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Section 1

Review of Calculus
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Limit and continuity

Definition (Euclidean ball)

An (open) ball in Rn is Br (x0) := {x ∈ Rn : |x − x0| < r}.

Definition (Limit of a function)

The limit of f (x) as x approaches x0 is L if ∀ ϵ > 0, ∃ δ > 0 such that for all
x ∈ Bδ(x0) there is

|f (x)− L| < ϵ.

Definition (Continuous functions)

f is continuous at x0 if limx→x0 f (x) = f (x0).
f is continuous in X if f is continuous at every x ∈ X .
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Limit and continuity

Definition (Limit of a sequence)

A sequence {xn : n ∈ N} has limit x if ∀ ϵ > 0, ∃N ∈ N, such that |xn − x | < ϵ for
all n ≥ N.

Theorem

The following two statements are equivalent:

▶ f is continuous at x .

▶ If xn → x , then f (xn) → f (x).
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Differentiability

Definition (Derivative of a function)

f is differentiable at x0 if the following limit exists:

lim
x→x0

f (x)− f (x0)

x − x0

The value of this limit is called the derivative of f at x0.
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Theorem 1.6 If the function f is differentiable at x0, then f is continuous at x0.

The next theorems are of fundamental importance in deriving methods for error esti-
mation. The proofs of these theorems and the other unreferenced results in this section can
be found in any standard calculus text.

The theorem attributed to Michel
Rolle (1652–1719) appeared in
1691 in a little-known treatise
entitled Méthode pour résoundre
les égalites. Rolle originally
criticized the calculus that was
developed by Isaac Newton and
Gottfried Leibniz, but later
became one of its proponents.

The set of all functions that have n continuous derivatives on X is denoted Cn(X), and
the set of functions that have derivatives of all orders on X is denoted C∞(X). Polynomial,
rational, trigonometric, exponential, and logarithmic functions are in C∞(X), where X
consists of all numbers for which the functions are defined. When X is an interval of the
real line, we will again omit the parentheses in this notation.

Theorem 1.7 (Rolle’s Theorem)
Suppose f ∈ C[a, b] and f is differentiable on (a, b). If f (a) = f (b), then a number c in
(a, b) exists with f ′(c) = 0. (See Figure 1.3.)

Figure 1.3
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Theorem 1.8 (Mean Value Theorem)
If f ∈ C[a, b] and f is differentiable on (a, b), then a number c in (a, b) exists with (See
Figure 1.4.)

f ′(c) = f (b) − f (a)

b − a
.
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Differentiability

Theorem

f is differentiable at x =⇒ f is continuous at x .

Theorem (Rolle’s Theorem)

Suppose f ∈ C [a, b], f is differentiable in (a, b) and f (a) = f (b), then ∃ c ∈ (a, b)
such that f ′(c) = 0.

Proof of Rolle’s theorem.

Hint: f ∈ C [a, b] implies that f attains max or min in [a, b] by the extreme value
theorem (see soon).
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Rolle’s theorem

Illustration of the Rolle’s theorem:
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Mean Value Theorem

Theorem (Mean Value Theorem)

If f ∈ C [a, b] and f is differentiable on (a, b), then ∃ c ∈ (a, b) such that

f ′(c) =
f (b)− f (a)

b − a
. 1.1 Review of Calculus 5

Figure 1.4
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Theorem 1.9 (Extreme Value Theorem)
If f ∈ C[a, b], then c1, c2 ∈ [a, b] exist with f (c1) ≤ f (x) ≤ f (c2), for all x ∈ [a, b].
In addition, if f is differentiable on (a, b), then the numbers c1 and c2 occur either at the
endpoints of [a, b] or where f ′ is zero. (See Figure 1.5.)

Figure 1.5
y
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Research work on the design of
algorithms and systems for
performing symbolic
mathematics began in the 1960s.
The first system to be operational,
in the 1970s, was a LISP-based
system called MACSYMA.

As mentioned in the preface, we will use the computer algebra system Maple whenever
appropriate. Computer algebra systems are particularly useful for symbolic differentiation
and plotting graphs. Both techniques are illustrated in Example 1.

Example 1 Use Maple to find the absolute minimum and absolute maximum values of

f (x) = 5 cos 2x − 2x sin 2xf (x)

on the intervals (a) [1, 2], and (b) [0.5, 1]
Solution There is a choice of Text input or Math input under the Maple C 2D Math option.
The Text input is used to document worksheets by adding standard text information in
the document. The Math input option is used to execute Maple commands. Maple input
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Proof.

Define g(x) = f (x)− f (a)− f (b)−f (a)
b−a

(x − a). Then g(a) = g(b) = 0. Apply Rolle’s
theorem to g .
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Extreme Value Theorem

Theorem (Extreme Value Theorem)

If f ∈ C [a, b], then ∃ c1, c2 ∈ [a, b] such that

f (c1) ≤ f (x) ≤ f (c2)

for all x ∈ [a, b]. In addition, if f is differentiable in (a, b), then c1 and c2 occur
either at a, b, or where f ′ = 0.

Proof.

Suppose f (xk) → infa≤x≤b f (x), then ∃ subseq xkj → c1 ∈ [a, b] such that
f (xkj ) → f (c1) (∵ f continuous). Hence we have f (c1) = mina≤x≤b f (x).
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Extreme Value Theorem

Illustration of the Extreme Value Theorem

1.1 Review of Calculus 5
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Generalized Rolle’s theorem

Theorem (Generalized Rolle’s Theorem)

Suppose f ∈ [a, b] and is n times differentiable. Let {x0, . . . , xn} be a partition of
[a, b], i.e., a = x0 < x1 < · · · < xn = b, such that f (xi ) = 0 for all i = 1, . . . , n, then
∃ c ∈ (a, b) such that f (n)(c) = 0.

Proof.

By Rolle’s theorem, ∃ y1, . . . , yn s.t. x0 < y1 < x1 < · · · < yn < xn and f ′(yi ) = 0
for i = 1, . . . , n. Keep applying Rolle’s theorem for another n − 1 times to show
that ∃ c ∈ (a, b) s.t. f (n)(c) = 0.
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Intermediate value theorem

Theorem (Intermediate Value Theorem (IVT))

If f ∈ C [a, b] and k is a number between f (a) and f (b), then ∃ c ∈ (a, b) such that
f (c) = k.

Proof.

By continuity of f on [a, b].

8 C H A P T E R 1 Mathematical Preliminaries and Error Analysis

Maple gives the response

f solve(− 12 sin(2x) − 4x cos(2x), x, .5 . . 1)

This indicates that Maple is unable to determine the solution. The reason is obvious once
the graph in Figure 1.6 is considered. The function f is always decreasing on this interval,
so no solution exists. Be suspicious when Maple returns the same response it is given; it is
as if it was questioning your request.

In summary, on [0.5, 1] the absolute maximum value is f (0.5) = 1.86004545 and
the absolute minimum value is f (1) = − 3.899329036, accurate at least to the places
listed.

The following theorem is not generally presented in a basic calculus course, but is
derived by applying Rolle’s Theorem successively to f , f ′, . . . , and, finally, to f (n− 1).
This result is considered in Exercise 23.

Theorem 1.10 (Generalized Rolle’s Theorem)
Suppose f ∈ C[a, b] is n times differentiable on (a, b). If f (x) = 0 at the n + 1 distinct
numbers a ≤ x0 < x1 < . . . < xn ≤ b, then a number c in (x0, xn), and hence in (a, b),
exists with f (n)(c) = 0.

We will also make frequent use of the Intermediate Value Theorem. Although its state-
ment seems reasonable, its proof is beyond the scope of the usual calculus course. It can,
however, be found in most analysis texts.

