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Section 1

Review of Calculus

Numerical Analysis | - Xiaojing Ye, Math & Stat, Georgia State University



Limit and continuity

Definition (Euclidean ball)
An (open) ball in R" is B;(x0) := {x € R" : |x — x0| < r}.

Definition (Limit of a function)

The limit of f(x) as x approaches xo is L if Ve > 0, 3 > 0 such that for all
x € Bs(xo) there is
|f(x) — L] <e

Definition (Continuous functions)

f is continuous at xo if lime_,, f(x) = f(x0).
f is continuous in X if f is continuous at every x € X.
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Limit and continuity

Definition (Limit of a sequence)

A sequence {x, : n € N} has limit x if Ve > 0, 3N € N, such that |x, — x| < € for
all n > N.

Theorem

The following two statements are equivalent:
» f is continuous at x.
> If x, — x, then f(x,) — f(x).
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Differentiability

Definition (Derivative of a function)

f is differentiable at x if the following limit exists:

lim f(X) — f(XO)

X—Xg X — Xo
The value of this limit is called the derivative of f at xo.

VY

The tangent line has slope 1 (x,)

J&xo) T

(x0, f(x0)) WAEY)
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Differentiability

Theorem

f is differentiable at x =—> f is continuous at x.

Theorem (Rolle’s Theorem)

Suppose f € Cla, b, f is differentiable in (a, b) and f(a) = f(b), then 3¢ € (a, b)
such that f'(c) = 0.

Proof of Rolle’s theorem.

Hint: f € C[a, b] implies that f attains max or min in [a, b] by the extreme value
theorem (see soon). O
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Rolle's theorem

lllustration of the Rolle’s theorem:
A

f)=0

Sla) = f(b) 7

[ Y P ——
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Mean Value Theorem

Theorem (Mean Value Theorem)

If f € Cla, b] and f is differentiable on (a, b), then 3¢ € (a, b) such that

f(b) — f(a)
o) = L—4,
(c) A
v
Parallel lines
Slope /'(c)
y =/
o SO —f@)
; L
e o
Proof.
Define g(x) = f(x) — f(a) — b) f(")( —a). Then g(a) = g(b) = 0. Apply Rolle’s
theorem to g. 0
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Extreme Value Theorem

Theorem (Extreme Value Theorem)

If f € Cla, b], then Jci, c; € [a, b] such that
fla) < f(x) < f(e)

for all x € [a, b]. In addition, if f is differentiable in (a, b), then c1 and ¢, occur
either at a, b, or where f' = 0.

Proof.

Suppose f(xx) — infa<x<p f(x), then 3 subseq x,, — c1 € [a, b] such that
f(xx) — f(c1) (.- f continuous). Hence we have f(c1) = min,<x<p f(x).
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Extreme Value Theorem

lllustration of the Extreme Value Theorem

Y A

y =/
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Generalized Rolle's theorem

Theorem (Generalized Rolle’s Theorem)

Suppose f € [a, b] and is n times differentiable. Let {xo,...,x,} be a partition of
[a,b], ie., a=x0 < x1 < --- < xn=b, such that f(x;) =0 forall i =1,...,n, then
3¢ € (a, b) such that f(c) = 0.

Proof.

By Rolle’s theorem, Jy1,...,ynst. xo <y1 < x1 < -+ < yn < Xs and f'(y;) =0
for i =1,...,n. Keep applying Rolle's theorem for another n — 1 times to show
that 3¢ € (a, b) s.t. F(c) =0. O
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Intermediate value theorem

Theorem (Intermediate Value Theorem (IVT))

If f € Cla, b] and k is a number between f(a) and f(b), then 3 c € (a, b) such that
f(c) = k.

Proof.
By continuity of f on [a, b]. O
Yok
(a, f(@))
fl@) +
K
I
OR |
| (b. /)
— : >
a ¢ b X
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Example

Example (Application of IVT)
Show that x* — 2x® + 3x*> — 1 = 0 has a solution in [0, 1].

Solution. Set f(x) = x® — 2x®> 4 3x? — 1. Then we need to show that 3¢ € [0, 1]
such that f(c) = 0. Since f(0) = —1 and f(1) = 1, we know such c exists by IVT.
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Integration

Definition (Riemann integral)

The Riemann integral of f on [a, b] is the limit

b n
/a f(x)dx := I|mHO; f(zi)Ax;

max; Ax;

where {xo,...,xn} is a paritition of [a, b], Ax; := x; — x;—1 and z; is arbitrary in
[X,'_17 X;].

If f € Cla, b], this simply means b—a

b n
/a f(x)dx = nﬂ}moo - ; f(x;)
where {xp, ..., xn} is an equal partition of [a, b] into n segments, Ax; =

b=a v

n
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Riemann integral

y=f

\

a=Xy X Xy ... Xj_| X;
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Mean value theorem for integrals

Theorem (Mean Value Theorem for Integrals)

Suppose f € Cla, b], and g is Riemann integrable over [a, b] and does not change
sign, then 3 c € (a, b) s.t.

" F)g()dx = 7(e) [ g(x)dx
/ /

If g(x) =1, then ¢ € [a, b], s.t. f(c

Proof.
Hint: WLOG g > 0, then mfab g(x)dx < j;b f(x)g(x)dx < Mfab g(x) dx where m, M are min,max of f. So
_[h e dx B
m<r: = e < M. By IVT 3¢ € [a, b] st. f(c) =r. |
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Mean value theorem for integrals

Y A

f©) T
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Taylor series and polynomials

Theorem (Taylor's theorem)

Suppose f € C"[a, b], F"*V) exists in (a, b), xo € [a, b]. Then for every x € (a, b),
there exists a number £(x) such that

f(x) = Pa(x) + Ra(x),

where P,(x) is a polynomial of degree n:

Pa(x) = f(x0) + f'(x0)(x = x0) + - - + %f(")(xo)(x — x)"

and Rn(x) is the remainder term:

1

Ro(x) = —— fU D (g(x))(x — X0 il
() = G €N = 0)
Proof.
For any fixed xg, x, define r := ;i)i;‘f)’giﬁ) and F(t) := f(t) — Pn(t) — r - (t — Xo)n+1. Prove that
F(x0) = F/(x0) = - - - = F(")(xp) = 0 and F(x) = 0. Then apply Rolle’s theorem repeatedly to show 3 £(x) € (x0, X)
(n+1)
st F(E(x) = 0, e, r = EoS0D, O
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Example

Example (Taylor polynomial)

Let f(x) = cosx and xop = 0. Find Ps(x), the Taylor polynomial of degree 3 (i.e.,
the polynomial by expanding f at xo to the 3rd order).

Solution. f(xp) = cos(0) =1, f'(x) = —sin(0) = 0, f’(x0) = — cos(0) = 1,
f"'(x0) = sin(0). So

3
1
i) = 3 FOu)(x — ) =1 34
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Taylor series and polynomials

Approximating f(x) = cos x by Taylor's polynomial P>(x):

VY
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Section 2

Solutions of Equations in One Variable (Root-Finding)
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Root-finding

Definition (Roots of a function)

Let f : R — R (univariate), then x is called a root, or zero, of f if f(x) = 0.

Example (Roots of a function)

Find the root(s) of f(x) defined by
(a) (x = 1)(x +1);

(b) (x—1)%

(c) x> + 1;

(d) ax® + bx + c;

(e) cos(x).

Question: Given a general function f, how can we find its root/roots?
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Bisection method

Suppose f is continuous on [a, b], and f(a)f(b) < 0 (WLOG f(a) < 0,f(b) > 0).
Then f has at least one root in (a, b) by IVT.

YA
Sb) +
Sy + 1 1
a=a D x
fp) +
Sfla) +
o i b
as P> by
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Bisection method

Suppose f is continuous on [a, b], and f(a)f(b) < 0 (WLOG f(a) < 0, f(b) > 0).
Then f has at least one root in (a, b) by IVT.

Bisection method

» Input. Endpoints a, b. Tolerance €. Maximum number of iterations Nmax.
Set iteration counter N = 1.
» While N < Npax, do
1. Set p= agb, compute f(p). If f(p) =0 or b— a < €y, break.

2. If f(p) >0,set b=p. If f(p) <O, set a=p.
3. N« N+1.

» Output. If i = Nmax, print(“Maximum iteration reached.”). Return p.
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Termination condition

Bisection method can run forever if we do not set termination condition (e.g., €,
Nmax)-

Common choices of termination condition:
» Fixed number of iterations Nmax.
> |pn — pr—1] < €tol
> [f(pw)] < €tol

|lpn—pPn_1l
> T < €l
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Example

Example (Bisection method)

f(x) = x*> + 4x* — 10. Find a root in [1, 2] using the bisection method.

Solution. Hint: First check if f(1)f(2) < 0 (if not, bisection method may not
apply). Then apply bisection.
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Bisection method

Theorem

Suppose f € Cla, b] and f(a)f(b) < 0, then p, generated by the bisection method

b

converges to p, a root of f, with |p, — p| < %%

Drawbacks of the bisection method:
» inefficient

» may discard some roots

Numerical Analysis | — Xiaojing Ye, Math & Stat, Georgia State University

a

27



Fixed point iteration

Definition (Fixed point)
Let g : R — R, then p is a fixed point of g if g(p) = p.

Y A
y:X
be  jmmmmmmmmme- :
! |
! |
! |
p=gp) T ! |
|
|
! Y =gX)
P i
a p b
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Fixed point

Example (Fixed point and root)

Suppose a # 0. Show that p is a root of f(x) iff p is a fixed point of
g(x) == x — af(x)
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Example

Example (Fixed point)
Find the fixed point(s) of g(x) = x> — 2.

Solution. p is a fixed point of g if p = g(p) = p> — 2. Solve for p to get p = 2, —1.

Y A
5_
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Fixed point theorem

Theorem (Fixed point theorem)

1. If g € Cla, b] and a < g(x) < b for all x € [a, b], then g has at least one fixed
point in [a, b].

2. If, in addition, g’ exists in [a, b], and 3k < 1 such that |g'(x)| < k < 1 for all
x, then g has a unique fixed point in [a, b].
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Fixed point theorem

Proof.

1. If g(a) = a or g(b) = b, then done. Otherwise, g(a) > a and g(b) < b.
Define f(x) = x — g(x), then f(a) = a — g(a) <0, and f(b) = b — g(b) > 0.
By IVT and f is continuous, 3p € (a, b) s.t. f(p) =0, i.e., p— g(p) =0.

2. If 3p, q € [a, b] are two distinct fixed points of g, then 3¢ € (p, q) s.t.

=1g'(¢) <k<1

1:p—q:wam—gW)
pP—q P—q

by MVT. Contradiction.
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Example

Example (Application of Fixed Point Theorem)

Show that g(x) = X:—_l has a unique fixed point in [—1,1].

Proof.

First we need show g(x) € [-1,1], Vx € [-1,1]. Find the max and min values of g
as — and 0 (Hint: find critical points of g first). So g(x) € [-3,0] C [-1,1].
Also |g'(x)| = |%| < 2 <1, Vx € [-1,1], so g has unique fixed point in [—1,1] by
FPT. .

2
Remark: We can solve for this fixed point: p = g(p) = £ ,;1 == p= 372
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Example

Example (Fixed Point Theorem — Failed Case 1)

g(x) = X23_1 has a unique fixed point in [3,4]. But we can't use FPT to show this.

Remark: Note that there is a unique fixed point in [3,4] (p = ”—;/ﬁ), but

g(4) =5¢ [3,4], and g’(4) = 8/3 > 1 so we cannot apply FPT here.

From this example, we know FPT provides a sufficient but not necessary
condition.
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Example

Example (Fixed Point Theorem — Failed Case 1)

x2—1

g(x) = *5= has a unique fixed point in [3,4]. But we can’t use FPT to show this.

3 4 X
1 \ ‘ St e VE)spe Vi)
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Example

Example (Fixed Point Theorem — Failed Case 2)

We can use FPT to show that g(x) = 37* must have FP on [0, 1], but we can’t use
FPT to show if it's unique (even though the FP on [0, 1] is unique in this example).

Solution. g'(x) = (37) = —37"In3 < 0, therefore g(x) is strictly decreasing on
[0,1]. Also g(0) =3° =1 and g(1) =377, so g(x) € [0,1], Yx € [0,1]. So a FP
exists by FPT.

However, g’(0) = —In3 & —1.098, so we do not have |g’(x)| < 1 over [0, 1].
Hence FPT does not apply.

Nevertheless, the FP must be unique since g strictly decreases and intercepts with
y = x line only once.
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Example

Example (Fixed Point Theorem — Failed Case 2)

We can use FPT to show that g(x) = 37* must have FP on [0, 1], but we can’t use
FPT to show whether it is unique (even though the FP on [0, 1] is indeed unique in

this example).
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Fixed point iteration

We now introduce a method to find a fixed point of a continuous function g.

