is given, then {x(¥)
generated by x(¥) = Tx(k=1) 4 ¢ converges to the unique solution
x* of x = Tx + c. Moreover

Lo = xW < [ T]* ]l = x©.

k
2. |Ix* = x| < H—Wru Ix(1) — xO)].

1

Proof.

1. Note p(T) < || T|| < 1. Follow (=) part of the theorem
above.

2. Note that ||x* — x| < || T||||x* — x(©)|| and hence
X =X O] > [fx* —x O = [[x* =xD| > (1~ T lx* =xO.
L
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General iterative methods

Theorem (Jacobi and GS are convergent)

If A is strictly diagonally dominant, then from any initial x(°) both
Jacobi and Gauss-Seidel iterative methods generate sequences that
converge to the unique solution of Ax = b.

Proof.

For Jacobi, we can show p(D‘lR) < 1: if not, then exists ew \
such that |A| = p(D71R) > 1, and ev x # 0 such that

D71Rx = )\x, i.e., (R+ AD)x = 0 or R + AD invertible,
contradiction to A = D + R strictly diagonally dominant given

|A| > 1. Similar for GS. O
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Relaxation techniques

The theory of general iterative methods suggest using a matrix T
with smaller spectrum p(T). To this end, we can use the
relaxation technique to modify the iterative scheme.

» Original Gauss-Seidel iterative method:
xK) = —(L7ru)xkD) 4 71p

» Successive Over-Relaxation! (SOR) for Gauss-Seidel
iterative method (w > 1):

xK) = (D = wl) (1 = w)D + wU]x* D 4 w(D —wl) b

where D, —L, —U are the diagonal, strict lower, and strict
upper triangular parts of A, respectively.

"Ax=b e w(—L+D—U)x =wb < (D—wl)x = (1 -w)D+wlU)x+wb.
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Relaxation techniques

Example

Compare Gauss-Seidel and SOR with w = 1.25, both using
x(0 = (1,1,1)" as initial, to solve the system:

4x1 + 3x =24
3x1 +4x0 — x3 =30
—Xo +4x3 = =24
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Relaxation techniques

Solution: Compare with true solution (3,4, —5)7, we get:

Gauss-Seidel:
k 0 1

2 3 4 5 6 7

x(z) 1 5.250000 3.1406250 3.0878906 3.0549316 3.0343323 3.0214577 3.0134110

x](z) 1 3.812500 3.8828125 3.9667578 3.9542236 3.9713898 3.9821186 3.9888241

XEZ) 1 -5.046875 -5.0292969 -5.0183105 -5.0114441 -5.0071526 -5.0044703 -5.0027940
Successive Over-Relaxation:

k 1 2 4 5 6 7
x(k) 1 6.312500 2.6223145 3.1333027 2.9570512 3.0037211 2.9963276 3.0000498
x](k) 1 3.5195313 3.9585266 4.0102646 4.0074838 4.0029250 4.0009262 4.0002586
x3k) 1 -6.6501465 -4.6004238 -5.0966863 -4.9734897 -5.0057135 -4.9982822 -5.0003486

The 5th iteration of SOR is better than 7th of GS.
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Relaxation techniques

Theorem (Kahan's theorem)

If all diagonal entries of A are nonzero, then p(T,) >
where T, = (D — wL)7[(1 — w)D + wU].

Proof.
Let A1,..., A, be the ew of T, then
n
[ = det(T.,) = det(D) " det((1 — w)D) = (1 — w)"

since D — wl and (1 —w)D + wU are lower/upper triangular
matrices. Hence p(T,)" > [[7_1 |\i] = |1 — w|™. O

This result says that SOR can converge only if |w — 1| < 1.
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Relaxation techniques

Theorem (Ostrowski-Reich theorem)

If A is positive definite and |w — 1| < 1, then the SOR converges
starting from any initial x(©),

Theorem

If A is positive definite and tridiagonal, then p(Tz) = [p(T;)]* < 1,
where Ty and T; are the T matrices of GS and Jacobi methods
respective/y, and the optimal w for SOR is

2
1+ /T= (o(T))

With this choice of w, the spectrum p(T,) =w — 1.
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[terative refinement

Definition (Residual)

Let X be an approximation to the solution x of linear system
Ax =b. Then r = b — AX is called the residual of approximation

X.

Remark
It seems intuitive that a small residual r implies a close
approximation X to x. However, it is not always true.
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[terative refinement

Example (small residual = small approximation error)
The linear system Ax = b is given by

1 2 X1l 3
1.0001 2| x|  |[3.0001

has a unique solution x = (1,1). Determine the residual vector r
of a poor approximation X = (3, —O.OOOl)T.

Solution: The residual is

3 B 1 2 3 _10.0002
3.0001 1.0001 2| [—0.0001| 0

So ||r|lec = 0.0002 is small but ||X — x||oc = 2 is large.

r=>b—-Ax =

Numerical Analysis || — Xiaojing Ye, Math & Stat, Georgia State University 195



[terative refinement

Theorem (Relation between residual and error)

Suppose A is nonsingular, and X is an approximation to the
solution x of Ax = b, and r = b — AX is the residual vector of X,
then for any norm, there is

Ix = %[ < fIrll - A7
Moreover, if x # 0 and b # 0, then there is

lx = %I

| Al
TN < JIAII- IA7H] -

[El

If |A||[|A~1]| is large, then small ||r|| does not guarantee small
[Ix = X]I-
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[terative refinement

Proof.

Since x is a solution, we have Ax = b, we have

r=b— AX = Ax — AX = A(x — X). Since A is nonsingular, we
have x — X = A~ 1r, and hence

~ _1 _
Ix = %[l = [IA7 || < [Irl] - A7)

If x # 0 and b # 0, from ||b|| = ||Ax]|| < ||A] - ||x]| we have
1/1|x]| < ||Al|/]|b]|. Multiplying this to the inequality above, we get

el
< [IAJl - IA7H] -
16|
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[terative refinement

The number ||A|| - [|[A~1|| provide an indication between the error
of approximation ||x — X|| and size of residual r. So the larger
|A|| - [|[A=1|| is, the less power we have to control error using
residual.