Theorem 1.11 (Intermediate Value Theorem)
If f ∈ C[a, b] and K is any number between f (a) and f (b), then there exists a number c
in (a, b) for which f (c) = K .

Figure 1.7 shows one choice for the number that is guaranteed by the Intermediate
Value Theorem. In this example there are two other possibilities.

Figure 1.7

x

y

f (a)

f (b)

y ! f (x)
K

(a,  f (a))

(b,  f (b))

a bc

Example 2 Show that x5 − 2x3 + 3x2 − 1 = 0 has a solution in the interval [0, 1].
Solution Consider the function defined by f (x) = x5 − 2x3 + 3x2 − 1. The function f is
continuous on [0, 1]. In addition,
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Example

Example (Application of IVT)

Show that x5 − 2x3 + 3x2 − 1 = 0 has a solution in [0, 1].

Solution. Set f (x) = x5 − 2x3 + 3x2 − 1. Then we need to show that ∃ c ∈ [0, 1]
such that f (c) = 0. Since f (0) = −1 and f (1) = 1, we know such c exists by IVT.
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Integration

Definition (Riemann integral)

The Riemann integral of f on [a, b] is the limit∫ b

a

f (x) dx := lim
maxi ∆xi→0

n∑
i=1

f (zi )∆xi

where {x0, . . . , xn} is a paritition of [a, b], ∆xi := xi − xi−1 and zi is arbitrary in
[xi−1, xi ].

If f ∈ C [a, b], this simply means ∫ b

a
f (x) dx = lim

n→∞

b − a

n

n∑
i=1

f (xi )

where {x0, . . . , xn} is an equal partition of [a, b] into n segments, ∆xi = b−a
n

, ∀ i .
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Riemann integral

1.1 Review of Calculus 9

f (0) = − 1 < 0 and 0 < 1 = f (1).

The Intermediate Value Theorem implies that a number x exists, with 0 < x < 1, for which
x5 − 2x3 + 3x2 − 1 = 0.

As seen in Example 2, the Intermediate Value Theorem is used to determine when
solutions to certain problems exist. It does not, however, give an efficient means for finding
these solutions. This topic is considered in Chapter 2.

Integration

The other basic concept of calculus that will be used extensively is the Riemann integral.

George Fredrich Berhard
Riemann (1826–1866) made
many of the important
discoveries classifying the
functions that have integrals. He
also did fundamental work in
geometry and complex function
theory, and is regarded as one of
the profound mathematicians of
the nineteenth century.

Definition 1.12 The Riemann integral of the function f on the interval [a, b] is the following limit,
provided it exists:

∫ b

a
f (x) dx = lim

max!xi→0

n∑

i=1

f (zi) !xi,

where the numbers x0, x1, . . . , xn satisfy a = x0 ≤ x1 ≤ · · · ≤ xn = b, where!xi = xi− xi− 1,
for each i = 1, 2, . . . , n, and zi is arbitrarily chosen in the interval [xi− 1, xi].

A function f that is continuous on an interval [a, b] is also Riemann integrable on
[a, b]. This permits us to choose, for computational convenience, the points xi to be equally
spaced in [a, b], and for each i = 1, 2, . . . , n, to choose zi = xi. In this case,

∫ b

a
f (x) dx = lim

n→∞
b − a

n

n∑

i=1

f (xi),

where the numbers shown in Figure 1.8 as xi are xi = a + i(b − a)/n.

Figure 1.8
y

x

y ! f (x)

a ! x0 x1 x2 xi"1 xi xn"1 b ! xn. . . . . .

Two other results will be needed in our study of numerical analysis. The first is a
generalization of the usual Mean Value Theorem for Integrals.
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Mean value theorem for integrals

Theorem (Mean Value Theorem for Integrals)

Suppose f ∈ C [a, b], and g is Riemann integrable over [a, b] and does not change
sign, then ∃ c ∈ (a, b) s.t.∫ b

a

f (x)g(x) dx = f (c)

∫ b

a

g(x) dx

If g(x) ≡ 1, then ∃ c ∈ [a, b], s.t. f (c) = 1
b−a

∫ b

a
f (x) dx

Proof.

Hint: WLOG g ≥ 0, then m
∫ b
a g(x) dx ≤

∫ b
a f (x)g(x) dx ≤ M

∫ b
a g(x) dx where m,M are min,max of f . So

m ≤ r :=

∫ b
a f (x)g(x) dx∫ b
a g(x) dx

≤ M. By IVT ∃ c ∈ [a, b] s.t. f (c) = r .
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Mean value theorem for integrals

10 C H A P T E R 1 Mathematical Preliminaries and Error Analysis

Theorem 1.13 (Weighted Mean Value Theorem for Integrals)
Suppose f ∈ C[a, b], the Riemann integral of g exists on [a, b], and g(x) does not change
sign on [a, b]. Then there exists a number c in (a, b) with

∫ b

a
f (x)g(x) dx = f (c)

∫ b

a
g(x) dx.

When g(x) ≡ 1, Theorem 1.13 is the usual Mean Value Theorem for Integrals. It gives
the average value of the function f over the interval [a, b] as (See Figure 1.9.)

f (c) = 1
b − a

∫ b

a
f (x) dx.

Figure 1.9
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y ! f (x)

a bc

The proof of Theorem 1.13 is not generally given in a basic calculus course but can be
found in most analysis texts (see, for example, [Fu], p. 162).

Taylor Polynomials and Series

The final theorem in this review from calculus describes the Taylor polynomials. These
polynomials are used extensively in numerical analysis.

Theorem 1.14 (Taylor’s Theorem)

Suppose f ∈ Cn[a, b], that f (n+1) exists on [a, b], and x0 ∈ [a, b]. For every x ∈ [a, b],
there exists a number ξ(x) between x0 and x with

Brook Taylor (1685–1731)
described this series in 1715 in
the paper Methodus
incrementorum directa et inversa.
Special cases of the result, and
likely the result itself, had been
previously known to Isaac
Newton, James Gregory, and
others.

f (x) = Pn(x) + Rn(x),

where

Pn(x) = f (x0) + f ′(x0)(x − x0) + f ′′(x0)

2! (x − x0)
2 + · · · + f (n)(x0)

n! (x − x0)
n

=
n∑

k=0

f (k)(x0)

k! (x − x0)
k
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Taylor series and polynomials

Theorem (Taylor’s theorem)

Suppose f ∈ C n[a, b], f (n+1) exists in (a, b), x0 ∈ [a, b]. Then for every x ∈ (a, b),
there exists a number ξ(x) such that

f (x) = Pn(x) + Rn(x),

where Pn(x) is a polynomial of degree n:

Pn(x) = f (x0) + f ′(x0)(x − x0) + · · ·+ 1

n!
f (n)(x0)(x − x0)

n

and Rn(x) is the remainder term:

Rn(x) =
1

(n + 1)!
f (n+1)(ξ(x))(x − x0)

n+1.

Proof.

For any fixed x0, x , define r :=
f (x)−Pn(x)

(x−x0)
n+1 and F (t) := f (t) − Pn(t) − r · (t − x0)

n+1. Prove that

F (x0) = F ′(x0) = · · · = F (n)(x0) = 0 and F (x) = 0. Then apply Rolle’s theorem repeatedly to show ∃ ξ(x) ∈ (x0, x)

s.t. F (n+1)(ξ(x)) = 0, i.e., r =
f (n+1)(ξ(x))

(n+1)!
.
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Example

Example (Taylor polynomial)

Let f (x) = cos x and x0 = 0. Find P3(x), the Taylor polynomial of degree 3 (i.e.,
the polynomial by expanding f at x0 to the 3rd order).