Fixed point iteration:
Start with an initial guess po, recursively define a sequence p, by

pnt1 = &(pn)

If pn — p, then
p= lim po= lim g(pn-1) = g( lim pn-1) = g(p)

n—o0

i.e., the limit of p, is a fixed point of g.
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Fixed point iteration

Example trajectories of fixed point iteration:

Y y=ux 7 y=x
(p2:P3) y =g

(p1.p2) 3= 8(p2) :

P> = g(py) (P2 1) P2 = gp) (p2s12)

P =g&(p2) n ) R (Po-P1)

P =2(po) Prby (Po-P1) ! o (PP

Y=g

Pr P3 P2 Po : Po P P2 e
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Fixed point iteration

Fixed Point Iteration Algorithm:
» Input: initial po, tolerence €y, max iteration Nmax. Set iteration counter
N=1.
> While N < Nmax, do:

L. Set p=g(po) (update py to py-1)

2. If |p— po| < €tol, then STOP

3. Set N+ N+1

4. Set po = p (prepare py for the next iteration)

» Output: If N > Nnax, print( “Max iteration reached.”). Return p.
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FPI for root-finding

We can also use FPI to find the root of a function f:
1. Determine a function g, such that p = g(p) < f(p) =0.!
2. Apply FPI to g and find FP p.

'We can use = only, but we may miss some roots of f.
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Example

Example (FPI algorithm for root-finding)
Find a root of f(x) = x® + 4x* — 10 using FPI.

Solution. First notice that

44 —10=0 <— 4x*=10-x°
»  10-x°
T4
10 — x3
<— x==* 0—x
4
>, 10 —4x°
< X = —-
X
<
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Example

Example (FPI algorithm for root-finding)
Find a root of f(x) = x® 4+ 4x® — 10 using FPI.

Solution. So we can define several g:

(x —xf(x + 4x> — 10)

10
— — 4x

10 — X3

10
44+ x

X3 +4x2 — 10

Which g to choose? — All these g have the’thé ¥ame FP p. But g3, gu, g5 converge
(g5 fastest) while g1, g» do not.
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Convergence of FPI algorithm

Theorem (Convergence of FPI Algorithm)

Suppose g € Cla, b] s.t. g(x) € [a,b], Vx € [a,b]. If Tk € (0,1) s.t. |g'(x)| < k,
V x € (a, b), then {p.} generated by FPI algorithm converges to the unique FP of
g(x) on [a, b].

Proof.
g(x) € [a,b] and |g'(x)| < k < 1,Vx € [a,b] = F! FP p on [a, b] by FPT.
Moreover, 3&(pn—1) between p and p,—_1 s.t.

lpn — Pl = |g(Pa-1) — g(p)| = &’ (€(Pn-1))l|Pn—1 — p| < klpa—1 — p|
Apply this inductively, we get
o — pl < klpa—1— p| < K*|pa—2—p| < -+ < k"|po — p| = 0

since k" — 0 as n — oo. O
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Convergence rate of FPI algorithm

Corollary (Convergence rate of FPI Algorithm)

With the same conditions as above, we have for all n > 1
» |pp—p| < k"max{po —a,b— po}
> |p — pl < £5%1p1 — pol

Proof.

1. |po — p| < max{po — a,b — po}. Then apply the proof above.
2. Apply the proof above to get |pn+1 — pn| < k"|p1 — po|. Then

m—n—1

C1-k
|pm — Pal < |p1 — pol Z; K=

Let m — oo to get the estimate.
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Example

Example (FPI algorithm for root-finding)
Find a root of f(x) = x* + 4x* — 10 using FPI algorithm.
Solution. Recall the functions g we defined:

*xf(x +4x2 — 10)

10 — x3
4
10
4+ x
X3 +4x?2 — 10
gs(x) =x — ——————
Apply the theorem above, check |g’(x)], and’ &Blain why FPI algorithm converges

with g3, g4, g5.

Numerical Analysis | — Xiaojing Ye, Math & Stat, Georgia State University

46



Fixed point iteration for root-finding

To find a good FPI algorithm for root-finding f(p) = 0, find a function g s.t.
> g(p)=p=1f(p) =0
» g is continuous, differentiable
> |g'(x)] < k €(0,1), Vx with k as small as possible
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Newton's method

Suppose p is a root of f and py is sufficiently close to p, then

F(p) = F(po) + F (m)(p — ) + 51" (€())(p — po)*

for some &(p) between py and p.

Since f(p) =0, and (p — po)? is close to 0, we have
0~ f(po) + f'(po)(p — po)
Therefore (assume f'(po) # 0),

 f(po) _.
S

So pi is our guess for p now!
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Netwon's method

Newton’s method:

Start from initial guess pg (close to the FP p), and iterate:

Pn = Pn-1 —

Then we hope p, — p quickly.

VY

f(pn-1)

f'(pn-1)

Slope /(py)

Y=/

(p1.f(p))

Slope /" (po)
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Newton's method

Newton’s method
» Input. Initial guess po, €tol, Nmax. Set N = 1.
» While N < Npax, do:
)) (compute pp using pp—1)

1. Setp:po—;/((%’:f0
2. If |p— po| < €01, STOP
3. Set N=N+1

4. Set po = p (update p,—1 using p, for next iteration)

» Output. Approximate solution p. If N > Npax, print(“Max iteration reached”).
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Newton's method

Newton's method is equivalent to fixed point iteration algorithm with

g(x) =x— :,(();))

So pis a FP of g iff f(p) = 0.
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Convergence of Newton's method

Theorem (Convergence of Newton's method)
If f € C*[a, b] and 3 p € (a, b) such that f(p) =0 and f'(p) # 0, then 36 > 0 such
that Newton’s method convergent starting from any po € (p — 8, p + 9).

Proof.

Hint: Check g’(x):

(f')? — ff" _ f)f"(x)
() (F(x))?

f e C? f(p) =0, f'(p) # 0 together imply 36 > 0 s.t. |g'(x)| < 1 for
x € (po — 6, po + 0). O

g)=1-
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Secant method

A problem with Newton's method is that f'(x) may not be easy to calculate, so we

approximate f'(pn,—1) in the Newton's method by

f(pn—l) - f(pn—Q)

f'(pn_1) =
(Pn 1) Pn—1 — Pn—2

After simple algebra, we get the secant method:

f(Pn—1)(Pn—1 — pn—2)

P P T T (pa1) — F(Pa2)

_ Po2f(pn-1) = po-1f(pn-2)
f(pn-1) — f(pn—2)
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Secant method

Illustration of the secant method:

'Y

Po P2

y :f(X)V
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Secant method

Secant method
» Input. Initial guess po, p1, go = f(po), g1 = F(p1). €tol, Nmax. Set N = 1.
» While N < Npax, do:
1. Setp=p; — ‘“f,fqugf’) = PPN (compute py using pp—1, Pr—2)
2. If ‘p — p]_‘ < €tol, STOP
3. Set N=N+1
4. Set p1 = p,q1 = f(p), po = p1,90 = q1 (update p,_1, pr—2 for next iteration)

» Output. Approximate solution p. If N > Npax, print(“Max iteration reached”).
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Error analysis

Definition (Order of convergence)

Suppose p, — p. If AN, a > 0 s.t.

im [Pori =Pl

n—oo |pn — pl®

then {p,} is said to converge to p of order «, with asymptotic error constant .
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Error analysis

Definition (Convergence order of numerical methods)
An iterative method p, = g(ps—1) is of order « if the generated {p,} converges to
the solution p of p = g(p) at order a.

In particular:
» o = 1: linearly convergent
» o = 2: quadratically convergent
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Example

Example (Speed comparison: linear vs quadratic)

Suppose p, (and g, respectively) converges to 0 linearly (quadratically) with
constant 0.5, enumerate the upper bound of |p,| and |gn|.

Solution. By definition of convergence order, we know

im Pl o5 and im 191l g5

n—oo |pn| n—oo |qn‘2

Suppose that pg and qo are close enough to 0 s.t. |ppt1|/|ps| = 0.5 and
|gn+1]/|gn| = 0.5 for all n, then

|pn| & 0.5|pn_1| ~ 0.5%|ps_2| ~ - -- ~ 0.5"|po|
|qn| ~ 0.5qn_1]> ~ 0.5 - 0.5%|qn_o|* ~ - - - &~ 0.5% | go[*’
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Example

Example (Speed comparison: linear vs quadratic)

Suppose po, o ~ 0.5. Then

Linear Quadratic

n 0.5" 0.5t

1 5.0000 x 10°!  5.0000 x 107!
2 25000 x 107t 1.2500 x 107!
3 12500 x 107! 7.8125 x 1073
4 6.2500 x 1072 3.0518 x 107°
5 3.1250 x 1072 4.6566 x 10~
6 15625 x 1072 1.0842 x 10~%°
7 7.8125x 1073 5.8775 x 107%
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Convergence rate of fixed point iteration algorithm

Theorem (FPI alg has linear convergence rate)

Suppose g € C'[a, b] s.t. g(x) € [a,b], Vx € [a,b]. If Tk € (0,1) s.t. |g'(x)| < k,
Vx € (a, b), then {p.} generated by FPI algorithm converges to the unique FP of
g(x) on [a, b] linearly.

Proof.
We already know p, — p where p is the unique fixed point of g by FPT. Also

pot1 — P = g(pn) — &(p) = &'(&(Pn)) (P — P)
where &(pn) is between p, and p. Hence
|pnt1 = p| _

a . ’ _ / 3 — /
I = |&"(&(pn))l = 1&"( lim_&(pn)) = l&"(P)] < k <1
Therefore p, — p linearly with constant k. O
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Improve convergence order of FPI to quadratic

Theorem (Additional condition for quadratic rate)

If g € C*[a,b] and g'(p) =0 for a FP p € (a, b), then AM > 0 s.t. |g”(x)| < M,
Vx € [a, b] and 36 > 0 s.t. sequence {pn} by FPI stared in [p — 6, p + J] satisfies

M
Pt = pl < S lpn—pf",  Vn
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Improve convergence order of FPI

Proof.

Notice that g € C?, g(p) = p, g'(p) = 0 together imply that 36 > 0 and k € (0,1)
s.t.
g’ <k<1,  x€lp—35p+9d

and
g:lp—9d,p+d] = [p—4d,p+d]

Also .
g(pn) = &(p) + &'(P)(pn = P) + 5&"(&(Pn))(Pn — P)’

where &(pn) is between p, and p.
Since pr+1 = g(pn), £(p) = p, and g'(p) = 0, we have

Prt1=p+ %g”(ﬂpn))(pn - p)?

Pn+1 P "
- Pn < —
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Improve convergence order of FPI

Suppose we have a fixed point method with g(x) = x — ¢(x)f(x). How to choose ¢
such that FPI converges quadratically?

We need g s.t. g'(p) =0 at a FP p (root of f):

g'(p)=1-¢'(p)f(p) — &(p)f'(p) =0

Since f(p) = 0 we have ¢(p) = ﬁ. Choose ¢(x) = s.t.

1
)

e 1

This is exactly Newton's method!

So Newton's method converges quadratically.
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Convergence of Newton's method when f'(p) =0

We mentioned condition f'(p) # 0 at the root p of f in the convergence proof of
Newton's method above.

What if f'(p) = 0?7 When will this happen and how to address it?
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Multiple roots

f'(p) = 0 at root p means p is not a “simple root”.

Definition (Root multiplicity)

A root p of f(x) is a root (zero) of multiplicity m if f(x) = (x — p)"q(x) for
some g s.t. limy—, g(x) # 0.

Definition (Simple root)

p is a simple root (zero) of f if its multiplicity m = 1.
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Multiple roots

Theorem (Sufficient and necessary condition for simple root)

f € C'[a, b] has a simple root p € (a, b) iff f(p) = 0 and f'(p) # 0.

Proof.
“=": f(x) = (x — p)g(x) where lim,_,, g(x) # 0. Then
f'(x) = q(x) + (x — p)q'(x). So f € C* implies
Fi(p) = lim f'(x) = lim (q(x) + (x = p)q'(x)) # 0
“=": f(x) = f(p) + f'(&(x))(x — p) where £(x) between x and p. Define
9(x) = F/(€(x)) then

fim (x) = lim (6() = £'(Jim £() = £'(p) # 0

So f has a simple root at p.
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Multiple roots

Theorem (Sufficient and necessary condition for multiple root)

f € C"[a, b] has a zero p of multiplicity m iff

f(p)=F(p)=---=F"D(p)=0 and ™ (p)#0

Proof.

Hint: Follow the proof above and use
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Example

Example (Multiple root)
Let f(x) = & — x — 1, show that f(x) has a zero of multiplicity 2 at x = 0.

Solution. f(x) = e —x—1, f/(x) =e* — 1, and f’(x) = &*. So f(0) = f'(0) =0
and f”(0) =1 # 0. By Theorem above f has root (zero) at x = 0 of multiplicity 2.
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Modified Newton’'s method

Instead of using f(x) in Newton's method, we can replace f by

) = 10

We need to show:

p is a root (simple or not) of f = p is a simple root of
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Modified Newton’'s method

Recall that f has a root p of multiplicity m if f(x) = (x — p)™q(x) for some g with

limx—p q(x) # 0.

Now there is

oo fx) (x = p)"q(x)
HOI= 60 T = 1400 + (x - PP ()
(x—p)- q(x)
=P T (- P ()
wheremei#Oasx—)p.