Definition (Condition number)

The condition number of a nonsingular matrix A relative to a
norm || - || is
Ko(A) = [[Allp - A5

The subscript p is often omitted if it's clear from context or it's
not important.
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Condition number

Remark
» The condition number K(A) > 1:

L= [[1] = |AATH| < [|A] - [IA7H] = K(A)

» A matrix A is called well-conditioned if K(A) is close to 1.
» A matrix A is called ill-conditioned if K(A) > 1.
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Condition number

Example (Condition number)

Determine the condition number of matrix

1 2
A= [1.0001 2]
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Condition number

Solution: Let's use /o, norm. Then
|Allco = max{|1| + |2|,|1.0001| 4 |2|} = 3.0001

Furthermore, there is

Al —10000 10000
~ 1 5000.5 —5000

and hence ||[A7!||o = 20000. Therefore

K(A) = ||A] - ||A~Y|| = 3.0001 x 20000 = 60002
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[terative refinement

Suppose X is our current approximation to x. Let y = x — X, then
Ay = A(x — X) = Ax — AX = b— AX = r. If we can solve for y
here, we would get a new approximation X + y, expectedly to
approximate x better.

This procedure is called iterative refinement.
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[terative refinement

Given A and b, lterative Refinement first applies Gauss
eliminations to Ax = b and obtains approximation x.

Then, for each iteration k =1,2,..., N, do the following:
» Compute residual r = b — Ax;
» Solve y from Ay = r using the same Gauss elimination steps.
> Set x < x+y

The actual Iterative Refinement algorithm can also find
approximation of condition number K, (A) (See textbook).
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Perturbed linear system

In reality, A and b may be perturbed by noise or rounding errors
0A and §b. Therefore, we are actually solving

(A+5A)x=b+db

rather than Ax = b. This won't cause much issue if A is
well-conditioned, but could be a problem otherwise.
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Perturbed linear system

Theorem

Suppose A is nonsingular and ||0A|| < ||A71*1|\’ then the solution X of
perturbed linear system (A+ §A)x = b+ 0b has an error estimate
given by

[Ix = X| KAAI 1661, [[9A]
< +
x| [l = K(A) oAl ( 16l Al )

where x is the solution of the original linear system Ax = b.

Note that K(A)||6A| = || All||A~Y|||0A|| < ||A]| so the denominator
is positive.
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Conjugate gradient method

Conjugate gradient (CG) method is particularly efficient for solving
linear systems with large, sparse, and positive definite matrix A.

Equipped with proper preconditioning, CG can often reach very
good result in /n iterations (n the size of system).

The per-iteration cost is also low when A is sparse.
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An alternate perspective of linear system

Theorem
Let A be positive definite, then x* is the solution of Ax = b iff x*
is the minimizer of

1
g(x) = EXTAX —b'x

Proof.
Note that Vg(x) = Ax — b and V2g(x) = A= 0, so
g(x*) = Ax* — b =0 iff x* is a minimizer of g(x). O
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An alternate perspective of linear system

We have following observations:

» r=b— Ax = —Vg(x) is the residual and also the steepest
descent direction of g(x) (recall that Vg(x) is the steepest
ascent direction).

> It seems intuitive to update x <— x + t - r = x — tVg(x) with
proper step size t.

» It turns out that we can find such t that makes the most
progress.

» This method is called the “steepest descent method".

» However, it converges slowly and exhibits “zigzag" path for
ill-conditioned A.
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A-orthogonal

Conjugate gradient method amends this issue of steepest descent.
To derive CG, we first present the following concept:

Definition

Two vectors v and w are called A-orthogonal if (v, Aw) = 0.

Theorem
If A is positive definite, then there exists a set of independent
vectors {v(1), ... v(M} such that (v(), AvW)) =0 for all i # j.
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Key idea of CG

Given previous estimate x(~1) and a “search direction” v(k), CG

will find scalars t, and s, to update x and v:

k) k)

x(K) = x(k=1) + i v

(k+1)

|74 = r(k) _|_ SkV(k)

(where r(k) = b — Ax(K)), such that:

If this can be done, then {v(V), ... v(M} is A-orthogonal.
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Derivation of t; and s,

The main tool is mathematical induction: given x(©), first set
v =0, 0 = p— Ax(O) (1) = (0 go

(k) AUy =0, v <k
(r vy =0, i<k

is true for k = 0. Assume they hold for k — 1, we need to find t,
and si such that they also hold for k.
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Derivation of t; and s,

We first find tx: note that

r) = b — Ax(K) = p — A(xD) 1 v (K)) = 1) AV (R
Therefore, by induction hypothesis, there is

<,(k)7v(,i)> (r (k=1) _ g AR, (J)>

— (r(k_l), V(k)> _ tk(V(k)7AV(k)>7 If_j = k

So we just need
<r(k—1), V(k)>

W= LW, AV

to make (r(K), v0)) =0
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Derivation of t; and s,

Then we find s;: by the update of v(kt1) we have

(D A0y = (0 1 g (R Ayl

(0, AvU)y, ifj<k-—1
(rt) AvRy 4 s (V) AV if =k
Note that Ay() = AXW=ALUD _ U= i D and rU-D — p0) s
j .
linear combination of vU—1 vU), v(j+1), so (r(d, Avl)) = 0 for
Jj < k —1 due to induction hypothesis. Hence we just need

<r(k)7 Av(k)>

T T, AVR)

to make (r(K), Av()) =0 for all j < k.
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Derivation of t; and s,

We can further simply tx and si:

Since that v(K) = p(k=1) 4 g, y(k=1) 3pd <r(k_1), v(k_1)> =0, we

have
<r(k—1), V(k)> <r(k—1)7 r(k—1)>

BT, AVRY T R, AV

Since rtk=1) = v(K) — 5 v(k=1) we have (r(9) r(k=1)) = 0. Since

Av(k) = AX(k)_t/jX(kil) = r(kilt)k_r(k), we have
(rt) AvR)y = —%. Combining tx expression above, we have
P (R
S:_MQAWU__—L?J'_ ()| P00y
, (v Av(R)y (e D) (k1) (k1))

ty
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Conjugate gradient method

Since (r(", vy =0 for all k =1,...,n and the A-orthogonal set
{v(D ... v(M}is independent when A is positive definite, we
know r(M = b — Ax(") = 0, i.e., x(") is the solution.