Solution. f (x0) = cos(0) = 1, f ′(x0) = − sin(0) = 0, f ′′(x0) = − cos(0) = 1,
f ′′′(x0) = sin(0). So

P3(x) =
3∑

k=0

f (k)(x0)(x − x0)
k = 1− 1

2
x2
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Taylor series and polynomials

Approximating f (x) = cos x by Taylor’s polynomial P2(x):

1.1 Review of Calculus 11

and

Rn(x) = f (n+1)(ξ(x))
(n + 1)! (x − x0)

n+1.

Here Pn(x) is called the nth Taylor polynomial for f about x0, and Rn(x) is called
the remainder term (or truncation error) associated with Pn(x). Since the number ξ(x)
in the truncation error Rn(x) depends on the value of x at which the polynomial Pn(x) is
being evaluated, it is a function of the variable x. However, we should not expect to be
able to explicitly determine the function ξ(x). Taylor’s Theorem simply ensures that such a
function exists, and that its value lies between x and x0. In fact, one of the common problems
in numerical methods is to try to determine a realistic bound for the value of f (n+1)(ξ(x))
when x is in some specified interval.

Colin Maclaurin (1698–1746) is
best known as the defender of the
calculus of Newton when it came
under bitter attack by the Irish
philosopher, the Bishop George
Berkeley.

The infinite series obtained by taking the limit of Pn(x) as n→∞ is called the Taylor
series for f about x0. In the case x0 = 0, the Taylor polynomial is often called a Maclaurin
polynomial, and the Taylor series is often called a Maclaurin series.

Maclaurin did not discover the
series that bears his name; it was
known to 17th century
mathematicians before he was
born. However, he did devise a
method for solving a system of
linear equations that is known as
Cramer’s rule, which Cramer did
not publish until 1750.

The term truncation error in the Taylor polynomial refers to the error involved in
using a truncated, or finite, summation to approximate the sum of an infinite series.

Example 3 Let f (x) = cos x and x0 = 0. Determine

(a) the second Taylor polynomial for f about x0; and

(b) the third Taylor polynomial for f about x0.

Solution Since f ∈ C∞(R), Taylor’s Theorem can be applied for any n ≥ 0. Also,

f ′(x) = − sin x, f ′′(x) = − cos x, f ′′′(x) = sin x, and f (4)(x) = cos x,

so

f (0) = 1, f ′(0) = 0, f ′′(0) = − 1, and f ′′′(0) = 0.

(a) For n = 2 and x0 = 0, we have

cos x = f (0) + f ′(0)x + f ′′(0)

2! x2 + f ′′′(ξ(x))
3! x3

= 1 − 1
2

x2 + 1
6

x3 sin ξ(x),

where ξ(x) is some (generally unknown) number between 0 and x. (See Figure 1.10.)

Figure 1.10
y
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y ! P2(x) ! 1 "    x2

1

"

"π π

"
2
π

"
2
π

"
2
1
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Section 2

Solutions of Equations in One Variable (Root-Finding)
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Root-finding

Definition (Roots of a function)

Let f : R → R (univariate), then x is called a root, or zero, of f if f (x) = 0.

Example (Roots of a function)

Find the root(s) of f (x) defined by
(a) (x − 1)(x + 1);
(b) (x − 1)2;
(c) x2 + 1;
(d) ax2 + bx + c;
(e) cos(x).

Question: Given a general function f , how can we find its root/roots?
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Bisection method

Suppose f is continuous on [a, b], and f (a)f (b) < 0 (WLOG f (a) < 0, f (b) > 0).
Then f has at least one root in (a, b) by IVT.

2.1 The Bisection Method 49

Figure 2.1
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ALGORITHM

2.1
Bisection

To find a solution to f (x) = 0 given the continuous function f on the interval [a, b], where
f (a) and f (b) have opposite signs:

INPUT endpoints a, b; tolerance TOL; maximum number of iterations N0.

OUTPUT approximate solution p or message of failure.

Step 1 Set i = 1;
FA = f (a).

Step 2 While i ≤ N0 do Steps 3–6.

Step 3 Set p = a + (b− a)/2; (Compute pi.)
FP = f ( p).

Step 4 If FP = 0 or (b− a)/2 < TOL then
OUTPUT (p); (Procedure completed successfully.)
STOP.

Step 5 Set i = i + 1.

Step 6 If FA · FP > 0 then set a = p; (Compute ai, bi.)
FA = FP

else set b= p. (FA is unchanged.)

Step 7 OUTPUT (‘Method failed after N0 iterations, N0 =’, N0);
(The procedure was unsuccessful.)
STOP.

Other stopping procedures can be applied in Step 4 of Algorithm 2.1 or in any of
the iterative techniques in this chapter. For example, we can select a tolerance ε > 0 and
generate p1, . . . , pN until one of the following conditions is met:
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Bisection method

Suppose f is continuous on [a, b], and f (a)f (b) < 0 (WLOG f (a) < 0, f (b) > 0).
Then f has at least one root in (a, b) by IVT.

Bisection method

▶ Input. Endpoints a, b. Tolerance ϵtol. Maximum number of iterations Nmax.
Set iteration counter N = 1.

▶ While N ≤ Nmax, do
1. Set p = a+b

2
, compute f (p). If f (p) = 0 or b − a < ϵtol, break.

2. If f (p) > 0, set b = p. If f (p) < 0, set a = p.
3. N ← N + 1.

▶ Output. If i = Nmax, print(“Maximum iteration reached.”). Return p.

Numerical Analysis I – Xiaojing Ye, Math & Stat, Georgia State University 24



Termination condition

Bisection method can run forever if we do not set termination condition (e.g., ϵtol,
Nmax).

Common choices of termination condition:

▶ Fixed number of iterations Nmax.

▶ |pN − pN−1| < ϵtol

▶ |f (pN)| < ϵtol

▶ |pN−pN−1|
|pN | < ϵtol
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Example

Example (Bisection method)

f (x) = x3 + 4x2 − 10. Find a root in [1, 2] using the bisection method.

Solution. Hint: First check if f (1)f (2) < 0 (if not, bisection method may not
apply). Then apply bisection.
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Bisection method

Theorem

Suppose f ∈ C [a, b] and f (a)f (b) < 0, then pn generated by the bisection method
converges to p, a root of f , with |pn − p| < b−a

2n

Drawbacks of the bisection method:

▶ inefficient

▶ may discard some roots
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Fixed point iteration

Definition (Fixed point)

Let g : R → R, then p is a fixed point of g if g(p) = p.

2.2 Fixed-Point Iteration 57

Figure 2.3
y
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5 y " x2 ! 2

y " x

The following theorem gives sufficient conditions for the existence and uniqueness of
a fixed point.

Theorem 2.3 (i) If g ∈ C[a, b] and g(x) ∈ [a, b] for all x ∈ [a, b], then g has at least one fixed
point in [a, b].

(ii) If, in addition, g′(x) exists on (a, b) and a positive constant k < 1 exists with

|g′(x)| ≤ k, for all x ∈ (a, b),

then there is exactly one fixed point in [a, b]. (See Figure 2.4.)

Figure 2.4
y

x

y " x

y " g(x)

p " g(p)

a p b

a

b

Proof

(i) If g(a) = a or g(b) = b, then g has a fixed point at an endpoint. If not, then
g(a) > a and g(b) < b. The function h(x) = g(x)−x is continuous on [a, b], with

h(a) = g(a)− a > 0 and h(b) = g(b)− b< 0.
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Fixed point

Example (Fixed point and root)

Suppose α ̸= 0. Show that p is a root of f (x) iff p is a fixed point of
g(x) := x − αf (x)
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Example

Example (Fixed point)

Find the fixed point(s) of g(x) = x2 − 2.