By definition, p(x) has simple root at p, i.e., u(p) =0 and u'(p) # 0.
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Modified Newton’'s method

Now we use p(x) instead of f(x) in Newton's method:

_ wx) (F(x)/'(x)) f()f (x)
g(x) =x— =x—_ —2 7 — ...

n(x) F/F G T (PR — ()

The modified Newton’s method is

B B f(pn—l)f/(pn—l)
Pn = Pn—1 (F'(pr=1))2 — f(pa—1)f"(pn-1)

Drawbacks of the modified Newton's method:

» Needs f” in computation.

» Denominator approximates 0 as p, — p, so round-off may degrade
convergence.
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Accelerating convergence

We showed that FPI generally has linear convergence only. How to improve?

Suppose N is large, and pn, pn+t1, Pri2 satisfy
Pn+1 — P ~ Pn+2 — P
Pn— P Pn+1 — P
<= (Pns1 = P)> = (Pn — P)(Pn+2 — P) = PnPni2 — P(Pni2 + Pn) + P°
PnPn+2 — P%Jrl o (Pnt1— pn)?

<~ PR —mm————————— =+ =pPp
Pn+2 — 2Pn+1 + Pn Pn+2 — 2Pn+1 + Pn
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Aitken's A2 method

Denote Ap, := pnt1 — pn, called forward difference, and

A’py :=A(Apn) = A(pni1 — p)
=(Pnt2 — Pat1) — (Prt1 — pn)
=Pn+2 — 2Pn+1 + Pn

2
So the result above can be written as p ~ p, — %.
Aitken’s A? method: ,
Given {pn} generated by FPI, set p, = p, — (252) . Then p, — p faster than p,.
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Aitken's A2 method

What does it mean by “faster”?

Theorem (Faster convergence by Aitken's A% method)

If pn — p linearly with lim,_ p}"jfpp < 1, then p, computed by Aitken's A®
method satisfy

lim uzo
n~>oop,,—p

Proof.

Hint: Define e, := p, — p, then Ae, = Ap,, A2e, = Azpn, and eg—:l — A< 1.
Then

. - (8pn)? _ P A (8ep)? ent+2 _ entl
Pn—p P A2, "7 A%, enpa en 5 A-A .
— _ - T én+2 en _ 1~
e frs 2 A — 2+
Pn — P Pn— P n i1 TF il BN
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Steffenson’s method

Aitken's method computes p, separately from p,. Steffenson’s method makes use
of pn to compute future p,.

Steffenson’s method: given g for FPI, compute

0 0 0 0 ’
Y, P =g(p), P =g(p)”)
(0)y2
1 0 (Apy”) 1 ! ! !
i) =p = o = g(pf?), Pl = g(pl)
AZp
0
Wy
2 1 (Ap ) 2 2 2 2
i =pl = 2= o =g (p?), P = g(p?)
A?p,
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Steffenson’s method

Steffenson’s method
» Input. Initial guess po, €tol, Nimax. Set N = 1.
» While N < Npax, do :
o2
1. Set p1 = g(po), p2 = g(p1) and p = po — %
2. If |p— po| < €01, STOP

3. pp=p
4. Set N=N+1

» Output. Return p. If N > Npax, print(“Max iteration reached.”).
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Steffenson’s method

Theorem

Suppose g(x) has a fixed point p and g’'(p) # 1. If3§ > 0, s.t.
f € C¥[p — 8, p + 9], then Steffenson’s method generates a sequence {p,}
converging to p quadratically for any initial po € [p — 6, p + ¢].
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Section 3

Interpolation and Polynomial Approximation
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Interpolation

Given data points {(x;,yi) : i =1,...,n}, can we find a function to “fit" the data?

Theorem (Weierstrass approximation theorem)

Suppose f € Cla, b], then Ve > 0, 3 a polynomial P(x) such that

|f(x) — P(x)| <€ Vx € [a,b].

VY

Y =f) +e
7, y=PKX
y =/
oY =fx)—¢
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Polynomial interpolation

So polynomials could work. But how to find the polynomial?
First Try: Taylor’s polynomial

For any given function f(x) and a point xo, we approximate f(x) by the Taylor’s
polynomial P,(x):

L0 () (x = x0)”

F(x) = Pa(x) = f(x0) + f(x0) (x = x0) 4 —
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Polynomial interpolation

Example (Problem with Taylor's polynomial)

Let f(x) = &* and xo = 0. See how Taylor's polynomial behaves.

n

Solution. Taylor's polynomial P,(x) =14 x + -+ + Lx".

However, no matter how large we choose n, P,(x) is far from f(x) where x is
slightly large.
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Issue with Taylor's polynomial approximation

y = Py(x)

1)’:P()(x)
t
-1 1 2 3

=¥
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Example

Example (Problem with Taylor's polynomial)

Let f(x) = % and xo = 1. See how Taylor's polynomial behaves.

Solution. We know (" (x) = (:,ﬂnl"!. Then Taylor’s polynomial is

Pa() = 3 (-1)"(x = 1)" = 1= (x = 1) + (x = 17 4o 4 (1) (= 1)’
i=0
Suppose we use Pn(x) to approximate f at x = 3, we get

Po(3) Pi(3) P2(3) P3(3) Pu(3) Ps(3) Ps(3) P:(3)
1 -1 3 -5 11 -21 43 -85

But the true value is f(3) = 1.
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Lagrange interpolating polynomial

We should not use Taylor's polynomial since it only approximates well locally.

Suppose we have two points (xo, yo) and (x1, 1), then best use a straight line to
interpolate. Define two linear polynomials:

X — X1

X — Xo

Lo(x) = and Li(x) =

X0 — X1 X1 — Xo

So Lo and L; are polynomials of degree 1, and
Lo(Xl) = 0, Lo(Xo) = 1, L1(X0) = 0, L1(X1) = 1

Now set P(x) = f(xo)Lo(x) + f(x1)L1(x), then P(x) coincides f(x) at xo and xi.
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Example

Recall that the polynomial we derived is

X720 f(xp) + 2 Xll f(x1)

P(x) = f(x0)Lo(x) + F(x)La(x) = S — - X0 —

P(x) is called the Lagrange interpolating polynomial of f given values at xo and
X1.-

Example (Linear Lagrange interpolating polynomial)

Use linear Lagrange interpolating polynomial of f where f(2) =4 and f(5) = 1.

Solution. P(x) = —x + 6.
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Lagrange interpolating polynomial

Given n+ 1 points {(xi, f(x;)) : 0 < i < n}. Define:

Ln,k(X) =

(x = x0) -+ (x = xk—1) (X — Xu41) -

o (x = xn)

(Xk — Xo) N (Xk — Xk—l)(Xk — Xk+1)

for k =0,1,...,n. Then it is easy to verify

1 ifx=x
Lok(x) = { “

v (X — xn)

0 if x=x;, where j # k

Then the nth Lagrange interpolating polynomial of f is

P(x) =D F(x)Lnk(x)
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Lagrange interpolating polynomial

lllustration of L, k(x):

L, ;x) g

T =
Xi—1 Xk Xet1 ooe Xpo Xn

'/_\'.\_//\v. . /_\V/\.
Xo X ...

Numerical Analysis | - Xiaojing Ye, Math & Stat, Georgia State University

[ |

87



Lagrange interpolating polynomial

The nth Lagrange interpolating polynomial of f at xo,

P(x) = fOu)Lnk(x)

k=0
Properties:

» P(x) is a polynomial of degree n

» P(xx) = f(x) forall k=0,...,n.
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Example

Example (Lagrange interpolating polynomial)

Let f(x) = % Xo = 2, x1 = 2.75, x, = 4. Find the 2nd Lagrange interpolating
polynomial P(x) of f(x) and compute P(3).

Solution. First we compute Ly, for k =0,1,2:

Loo(x) = (x = x1)(x — x2) _ (x —2.75)(x — 4)
' (0 —x1)(x0 —x) (2—2.75)(2—4)
Loa(x) = (x=x)(x=x) = (x=2)(x—4)
BT M —x0)a — =) (275 —2)(2.75 — 4)
Loa(x) = (x=x)(x—x) _ (x—2)(x—2.75)
' (e —x)0e —x1)  (4—2)(4 —2.75)
Then the 2nd Lagrange integpolating polynomial is s 40
2 ) fok)l—zk(x) £7§+ﬂ
Note that P(3) = 55 — 3%83 @ ~ 0.32955, close to f(3) = 3.
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Example

Example (Lagrange interpolating polynomial)

Let f(x) = L, xo =2, x1 = 2.75, xo = 4. Find the 2nd Lagrange interpolating

x!

polynomial P(x) of f(x) and compute P(3).

YA

=Y
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Lagrange interpolating polynomial

Theorem (Error of Lagrange interpolating polynomial)

Suppose f(x) € C™[a, b]. Then for every x € [a, b], 3&(x) between xo,

_ f(n+1)(§(x))
f(X) - P(X)‘i‘w(X—Xo)...(X—X,,)
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Error of Lagrange interpolating polynomial

Proof.

For any given x € [a, b] different from xg, . .., x,, define g(t) as

(t—x0)...(t—xn)
(x = x0) ... (x—xn)

g(t) = f(t) = P(t) = (f(x) = P(x))

polynomial of t, degree n+ 1

Note that f(t) = P(t) and (t —x0)...(t —x»,) =0 for t = xx and k =0,...,n. So
g(t) =0 for t = x, X, ..., X (total n+ 2 points). By generalized Rolle’'s Thm,
3&(x) between xo, . . ., Xp S.t.

_ (n+ - (f(x) = P(x))

(x =x0) .. (x = xn)

0 = g"(E(x)) = F" I (E()

since P(t) is a poly of t with degree n and (t — xo) - - - (t — x») is a monic poly of t
with degree n+ 1. O
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Example

Example (Estimate error of Lagrange interpolating polynomial)

Let f(x) = 1, xo =2, xx = 2.75, xo = 4. Estimate the maximal error of the 2nd

X!

Lagrange interpolating polynomial P(x) given above on [2, 4].
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Example

Solution. Let P(x) be the Lagrange interpolating polynomial, then
(3)
f(x) — P(x) = W(x —2)(x —2.75)(x — 4)

We know f'(x) = =%, f(x) = 5, f"'(x) = =, so

1
<a (&) €2.4)

3! - (€0y
Further, denote h(x) := (x — 2)(x — 2.75)(x — 4), find critical points and then the
max/min values of h(x) on [2,4] to claim |h(x)| < & for all x € [2,4]. Hence

FO(e(x
()

f(”(f(X))‘ :‘ 1

[f(x) = P(x)| =
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Example

Example (Estimate error of Lagrange interpolating polynomial)

Suppose we use uniform partition of [0,1] and linear Lagrange interpolating
polynomial on each segment to approximate f(x) = e*. How small the step size h
should be to guarantee the error < 107° everywhere?
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Example

Solution. With step size h, we have x; = jh for j =0,1,....

Then we use linear Lagrange polynomial to approximate e* on each [xj, xj+1]. The
error is

%f(2)(€(x))(x —x;)(x — xj+1)

() (g(x e5(x) e
So LU | = |2 < £ (- ¢(x) € [0, 1]).

Again take h(x) = (x — x;j)(x — xj+1) which has max 2 Then

FA(£(x))
2

IS

(x = x)(x — x41)| < <107°

N[ ®
INEN

So we need h < (8 x 107% x e™!)/2 ~ 1.72 x 1073,
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Recursive constructions of interpolating polynomials

Given points Xg, . .., X, and function values f(xx) for k =0,...,n.

There are several questions regarding the use Lagrange interpolating polynomial:

» Can we use a subset of points to construct Lagrange interpolating polynomials
with lower degree?

» If yes, which interpolating points among xo, . .., X, to choose?

» If the result is not satisfactory, can we improve the constructed polynomial to
get a polynomial of higher degree?
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Example

Example (Which points to choose?)

Consider the interpolation of the function f with 5 points:

k  xk f (%)

0 1.0 0.7651977
1 1.3 0.6200860
2 1.6 0.4554022
3 1.9 0.2818186
4 22 01103623

If we use an interpolating polynomial of degree n < 4, then we need to decide

which points to use.

For example, if n = 2, then we need to chose 3 points. Should we choose xp, x1, X2

or Xi, X2, X3, or X07X27X4?
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Neville’s method

We do not know which choice is better, since true f(x) is unknown. But we can
compute all and see the trend.

Question: can we use polynomials obtained earlier (with lower degree) to get the
later ones (with higher degree)?

Definition (Partial interpolating polynomial)

Let f be a function with known values at xo, ..., x, and suppose m, ..., mg are k
integers among 0,1, ..., n. Then the partial Lagrange interpolating polynomial that
agrees with f at Xm,, ..., Xm, is denoted by Pp, ... m,(X).
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Example

Example (Partial interpolating polynomial)

Let o =1, x1 =2, x2 =3, x3 =4, x4 = 6 for f(x) = €*. Find P1,24(x) and
approximate the value f(5).