This shows that CG converges in at most n steps, assuming all
arithmetics are exact.
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Conjugate gradient method

> |nput: X(O), r0 = p— AX(O), v(1) = (0),

> Repeat the following for k = 1,...,n until r(¥) = 0:

(r(kfl), r(k71)>
(v(k), Av(k))

x (k) = x(k=1) 4 ¢, ()
r(K) — p(k=1) g Ay (K)
(r(k), r(k)>
(r(k=1) p(k=1))

vkt — (k) 4,y (R)

t, =

Sk =

» Output: x(k).
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Preconditioning

The convergence rate of CG can be greatly improved by
preconditioning. Preconditioning reduces condition number of A
first if A is ill-conditioned. With preconditioning, CG usually
converges in \/n steps.

The precond~itioning is done by using some n9nsingu|ar matrix C,
we can get A= C*A(C1)T such that K(A) < K(A).

Now by deflnmg %= CTx and b= C~1b, we obtain a new linear

system A% = b, which is equivalent to Ax = b. Then we can apply
CG to the new system A% = b.
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Preconditioner

There are various methods to choose the preconditioner C.

» Choose C = diag(\/a11,---,/ann)-

» Approximate Cholesky's factorization LL" =~ A (by ignoring
small values in A) and set C = L (then
CA(CHT =~ L7Y(LLL™T =1).

> Many others...
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Preconditioned conjugate gradient method

» Input: Preconditioner C, x(o), r0) = p— Ax(o),
W(O) — Cilr(o)' V(l) e CiTw(o)_

> Repeat the following for k = 1,..., n until r(¥) = 0:

<W(k71), W(k71)>
(v(k), Av(k))
x(K) = x(k=1) 4 (k)
rk) = (k=) _F Ay (K
wkK) — c—1,(k)
<W(k)7 W(k)>
(w(k=1) |y (k-1))

v — = Tw(k) 4 5 v (0

t =

Sk =

» Output: x(¥).
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A comparison

Example
Given A and b below, we use the methods above to solve Ax = b.

02 01 1 1 0 1
01 4 -1 1 -1 2
A=|1 -1 60 0 —2|, b=|3
1 1 0 8 4 4
0 -1 -2 4 700 5

True solution is

7.859713071

0.4229264082

x* = | —0.07359223906
—0.5406430164
0.01062616286
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A comparison

A comparison of Jacobi, Gauss-Seidel, SOR, CG, and PCG on the

problem above.

Number
Method of Tterations x® Ix* —x® |l
Jacobi 49 (7.86277141,0.42320802, —0.07348669, 0.00305834
—0.53975964, 0.01062847)"
Gauss-Seidel 15 (7.83525748,0.42257868, —0.07319124, 0.02445559
—0.53753055, 0.01060903)"
SOR (w = 1.25) 7 (7.85152706,0.42277371, —0.07348303, 0.00818607
—0.53978369,0.01062286)"
Conjugate Gradient 5 (7.85341523,0.42298677, —0.07347963, 0.00629785
—0.53987920, 0.008628916)"
Conjugate Gradient 4 (7.85968827,0.42288329, —0.07359878, 0.00009312
(Preconditioned) —0.54063200, 0.01064344)"
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Section 4

Boundary Value Problems for ODEs
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BVP for ODE

We study numerical solution for boundary value problem (BVP).
If the BVP involves first-order ODE, then

Y'(x)=f(xy(x)), a<x<b ya)=o
This reduces to an initial value problem we learned before.

So we start by considering second-order ODE:

{y”( x) = f(x, y(x),

Y'(x), as<x<b
y(a) =a, y(b) =5
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Existence of solutions

Consider the BVP with second-order ODE:

{y”(x) = f(x,y(x),y'(x)), a<x<b
y(a) = a, y(b) =5

Theorem (Existence and uniqueness of solution)

Let D =[a, b] x R x R. Suppose f(x,y,y’') satisfies:

1. f is continuous on D,

2. 8L >0inD,

3. 3M > 0 such that |§5| < M in D.
Then the BVP has unique solution.
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Existence of solutions

Example (Existence and uniqueness of solution)
Show that the BVP below has unique solution:

{y"(X) =—e ¥ +sin(y), 1<x<2
y(a)=0, y(b)=0

Solution: We have f(x,y,y’) = —e ™™ —sin(y’). It is obvious
that f is continuous. Moreover 0, f = xe™ > 0, and

|0, f] = | —cos(y’)| < 1. So the BVP has unique solution by the
theorem above.
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BVP with linear ODE

Now we first consider a linear second-order ODE:

y(a) =a, y(b) =

where p, q,r : [a, b] — R are given functions.

{y” =p(x)y' +q(x)y +r(x), a<x<b

Corollary

If p,q, r are continuous on [a, b], g > 0 for all x, then the BVP
with linear ODE above has a unique solution.

Proof.