Solution. p is a fixed point of g if p = g(p) = p2 − 2. Solve for p to get p = 2,−1.

2.2 Fixed-Point Iteration 57
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The following theorem gives sufficient conditions for the existence and uniqueness of
a fixed point.

Theorem 2.3 (i) If g ∈ C[a, b] and g(x) ∈ [a, b] for all x ∈ [a, b], then g has at least one fixed
point in [a, b].

(ii) If, in addition, g′(x) exists on (a, b) and a positive constant k < 1 exists with

|g′(x)| ≤ k, for all x ∈ (a, b),

then there is exactly one fixed point in [a, b]. (See Figure 2.4.)
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Proof

(i) If g(a) = a or g(b) = b, then g has a fixed point at an endpoint. If not, then
g(a) > a and g(b) < b. The function h(x) = g(x)−x is continuous on [a, b], with

h(a) = g(a)− a > 0 and h(b) = g(b)− b< 0.
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Fixed point theorem

Theorem (Fixed point theorem)

1. If g ∈ C [a, b] and a ≤ g(x) ≤ b for all x ∈ [a, b], then g has at least one fixed
point in [a, b].

2. If, in addition, g ′ exists in [a, b], and ∃ k < 1 such that |g ′(x)| ≤ k < 1 for all
x , then g has a unique fixed point in [a, b].
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Fixed point theorem

Proof.

1. If g(a) = a or g(b) = b, then done. Otherwise, g(a) > a and g(b) < b.
Define f (x) = x − g(x), then f (a) = a− g(a) < 0, and f (b) = b − g(b) > 0.
By IVT and f is continuous, ∃ p ∈ (a, b) s.t. f (p) = 0, i.e., p − g(p) = 0.

2. If ∃ p, q ∈ [a, b] are two distinct fixed points of g , then ∃ ξ ∈ (p, q) s.t.

1 =
p − q

p − q
=

∣∣∣∣g(p)− g(q)

p − q

∣∣∣∣ = |g ′(ξ)| ≤ k < 1

by MVT. Contradiction.
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Example

Example (Application of Fixed Point Theorem)

Show that g(x) = x2−1
3

has a unique fixed point in [−1, 1].

Proof.

First we need show g(x) ∈ [−1, 1], ∀ x ∈ [−1, 1]. Find the max and min values of g
as − 1

3
and 0 (Hint: find critical points of g first). So g(x) ∈ [− 1

3
, 0] ⊂ [−1, 1].

Also |g ′(x)| = | 2x
3
| ≤ 2

3
< 1, ∀ x ∈ [−1, 1], so g has unique fixed point in [−1, 1] by

FPT.

Remark: We can solve for this fixed point: p = g(p) = p2−1
3

=⇒ p = 3−
√

13
2

.

Numerical Analysis I – Xiaojing Ye, Math & Stat, Georgia State University 33



Example

Example (Fixed Point Theorem – Failed Case 1)

g(x) = x2−1
3

has a unique fixed point in [3, 4]. But we can’t use FPT to show this.

Remark: Note that there is a unique fixed point in [3, 4] (p = 3+
√
13

2
), but

g(4) = 5 /∈ [3, 4], and g ′(4) = 8/3 > 1 so we cannot apply FPT here.

From this example, we know FPT provides a sufficient but not necessary
condition.
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Example

Example (Fixed Point Theorem – Failed Case 1)

g(x) = x2−1
3

has a unique fixed point in [3, 4]. But we can’t use FPT to show this.

2.2 Fixed-Point Iteration 59
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Example 3 Show that Theorem 2.3 does not ensure a unique fixed point of g(x) = 3−x on the interval
[0, 1], even though a unique fixed point on this interval does exist.

Solution g′(x) = −3−x ln 3 < 0 on [0, 1], the function g is strictly decreasing on [0, 1]. So

g(1) = 1
3
≤ g(x) ≤ 1 = g(0), for 0 ≤ x ≤ 1.

Thus, for x ∈ [0, 1], we have g(x) ∈ [0, 1]. The first part of Theorem 2.3 ensures that there
is at least one fixed point in [0, 1].

However,

g′(0) = − ln 3 = −1.098612289,

so |g′(x)| ̸≤ 1 on (0, 1), and Theorem 2.3 cannot be used to determine uniqueness. But g is
always decreasing, and it is clear from Figure 2.6 that the fixed point must be unique.

Figure 2.6

x

y

1

1

y ! x

y ! 3"x
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Example

Example (Fixed Point Theorem – Failed Case 2)

We can use FPT to show that g(x) = 3−x must have FP on [0, 1], but we can’t use
FPT to show if it’s unique (even though the FP on [0, 1] is unique in this example).

Solution. g ′(x) = (3−x)′ = −3−x ln 3 < 0, therefore g(x) is strictly decreasing on
[0, 1]. Also g(0) = 30 = 1 and g(1) = 3−1, so g(x) ∈ [0, 1], ∀ x ∈ [0, 1]. So a FP
exists by FPT.

However, g ′(0) = − ln 3 ≈ −1.098, so we do not have |g ′(x)| < 1 over [0, 1].
Hence FPT does not apply.

Nevertheless, the FP must be unique since g strictly decreases and intercepts with
y = x line only once.
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Example

Example (Fixed Point Theorem – Failed Case 2)

We can use FPT to show that g(x) = 3−x must have FP on [0, 1], but we can’t use
FPT to show whether it is unique (even though the FP on [0, 1] is indeed unique in
this example).

2.2 Fixed-Point Iteration 59
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Example 3 Show that Theorem 2.3 does not ensure a unique fixed point of g(x) = 3−x on the interval
[0, 1], even though a unique fixed point on this interval does exist.

Solution g′(x) = −3−x ln 3 < 0 on [0, 1], the function g is strictly decreasing on [0, 1]. So

g(1) = 1
3
≤ g(x) ≤ 1 = g(0), for 0 ≤ x ≤ 1.

Thus, for x ∈ [0, 1], we have g(x) ∈ [0, 1]. The first part of Theorem 2.3 ensures that there
is at least one fixed point in [0, 1].

However,

g′(0) = − ln 3 = −1.098612289,

so |g′(x)| ̸≤ 1 on (0, 1), and Theorem 2.3 cannot be used to determine uniqueness. But g is
always decreasing, and it is clear from Figure 2.6 that the fixed point must be unique.
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Fixed point iteration

We now introduce a method to find a fixed point of a continuous function g .

Fixed point iteration:
Start with an initial guess p0, recursively define a sequence pn by

pn+1 = g(pn)

If pn → p, then

p = lim
n→∞

pn = lim
n→∞

g(pn−1) = g( lim
n→∞

pn−1) = g(p)

i.e., the limit of pn is a fixed point of g .

Numerical Analysis I – Xiaojing Ye, Math & Stat, Georgia State University 38



Fixed point iteration

Example trajectories of fixed point iteration:

60 C H A P T E R 2 Solutions of Equations in One Variable

Fixed-Point Iteration

We cannot explicitly determine the fixed point in Example 3 because we have no way to
solve for p in the equation p = g( p) = 3−p. We can, however, determine approximations
to this fixed point to any specified degree of accuracy. We will now consider how this can
be done.

To approximate the fixed point of a function g, we choose an initial approximation p0

and generate the sequence { pn}∞n=0 by letting pn = g( pn−1), for each n ≥ 1. If the sequence
converges to p and g is continuous, then

p = lim
n→∞

pn = lim
n→∞

g( pn−1) = g
(

lim
n→∞

pn−1

)
= g( p),

and a solution to x = g(x) is obtained. This technique is called fixed-point, or functional
iteration. The procedure is illustrated in Figure 2.7 and detailed in Algorithm 2.2.