Solution. We only use x1, x2, x4 to get P124(x):

(x — x)(x — x) (x = x1)(x — xq) (x — x1)(x — x)
P x) = flx flx
1,246 (1 — )01 —xa) 7 (e — xa) (2 — xa) () + (xa — x1)(xa — x2) ()
~ (x=3)(x—6) 2 (x —2)(x — 6) 2 (x — 2)(x — 3) o
T2-32-6  TG-23B-6 | (6-26-3
P _ le 3t
1,2,4(5) = S€ T+ e 218105
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Recursive construction of interpolating polynomials

Now we show how to recursively construct Lagrange interpolating polynomials:

Theorem (Recursive construction of interpolating polynomials)

Let f be defined at xo, ..., xk, and x; and x; are two distinct points among them.
e (= 59)Po_jo 40— (x=5)Py_i ()
X — Xj > x) — (x — xi 5 X
P0,17_‘_,k(X) _ J)U0,... ..k )0 0,..0,0,...,k
Xj — Xj
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Recursive construction of interpolating polynomials

Proof.
Denote the RHS by P(x).

Both P, ; «(x)and Py : ,(x) are polynomials of degree k — 1, we know
P(x) is a polynomial of degree < k.

Verify that P(xs) = f(xs) for s =0,1,..., k. So P(x) = Po,... k(x).
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Neville’s method

Suppose there are 5 points xo, . .

construct the following table:

X0
X1

X2

x3

X4

Po
Py

P

P3
Py

Po’l(X) =
P1o(x) =

P> 3(x) =
P374 (X) =

(x=x0)P1—(x—x1)Po

X1—X0

(x=x1)Py—(x=x2)P1

xX2—X1

(x=x2)P3—(x—x3)P>

X3—X2

(x=x3)Pa—(x—x4)P3

X4—X3

Po,1,2(x) =

P123(x) =
P23,4(x) =
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(x=x0)P1,2(x) = (x—x2) Po,1(x)
x2—X0

(x=x1)P2,3(x)—(x—x3)P1,2(x)

(x—50)Ps,4 (I — (x—xa)P2,3(x)
X4 —X
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Neville’s method

We introduce a new notation Q; = Pi—ji—jt1,...,i (/ is the ending index and j 4+ 1 is

the length), then the previous table is just

x0 Qoo

X1 Q1,0 Q1,1

X2 Qz,o Q2,1 Q2,2

X3 Q3,0 Q3,1 @32 @33

X4 Q4,0 Q4,1 Q4,2 Q4,3 Q4,4

For example Q33 = Po123, Qa3 = P1,234, etc.
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Example (Neville's method)

Consider the interpolation of the function f with 5 points:

kT xx (%)

0 | 1.0 | 0.7651977
1 | 1.3 | 0.6200860
2 | 1.6 | 0.4554022
3 | 1.9 | 0.2818186
4 | 2.2 | 0.1103623

In addition, interpolate f(1.5) and compare to the true value?.

2The data in this table were retrieved from a Bessel function with true value f(1.5) = 0.5118277.
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Neville's iterated interpolation

Neville’s iterated interpolation method:
> Input. xo,...,x, and values Q; o = f(x;) for all i.

(x=xi—j)Qij—1—(x—x7)Qj—1,j—1 for
Xi—Xj

» Foreach i=1,...,n compute Qi; = -
—J

J=1,...i
» OQOutput. Table Q with P(x) = Qn.n.

Properties of Neville’s method:
1. Add new interpolating nodes easily.
2. Can stop if |Qii — Qi—1,i—1| < €tol.
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Divided difference

We can also get the polynomials, not just the interpolating values.

Consider the polynomial P,(x) of degree n defined by

Pn(x) = ap + a1(x — x0) + a2(x — x0)(x — x1) + -+ + an(x — x0) - - - (X — Xn—1)
To make it the Lagrangian interpolating polynomial of f at xo, ..., x,, we need to
find a; s.t. Pa(xi) = f(x;) for all x;.

It is easy to check that:

Pn(Xo) =ag = f(Xo) - ap = f(X())
Pn(Xl) = ap + 31(X1 — Xo) = f(Xl) - a1 = %}f(‘()(xo)
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Divided difference

We define the following notations of divided difference:

f[Xi] = f(X;)
flx: 1] — flx:
Flxi, xiv1] = [xit1] [x]
Xji+1 — Xi
p _ FIxy1, Xiv2] = fxis xiga]
[Xi7 Xi+1, Xf+2] - Xito — X;
1 1

Once the (k — 1)th divided differences are determined, we can get the kth divided

difference as —
o = () o
until we get f[xo,...,Xs]. Then set ax = f[xo, ..., xx] for all k:
Pa(x) = f[xo] +Zf[xo7...,Xk](x—xo)...(x—xk)
k=1
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Divided difference

We can construct a table of divided difference as follows:

X0
X1
X2
X3
X4
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fxo]
fx1]
fx2]
fx3]
flxa]

f[xo, x1]
fx1, %]
flx2, x3]
fx3, xa]

f[x0, x1, x2]
fx1, %2, x3]
flx2, x3, xa]

f[x0, x1, X2, X3]
flxi, x2, x3, xa]

flx0, X1, X2, X3, Xa]
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Divided difference

We can introduce a new notation F;; = f[xj—j,...,x;], then the table can be
written as

xo Fopo

x1 Fio  Fi1

x2 P20 P21 P22
x3 F3o F31 F3o F33
xa Fao Fax  Fap  Faz  Faa

s
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Newton's divided difference formula

Newton’s divided difference
> Input. xo,...,x, and values Fjq = f(x;) for all /.

Fiia—Fi_1i_ . .
LISl oLisl for j=1,...,i.

Xj—Xj—j

> Foreachi=1,...,n: set Fj =

» Output. Fi; for i =0,...,n, and set

Pn(x) = Foo + Z Fii(x = x0) ... (x — xi—1)

i=1
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Special case

In the special case where x;11 — x; = h for all i, then x; = xo + ih.
Now if we want to know the value of f at xs = xo + sh (s can be non-integer), then

Pa(xs) = flxol + D fIx0, -, x4 (% — %0) - (%6 — Xk—1)

= fhol + > flxo, .-, xl(sh)((s — 1)h)...((s — k + 1)h)
k=1

(s—1)...(s—k+1)

. k!

= f[xo] —|—Zf[xo,...,xk]hk$
k=1

= flx] + Z Flxo, .., ] HK! (i)
k=1
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Special case

If we adopt the Aitkin's A2 to simplify notations:
f(a) — f(x)

ol = R0 2(6Ga) — £(0) = 5 AF(0)
flro, ] = Pl ZIb00] L Bary) - 2aro)) =
s o] = - = o A5 (x)

Newton's d|V|ded dlfFerencekbecomes

(X)—f[Xo]—f—Z( >A f(x0)

k=1
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1
P f(x0)
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Backward difference

We can also use the backward differences:

Vpn=pn—po1 and V¥p, =V(V'p,) 3

Suppose the points are in reverse order: x,, Xp—1, ..., Xo, then

Pu(x) = f[xn] 4+ f[Xn, Xn—1](x — Xn) + -+ 4+ F[Xn, . . ., X0] (X — Xn) .. . (X — x1).

If xs = xa + sh (s is negative non-integer), then we can derive:

Pa(x) = flxa] + 3 _(~1)* (f) YV F (xn)
k=1

3 2
For example, V°p, = (pn — pn—1) — (Pn—1 — Pn—2) = Pn — 2Pn—1 + Pn—2.
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Hermite interpolation

Suppose we also have derivatives f()(x;) at points x; for k = 0,..., m;, we can find
the polynomial P(x) s.t

PR (x) =M (x), Vi k

The total number of conditions (values) we have is

Z(m,—i—l) (n+1)+ Zm,-

i=0

So we can find a polynomial P of degree /i — 1.

Such a polynomial is called an osculating polynomial.
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Hermite polynomial

We're mostly interested in the case with m; = 1, V. That is, we have f(x;) and
f'(x;) at each x;.

We want to construct a polynomial P(x) of degree 2n+ 1, s.t. P(x;) = f(x;) and
P/(X;) = f/(X,'), VI

Let L, (x) be the Lagrange polynomial of degree n such that

0, if i)
L”’j(x’):{l if i=j

We define two polynomials (both of degree 2n + 1):

Hnj(x) = (1 = 2(x = x)Lp;(x)) Lnj(x)

Fnj(x) = (x = %) L(x)
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Hermite polynomial

Theorem (Construction of Hermite polynomial)
If f € C'[a, b] and xo, . .., xn € [a, b] are distinct, then the polynomial of least
degree that satisfies P(x;) = f(x;) and P'(x;)) = f'(x;) is

Hons1(x) := Z £ (%) Hn,j(x) + Z ' (5) Fn j(x)

which has degree < 2n+ 1.
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Hermite polynomial

Proof.
It's clear the degree < 2n+ 1. Also,

Hos) = 40 170 o Aix) = 0,vi
1, ifi=j
SO H2n+1(X,') = f(X,') Vi. Also
Hpj(x) = =2L, ;09)La j(x) 4 (2 = 4(x = x) L0 j(5)) Lnj () L1 ;(%)
i (%) = L5 (%) + 2(x — x:)La j(x) L1 ()

Therefore e
Hi(x)=0 Vi, and AL(q) =4 Ti#
’ ’ 1, ifi=j

Hence Hj,,1(x) = f'(x;), Vi. O
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Hermite polynomials

We can also construct Hermite polynomials using divided difference.

Suppose we have xo, x1, ..., X, and f(x;), f'(x;) are given. Define z); = zi41 = x;
fori=0,...,n

For example, zp = z1 = x0, 22 = z3 = x1, etc.

Now we have zy, z1, ..., z2n41, total of 2(n+ 1) points. So

2n
Honga1(x) = flzo] + Y _ flzo, .., 2] (x — 20) -+ (x — &)
k=1
and use f'(x;) as f[zi, zi41] forall i =0,...,n.
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Hermite polynomial

Then we construct the table as follows,

20 = xp
1 =X
7y =x1
3 =X
24 = xp
75 = x3
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flzo] = f(x0)
flz1] = f(x0)
flzo] = f(xq)
flz3] = f(x1)
flza] = f(x2)
flzs] = f(x3)

flzg, 21] = F/( x?

flz1, 2] = f[ZZZZ_gzl]
flzp, 23] = ff (x1) .
o - At

flzg. z5) = ' (xp)

flz0, 21, 2]
flz1, 22, 23]
flz2, 23, 24]
flz3, 24, 25]

flz, 215 225 23]
flz1, 22, 23, 24]
flz2, 23, 245 25]

flzo, 21, 225 73, 2]
flz1: 22, 23, 24, 5]
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Hermite interpolation

Hermite interpolation polynomial
» Input. Distinct xo, ..., xn f(xi), f'(x;) Vi.
» Fori=0,...,n, do (# Assign values Q., Q. 1)
1. Set zp; = z0j11 = X;, Qo0 = Q2iv1,0 = F(xi), Q1,1 = F/(x;).
2. If i # 0, then set Qyy = 2LO=%i-Lo

22j—22{—1
» Fori=2,....2n+1and j=2,...,i, set
Qi1 — Qic1j1
Qj=—"F——"77""—
Zi — Zj—j
» Output. Hermite polynomial coeff. Qoo,..., Qnt1,2n+1, S-t.

H(x) =Qo0 + Qui(x —x0) + @a(x — x0)> + - -+

+ Qont12nt1(x — Xo)2 c(x = xn)2

Numerical Analysis | — Xiaojing Ye, Math & Stat, Georgia State University 121



Cubic spline interpolation

High-degree polynomial fitting has strong oscillations.

Can we get a piecewise “low degree” polynomial interpolation instead?
Sx) 4

S,-(x,'+1) :f(fo) = S/+1(x,'+1)
S;(xj+1) = S;+1(x,-+1)
Sf’(xjﬂ) = S,Zrl(x,’ﬂ)

| | | | |
T T T

j Xj+1 Xj+2 cee Xpep Xy

"8

“+

n
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Cubic spline interpolation

Suppose we are given xo, ..., x, and f(x;), Vi, we want to find a cubic spline
interpolation S(x), s.t.

1.

oG A e

S(x) is a cubic polynomial, denoted by S;j(x), on [xj, xj+1];
Si() = f(x), Si(xi+1) = f(xi41)

Si(xj) = Sj+1(x;) for all j (consequence of ltem 2.)
Sie1(x11) = S (xj41) for all j

Sita(xje1) = 5 (xj41) for all j

One of the following boundary condition is satisfied:

> S"(xp) = S”(xn) = 0 (natural/free boundary condition)
> S'(x0) = f'(x0) and S'(xn) = f'(xn) (clamped boundary condition)
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Cubic spline interpolation

Remarks
1. S(x) only agrees with f(x) at x;, not necessarily f'(x).

2. Clamped boundary condition is more accurate than natural boundary
condition, but needs f'(a), f'(b).
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Example

Example (Construct a natural cubic spline)

Construct natural cubic spline for f(x) = €* using x; =

LY

i fori=0,1,2,3.
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Construction of cubic splines

Given {(xi,f(xi)) : i =0,...,n}, we need to construct n cubic polynomials, each
with 4 coefficients

Si(x) = 3 + bj(x — x) + 6i(x — x)° + dj(x — x)* on [, %11, Vj
So we have 4n unknowns to determine:

aj, bj,¢,d;, forj=0,...,n—1
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Construction of cubic splines

The cubic spline conditions will determine these 4n coefficients uniquely
(hj :== xj41 — x;) according to the 6 rules:
1. By definition of ;.
2. Since Sj(xj) = a; = f(x;j), we get aj for j =0,...,n— 1.
3. a1 = Spa(xa1) = Si(x+1) = & + by + G} + dih.
4. S/(x) = bj + 2¢i(x — x;) + 3d;(x — x;)?, therefore S/(x;) = b; and
bjs1 = Sf11(xj41) = S (xj41) = bj + 2¢;h; + 3dj ;.
5. 5/'(x) = 2¢j + 6dj(x — x;). Then we have 5/'(x;) = 2¢;. So
2611 = Sfta(x+1) = 57 (%) = 2¢; + 6djh;.
6. Use the required boundary condition.