Set f = py’ + qy + r. Note that p is bounded since it is
continuous on [a, b]. Hence the theorem (check the 3 conditions)
above applies. ]
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Linear shooting method

Now we consider how to solve BVP with linear ODE:

y'=py'+ay+r, a<x<b
y(a)=a, y(b) =5

We consider two associated initial value problems:
w=pit+tan+tr, a<x<b
vi(a) =a, y1(a) =0

vy =pys+qy, a<x<b
y2(a) =0, yy(a) =1
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Linear shooting method

Suppose the solution y to the BVP can be written as y = y; + cy»
for some constant ¢ (to be determined soon), where y1, y» are the
solutions to the two IVPs. Then y satisfies the ODE:

"

YVi=n+aon) =+
= (py1 + ay1 + r) + c(pys + qy2)
=p(y1 +cy2) +aq(y1 +cya) +r
=py' +qy+r

To make y satisfy the boundary conditions, we need ¢ such that

y(a) = yi1(a) + cyz(a) = yi(a) =

y(b) = y1(b) + cy2(b) = 8
: _ B—xn(b)
So we just need to set ¢ = y2(1b) .
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Linear shooting method

Y
Vo(x)
ﬂ S SR U
B—yi(b)
Y0 = y(x) + Tll)h(x)
o +
a b x

Here y1, y» are two shot trajectories based on their initial height
and angle. Their linear combination y; + B;zjzlé)b)yz is the solution
y.
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Linear shooting method

Steps of the linear shooting method:
1. Partition [a, b] into N equal subintervals.
2. Solve y; and y, from their own IVPs (e.g., using RK4)

(U1 =y1,u2 = y{,vi = y2,v2 = y5), and get
{urivii:0<i <N}

3. Set ¢ = (5 — U17N)/V17N, and set wyi = U+ cvy; for
0<i<N.
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Linear shooting method

Example (Linear shooting method)
Solve the BVP with N = 10.

y'==2y 4 2y il <<
y(l) =1 y(2)=2

Solution: Partition [1,2] into N = 10 subintervals, and solve

==y +En+"00, 1<x<2
(1) =1, yj(1) =0

Vi ==2ys+ Gy, 1<x<2

y2(1) =0, y5(1) =1

Then set w; = uy; + v1, fori=0,...,10.
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Linear shooting method

Numerical result:

xi uicy(x) viimy(x) wRy(x) y (xi) ly () — wil
1.0 1.00000000 0.00000000 1.00000000 1.00000000

1.1 1.00896058 0.09117986 1.09262917 1.09262930 1.43 x 107
1.2 1.03245472 0.16851175 1.18708471 1.18708484 1.34x 107
1.3 1.06674375 0.23608704 1.28338227 1.28338236 9.78 x 1078
1.4 1.10928795 0.29659067 1.38144589 1.38144595 6.02 x 10~8
1.5 1.15830000 0.35184379 1.48115939 1.48115942 3.06 x 10~8
1.6 1.21248372 0.40311695 1.58239245 1.58239246 1.08 x 1078
1.7 1.27087454 0.45131840 1.68501396 1.68501396 5.43 x 1010
1.8 1.33273851 0.49711137 1.78889854 1.78889853 5.05 x 10~¢
1.9 1.39750618 0.54098928 1.89392951 1.89392951 4.41 x 109
2.0 1.46472815 0.58332538 2.00000000 2.00000000

This accurate result is due to O(h*) of RK4 used for the two IVPs.
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Round-off error in linear shooting method

If y1(x) grows too fast such that y;(b) > £, then

B—yi(b) _ yi(b)

va(b) T ya(b)

which is prone to round-off error.

In this case, we can solve the two IVPs backward in x:

{y{'ZPY{+qy1+r, a<x<b
yi(b) = B, yi(b) =0
{yé’Zpyé+qyz, a<x<b
y2(b) =0, y;(b) =1

and set y(x) = y1(x) + ay)é(a)yg(x) fora<x<b
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Nonlinear shooting method

Consider the BVP with nonlinear ODE (f is a nonlinear function):

{y” =f(x,y,y'), a<x<b
y(@)=a, y(b)=8

Suppose we try to solve the IVP with some given t:

y'=f(x,y,y'), a<x<b
y(@)=a, y'(a)=t

and obtain solution y(x, t) (since the solution depends on t) for
a<x<h.

Then we hope to find t such that y(b, t) = 5.
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Secant method for nonlinear shooting

Suppose we have two initials tp, t1, then we use the secant method
to solve y(b, t) — 8 = 0 by iterating

(y(b, tx—1) — B)(tk—1 — tx—2)
y(b, tk—1) — y(b, tk—2)

bty = tk—1 —

For each k, we need to compute y(b, tx) by solving the IVP:

y'=f(xy,y'), a<x<b
y(@) =a, y'(a) =tk
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Nonlinear shooting method

'Y

y(b,t,) +
wb.ty) +

b, t) +
b, to) +

y(x’ t(l)

o+ (a,0)

("

Here y(x, t) is “shooting” at an angle (with slope tx) and try to
“hit” 5 at x = b.
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Newton's method for nonlinear shooting

We can also consider Newton's method to y(b,t) — 5 = 0 for
fewer iterations:

y(b, ti—1) — B
Oey(b, tk—1)

However, we need to know O:y(b, t) ...

th = tk—1 —

We denote the solution of IVP below by y(x, t):

{y”(x, t) =f(x,y(x,t), ¥y (x,t)), a<x<b
y(a,t) = «q, y/(av t)=t

where y' = O,y and y” = 92y (i.e., the " is on x).
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Newton's method for nonlinear shooting

Taking partial derivatives with respect to t above yields:

Ory” =0yf - Ory +0pf -0y, a<x<b
Ory(a,t) =0, dry'(a,t) =1

Denote z(x, t) = O:y(x, t). Suppose Oy and O; can exchange, then

2'(x,t) = 0yf - z(x,t) + O f - Z/(x,t), a<x<b
z(a,t) =0, Z(a,t) =1

and set Oyy(b, t) = z(b, t).
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Newton's method for nonlinear shooting