Figure 2.7

x x
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p3 ! g(p2)

y ! x

p2 ! g(p1)

(p1, p1)

ALGORITHM

2.2
Fixed-Point Iteration

To find a solution to p = g( p) given an initial approximation p0:

INPUT initial approximation p0; tolerance TOL; maximum number of iterations N0.

OUTPUT approximate solution p or message of failure.

Step 1 Set i = 1.

Step 2 While i ≤ N0 do Steps 3–6.

Step 3 Set p = g( p0). (Compute pi.)

Step 4 If | p− p0| < TOL then
OUTPUT ( p); (The procedure was successful.)
STOP.

Step 5 Set i = i + 1.

Step 6 Set p0 = p. (Update p0.)
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Fixed point iteration

Fixed Point Iteration Algorithm:

▶ Input: initial p0, tolerence ϵtol, max iteration Nmax. Set iteration counter
N = 1.

▶ While N ≤ Nmax, do:
1. Set p = g(p0) (update pN to pN+1)
2. If |p − p0| < ϵtol, then STOP
3. Set N ← N + 1
4. Set p0 = p (prepare pN for the next iteration)

▶ Output: If N ≥ Nmax, print(“Max iteration reached.”). Return p.
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FPI for root-finding

We can also use FPI to find the root of a function f :

1. Determine a function g , such that p = g(p) ⇔ f (p) = 0.1

2. Apply FPI to g and find FP p.

1We can use =⇒ only, but we may miss some roots of f .
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Example

Example (FPI algorithm for root-finding)

Find a root of f (x) = x3 + 4x2 − 10 using FPI.

Solution. First notice that

x3 + 4x2 − 10 = 0 ⇐⇒ 4x2 = 10− x3

⇐⇒ x2 =
10− x3

4

⇐⇒ x = ±
√

10− x3

4

⇐⇒ x2 =
10− 4x2

x

⇐⇒ . . .
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Example

Example (FPI algorithm for root-finding)

Find a root of f (x) = x3 + 4x2 − 10 using FPI.

Solution. So we can define several g :

g1(x) = x − (x3 + 4x2 − 10)

g2(x) =

√
10

x
− 4x

g3(x) =

√
10 − x3

4

g4(x) =

√
10

4 + x

g5(x) = x −
x3 + 4x2 − 10

3x2 + 8xWhich g to choose? – All these g have the the same FP p. But g3, g4, g5 converge
(g5 fastest) while g1, g2 do not.
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Convergence of FPI algorithm

Theorem (Convergence of FPI Algorithm)

Suppose g ∈ C [a, b] s.t. g(x) ∈ [a, b], ∀ x ∈ [a, b]. If ∃ k ∈ (0, 1) s.t. |g ′(x)| ≤ k,
∀ x ∈ (a, b), then {pn} generated by FPI algorithm converges to the unique FP of
g(x) on [a, b].

Proof.

g(x) ∈ [a, b] and |g ′(x)| ≤ k < 1, ∀ x ∈ [a, b] =⇒ ∃ ! FP p on [a, b] by FPT.
Moreover, ∃ ξ(pn−1) between p and pn−1 s.t.

|pn − p| = |g(pn−1)− g(p)| = |g ′(ξ(pn−1))||pn−1 − p| ≤ k|pn−1 − p|

Apply this inductively, we get

|pn − p| ≤ k|pn−1 − p| ≤ k2|pn−2 − p| ≤ · · · ≤ kn|p0 − p| → 0

since kn → 0 as n → ∞.
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Convergence rate of FPI algorithm

Corollary (Convergence rate of FPI Algorithm)

With the same conditions as above, we have for all n ≥ 1

▶ |pn − p| ≤ kn max{p0 − a, b − p0}
▶ |pn − p| ≤ kn

1−k
|p1 − p0|

Proof.

1. |p0 − p| ≤ max{p0 − a, b − p0}. Then apply the proof above.

2. Apply the proof above to get |pn+1 − pn| ≤ kn|p1 − p0|. Then

|pm − pn| ≤ |p1 − p0|
m−n−1∑

i=0

kn+i =
1− km−n

1− k
kn|p1 − p0|

Let m → ∞ to get the estimate.
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Example

Example (FPI algorithm for root-finding)

Find a root of f (x) = x3 + 4x2 − 10 using FPI algorithm.

Solution. Recall the functions g we defined:

g1(x) = x − (x3 + 4x2 − 10)

g2(x) =

√
10

x
− 4x

g3(x) =

√
10 − x3

4

g4(x) =

√
10

4 + x

g5(x) = x −
x3 + 4x2 − 10

3x2 + 8x
Apply the theorem above, check |g ′(x)|, and explain why FPI algorithm converges
with g3, g4, g5.
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Fixed point iteration for root-finding

To find a good FPI algorithm for root-finding f (p) = 0, find a function g s.t.

▶ g(p) = p =⇒ f (p) = 0

▶ g is continuous, differentiable

▶ |g ′(x)| ≤ k ∈ (0, 1), ∀ x with k as small as possible
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Newton’s method

Suppose p is a root of f and p0 is sufficiently close to p, then

f (p) = f (p0) + f ′(p0)(p − p0) +
1

2
f ′′(ξ(p))(p − p0)

2

for some ξ(p) between p0 and p.

Since f (p) = 0, and (p − p0)
2 is close to 0, we have

0 ≈ f (p0) + f ′(p0)(p − p0)

Therefore (assume f ′(p0) ̸= 0),

p ≈ p0 −
f (p0)

f ′(p0)
=: p1

So p1 is our guess for p now!
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Netwon’s method

Newton’s method:

Start from initial guess p0 (close to the FP p), and iterate:

pn = pn−1 −
f (pn−1)

f ′(pn−1)

Then we hope pn → p quickly.

68 C H A P T E R 2 Solutions of Equations in One Variable

Figure 2.8
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ALGORITHM

2.3
Newton’s

To find a solution to f (x) = 0 given an initial approximation p0:

INPUT initial approximation p0; tolerance TOL; maximum number of iterations N0.

OUTPUT approximate solution p or message of failure.

Step 1 Set i = 1.

Step 2 While i ≤ N0 do Steps 3–6.

Step 3 Set p = p0 − f ( p0)/f
′( p0). (Compute pi.)

Step 4 If | p− p0| < TOL then
OUTPUT (p); (The procedure was successful.)
STOP.

Step 5 Set i = i + 1.

Step 6 Set p0 = p. (Update p0.)

Step 7 OUTPUT (‘The method failed after N0 iterations, N0 =’, N0);
(The procedure was unsuccessful.)
STOP.

The stopping-technique inequalities given with the Bisection method are applicable to
Newton’s method. That is, select a tolerance ε > 0, and construct p1, . . . pN until

| pN − pN−1| < ε, (2.8)

| pN − pN−1|
| pN | < ε, pN ̸= 0, (2.9)

or

|f ( pN )| < ε. (2.10)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Numerical Analysis I – Xiaojing Ye, Math & Stat, Georgia State University 49



Newton’s method

Newton’s method

▶ Input. Initial guess p0, ϵtol, Nmax. Set N = 1.
▶ While N ≤ Nmax, do:

1. Set p = p0 − f (p0)
f ′(p0)

(compute pn using pn−1)

2. If |p − p0| < ϵtol, STOP
3. Set N = N + 1
4. Set p0 = p (update pn−1 using pn for next iteration)

▶ Output. Approximate solution p. If N ≥ Nmax, print(“Max iteration reached”).
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Newton’s method

Newton’s method is equivalent to fixed point iteration algorithm with

g(x) := x − f (x)

f ′(x)

So p is a FP of g iff f (p) = 0.
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Convergence of Newton’s method

Theorem (Convergence of Newton’s method)

If f ∈ C 2[a, b] and ∃ p ∈ (a, b) such that f (p) = 0 and f ′(p) ̸= 0, then ∃ δ > 0 such
that Newton’s method convergent starting from any p0 ∈ (p − δ, p + δ).