» Natural boundary condition: ¢ = ¢, =0
» Clamped boundary condition: by = f’(a), b, = f'(b).
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Construction of cubic splines

As we have known the values of a;, we can combine equations from the last 3 items
to solve for ¢; and obtain

3
hji—1¢i—1 +2(hi—1 + hj) ¢ + hiGir = (41 — 3)) = —(a) — 3j-1)
J

3
hjfl
for each j =1,...,n— 1. If we assume natural splines with Sy'(x) = S;_1(x») = 0,
then ¢ = ¢, = 0.
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Section 4

Numerical Differentiation and Integration
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Numerical differentiation

Recall the definition of derivative is

f T f(Xo —+ h) — f(Xo)
fllo) = fim ==
We can approximate f'(xo) by

f(Xo —+ h) — f(Xo)

A , for some small h
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Numerical differentiation

Approximate f'(xo) by

f(Xo + h) — f(Xo)
h

, for some small h

Slope f"(xo)

Slope 7

| |

f(xg + h) = f(xq)

T T
Xo Xxoth

How to quantify the error of this approximation?
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Numerical differentiation

If f € C?, then Taylor's theorem says 3¢ € (xo, %0 + h) s.t.

f(xo + h) = f(x) + f'(x0)h + %f”(ﬁ)h2

= () = TN = Fla) hz — o) %f”(f)h

If 3IM > 0s.t. |[f”(x)] < M for all x near xo, then

f(Xo + h) — f(Xo)
h

Error =|f'(x0) — :‘%f”(&)h‘ <

So the error is of order “O(h)".
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Example

Example (Error of numerical differentiations)

Let f(x) = In(x) at xo = 1.8. Use h=0.1,0.05,0.01 to approximate f'(xo).
Determine the approxiamtion errors.

Solution. We compute for h = 0.1,0.05,0.01 that

F(1.8+h) — F(1.8) _ In(1.8+ h) — In(1.8)
h - h

Then [f"(x)] = | — %| < {3 =: M for all x > 1.8. Error is bounded by 2.
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Numerical differentiation

Example (Error of numerical differentiations)

Let f(x) = In(x) at xo = 1.8. Use h=0.1,0.05,0.01 to approximate f'(xo).
Determine the approxiamtion errors.

Solution (cont.)

f(1.8+h)—f(1.8) Mh
h h 2

0.10 0.5406722 0.0154321
0.05 0.5479795 0.0077160
0.01 0.5540180 0.0015432

The exact value is f'(1.8) = & = 0.555.
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Three-point endpoint formula

Recall the Lagrange interpolating polynomial for xg, ..., x, is

— - (X XO) ( X") (n+1)
f(x)—kZ:;f(xk)Lk(xH (1] (€(x)

Suppose we have xo, x1 = xo + h, x2 = xo + 2h, then

00 = 3 F () L) + B2l g )
k=0

where £(x) € (xo0,x0 + 2h).
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Three-point endpoint formula

Take derivative w.r.t. x of

f(x) = Zf xk) Le(x) + (x XO)(X;)Q)(X7X2)f(3)(€(x))
k=0

and set x = xo yields* the Three-point endpoint formula:

L 13f (o) +4F (x0 + ) — F (x0 + 2h)] + 2f(3) (€(0))

fl(0) = 55

where £(x0) € (x0, %0 + 2h).

3
4Note that x=x0)x le)(x xg) ar(®) \x x = 0.
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Three-point midpoint formula

Suppose we have x_1 = xop — h, x0, x1 £ xo + h, then
7 7

9= 2 700 L) + bl o,

where &1 € (xo — h, xo + h).

Take derivative w.r.t. x, and set x = xp yields Three-point midpoint formula:

1

L TF o+ )~ F (o — )] — 70 (&)

f/ (Xo) =
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Three-point midpoint formula

lllustration of Three-point midpoint formula:

'Y
Slope f"(x)

Slope ﬁ[f(xo +h) = fxo = h)l
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Five-point midpoint formula

We can also consider xx = xo + kh for k = —2,—1,0,1,2, then
ITie o(x = x¢)
Z f (%) Le(x) + bf ()
k=—2

where & € (xo — 2h, xo + 2h).
Show that you can get the Five-point midpoint formula:

' (x0) = f (xo — 2h) — 8f (xo — h) + 8f (xo + h) — f (x0 + 2h)]

12h [
*f(s (%)

Numerical Analysis | — Xiaojing Ye, Math & Stat, Georgia State University

139



Five-point endpoint formula

We can also consider xx = xg + kh for k =0,1,...,4, then

Fx) =D F(xk) Le(x) + w"“)@
k=0 ’

where & € (xo, X0 + 4h).

Show that you can get the Five-point endpoint formula:

£ (x0) :ﬁ [ — 25F (x0) + 48F (x0 + h) — 36 (xo + 2h)

4
+16f (x0 + 3h) — 3f (x0 + 4h) | + %f“)(fo)
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Example

Example (3-point and 5-point formulas)

Use the values in the table to find '(2.0):

X f(x)
1.8 10.889365
1.9 12.703199
2.0 14.778112
2.1 17.148957
2.2 19.855030

Compare your result with the true value f'(2) = 22.167168.

Hint: Use three-point midpoint formula with h = 0.1,0.2, endpoint with h = +0.1,

and five-pint midpoint formula with h = 0.1.
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Second derivative midpoint formula

Expand f in a third Taylor polynomial about a point xo and evaluate at xo + h and
Xo — h:

F oo h) = £ (o) + 1 () it S (s0) 2 £ 77" (s0) o £ (60)

1

Fxo—h)=Ff(x)—Ff (x0)h+ %f” (x0) % — %f”’ (x0) A® + ﬂf(“) (621) W

where 41 is between xp and xo & h.

Adding the two and using IVT f®)(¢) = 1 [f(“) (&) + @ (g,l)} (assuming
f € C*) yield:

f// (XO) = % [f(Xo — h) — 2f(x0) + f(XO + h)] _ 7): (g)

where xp — h < & < xo + h.
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Roundoff error instability

Recall we have three-point midpoint approximation
/ 1 R 3
f (Xo):f[f(Xo+h)ff(Xofh)]fff (51)
2h 6
for &1 € (x0 — hyxo + h).

Will we get better accuracy as h — 0?7 Not necessarily.
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Round-off error instability

In numerical computations, round-off error is inevitable:
f(xo+h)="F(x+h)+e(x+h)
f(xo—h)="F(xo—h)+e(x—h)

Hence we're approximating f'(xo) by W with error:

f(x0+h)ff(xofh)_e(onrh)fe(xofh)_Ef(3)(§)
2h - 2h 6 !

Suppose |e(x)| < €, V x, then the error bound is:

' (x0) —

fl(Xo)f f(Xo+h)2—l1f(Xo—h) <

h2
—M
+ 6

S| ™

So the error does not go to 0 as h — 0, due to the round-off error.
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Richardson’s extrapolation

Goal: generate high-accuracy results by low-order formula.

Suppose we have formula N;(h) to approximate M with °
M = Ni(h) + Kih + Koh® + Ksh® + - -

with some unknown Ki, K2, Ks, . ...

For h small enough, the error is dominated by Kih, then

2 8

h h W W
M:Nl( )+K1§+K27+K3f+-“

SE.g., M = f(x) and Ny(h) = [othl—7t0)
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Richardson’s extrapolation

Therefore

h
M=N; | -
1<2>+

Define

Ny (g) — N1 (h)

Ny (g) — Ny(h)

then M can be approximated by N»(h) with order O(h?):

K.
M = Ny(h) — K2 22— 343/13
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Example

Example (Richardson’s extrapolation)

Let f(x) = In(x). Approximate f' at xo = 1.8 with forward difference using h = 0.1
and h = 0.05. Then approximate using N>(0.1).

Solution. We know the forward difference is O(h), and

M) = f(xo+h) — f(x) _ [0.5406722, for h=0.1
W= h ~10.5479795, for h = 0.05

N>(0.1) = Ny (0.05) + (N4 (0,05) — Ny (0.1)) = 0.555287.

Formula N1(0.1) N1(0.05) N>(0.1)
Error 1.5%x1072 7.7x107% 27x107*
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Richardson’s extrapolation

Suppose M = Ni(h) + Kih® + Koh* + Ksh® + ..., then for j = 2,3,..., we have

O(h*) approximation:

Ni(h) = N1 (g) 1 Mea(h/2) = s (1)

We can show the order of generating these N;(h) ©:

o(m) o(h*) o(h°) O(h®)
1: Nl(h)
2: Ni(2)  3: Na(h)
4: Ni(3) 5 No(B)  6: Ns(h)
7o M(B) 8 Ma(B) o Na(B) 10 N(h)

OExercise: write a computer program for Richardson's extrapolation.
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Example

Example (Richardson’s extrapolation)

Consider approximation of f'(xp):
h4

p 1 h? 11 (5)
f(Xo)zﬂ[f(xo+h)ff(xofh)}7*1‘. (Xo)f f (Xo)f---

6 120
Find the approximation errors of order O(h?), O(h*), O(h®) for £'(2.0) when
f(x) = xe* and h=0.2.
Solution. We have O(h?) approximation

4

' (x0) = Na(h) — %" (x0) = 155 F (x0) — -

120

where Ni(h) = 5= [f (xo + h) — f (xo — h)]. Then compute
/\/1(/7)7 Nl(%), Nz(h), Nl(g), Nz(g), ... in order.
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Numerical integration

Recall that Lagrange interpolation of f by

n

+1)
)= 3 it +—C )H(xfx>

i=0

Lagrange polynomial Pp(x)
So we can take integral on both sides:

S b FO () 1"
/af(x)dx—/éJ ;f(X:)Ln,I(X)dX+l (n+ 1) H

i=0
n
=3 aif (x) + E()
i=0
where for i =0,...,n,

1 e
a,—/a Ln,i(x)d dE(f)_(nJrl)!/a (n+ 1)1 HO
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Trapezoidal rule

Suppose we know f at xp = a and x; = b, then

o x=x) o (x=x) oo
Pi(x) = (Xoixl)f( 0) + (X 7X)f( 1)
Then taking integral of f yields
’ _ () oy emx) T
IR M= ORS re IE
5 | FIE) b0 (x — x) dx

X0
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Trapezoidal rule

Integral of the first term on the right is straightforward.

Note that the second term on the right is
/ ' (£(x)) (x — x0) (x — x1) dx
X0
= (a)/ (x — x0) (x — 1) dx

X0
3 X
0[5 O s
3 2
X0
h3 1
~Lr
L5 (€)

where £ € (x0,x1) by MVT for integrals and
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Trapezoidal rule

Therefore, we obtain

/b F(x)dx = { Ce=x) poyy emx) o 1

2(Xo —Xl) 2(X1 —Xo)

_ ba—x) L
== [f (x0) + f ()] — Ef &)

Trapezoidal rule:

/ F) dx = 2 [F (x0) + £ ()] — 157" (€)
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Trapezoidal rule

lllustration of Trapezoidal rule:

'Y
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Simpson’s rule

If we have values of f at xp = a, x1 = %b, and xo = b. Then

[ rac= [ {(Xn)(xmf(xw(xxo)(xxz)

(%0 —x1) (x0 — x2) (x1 — x0) (x1 — x2)
x=x0)(x—x)
(x2 — x0) (x2 — x1)

2 (x = x0) (x = x1) (x = x2) .(3)
Jr/XO . FO((x)) dx

f (x2)] dx
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Simpson'’s rule

With similar idea, we can derive the Simpson’s rule:

/xz f(X)dX = g [f (Xo) + 4f (Xl) + f(Xz)] _ %f(@(&)

'Y
y =1
y = Py(x)
] XZ = b
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Example

Example (Trapezoidal and Simpson's rules for integration)

Compare Trapezoidal and Simpson’s rules on f02 f(x)dx where f is

(a) x* (b) x*
(d) vV1+x2 (e) sinx

(€) (x+1)~*
(f) &

Solution. Apply the the formulas respectively to get:

Problem (a) (b) (c) (d) (e) (f)

f(x) x? x4 (x+1)"t V1+x2 sinx ex
Exact value 2.667 6.400 1.099 2.958 1.416 6.389
Trapezoidal 4.000 16.000 1.333 3.326 0.909 8.389
Simpson’s 2.667 6.667 1.111 2.964 1.425 6.421
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Newton-Cotes formula

We can follow the same idea to get higher-order approximations, called the
Netwon-Cotes formulas.