Steps of Newton's method for nonlinear shooting:
1. Initialize ty (e.g. tp = B —). Set k =1.
2. For t = tx_1, solve y(x, t) and z(x, t) from

Y t) = fx,y(x, 1),y (x, 1)), a<x<b
y(a,t) =a, y'(a,t) =t
2'(x,t) = 0,f - z(x, t) + O f - Z/(x,t), a<x<b
z(a,t) =0, Z(a,t) =1

bte_1)—
and set ty = tj_q1 — %_

3. Set k + k+1 and go to Step 2.
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Newton's method for nonlinear shooting

Example (Newton's method for nonlinear BVP)

Solve the BVP with nonlinear ODE using Newton's method with
N = 20 for maximal of 10 iterations or |wy(tx) — y(3)] < 107°:

{ ' =L1(32+23 '), 1<x<3
— __ 43
(1)=17, y(3) =%

Solution: Note that 0,f = —fy and 0,/ f = éy. For every t,
the two IVPs are (note z depends on y but not vice versa):

{y”:é(32+2x3—yy’), 1<x<3
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Nonlinear shooting using Newton's method

X w,i y (xi) [wi,i — y(xi)l
1.0  17.000000  17.000000

1.1 15755495  15.755455  4.06 x 10°
12 14773389 14773333  5.60 x 107°
1.3 13.997752  13.997602  5.94 x 10~°
14  13.388629  13.388571  5.71 x 107°
15 12916719  12.916667  5.23 X 107°
1.6  12.560046  12.560000  4.64 x 10>
1.7 12.301805  12.301765  4.02 x 10~°
1.8 12128923  12.128889  3.14 x 10~°
1.9  12.031081  12.031053  2.84 x 10~°
20  12.000023  12.000000  2.32 x 10>
21  12.020066  12.020048  1.84 x 10>
22 12112741  12.112727  1.40 x 10~°
23 12246532  12.246522  1.01 x 10~°
24 12426673  12.426667  6.68 x 10~°
25  12.650004  12.650000  3.61 x 10°
26 12013847  12.913845  9.17 x 10~/
27  13.215924  13.215926  1.43 x 10~°
28 13554282 13554286  3.46 x 10~°
20  13.927236  13.927241  5.21 x 10°
3.0  14.333327  14.333333  6.69 x 10—°

Netwon’s method requires solving two IVPs in each iteration, but converges much faster than secant method. Still

sensitive to round-off errors if y or z increases rapidly.
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Finite-difference method for linear problems

Idea: Partition [a, b] into N + 1 subintervals with nodes

a=xp < - - <Xnt+1 = b and step size h = f\’,;‘i Then
approximate y’, y” by finite differences, and solve w; = y(x;) for
0<i<N+1

Recall the centered-difference approximation of y'(x;):

h? h3
y(xip1) = y(xi + h) = y (i) + hy' (%) + 5}/”(&') + gyw(ﬁf)
h? h3
y(xic1) = y(xi — h) = y(xi) — hy'(xi) + =" (x1) — —

1y —
5 6y (77,')

where 77,-i is between x; and x;+1. Then subtracting the two above:

N y(Xit1) — y(xi-1) _ lf "o,
for some 7; € (xi_1,X;+1) due to IVT and y € C3.
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Finite-difference method for linear problems

Similarly, we have the centered-difference approximation of y”(x;):

h? h3 h*
y(xit1) = y(xi + h) = y(x;) + hy' (x;) + ?y”(Xi) + gym(xi) + iy(‘l)(ff)
. _ 5 _ . (. h72 "e. E "y, h74 (4)(¢—
y(xi—1) = y(xi — h) = y(x;) — hy'(x;) + 2)/ (xi) — 6)’ (X,)+24y (5, )

where g,.i is between x; and x;+1. Then adding the two above:

i+1) — 2y(xi i n
J(x) = y(Xit1) 2)//5; ) +y(xi-1) ﬁ),(4)(5,.)

for some &; € (xj_1,x;+1) due to IVT and y € C*.
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Finite-difference method for linear problems

Plugging the two identities about y’(x;) and y”(x;) above into
Y'=py'+ay+r

+ g (%) y (xi)

y (Xiz1) — 2)’}5;@) +y (xi-1) —p (%) [y (xi41) 2—hy (xi-1)

2
Fr0a) = T 20 Ga)y” () v (&)

which has truncation error O(h?).

Now we approximate y(x;) by w; for 0 < i < N + 1. Note that
wop =y(a) =aand wyy1 =y(b) =0, and fori=1,... N:

— W +2 pR— . wi; — wi_
(P s p ) (M 1)+q(x,-)w,»:—r(x,»)
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Finite-difference method for linear problems

The equation above can be rearranged into

(14 300 wia + (24 #a ) w — (1= Z006) ) wian = 1 ()

This is a linear system Aw = b where w = (w1,...,wy)", A'is
tridiagonal, and b is known.

Theorem

Suppose that p, q, r are continuous on [a, b] and g > 0, then the
tridiagonal linear system Aw = b has a unique solution provided
that h < 2/L where L = maxa<x<p |P(x)|.
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Finite-difference method for linear problems

Example (Finite-difference method for linear problems)
Solve the BVP below using finite difference method with N = 9:

yl/ 7y + X2y+ sm(lnx)7 1<x<2
y(1)=1, y(2) =2

Solution: Note that p(x) = —2/x, g(x) = 2/x2, and
r(x) = sin(Inx)/x?. Step size h = (b —a)/(N +1) = 0.1.
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Finite-difference method for linear problems

Xi w; y (x1) [wi —y (xi) |
1.0 1.00000000 1.00000000

1.1 1.09260052 1.09262930 2.88 x 10~°
1.2 1.18704313 1.18708484 4.17 x 102
1.3 1.28333687 1.28338236  4.55 x 10~°
1.4 1.38140205 1.38144595 4.39 x 102
1.5 1.48112026 1.48115942 3.92 x 10~°
1.6 1.58235990 1.58239246 3.26 x 10~°
1.7 1.68498902 1.68501396 2.49 x 10—°
1.8 1.78888175 1.78889853 1.68 x 10—°
1.9 1.89392110 1.893929051 8.41 x 10~°
2.0 2.00000000 2.00000000

The error is O(h?), which is worse than the linear shooting method.
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Finite-difference method for linear problems

We can improve the error order by Richardson's extrapolation since
the truncation errors are in even orders of h.