Proof.

Hint: Check g ′(x):

g ′(x) = 1− (f ′)2 − ff ′′

(f ′)2
=

f (x)f ′′(x)

(f ′(x))2

f ∈ C 2, f (p) = 0, f ′(p) ̸= 0 together imply ∃ δ > 0 s.t. |g ′(x)| < 1 for
x ∈ (p0 − δ, p0 + δ).
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Secant method

A problem with Newton’s method is that f ′(x) may not be easy to calculate, so we
approximate f ′(pn−1) in the Newton’s method by

f ′(pn−1) ≈
f (pn−1)− f (pn−2)

pn−1 − pn−2

After simple algebra, we get the secant method:

pn = pn−1 −
f (pn−1)(pn−1 − pn−2)

f (pn−1)− f (pn−2)

=
pn−2f (pn−1)− pn−1f (pn−2)

f (pn−1)− f (pn−2)
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Secant method

Illustration of the secant method:

2.3 Newton’s Method and Its Extensions 71

Theorem 2.6 states that, under reasonable assumptions, Newton’s method converges
provided a sufficiently accurate initial approximation is chosen. It also implies that the con-
stant k that bounds the derivative of g, and, consequently, indicates the speed of convergence
of the method, decreases to 0 as the procedure continues. This result is important for the
theory of Newton’s method, but it is seldom applied in practice because it does not tell us
how to determine δ.

In a practical application, an initial approximation is selected and successive approx-
imations are generated by Newton’s method. These will generally either converge quickly
to the root, or it will be clear that convergence is unlikely.

The Secant Method

Newton’s method is an extremely powerful technique, but it has a major weakness: the need
to know the value of the derivative of f at each approximation. Frequently, f ′(x) is far more
difficult and needs more arithmetic operations to calculate than f (x).

To circumvent the problem of the derivative evaluation in Newton’s method, we intro-
duce a slight variation. By definition,

f ′( pn−1) = lim
x→pn−1

f (x)− f ( pn−1)

x − pn−1
.

If pn−2 is close to pn−1, then

f ′( pn−1) ≈
f ( pn−2)− f ( pn−1)

pn−2 − pn−1
= f ( pn−1)− f ( pn−2)

pn−1 − pn−2
.

Using this approximation for f ′( pn−1) in Newton’s formula gives

pn = pn−1 −
f ( pn−1)( pn−1 − pn−2)

f ( pn−1)− f ( pn−2)
. (2.12)

The word secant is derived from
the Latin word secan, which
means to cut. The secant method
uses a secant line, a line joining
two points that cut the curve, to
approximate a root.

This technique is called the Secant method and is presented in Algorithm 2.4. (See
Figure 2.10.) Starting with the two initial approximations p0 and p1, the approximation p2 is
the x-intercept of the line joining ( p0, f ( p0)) and ( p1, f ( p1)). The approximation p3 is the
x-intercept of the line joining ( p1, f ( p1)) and ( p2, f ( p2)), and so on. Note that only one
function evaluation is needed per step for the Secant method after p2 has been determined.
In contrast, each step of Newton’s method requires an evaluation of both the function and
its derivative.

Figure 2.10

x

y

p0
p1

p2 p
p3

p4

y ! f (x)
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Secant method

Secant method

▶ Input. Initial guess p0, p1, q0 = f (p0), q1 = f (p1), ϵtol, Nmax. Set N = 1.
▶ While N ≤ Nmax, do:

1. Set p = p1 − q1(p1−p0)
q1−q0

= p0q1−p1q0
q1−q0

(compute pn using pn−1, pn−2)

2. If |p − p1| < ϵtol, STOP
3. Set N = N + 1
4. Set p1 = p, q1 = f (p), p0 = p1, q0 = q1 (update pn−1, pn−2 for next iteration)

▶ Output. Approximate solution p. If N ≥ Nmax, print(“Max iteration reached”).
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Error analysis

Definition (Order of convergence)

Suppose pn → p. If ∃λ, α > 0 s.t.

lim
n→∞

|pn+1 − p|
|pn − p|α = λ

then {pn} is said to converge to p of order α, with asymptotic error constant λ.
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Error analysis

Definition (Convergence order of numerical methods)

An iterative method pn = g(pn−1) is of order α if the generated {pn} converges to
the solution p of p = g(p) at order α.

In particular:

▶ α = 1: linearly convergent

▶ α = 2: quadratically convergent
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Example

Example (Speed comparison: linear vs quadratic)

Suppose pn (and qn respectively) converges to 0 linearly (quadratically) with
constant 0.5, enumerate the upper bound of |pn| and |qn|.

Solution. By definition of convergence order, we know

lim
n→∞

|pn+1|
|pn|

= 0.5 and lim
n→∞

|qn+1|
|qn|2

= 0.5

Suppose that p0 and q0 are close enough to 0 s.t. |pn+1|/|pn| ≈ 0.5 and
|qn+1|/|qn| ≈ 0.5 for all n, then

|pn| ≈ 0.5|pn−1| ≈ 0.52|pn−2| ≈ · · · ≈ 0.5n|p0|

|qn| ≈ 0.5|qn−1|2 ≈ 0.5 · 0.52|qn−2|4 ≈ · · · ≈ 0.52
n−1|q0|2

n
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Example

Example (Speed comparison: linear vs quadratic)

Suppose p0, q0 ≈ 0.5. Then

Linear Quadratic

n 0.5n 0.52
n−1

1 5.0000× 10−1 5.0000× 10−1

2 2.5000× 10−1 1.2500× 10−1

3 1.2500× 10−1 7.8125× 10−3

4 6.2500× 10−2 3.0518× 10−5

5 3.1250× 10−2 4.6566× 10−10

6 1.5625× 10−2 1.0842× 10−19

7 7.8125× 10−3 5.8775× 10−39
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Convergence rate of fixed point iteration algorithm

Theorem (FPI alg has linear convergence rate)

Suppose g ∈ C 1[a, b] s.t. g(x) ∈ [a, b], ∀ x ∈ [a, b]. If ∃ k ∈ (0, 1) s.t. |g ′(x)| ≤ k,
∀ x ∈ (a, b), then {pn} generated by FPI algorithm converges to the unique FP of
g(x) on [a, b] linearly.

Proof.

We already know pn → p where p is the unique fixed point of g by FPT. Also

pn+1 − p = g(pn)− g(p) = g ′(ξ(pn))(pn − p)

where ξ(pn) is between pn and p. Hence

lim
n→∞

|pn+1 − p|
|pn − p|

= lim
n→∞

|g ′(ξ(pn))| = |g ′( lim
n→∞

ξ(pn))| = |g ′(p)| ≤ k < 1

Therefore pn → p linearly with constant k.
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Improve convergence order of FPI to quadratic

Theorem (Additional condition for quadratic rate)

If g ∈ C 2[a, b] and g ′(p) = 0 for a FP p ∈ (a, b), then ∃M > 0 s.t. |g ′′(x)| ≤ M,
∀ x ∈ [a, b] and ∃ δ > 0 s.t. sequence {pn} by FPI stared in [p − δ, p + δ] satisfies

|pn+1 − p| ≤ M

2
|pn − p|2, ∀ n
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Improve convergence order of FPI

Proof.