For n = 3 where £ € (xo, x3):

/X3 F(x) dx = % [F (x0) + 3F (xa) + 3F (x2) + F (x3)] — %f(“)(g)

X0
For n = 4 where £ € (x0, xa):

/XA F(x) dx :% [7F (x0) + 32F (x1) + 12F (xa) + 32F (x3) + 7F (xa)]

0

8h’
_ 27 £(6)
945 ©)
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Composite numerical integration

Problem with Newton-Cotes rule for high degree is oscillations.

y

y=P,x)

a=x, X X5 X,o1 X, =b X

Instead, we can approximate the integral “piecewisely”.
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Composite midpoint rule

Let x_1 = a,x0, X1, - -, Xn, Xnt1 = b be a uniform partition of [a, b] with h = %.
Then we obtain the composite midpoint rule:

n/2

b J—
/ Fx)dx = 20> f () + b . 2RF" (1)
a j=0

y=fx

\
t
a=x_; Xo X Xoj—1Xg; Xoje1 Xy—1 Xy b=x, x
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Composite trapezoidal rule

b—
n

Let xo = a,x1, ..., X, = b be a uniform partition of [a, b] with h = 2=2. Then we

obtain the composite Trapezoidal rule:

b n—1 _
/f(x)dx:g f(a)+2 5 F () + f(b) —%hzf”(u)

Vi

= f(x)

a=x, x, X X X, b=x, X
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Composite Simpson's rule

Let xo, X1, ..., X, (7 even) be a uniform partition of [a, b]. Then apply Simpson’s
rule on [xo, x2], [*2, xa], . .., a total of n such intervals. Then we obtain the
composite Simpson’s rule:

(n/2)—1 n/2

/bf(x)dng [ a)+2 Z f(x21)+4zf(xzj 1)+ f(b)| —

£ (1)

'Y

a=x, X, Xojp Xpioy Xy b=x, X
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Gauss quadrature

Previously we chose points (nodes) with fixed gaps. What if we are allowed to to

choose points xp, ..., x, and evaluate f there?
y y y
y=/x) =
v =/ e
7a=x| xX,=b x 7a=x1 x,=b x 7a=x| X,=b x
y y ¥y
y=J/®)
y =/
y =/
T ax, X, b x T ax, X b x T ax xb o x
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Gauss quadrature

Gauss quadrature tries to determine xi,...,x, and c1, ..., Cy S.t.

b n
/ f(x)dx =~ Z Gif (xi)

Conceptually, since we have 2n parameters, i.e., ¢, x; for i = 1,...,n, we expect to

get “="if f(x) is a polynomial of degree < 2n — 1.

Numerical Analysis | — Xiaojing Ye, Math & Stat, Georgia State University

164



Gauss quadrature

Let's first try the case with interval [—1, 1] and two points x1, x2 € [—1,1]. Then we
need to find xi, x2, c1, ¢2 such that

/ Fx)dx ~ aif (x1) + of (%)

-1

and “=" holds for all polynomials of degree < 3.
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Gauss quadrature

We first note

/(ag+alx+azx2+agx3)dx:ao/ldx+al/xdx+az/x2dx+ag/x3dx

Then we need x1, x2, ¢1, G2 s.t. f_ll f(x)dx = aif (x1) + ef (x2) for f(x) =1, x, X2,
and x*:
C1'1+C2'1:/1 ldx =2,
711
cl X1+ Cxo= xdx =0

—1

1 2
2 2 2
c1-X1+cz-X2:/ xdx:§,
-1

1
cl-x13+cZ-X23:/ x}dx =0
-1
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Gauss quadrature

Solve the system of four equations to obtain xi, x, c1, ¢:

a=1 ao=1 xx=-——, and  xo =

So the approximation is

l J—
/ F(x)dx ~ f <\/§> +f <\/§)
1 3 3
which is exact for all polynomials of degree < 3.

This point and weight selection is called Gauss quadrature.
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Legendre polynomials

To obtain Gauss quadrature for larger n, we need the Legendre polynomials
{P»:n=0,1,...}: which are determined to satisfy:

1. All P, are monic (leading coefficient =1)

2. For each n > 1, there is
1
/ P(x)Pn(x)dx =0
-1
for all polynomial P of degree less than n.

Thus the Legendre polynomials P, are like an orthogonal basis of polynomials
(orthogonal in the sense that fil Pr(x)Pm(x)dx =0 for all n # m.
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Legendre polynomials

The first five Legendre polynomials:

Po(X) =1
Pi(x) = x
Py(x) = x* — %
Ps(x) = x> — gx
6 3
Pa(x) = x* — ?x2 + 35

In practice, there is a simple recursive formula to obtain P, using P,_1 and P,_»
(with some scalings of the monic ones):

(n+ 1)Pps1(x) = (2n + 1)xPp(x) — nPn_1(x)
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Gauss quadrature and Legendre polynomial

Theorem (Obtain Gauss quadrature by Legendre polynomials)

Suppose xi, ..., x, are the roots of the nth Legendre polynomial P,(x), and define

1 n
X=X
Ci = dx
/_1 E Xt =X
If P(x) is any polynomial of degree less than 2n, then

/1 P(x)dx = Z GiP (x)
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Gauss quadrature and Legendre polynomial

Proof. First consider the the case deg(P) < n— 1. Given the roots xi, ...

Pa(x), let Lo—1,i(x) be the Lagrange polynomial for x;. Then we know

ZPX,)L ZHX,_ZP

i=1 j=1
J#i
and therefore
1 n n X — X
/ ()dx:/ 11 LP(x)| dx
1 -1 i=1 j= IXI_XJ
J#i
n 1 n X X
=3 | [ L=y o| P =3 e
-1 Xi =X
Jj=1
J#i
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Gauss quadrature and Legendre polynomial

Proof (cont.) If n < deg(P) < 2n —1, then we know
P(x) = Q(x)Pa(x) + R(x)

for some polynomials Q(x), R(x) that are of degree at most n — 1. Since xi, ..., X
are roots of P,(x), we have

P(xi) = Q(xi)Pa(xi) + R(x:) = R(x;)

forall i =1,...,n. Furthermore, we know

/ P(x)dx = / [Q(x)Pa(x) + R(x)] dx = / R(x)dx = Z GR(x) = Z GiP (xi)

-1 -1 -1

because fil Q(x)Pn(x)dx = 0 given that the degree of Q is at most n — 1.
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Gauss quadrature

>

Roots r, ;

Coefficients ¢,

2 0.5773502692 1.0000000000
-0.5773502692 1.0000000000

3 0.7745966692 0.5555555556
0.0000000000 0.8888888889
-0.7745966692 0.5555555556

4  0.8611363116 0.3478548451
0.3399810436 0.6521451549
-0.3399810436 0.6521451549
-0.8611363116 0.3478548451

5 0.9061798459 0.2369268850
0.5384693101 0.4786286705
0.0000000000 0.5688888889

-0.5384693101
-0.9061798459

0.4786286705
0.2369268850
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Example

Example (Gauss quadrature)

Approximate fil €* cos x dx using Gauss quadrature with n = 3.

Solution. We need to use the roots of Legendre polynomial and coefficient values

for n = 3:

n Roots r,, ; Coefficients ¢, ;
3 0.7745966692 0.5555555556
0.0000000000 0.8888888889
-0.7745966692 0.5555555556

1
/ €* cos x dx ~0.5e*77*%9% c0s(0.774596692) + 0.8 cos(0)
1

+ 0.5 077459992 ¢05(—0.774596692)
=1.9333904

True value is fil €* cos x dx = 1.9334214. Our error is 3.2 x 107>,
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Gauss quadrature on arbitrary interval

So far the Gauss quadrature is only considered on [—1,1].

To find Gauss quadrature on arbitrary x € [a, b], just do a change of variable:

_2x—a-—b

t
b—a

— x:%[(bfa)tJraer]

Then t € [—1,1] and the integral is

/abf(x)dx:[11f((b_a)t;(b+a)) O

Then apply Gauss quadrature to the right side.
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Multiple integrals

Now we consider multiple integral

b rd
//f(x,y)dydx

z
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Multiple integrals

First consider a 2 x 2 grid on the domain [a, b] X [c, d]:

VA
1 2
d 4+
2 4
Te+adl
1 2
o+
a +(a+ b) b X

—c b—a
Here k = d2 and h = 372,
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Multiple integrals

We first approximate the inner integral using composite Trapezoidal rule:

d c+k d
/ oty = [ fanay+ [ sy

+k

~ S(F(x€) + Flx, e+ k) + 5 (Flx, e+ K) + F(x, o)
= X(F(x€) + 20 (¢ + ) + F(x,d)) = g(x)

Then approximate the outer integral:

b
[ gtdx~ e(a) + 280+ h) + ()
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Multiple integrals

Combine the two to obtain:

/ab (/cd f(x,)’)dy) dx z%{ﬂa, ¢) + f(a, d) + f(b, c) + f(b, d)
f(a:b,d> +f(a,czd>
+4f<a;b7 C~f2»d>}

+
N
—
Y
VN

(Y
N+
o
(e}
e g
+

y
p 1 2 1
%(c ral 2 4 2
1 2 1
e+
: : >
a Ha+b) b X
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Multiple integrals

We can also consider a 2 x 4 grid on the domain [a, b] x [c, d]:

Y A
| 4 2 4 |

1.50 +
4 16 8 16 4

1.25 +
1 4 2 4 1

1.00 +

1.40 1.55 1.70 1.85 200 X

Here k = 9= and h = 22,
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Composite Simpson's rule on non-rectangular region

Now we consider multiple integrals on non-rectangular regions:

d(x
/ / (x,y)dydx

For each integral set k(x) = (7 , then
/ / F(x, y) dy dx ~/ F(x, () + 4 (x, (x) + k(x)) + F(x, d(x))] dx
~y {ﬁ[f(a c(a)) + 4f(a, c(a) + k(2)) + f(a, d(a))]
4k(‘33+ D) (£(a + by c(a+ b)) + 4F(a+ h, c(a + h)

+ k(a+ h))+ f(a+ h,d(a+ h))]

+ @ [f(b, (b)) + 4f (b, c(b) + k(b)) + f(b, d(b))] }
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Gauss quadrature for non-rectangular region

We can also use Gauss quadrature for non-rectangular region:

b rd(x)
/ / f(x,y)dydx
a Je(x)

d(a)
d(b)

k(a)

c(b)
c(a) 7
k(a +

Numerical Analysis | — Xiaojing Ye, Math & Stat, Georgia State University 182



Gauss quadrature for non-rectangular region

We can also use Gauss quadrature for non-rectangular region:

b pd(x)
/ / f(x,y)dydx
a c(x)

For each x € [a, b], transform [c(x), d(x)] into variable t in [—1,1]:

f(x,y)="f (X, (d(x) = C(X))t2+ d(x) + C(X)>

ILCELCW
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Gauss quadrature for non-rectangular region

So the inner integral can be approximated by Gauss quadrature:

d(x) d(x) — c(x) (d(x) — e(x))t + d(x) + c(x)
‘/;(X) f(x,y)dy = / ( 5 >dt

A =) & (d(x) — c(x))rn,j + d(x) + c(x)
N Z cn,jf <x, , )

=: g(x)
Then we apply Gauss quadrature to the outer integral:

b rd(x) b
/‘1 /C(X) f()@y)dydx%/; g(x)dx
:/1 g((b—a)t+(b+a)) (b-2a) .
. 2 2

e ((b=a)mit+(b+a)) (b—a)
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Section 5

Approximation Theory

Numerical Analysis | - Xiaojing Ye, Math & Stat, Georgia State University

185



Least squares approximation

Given N data points {(x;,y;)} for i =1,..., N, can we determine a linear model
y = aix + ao (i.e., find ap, a1) that fits the data?

Xio )i Xi Yi 1

1.3 6 8.8 2]
3.5 10.1 ]
4.2 12.5 6]
50 9 13.0 ‘]
7.0 10 15.6 ]

(e BN

"ttt

N~ W=
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Matrix formulation

We can simplify notations by using matrices and vectors:

» 1 x

y2 1 X2
y=|.|er", xX=|. .|eRrR"?

YN 1 xn

So we want to find a = (a0, a1) " € R? such that y ~ Xa.
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Several types of fitting criteria

There are several types of criteria for “best fitting”:

» Define the error function as
Ex(a) = [ly — Xall

and find a* € arg min, Ec(a). This is also called the minimax problem since
the problem min, Eo(a) can be written as

min max lyi — (a0 + a1xi)|

» Define the error function as
Ei(a) = |ly — Xallx

and find a* € argmin, E1(a). E; is also called the absolute deviation.
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Least squares fitting

In this course, we focus on the widely used least squares.

Define the least squares error function as
Ex(a) = |ly — Xal3 = lyi — (a0 + aix)[*
i=1

and the least squares solution a* is

a* = argmin Ex(a)
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Least squares fitting

To find the optimal parameter a, we need to solve
VE(a) =2X"(Xa—y) =0
This is equivalent to the so-called normal equation:
X Xa=X"y

Note that XX € R?*2 and Xy € R?, so the normal equation is easy to solve!
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Least squares fitting

It is easy to show that

N Z,N:1 Xi
N N
Zi:1 Xi Zi:l Xi2

Using the close-form of inverse of 2-by-2 matrix, we have

N 2
(XTX)71 _ - 1 - Zi:,\llxi
NY L = (i xi)? [~ 2im1 X

X'X = -

)
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N
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Least squares fitting

Therefore we have the solution

7= |7 = x0Ty

N 2 N N N
i1 X Doim1 YiT 2 Xi¥i Doie1 Xi

N Zerl sz_(NZ:N:1 Xizvz
N E,N:1 Xi¥i— i1 Xi 2oim1 Vi
NN (2N x)?
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Least squares fitting

Example

Least squares fitting of the data gives ap = —0.36 and a; = 1.538.