Consider the same example above, we use step sizes h = 0.1, 0.05,
and 0.025 to compute w(h = 0.1), w(h = 0.05) and
w(h = 0.025), and compute

4wi(h = 0.05) — w;(h =0.1)

Exty; = 3
Eth,’ _ 4W,'(h = 0.025)3— W,'(h = 0.05)
Exts; — 16Exty; — Exty;

15
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Finite-difference method for linear problems

Xi W,(h = 005) W,(h = 0025) Exty; Exty; Exts;

1.0 1.00000000 1.00000000 1.00000000  1.00000000  1.00000000
1.1 1.09262207 1.09262749 1.09262925 1.09262930 1.09262930
1.2 1.18707436 1.18708222 1.18708477 1.18708484 1.18708484
1.3 1.28337094 1.28337950 1.28338230 1.28338236  1.28338236
1.4 1.38143493 1.38144319 1.38144589  1.38144595  1.38144595
1.5 1.48114959 1.48115696 1.48115937 1.48115941 1.48115942
1.6 1.58238429 1.58239042 1.568239242  1.58239246  1.58239246
1.7 1.68500770 1.68501240 1.68501393  1.68501396 1.68501396
1.8 1.78889432 1.78889748 1.78889852  1.78889853  1.78889853
1.9 1.89392740 1.89392898 1.89392950 1.89392951  1.89392951
2.0 2.00000000 2.00000000 2.00000000  2.00000000 2.00000000

The error reduces to 6.3 x 107! which significantly improves the

case with h = 0.1 (about 107°).
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Finite-difference method for nonlinear problems

Consider the BVP with nonlinear ODE:

y'=f(x,y,y'), a<x<b
y(a)=o, y(b)=5

Theorem

Let D =[a,b] x R x R. If f satisfies the following conditions:

1. f is continuous on D,

2. 30 > 0 such that 0,f(x,y,y") > on D,

3. 3L > 0 such that |0, f|, |0,/ f]| < L on D.
Then the BVP has a unique solution.
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Finite-difference method for nonlinear problems
We apply the same partition of [a, b] into N + 1 subintervals and

centered-difference approximations for y’(x;) and y”(x;): wp = «a,
wysl =B, and fori=1,...,

Wit1 — 2w, + wi_ Wjp1 — Wi_
_ i+1 h21 i—1 +f<xi7Wi7 l+12h i 1) :0

This is a system of N nonlinear equations of (wi,...,wy):

wy —
2wy — RPf(x,m, —— | —a =
wq wp + <x1 w1 2h ) «

—wy + 2wy — w3 + Hf <X2, wa, ws — Wl) =

wy — WN72> —0

—Wn_2 + 2wy_1 — wy + h*f (XN—I: WN_1, 2h

—wy_1 + 2wy + R*f (XN, wy, %) -B8=0
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Finite-difference method for nonlinear problems

We can write the system as F(w) = 0 (note that F : RV — RN).
To solve this system, we can apply the Newton's method:

starting from some initial value w(®). Here J(w) € RN*N is the
Jacobian of F(w).

The key is to solve v = J(w)"1F(w) from J(w)v = F(w) for
given w.
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Finite-difference method for nonlinear problems

Recall that F(w) = (Fy(w), ..., Fy(w))" € RN where

Fi(w) = —wi_1 + 2w; — i1 + h°f (Xi, wi, h

Jacobian J(w) = ag’iﬁ:’)] € RN*N s tridiagonal:

OF;(w
J(le"'awN)ij: ( )

ow;
71+gfy/<x,-,w,»,%), fori=j—landj=2,...,N
2+h2fy(x,-,w,-,%), fori=jandj=1,....N

Wit1 — Wi—1

)

e (x,-,w,-,%), fori=j+landj=1,...,N—1

0, for [i —j| > 1
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Finite-difference method for nonlinear problems

Example (Finite-difference method for nonlinear BVP)

Solve the BVP with nonlinear ODE using finite difference method
with h =0.1:

{ Y =L1(32+23 —y'), 1<x<3
— __ 43
(1)=17, y3) =%
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Finite-difference method for nonlinear problems

Xi w; y (xi) [wi —y (xi) |
1.0 17.000000 17.000000

1.1 15754503 15.755455 9.520 x 10~*
1.2  14.771740 14.773333 1.594 x 103
1.3 13.995677 13.997692 2.015 x 10~3
1.4 13.386297 13.388571 2.275 x 1073
1.5 12914252 12.916667 2.414 x 103
1.6 12.557538 12.560000 2.462 x 103
1.7 12.299326 12.301765 2.438 x 103
1.8 12126529 12.128889 2.360 x 103
1.9 12.028814 12.031053 2.239 x 103
2.0 11.997915 12.000000 2.085 x 10~3
2.1 12.027142 12.029048 1.905 x 103
2.2 12.111020 12.112727 1.707 x 1073
2.3 12.245025 12246522  1.497 x 1073
2.4 12.425388 12.426667 1.278 x 1073
2.5 12.648944 12.650000 1.056 x 10~3
2.6 12913013 12.913846 8.335 x 10~*
2.7 13.215312 13.215926 6.142 x 10~*
2.8 13.553885 13.554286 4.006 x 10~
2.9 13.927046 13.927241 1.953 x 10~4
3.0 14.333333  14.333333
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Finite-difference method for nonlinear problems

The error order again can be improved by Richardson's
extrapolation: solve the problem with h = 0.1, 0.05, and 0.025,
and then use extrapolation as before. Accuracy can be improved
from 1073 to 10719,
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Rayleigh-Ritz method

Idea: Convert the BVP to an integral minimization problem, and
then find the minimizer from the function space spanned by a set
of basis functions.