Notice that g ∈ C 2, g(p) = p, g ′(p) = 0 together imply that ∃ δ > 0 and k ∈ (0, 1)
s.t.

|g ′(x)| ≤ k < 1, x ∈ [p − δ, p + δ]

and
g : [p − δ, p + δ] → [p − δ, p + δ]

Also

g(pn) = g(p) + g ′(p)(pn − p) +
1

2
g ′′(ξ(pn))(pn − p)2

where ξ(pn) is between pn and p.

Since pn+1 = g(pn), g(p) = p, and g ′(p) = 0, we have

pn+1 = p +
1

2
g ′′(ξ(pn))(pn − p)2

So
|pn+1 − p|
|pn − p|2 =

1

2
|g ′′(ξ(pn))| ≤

M

2
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Improve convergence order of FPI

Suppose we have a fixed point method with g(x) = x − ϕ(x)f (x). How to choose ϕ
such that FPI converges quadratically?

We need g s.t. g ′(p) = 0 at a FP p (root of f ):

g ′(p) = 1− ϕ′(p)f (p)− ϕ(p)f ′(p) = 0

Since f (p) = 0 we have ϕ(p) = 1
f ′(p) . Choose ϕ(x) = 1

f ′(x) s.t.

g(x) = x − f (x)

f ′(x)

This is exactly Newton’s method!

So Newton’s method converges quadratically.
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Convergence of Newton’s method when f ′(p) = 0

We mentioned condition f ′(p) ̸= 0 at the root p of f in the convergence proof of
Newton’s method above.

What if f ′(p) = 0? When will this happen and how to address it?
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Multiple roots

f ′(p) = 0 at root p means p is not a “simple root”.

Definition (Root multiplicity)

A root p of f (x) is a root (zero) of multiplicity m if f (x) = (x − p)mq(x) for
some q s.t. limx→p q(x) ̸= 0.

Definition (Simple root)

p is a simple root (zero) of f if its multiplicity m = 1.
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Multiple roots

Theorem (Sufficient and necessary condition for simple root)

f ∈ C 1[a, b] has a simple root p ∈ (a, b) iff f (p) = 0 and f ′(p) ̸= 0.

Proof.

“=⇒”: f (x) = (x − p)q(x) where limx→p q(x) ̸= 0. Then
f ′(x) = q(x) + (x − p)q′(x). So f ∈ C 1 implies

f ′(p) = lim
x→p

f ′(x) = lim
x→p

(q(x) + (x − p)q′(x)) ̸= 0

“⇐=”: f (x) = f (p) + f ′(ξ(x))(x − p) where ξ(x) between x and p. Define
q(x) = f ′(ξ(x)) then

lim
x→p

q(x) = lim
x→p

f ′(ξ(x)) = f ′( lim
x→p

ξ(x)) = f ′(p) ̸= 0

So f has a simple root at p.
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Multiple roots

Theorem (Sufficient and necessary condition for multiple root)

f ∈ Cm[a, b] has a zero p of multiplicity m iff

f (p) = f ′(p) = · · · = f (m−1)(p) = 0 and f (m)(p) ̸= 0

Proof.

Hint: Follow the proof above and use

(uv)(n) =
n∑

k=0

(
n

k

)
u(k)v (n−k)
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Example

Example (Multiple root)

Let f (x) = ex − x − 1, show that f (x) has a zero of multiplicity 2 at x = 0.

Solution. f (x) = ex − x − 1, f ′(x) = ex − 1, and f ′′(x) = ex . So f (0) = f ′(0) = 0
and f ′′(0) = 1 ̸= 0. By Theorem above f has root (zero) at x = 0 of multiplicity 2.
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Modified Newton’s method

Instead of using f (x) in Newton’s method, we can replace f by

µ(x) :=
f (x)

f ′(x)

We need to show:

p is a root (simple or not) of f =⇒ p is a simple root of µ
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Modified Newton’s method

Recall that f has a root p of multiplicity m if f (x) = (x − p)mq(x) for some q with
limx→p q(x) ̸= 0.

Now there is

µ(x) =
f (x)

f ′(x)
=

(x − p)mq(x)

m(x − p)m−1q(x) + (x − p)mq′(x)

= (x − p) · q(x)

mq(x) + (x − p)q′(x)

where q(x)
mq(x)+(x−p)q′(x) →

1
m
̸= 0 as x → p.

By definition, µ(x) has simple root at p, i.e., µ(p) = 0 and µ′(p) ̸= 0.
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Modified Newton’s method

Now we use µ(x) instead of f (x) in Newton’s method:

g(x) = x −
µ(x)

µ′(x)
= x −

(f (x)/f ′(x))

(f (x)/f ′(x))′
= · · · = x −

f (x)f ′(x)

(f ′(x))2 − f (x)f ′′(x)

The modified Newton’s method is

pn = pn−1 −
f (pn−1)f

′(pn−1)

(f ′(pn−1))2 − f (pn−1)f ′′(pn−1)

Drawbacks of the modified Newton’s method:

▶ Needs f ′′ in computation.

▶ Denominator approximates 0 as pn → p, so round-off may degrade
convergence.
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Accelerating convergence

We showed that FPI generally has linear convergence only. How to improve?

Suppose N is large, and pn, pn+1, pn+2 satisfy

pn+1 − p

pn − p
≈

pn+2 − p

pn+1 − p

⇐⇒ (pn+1 − p)2 ≈ (pn − p)(pn+2 − p) = pnpn+2 − p(pn+2 + pn) + p2

⇐⇒ p ≈
pnpn+2 − p2n+1

pn+2 − 2pn+1 + pn
= · · · = pn −

(pn+1 − pn)2

pn+2 − 2pn+1 + pn
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Aitken’s ∆2 method

Denote ∆pn := pn+1 − pn, called forward difference, and

∆2pn :=∆(∆pn) = ∆(pn+1 − pn)

=(pn+2 − pn+1)− (pn+1 − pn)

=pn+2 − 2pn+1 + pn

So the result above can be written as p ≈ pn − (∆pn)
2

∆2pn
.

Aitken’s ∆2 method:
Given {pn} generated by FPI, set p̂n = pn − (∆pn)

2

∆2pn
. Then p̂n → p faster than pn.

Numerical Analysis I – Xiaojing Ye, Math & Stat, Georgia State University 73



Aitken’s ∆2 method

What does it mean by “faster”?

Theorem (Faster convergence by Aitken’s ∆2 method)

If pn → p linearly with limn→∞
pn+1−p

pn−p
< 1, then p̂n computed by Aitken’s ∆2

method satisfy

lim
n→∞

p̂n − p

pn − p
= 0

Proof.
Hint: Define en := pn − p, then ∆en = ∆pn, ∆

2en = ∆2pn, and
en+1

en
→ λ < 1.

Then

p̂n − p

pn − p
=

pn − (∆pn)
2

∆2pn
− p

pn − p
=

en − (∆en)
2

∆2en

en
=

en+2
en+1

− en+1
en

en+2
en+1

− 2 + en
en+1

→
λ − λ

λ − 2 + 1
λ

= 0
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Steffenson’s method

Aitken’s method computes p̂n separately from pn. Steffenson’s method makes use
of p̂n to compute future pn.