Xi

Vi

Yi

N A~ W N =

1.3
3.5
4.2
5.0
7.0

(e RN

10

8.8
10.1
12.5
13.0
15.6
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Polynomial least squares

The least squares fitting presented above is also called linear least squares due to
the linear model y = ap + a1 x.

For general least squares fitting problems with data {(x;,y;) :i=1,..., N}, we
may use polynomial

Po(x) = a0 + a1x + aox® + - - - 4 ax"

as the fitting model. Note that n = 1 reduces to linear model.

Now the polynomial least squares error is defined by

E(a) = 3 Iy — Pul)f

where a = (ag, a1,...,a,)" € R"
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Matrices in polynomial least squares fitting

Like before, we use matrices and vectors:

»n 1 x X X7
1 x X2 x5

y= lery, x= P * | e RO
3z 1 xy x,2\, S Xy

So we want to find a = (ap, a1,...,an)' € R™ such that y ~ Xa.
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Polynomial least squares fitting

Same as above, we need to find a such that
VEy(a) =2X"(Xa—y) =0

which has normal equation:
X" Xa=X"y

Note that now X' X € R"D*(1) and XTy € R, From normal equation we
can solve for the fitting parameter

=] =(X"X)(XTy)
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Polynomial least squares

Example

Least squares fitting of the data using n = 2 gives
ao = 1.0051, a; = 0.86468, a» = 0.84316.

i X; Vi

1 0 1.0000

2 025 1.2840

3 050 1.6487

4 075 2.1170

5 1.00 2.7183 035 0% o075 100 *

Numerical Analysis | — Xiaojing Ye, Math & Stat, Georgia State University



Other least squares fitting models

In some situations, one may design model as

y — beaX
y = bx?

as well as many others.

To use least squares fitting, we note that they are equivalent to, respectively,

logy = log b+ ax
logy = log b+ alog x

Therefore, we can first convert (x;, y;) to (x;, logy:) and (log x;, log y;), and then
apply standard linear least squares fitting.
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Approximating functions

We now consider fitting (approximation) of a given function
f(x) € Cla, b]
Suppose we use a polynomial P,(x) of degree n to fit f(x), where
Po(x) = a0 + a1x + axx* 4 - - - + a,x”

with fitting parameters a = (ao, a1, . . ., a,,)T € R™1!. Then the least squares error is

E(a) :/ab|f(x)— Po(x)P dx = /ab f(x)—zn:akxk’2dx
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Approximating functions

The fitting parameter a needs to be solved from VE(a) = 0.

To this end, we first rewrite E(a) as

E(a):/b(f(x)fdx—zznjak /bxkf(x)dx—l—/b (anakxk) dx
a k=0 2 k=0

a

Therefore VE(a) = (3—57 S EE)T e R where

OE b " b
£=—2 fo(x)dx—i—ZZak X dx
J a k=0 a

forj=0,1,...,n.
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Approximating functions

By setting % = 0 for all j, we obtain the normal equation
J

n

Z (/bekdx) ak :/abxjf(x)dx

k=0 a

for j =0,...,n. This is a linear system of n+ 1 equations, from which we can solve
for a* = (ag,...,an)".
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Approximating functions

For the given function f(x) € CJa, b], we obtain least squares approximating
polynomial P,(x):

'Y

P =Y, gk

= (0 =3 a]
/ k=0
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Approximating functions

Example
Use least squares approximating polynomial of degree 2 for the function
f(x) = sin(wx) on the interval [0, 1].

A

y = sin 7x
1.0+ -

0.8+

0.6+ y = Pyx)

04—+

02+
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Least squares approximations with polynomials

Remark
» The matrix in the normal equation is called Hilbert matrix, with entries of
) b jHk+1 j+k+1
; o —a
/ X‘/+k dx = — .5 g
2 jt+k+1

which is prune to round-off errors.

> The parameters a = (ao, . ..,a,)" we obtained for polynomial P.(x) cannot be
used for Pn11(x) — we need to start the computations from beginning.
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Linearly independent functions

Definition
The set of functions {¢1, ..., ®n} is called linearly independent on [a, b] if

cd1(x) + c2pa(x) + - - + cndn(x) =0, for all x € [a, b

implies that ci = o =--- = ¢, = 0.

Otherwise the set of functions is called linearly dependent.
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Linearly independent functions

Example
Suppose ¢;(x) is a polynomial of degree j for j =0,1,...,n, then {do,...,Pn} is

linearly independent on any interval [a, b].

Proof.

Suppose there exist co, ..., ¢, such that
codo(x) + -+ + capn(x) =0

for all x € [a, b]. If ¢, # 0, then this is a polynomial of degree n and can have at
most n roots, contradiction. Hence ¢, = 0. Repeat this to show that
o=:-=c,=0. O
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Linearly independent functions

Example

Suppose ¢o(x) = 2, ¢1(x) = x — 3, p2(x) = x*> +2x + 7, and
Q(x) = a0 + a1x + a2x>. Show that there exist constants ¢y, c1, ¢ such that

Q(x) = cgo(x) + c1d1(x) + c2ga(x).

Solution. Substitute ¢; into Q(x), and solve for ¢, c1, .
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Linearly independent functions

We denote M, = {ao + aix + -+ - + anx" | a0, a1,...,an € R}, i.e., M, is the set of
polynomials of degree < n.

Theorem

Suppose {¢o, ..., ¢n} is a collection of linearly independent polynomials in I,, then
any polynomial in T1, can be written uniquely as a linear combination of

do(x), ..., dn(x).

{¢0,...,%n} is called a basis of I,.
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Orthogonal functions

Definition
An integrable function w is called a weight function on the interval I if w(x) > 0,
for all x € I, but w(x) # 0 on any subinterval of /.
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Orthogonal functions

Example
1

Define a weight function w(x) = e on interval (—1,1).

w(x) A

[
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Orthogonal functions

Suppose {¢o, ..., ¢n} is a set of linearly independent functions in C[a, b] and w is a

weight function on [a, b]. Given f(x) € Cla, b], we seek a linear combination

> akdu(x)

to minimize the least squares error:

E(a) = /ab w(x) [f(x) - Z: akqﬁk(x)f dx
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Orthogonal functions

As before, we need to solve a* from VE(a) = 0:

gTEj:/ab( [f(x Zwk(xw(x)dx—o

for all j =0,...,n. Then we obtain the normal equation

n

k=0

which is a linear system of n+ 1 equations about a = (ao, ..., an
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Orthogonal functions

If we chose the basis {¢o, ..., ®n} such that

0, whenj#k

aj, whenj =k

b
/ w(x)pr(x)pj(x) dx = {

for some o > 0, then the LHS of the normal equation simplifies to ja;. Hence we
obtain closed form solution a;:

5= 1j / w(x)F(x)5(x) dx

(e}

forj=0,...,n.

Numerical Analysis | — Xiaojing Ye, Math & Stat, Georgia State University 213



Orthogonal functions

Definition
A set {¢o, ..., dn} is called orthogonal on the interval [a, b] with respect to weight
function w if
b .
0, whenj#k
[ w0600,x) dx = { _
a aj, whenj=k

for some j > 0 for all j =0,...,n.

If in addition oj =1 for all j =0,...,n, then the set is called orthonormal with
respect to w.

The definition above applies to general functions, but for now we focus on
orthogonal /orthonormal polynomials only.
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Gram-Schmidt process

Theorem

A set of orthogonal polynomials {¢o, ..., ¢a} on [a, b] with respect to weight
function w can be constructed in the recursive way

» First define .

f xw(x) dx

do(x) =1, ¢i1(x)=x— 2 ——F—

o) 109 fab w(x) dx
» Then for every k > 2, define

k(x) = (x — Bk)prk—1(x) — Crdpr—2(x)

where

g, WG (P dx [ w() g ()pa(x) dx
S w(x)[r—1(x)]2dx 2 w(x)[Br—2(x)]2 dx

Numerical Analysis | — Xiaojing Ye, Math & Stat, Georgia State University



Orthogonal polynomials

Corollary

Let {¢o,...,¢n} be constructed by the Gram-Schmidt process in the theorem
above, then for any polynomial Qx(x) of degree k < n, there is

/ w(x)a(x) Qu(x) dx = 0

Proof.
Q«(x) can be written as a linear combination of ¢o(x), ..., ¢«(x), which are all
orthogonal to ¢, with respect to w. Il
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Legendre polynomials

Using weight function w(x) =1 on [—1, 1], we can construct Legendre
polynomials using the recursive process above to get

Po(X) =1
Pi(x) = x
Py(x) = x* — %
P3(x) = x> = gx
6 3
Ps(x) = x* - ?XZ + 35
10 5
Ps(x) = x° — ?x3 + 21

Use the Gram-Schmidt process to construct them by yourself.
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Legendre polynomials

The first few Legendre polynomials:
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Chebyshev polynomials

Using weight function w(x) = \/11_7 on (—1,1), we can construct Chebyshev
polynomials using the recursive process above to get

To(x) =

Ti(x) =
To(x)=2x>—1
Ta(x) = 4x® — 3x
Ta(x) =8x* —8x* +1

It can be shown that T,(x) = cos(narccosx) for n=0,1,...
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Chebyshev polynomials

The first few Chebyshev polynomials:

y=Tx)
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Chebyshev polynomials

The Chebyshev polynomials T,(x) of degree n > 1 has n simple zeros in [—1,1]
(from right to left) at

2
)"(k:cos( 7r)7 foreach k=1,2,...,n
Moreover, T, has maximum/minimum (from right to left) at

Xp = cos (k—:) where T,(%;) = (—1)k for each k =0,1,2,...,n

Therefore Tp(x) has n distinct roots and n+ 1 extreme points on [—1,1]. These
2n 4+ 1 points, from right to left, are max, zero, min, zero, max ...
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Monic Chebyshev polynomials

The monic Chebyshev polynomials T,(x) are given by To =1 and

forn>1.

4L y=Tw /) =Ty

t t + t t t t
—1 1 x
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Monic Chebyshev polynomials

The monic Chebyshev polynomials are

To(X) =1

Ti(x) = x

~ 1
H(x) = x* — 5

Ta(x) = x* — %x
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Monic Chebyshev polynomials

The monic Chebyshev polynomials 7~',7(x) of degree n > 1 has n simple zeros in
[-1,1] at

)?k:cos( 7r>7 foreach k=1,2,...,n

Moreover, T, has maximum/minimum at

1k
Xj = cos km where T,(x; :Q, for each k=0,1,...,n
n 2n—1

Therefore T,(x) also has n distinct roots and n + 1 extreme points on [—1,1].
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Monic Chebyshev polynomials

Denote (1, be the set of monic polynomials of degree n.

Theorem
For any P, € M, there is
Sr = max (Tl < max [PA()]

2n—1 xe[ ax 1]

The “=" holds only if P, = T.

Numerical Analysis | — Xiaojing Ye, Math & Stat, Georgia State University

225



Monic Chebyshev polynomials

Proof.
Assume not, then 3 P,(x) € [, s.t. maxye(—1,1] |Pa(x)| < 51

Let Q(x) := Tn(x) — Pa(x). Since T,, P, € f1,, we know Q(x) is a ploynomial of
degree at most n — 1. At the n+ 1 extreme points X, = cos %") for
k=20,1,...,n, there are

(=1)

Q) = Tu(x) — Polet) = S Po(

Hence Q(x;) > 0 when k is even and < 0 when k odd. By intermediate value
theorem, Q has at least n distinct roots, contradiction to deg(Q) < n— 1. O
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Minimizing Lagrange interpolation error

Let xo, ..., X, be n4 1 distinct points on [—1,1] and f(x) € C"**[~1,1], recall that
the Lagrange interpolating polynomial P(x) = >-7_ f(x;)Li(x) satisfies

(n+1) x
F(x) — P(x) = f(T(i()!))(x C0)(x — 1) (x — xm)

for some &(x) € (—1,1) at every x € [-1,1].

We can control the size of (x — xo)(x — x1) - - - (x — x») since it belongs to [1,1: set

(x —x0)(x —x1) -+ (x — xn) = Tnp1(x). That is, set x; = cos (Zg—;lﬂ) the kth

root of Tp1(x) for k =1,...,n+ 1. This results in the minimal
maxye[—1,1] |(X — XO)(X — Xl) e (X _ Xn)‘ — 2%
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Minimizing Lagrange interpolation error

Corollary

Let P(x) be the Lagrange interpolating polynomial with n+ 1 points chosen as the
roots of Tpy1(x), there is

max_|f(x) = P(x) |F D ()|

| < # max
x€[-1,1] = 27(n+ 1)! xe[-1,1]
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Minimizing Lagrange interpolation error

If the interval of apporximation is on [a, b] instead of [—1, 1], we can apply change
of variable

. 1
%= 5l(b—a)x+(a+b)]

Hence, we can convert the roots Xx on [—1,1] to X on [a, b],
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Minimizing Lagrange interpolation error

Example
Let f(x) = xe* on [0, 1.5]. Find the Lagrange interpolating polynomial using
1. the 4 equally spaced points 0,0.5,1,1.5.