We consider a standard BVP with second-order ODE:

~& (POg) +axy =F, 0<x<1

y(0)=0, y(1)=0
Problems with general interval [a, b] and boundary conditions
y(a) = a, y(b) = 3 can be converted into the standard one above.

For example, if y(0) = a, y(1) = f3, then set
z(x) = y(x) — ((1 — x)a + x) and derive the ODE of z with
boundary value z(0) = z(1) = 0.
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Rayleigh-Ritz method

Theorem (Variational form of BVP)

Suppose p € Cl,q,f € C, p> 6 for some d >0 and g > 0 on
[0,1], and y € C3, then y is the unique solution to

d d
o (p(x)%) +q(x)y=f, 0<x<1 ODE

if and only if y is the unique function that minimizes I[-] where

1
0

1ol = [ (PO GO + aGOEP — 26()u(x)) dx ~ Energy
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Rayleigh-Ritz method

Proof.

1. A solution y to (ODE) satisfies:

1 _ 1 dy , . du
/O‘f(x)u(x)dxff0 p(x)E(X)a(x)—l-q(x)y(x)u(x)dx, Yu e C}[0,1] Weak

This can be verified by multiplying u on both sides of ODE, taking integral, and
integrating by part.

2. y minimizes Energy iff y satisfies Weak: For any y,u € Co1 [0,1], define
g(e) = Iy + eu], then g’ (e) > 0, so [ is a convex functional. Therefore y
minimizes Energy iff g’(0) = 0 for all u (i.e., y satisfies Weak).

3. Weak admits at most one solution: if yi, y» both satisfies Weak, then
¥ = y1 — y» satisfies Weak with f = 0, i.e., y minimizes
Ju]l = fol(p(u’)2 + qu?)dx. Hence y = 0 (since J[u] > 0 and = 0 only if u = 0).
O
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Rayleigh-Ritz method

Now we know BVP is equivalent to an energy minimization
problem:

1
Iu] = /0 (p(X)[U’(X)]2 +q()[u())? - 2f (X)U(X)) dx

Steps of Rayleigh-Ritz method:
1. Create a set of basis functions {¢; | 1 < i < n}, and set
approximation ¢ = Y. ¢cj¢; to y = argmin,, /[u].

2. Find ¢ by minimizing I[¢] = I[>_; ci¢i], i.e., O[> ; cidi]l =0
for all i.
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Rayleigh-Ritz method

Step 2 above yields a linear normal equation of ¢, denoted by
Ac = b, where A = [a;] € R"™" and b € R" with

1

5= [ [P0 ()05() + (0100
1

b,-:/o f(x)pi(x)dx

Once c is solved, the minimizer of / can be set to ¢ = ), ¢i¢;.

Now the key is the design of basis functions in Step 1. If properly
designed, A will be a band matrix (and even tridiagonal matrix).
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Piecewise-linear basis

Steps to create a piecewise linear basis:

1. Partition [0, 1] into n+ 1 subintervals:

O=x<x1 < - <xpp1=1

Step size h; = xj31 — x; for i =0,...,n.
2. Set {¢;j} fori=1,...,nby:

0, if 0 < x<x_1
1 -
bi(x) = /;’l"*l (x — xi-1), !f Xi—1 < x < X{
i (xiy1 — x), if x;i < x < Xxj41
0, if X1 < x <1
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Piecewise linear basis

Namely, ¢;(x) is 1 at x = x; and linearly decays to 0 at x = xj11,
then stays as 0 outside of [x;_1, xj+1].

Example of piecewise linear basis functions:

Y= 9,0
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Piecewise linear basis

Several properties about piecewise linear basis:

1. ¢; is differentiable except at xj_1, Xj, Xj+1:

o

, if 0<x<x_1
1 M
, B =y if x_1<x<x
Pi(x) = 1 ‘
—7 if  xi <x < Xjt1
, if Xit1 < x < 1

o

2. ¢;j and ¢; do not interfere if |i — j| > 1:

$i(x)$j(x) =0 and  ¢i(x)d}(x) =0

Hence A = [ajj] in the normal equation Ac = b is a tridiagonal
matrix.
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Piecewise linear basis

aji = /{px)¢(x + q(x) [¢i(x }dx
_ (hll>2/:l p(x)dx + (hi)g/x“ p(x)dx
1 2 Y 1\2 /X1 ' )
+ <,,_1) / (= -0)" o+ 5 ) / (xis1 — %2 a(x)dx
anivi = [ {PI60HA() + 0I5 (0} o

= — (%)2 /:“ p(x)dx + (%)2 /:“ (Xi+1 — x) (x = %) q(x)dx

aji—1= /01 {p(x)qbf(x)d)f,l(x) + Q(X)¢i(X)¢i—1(X)} dx

2 2
= <hll> /.I p(x)dx + (hll> / (xi — x) (x = xi—1) q(x)dx

b = f (X)pi(x)dx = — K (x = xi—1) f(x)dx + l o (xit1 — x) f(x)dx
h hi

i—1 Jxi_q
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Piecewise linear bassis

There are 6n integrals to evaluate:

1\2 /X1
Qi = ( ) / (xit1 — x) (x — xi) q(x)dx, foreach i=1,2,...

i

Qi =
' hi—1 xi
1\2 [xi+1 )
Qs = (h ) / (Xi+1 — x)“ q(x)dx, foreachi=1,2,...,n
i Xi
2
1 Xi
Qui = / p(x)dx, foreachi=1,2,....n+1
hl*l Xj—1
1 Xi
Qs,i = / (x — x,-,l) f(x)dx, foreachi=1,2,...
hic1 Jxi_,
1 Xi+1
Qi = h—/ (xi41 — x) f(x)dx, foreachi=1,2,...,n
i Jx

i
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Piecewise linear basis

Then A and b are computed as

aji=Qaj+ Quit1+ Qi+ Q3j, foreachi=12 ...