2. the 4 points transformed from roots of Ts.
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Minimizing Lagrange interpolation error

Solution. For each of the four points xo = 0,x; = 0.5, x2 = 1, x3 = 1.5, we obtain

Li(x) = ij;j(% for i =0,1,2,3:

Lo(x) = —1.3333x> 4 4.0000x” — 3.6667x + 1,
L1(x) = 4.0000x> — 10.000x° + 6.0000x,
L>(x) = —4.0000x> 4 8.0000x” — 3.0000x,
Ls(x) = 1.3333x° — 2.000x? 4 0.66667x

so the Lagrange interpolating polynomial is

3
Ps(x) = > f(xi)Li(x) = 1.3875x> 4 0.057570x” + 1.2730x.

i=0
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Minimizing Lagrange interpolation error

Solution. (cont.) The four roots of T4(x) on [—1,1] are X = cos(2:=2 1) for

k =1,2,3,4. Shifting the points using & = 1(1.5x + 1.5), we obtain four points
Xo = 1.44291, %; = 1.03701, X, = 0.46299, X3 = 0.05709

with the same procedure as above to get I:o, e I3 using these 4 points, and then
the Lagrange interpolating polynomial:

Ps(x) = 1.3811x> + 0.044652x> 4 1.3031x — 0.014352.
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Minimizing Lagrange interpolation error

Now compare the approximation accuracy of the two polynomials

Ps(x) = 1.3875x> 4 0.057570x> + 1.2730x
Ps(x) = 1.3811x> 4 0.044652x> + 1.3031x — 0.014352

x Jf(x) = xe* P3(x) |xe* — P3(x)] P3(x) [xe* — P3(x)]
0.15 0.1743 0.1969 0.0226 0.1868 0.0125
0.25 0.3210 0.3435 0.0225 0.3358 0.0148
0.35 0.4967 0.5121 0.0154 0.5064 0.0097
0.65 1.245 1.233 0.012 1.231 0.014
0.75 1.588 1.572 0.016 1.571 0.017
0.85 1.989 1.976 0.013 1.974 0.015
1.15 3.632 3.650 0.018 3.644 0.012
1.25 4.363 4.391 0.028 4.382 0.019
1.35 5.208 5.237 0.029 5.224 0.016
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Minimizing Lagrange interpolation error

The approximation using P3(x)

Ps(x) = 1.3811x° + 0.044652x” 4 1.3031x — 0.014352

VA

y =Py
Yy =xet

=Y
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Reducing the degree of approximating polynomials

As Chebyshev polynomials are efficient in approximating functions, we may use
approximating polynomials of smaller degree for a given error tolerance.

For example, let Qn(x) = ao + - - - + anx" be a polynomial of degree n on [—1,1].
Can we find a polynomial of degree n — 1 to approximate Q,?

Numerical Analysis | — Xiaojing Ye, Math & Stat, Georgia State University 235



Reducing the degree of approximating polynomials

So our goal is to find P,—1(x) € Ms—1 such that

n - Pn—

e 19ux) — Pos()
is minimized. Note that J-(Qn(x) — Po—1(x)) € M, we know the best choice is
+(Qn(x) = Pri(x)) = Ta(x), i.e., Poi = Qo — a,Tp. In this case, we have
approximation error

~ a
5y Qo) = Pl = o oo = 2%
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Reducing the degree of approximating polynomials

Example

Recall that Q4(x) be the 4th Maclaurin polynomial of f(x) = e* about 0 on [—1,1].
That is s s .
x®  x° X
Q4(X)—1+X+7+€+ﬂ

which has a; = QL and truncation error

4

FO G eExS
[Ra(] = |0 e :

for x € (=1, 1). Given error tolerance 0.05, find the polynomial of small degree to
approximate f(x).
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Reducing the degree of approximating polynomials

Solution. Let's first try 3. Note that T4(x) = x* — x? + %, so we can set

Ps(x) = Qu(x) — i Ta(x)

X2 X Xt 1 4 1
_(1+X+7+€+24) 24(X 7X+8)
IR U
T 192 24 6 3

Therefore, the approximating error is bounded by

[£(x) = Ps(x)[ < [F(x) = Qa(x)[ + | Qa(x) = Ps(x)]

< 0.023 + |24| —0.023 4+ = < 0.0283.

192
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Reducing the degree of approximating polynomials

Solution. (cont.) We can further try 2. Then we need to approximate Ps (note
as = %) above by the following P, € IM>:

PQ(X) = P3(X) — as i—3(X)

_ 191 13, 15 175 3
=102 "X T gX T X 6(X 4X)

_ﬂ+gX+EX2€n
T 192 "8 24 2

Therefore, the approximating error is bounded by
[£(x) = P2(x)] < [F(x) = Qa(x)| + [Qa(x) = P3(x)| + [Ps(x) — Pa(x)]
|as| 1
<0. — = 0. — =0. .
<0.0283 + 2 0.0283 + 2 0.0703

Unfortunately this is larger than 0.05.
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Reducing the degree of approximating polynomials

Although the error bound is larger than 0.05, the actual error is much smaller:

x e P4(x) P3(x) P (x) let — Pr(x)]
-0.75 0.47237 0.47412 0.47917 0.45573 0.01664
—0.25 0.77880 0.77881 0.77604 0.74740 0.03140

0.00 1.00000 1.00000 0.99479 0.99479 0.00521

0.25 1.28403 1.28402 1.28125 1.30990 0.02587

0.75 2.11700 2.11475 2.11979 2.14323 0.02623
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Pros and cons of polynomial approxiamtion

Advantages:
» Polynomials can approximate continuous function to arbitrary accuracy;
» Polynomials are easy to evaluate;
» Derivatives and integrals are easy to compute.
Disadvantages:
» Significant oscillations;
» Large max absolute error in approximating;

» Not accurate when approximating discontinuous functions.
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Rational function approximation

Rational function of degree N = n+ m is written as

r(X)_p(X) _ Po+ pix+ 4 pax

Cq(x) g0+ qix 44 gnx™

Now we try to approximate a function f on an interval containing 0 using r(x).

WLOG, we set go = 1, and will need to determine the N + 1 unknowns
P0,~~-7Pn7q1:~~~7C7m-
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Padé approximation

The idea of Padé approximation is to find r(x) such that
FO0) = r™0), k=0,1,...,N

This is an extension of Taylor series but in the rational form.

Denote the Maclaurin series expansion f(x) = 3.°) aix’. Then

(OCZeaix) - (g aix') = X0y pix'
q(x)

f(x)—r(x) =

If we want £ (0) — r¥(0) =0 for k =0,..., N, we need the numerator to have 0
as a root of multiplicity N + 1.
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Padé approximation

This turns out to be equivalent to

k
2 aiqk—i = Pk, k:Oala"'7N
i=0

for convenience we used convention ppt1 = - =py =0and gmy1 = -+

From these N + 1 equations, we can determine the N + 1 unknowns:

Po, P15 Pny g1y, dm
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Padé approximation

Example

Find the Padé approximation to e ™ of degree 5 with n =3 and m = 2.

Solution. We first write the Maclaurin series of e as

_1_X+2X_6X +—x+ :Z

Then for r(x) = W we need

1 1
(1—x+ §X2—6X3+--->(1+Q1X+CI2X2)—(P0+p1X+P2X2+P3X3)

to have 0 coefficients for terms 1, x, ..., x°.
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Padé approximation

Solution. (cont.) By solving this, we get po, p1, P2, g1, g2 and hence

3 3.2 1.3
r(X):lng*FEX*%X
14 2x + 5 x2
x e Ps(x) le™ — Ps(x)| r(x) le™ — r(x)|
0.2 0.81873075 0.81873067 8.64 x 107% 0.81873075 7.55 x 107°
0.4 0.67032005 0.67031467 5.38 x 107¢ 0.67031963 4.11 x 1077
0.6 0.54881164 0.54875200 5.96 x 107° 0.54880763 4.00 x 107°
0.8 0.44932896 0.44900267 3.26 x 107 0.44930966 1.93 x 1073
1.0 0.36787944 0.36666667 1.21 x 1073 0.36781609 6.33 x 107°

where Ps(x) is Maclaurin polynomial of degree 5 for comparison.
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Chebyshev rational function approximation

To obtain more uniformly accurate approximation, we can use Chebyshev
polynomials Ty (x) in Padé approximation framework.

For N = n+ m, we use
i T,
H(x) = k=0 PT()
2 ko Gk Tk(x)

where go = 1. Also write f(x) using Chebyshev polynomials as

f(X) = Zak Tk(X)
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Chebyshev rational function approximation

Now we have

00 ) - EE AT ST 00 Tul) = o pTil)
B Z’::o Ak Tk(X)

We again seek for po, ..., Pn, g1, ..., qm such that coefficients of 1, x,...,x" are 0.

To that end, the computations can be simplified due to

T T = 5 (T + T ()

Also note that we also need to compute Chebyshev series coefficients ax first.

Numerical Analysis | — Xiaojing Ye, Math & Stat, Georgia State University 248



Chebyshev rational function approximation

Example

Approximate e~

X

m = 2. The result is rr(x).

using the Chebyshev rational approximation of degree n = 3 and

X e r(x) le™ = r(x)] rr(x) le™ — rr(x)]
0.2 0.81873075 0.81873075 7.55 x 107° 0.81872510 5.66 x 107°
0.4 0.67032005 0.67031963 4.11 x 1077 0.67031310 6.95 x 107°
0.6 0.54881164 0.54880763 4.00 x 107 0.54881292 1.28 x 107
0.8 0.44932896 0.44930966 1.93 x 1073 0.44933809 9.13 x 10°°
1.0 0.36787944 0.36781609 6.33 x 107> 0.36787155 7.89 x 107°

where r(x) is the standard Padé approximation shown earlier.
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Trigonometric polynomial approximation

Recall the Fourier series uses a set of 2n orthogonal functions with respect to

weight w =1 on [—m, 7]:

$o(x) :%

ok(x) =coskx, k=1,2,...
Gnik(x) =sinkx, k=1,2,..

We denote the set of linear combinations of ¢o, ¢1, . ..

of trigonometric polynomials of degree < n.
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Trigonometric polynomial approximation

For a function f € C[—m, x|, we want to find S, € T, of form

n—1
Sn(x) = % + a, cos nx + Z(ak cos kx + by sin kx)
k=1

to minimize the least squares error

™

E(ao,...,an, b1,...,bo1) = / |f(x) — Sa(x)[* dx

-

Due to orthogonality of Fourier series ¢, . .., p2,—1, we get
1 /™ 1 (" .
ax=— f(x)coskxdx, bx== f(x) sin kx dx
™) . T ) _ .
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Trigonometric polynomial approximation

Example

Approximate f(x) = |x| for x € [—m, 7] using trigonometric polynomial from 7.
Solution. It is easy to check that ap = £ /7 |x|dx =7 and
ax = l/7r |x| cos kx dx = i((—l)k -1), k=12,...,n
T ) . wk?
by = %/ﬂ |x|sinkxdx =0, k=1,2,...,n—1

-

Therefore
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Trigonometric polynomial approximation

Sn(x) for the first few n are shown below:

VA
1 y= lxlI
y =8k = %—%cosx —%cos 3x
4
y =8 =8,x = % — g cosx
z y=5m=7
N 4
N 2
\\ 7
A\ //
il
T

|

3
[SIEES
0N T+

=Y
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Discrete trigonometric approximation

If we have 2m paired data points {()g,yj)}f;"o_l where x; are equally spaced on
[-m,x], i.e.,

xj:—n+(i)n, j=0,1,....2m—1
m

Then we can also seek for S, € 7, such that the discrete least square error below is

minimized:
2m—1

E(ao,...,an,b1,...,bo1) = Z (y; — Sn(xj))2
j=0
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Discrete trigonometric approximation

Theorem
Define

2m—1 2m—1

Z yjcoskxj, bk = Z yj sin kx;

Then the trigonometric S, € T, defined by

n—1
Sn(x) = % + a, cos nx + Z(ak cos kx + by sin kx)
k=1

minimizes the discrete least squares error

2m—1

E(ao,. .. an by,..., bn Z(y, Sn(x))?
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Fast Fourier transforms

The fast Fourier transform (FFT) employs the Euler formula e® = cosz + isinz
for all z € R and i = 4/—1, and compute the discrete Fourier transform of data to
get

2m—1 2m—1
kxi ki
— E cke™, where ¢ = E yi ™Mk =0,... 2m—1
m
k=0 j=0

Then one can recover ax, by € R from

ax +ibx = ck € C

(="
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Fast Fourier transforms

The discrete trigonometric approximation for 2m data points requires a total of
(2m)? multiplications, not scalable for large m.

The cost of FFT is only
3m + mlog, m = O(mlog, m)

For example, if m = 1024, then (2m)? & 4.2 x 10° and 3m + mlog, m &~ 1.3 x 10*.
The larger m is, the more benefit FFT gains.
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