ajit+1=—Qajy1+ Q1j, foreachi=12...,n—-1
ajj—1=—Qs;i+ Qi-1, foreachi=23,....n
bj= Qs+ Qe, foreachi=12,....n

We can show that A is positive definite.
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Piecewise linear basis

Two ways to approximate the 6n integrals Q's:

1. Quadratures such as Simpson’s rule.
2. Approximate p, g, r by piecewise linear functions and compute
integrals. For example, p(x) ~ >, p(xj)$i(x) etc., then

hi
Qi = E[q(xi) + q(xiz1)]

Qi = hia [317 () +aq (Xf—l)] )

hi
Q3,i ~ o [39 (xi) + g (xit+1)]

1
Qs & hi; [P (Xi)+P(Xifl)}

hi—1

[2f (X;) +f (X,'_l)]

L
2

h;
Qi ™ o [2f (x) + f (xi11)]
Each approximation has error order O(h3).
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Piecewise linear basis

Example (Rayleigh-Ritz method with piecewise linear basis)

Solve the BVP below using Rayleigh-Ritz method and piecewise
linear basis with h; = h = 0.1:

—y" 4+ 7%y =2r%sin(7x), 0<x<1, y(0)=0, y(1)=0

Solution: We have p(x) =1, q(x) = 72, f(x) = 272 sin(7x).
Then apply the formula above to obtain Qy,..., Qs ; for
i=0,...,9, and then A and b. Then solve ¢ from Ac = b, and
obtain ¢(x) = >, ¢igi(x) (note that ¢(x) is piecewise linear
function and ¢(x;) = ¢;).
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Piecewise linear basis

X

¢ (xi)

y (%)

|9 (xi) —y (xi) |

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

O© 00 NOOT B~ WN |~

0.3102866742
0.5902003271
0.8123410598
0.9549641896
1.0041087710
0.9549641893
0.8123410598
0.5902003271
0.3102866742

0.3090169943
0.5877852522
0.8090169943
0.9510565162
1.0000000000
0.9510565162
0.8090169943
0.5877852522
0.3090169943

0.00127
0.00241
0.00332
0.00390
0.00411
0.00390
0.00332
0.00241
0.00127

The error order is O(h?) due to the nature of linear (first-order)

approximation of the integand.
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B-spline basis

We can create C? basis functions using the idea of cubic splines.
These are called the B-splines (basis splines).

We start from the cubic spline function S:

if x <=2
)3, if —2<x<-1
[(2+x)*—4(1+x)*], if —1<x<0
[(2=x)*—4(1-x)}], if 0<x<1
if 1<x<?2
if 2<x

N
+
x

05}
—~
X
N—r
Il
O B DR DR AR O
—~
N
|
X
N
w
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B-spline basis

Then construct B-spline basis functions {¢; | 0 <i < n+1}:

S (%) - xthy ifi=0

s(5t) - ((;)> if i =1
di(x) =4S X;'h) f2<i<n—1

s X—h"h -5 (=), if i = n

5 (x

(i) ) (xf("hﬁ)h), if i =n+1

> 6 € C2[0,1].
» {¢;} are independent.

Numerical Analysis |l — Xiaojing Ye, Math & Stat, Georgia State University 272



B-spline basis

¢i(x) for 2 <i < n—1 (top) and ¢o, 41, $n, Pnt+1 (bottom

y=¢;x) wheni=2,....,n—1

v v
1+ 1
y=0,(x)
V= 0y(x)
, ; , I ; ;
X x XX X x X;oox
y y
1+ I+
¥ =0,
+ + + + t
* Xt x X Xt Xy o
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B-spline basis

Let ¢(x) = >, cidi(x). Then the normal equation J./[¢] = 0 is
Ac = b where A = [ajj] is a positive definite band matrix with
bandwidth < 7, where

1

3= [ {610 + al)an(x)ei ()} o
01

b= [ F)a(x)dx

To compute these integrals, we can replace p, g, f by their cubic
spline interpolations (so on each subinterval they are cubic
polynomials), and integrals can be evaluated exactly (as the
integrands are polynomials).
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B-spline basis

Example (Rayleigh-Ritz with B-spline basis)
Solve the BVP below using Rayleigh-Ritz method and B-spline
basis with h; = h = 0.1:

—y" + 7y =2n%sin(nx), 0<x<1, y(0)=0, y(1)=0

Solution: We have p(x) = 1, q(x) = 72, f(x) = 272 sin(x).
Then approximate Qy,..., Qe for i =0,...,9, and then A and
b. Then solve ¢ from Ac = b, and obtain ¢(x) = >, ¢i¢i(x).
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B-spline basis

Numerical result:

i ci X ¢ (xi) y (xi) ly (xi) — ¢ (xi) |
0 0.50964361 x 10~ ° 0 0.00000000  0.00000000 0.00000000
1 0.20942608 0.1 0.30901644  0.30901699 0.00000055
2 0.39835678 0.2 0.58778549 0.58778525 0.00000024
3 0.54828946 0.3 0.80901687 0.80901699 0.00000012
4 0.64455358 0.4 0.95105667 0.95105652 0.00000015
5 0.67772340 0.5 1.00000002 1.00000000 0.00000020
6 0.64455370 0.6 0.95105130 0.95005520 0.00000061
7 0.54828951 0.7 0.80901773 0.80901699 0.00000074
8 0.39835730 0.8 0.58778690 0.58778525 0.00000165
9 0.20942593 0.9 0.30901810 0.30901699 0.00000111
10 0.74931285 x 10—° 1.0 0.00000000 0.00000000 0.00000000

This is much more accurate than the one with piecewise linear

basis.
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