Steffenson’s method: given g for FPI, compute

p
(0)
0 , p

(0)
1 = g(p

(0)
0 ), p

(0)
2 = g(p

(0)
0 )

p
(1)
0 = p

(0)
0 − (∆p

(0)
0 )2

∆2p
(0)
0

, p
(1)
1 = g(p

(1)
0 ), p

(1)
2 = g(p

(1)
1 )

p
(2)
0 = p

(1)
0 − (∆p

(1)
0 )2

∆2p
(1)
0

, p
(2)
1 = g(p

(2)
0 ), p

(2)
2 = g(p

(2)
1 )

...
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Steffenson’s method

Steffenson’s method

▶ Input. Initial guess p0, ϵtol, Nmax. Set N = 1.
▶ While N ≤ Nmax, do :

1. Set p1 = g(p0), p2 = g(p1) and p = p0 − (p1−p0)
2

p2−2p1+p0
2. If |p − p0| < ϵtol, STOP
3. p0 = p
4. Set N = N + 1

▶ Output. Return p. If N ≥ Nmax, print(“Max iteration reached.”).
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Steffenson’s method

Theorem

Suppose g(x) has a fixed point p and g ′(p) ̸= 1. If ∃ δ > 0, s.t.
f ∈ C 3[p − δ, p + δ], then Steffenson’s method generates a sequence {pn}
converging to p quadratically for any initial p0 ∈ [p − δ, p + δ].
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Section 3

Interpolation and Polynomial Approximation
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Interpolation

Given data points
{
(xi , yi ) : i = 1, . . . , n

}
, can we find a function to “fit” the data?

Theorem (Weierstrass approximation theorem)

Suppose f ∈ C [a, b], then ∀ ϵ > 0, ∃ a polynomial P(x) such that
|f (x)− P(x)| < ϵ, ∀ x ∈ [a, b].

106 C H A P T E R 3 Interpolation and Polynomial Approximation

3.1 Interpolation and the Lagrange Polynomial

One of the most useful and well-known classes of functions mapping the set of real numbers
into itself is the algebraic polynomials, the set of functions of the form

Pn(x) = anxn + an−1xn−1 + · · · + a1x + a0,

where n is a nonnegative integer and a0, . . . , an are real constants. One reason for their
importance is that they uniformly approximate continuous functions. By this we mean that
given any function, defined and continuous on a closed and bounded interval, there exists
a polynomial that is as “close” to the given function as desired. This result is expressed
precisely in the Weierstrass Approximation Theorem. (See Figure 3.1.)

Figure 3.1
y

xa b

y ! f (x)

y ! f (x) " ε

y ! f (x) # ε

y ! P (x)

Theorem 3.1 (Weierstrass Approximation Theorem)
Suppose that f is defined and continuous on [a, b]. For each ϵ > 0, there exists a polynomial
P(x), with the property that

|f (x)− P(x)| < ϵ, for all x in [a, b].

The proof of this theorem can be found in most elementary texts on real analysis (see,
for example, [Bart], pp. 165–172).

Another important reason for considering the class of polynomials in the approximation
of functions is that the derivative and indefinite integral of a polynomial are easy to determine
and are also polynomials. For these reasons, polynomials are often used for approximating
continuous functions.

Karl Weierstrass (1815–1897) is
often referred to as the father of
modern analysis because of his
insistence on rigor in the
demonstration of mathematical
results. He was instrumental in
developing tests for convergence
of series, and determining ways
to rigorously define irrational
numbers. He was the first to
demonstrate that a function could
be everywhere continuous but
nowhere differentiable, a result
that shocked some of his
contemporaries.

The Taylor polynomials were introduced in Section 1.1, where they were described
as one of the fundamental building blocks of numerical analysis. Given this prominence,
you might expect that polynomial interpolation would make heavy use of these functions.
However this is not the case. The Taylor polynomials agree as closely as possible with
a given function at a specific point, but they concentrate their accuracy near that point.
A good interpolation polynomial needs to provide a relatively accurate approximation
over an entire interval, and Taylor polynomials do not generally do this. For example,
suppose we calculate the first six Taylor polynomials about x0 = 0 for f (x) = ex.
Since the derivatives of f (x) are all ex, which evaluated at x0 = 0 gives 1, the Taylor
polynomials are
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Polynomial interpolation

So polynomials could work. But how to find the polynomial?

First Try: Taylor’s polynomial

For any given function f (x) and a point x0, we approximate f (x) by the Taylor’s
polynomial Pn(x):

f (x) ≈ Pn(x) := f (x0) + f ′(x0)(x − x0) + · · ·+ 1

n!
f (n)(x0)(x − x0)

n
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Polynomial interpolation

Example (Problem with Taylor’s polynomial)

Let f (x) = ex and x0 = 0. See how Taylor’s polynomial behaves.

Solution. Taylor’s polynomial Pn(x) = 1 + x + · · ·+ 1
n!
xn.

However, no matter how large we choose n, Pn(x) is far from f (x) where x is
slightly large.
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Issue with Taylor’s polynomial approximation

3.1 Interpolation and the Lagrange Polynomial 107

P0(x) = 1, P1(x) = 1 + x, P2(x) = 1 + x + x2

2
, P3(x) = 1 + x + x2

2
+ x3

6
,

P4(x) = 1 + x + x2

2
+ x3

6
+ x4

24
, and P5(x) = 1 + x + x2

2
+ x3

6
+ x4

24
+ x5

120
.

Very little of Weierstrass’s work
was published during his lifetime,
but his lectures, particularly on
the theory of functions, had
significant influence on an entire
generation of students. The graphs of the polynomials are shown in Figure 3.2. (Notice that even for the

higher-degree polynomials, the error becomes progressively worse as we move away from
zero.)

Figure 3.2
y
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1!1 2 3

y " P2(x)

y " P3(x)

y " P4(x)

y " P5(x)

y " P1(x)

y " P0(x)

y " ex

Although better approximations are obtained for f (x) = ex if higher-degree Taylor
polynomials are used, this is not true for all functions. Consider, as an extreme example,
using Taylor polynomials of various degrees for f (x) = 1/x expanded about x0 = 1 to
approximate f (3) = 1/3. Since

f (x) = x−1, f ′(x) = −x−2, f ′′(x) = (−1)22 · x−3,

and, in general,

f (k)(x) = (−1)kk!x−k−1,

the Taylor polynomials are

Pn(x) =
n∑

k=0

f (k)(1)

k! (x − 1)k =
n∑

k=0

(−1)k(x − 1)k .

To approximate f (3) = 1/3 by Pn(3) for increasing values of n, we obtain the values in
Table 3.1—rather a dramatic failure! When we approximate f (3) = 1/3 by Pn(3) for larger
values of n, the approximations become increasingly inaccurate.

Table 3.1 n 0 1 2 3 4 5 6 7

Pn(3) 1 −1 3 −5 11 −21 43 −85
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Example

Example (Problem with Taylor’s polynomial)

Let f (x) = 1
x
and x0 = 1. See how Taylor’s polynomial behaves.

Solution. We know f (n)(x) = (−1)nn!

xn+1 . Then Taylor’s polynomial is

Pn(x) =
n∑

i=0

(−1)n(x − 1)n = 1− (x − 1) + (x − 1)2 + · · ·+ (−1)n(x − 1)n

Suppose we use Pn(x) to approximate f at x = 3, we get

P0(3) P1(3) P2(3) P3(3) P4(3) P5(3) P6(3) P7(3)

1 -1 3 -5 11 -21 43 -85

But the true value is f (3) = 1
3
.
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Lagrange interpolating polynomial

We should not use Taylor’s polynomial since it only approximates well locally.

Suppose we have two points (x0, y0) and (x1, y1), then best use a straight line to
interpolate. Define two linear polynomials:

L0(x) =
x − x1
x0 − x1

and L1(x) =
x − x0
x1 − x0

So L0 and L1 are polynomials of degree 1, and

L0(x1) = 0, L0(x0) = 1, L1(x0) = 0, L1(x1) = 1

Now set P(x) = f (x0)L0(x) + f (x1)L1(x), then P(x) coincides f (x) at x0 and x1.
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Example

Recall that the polynomial we derived is

P(x) = f (x0)L0(x) + f (x1)L1(x) =
x − x0
x1 − x0

f (x0) +
x − x1
x0 − x1

f (x1)

P(x) is called the Lagrange interpolating polynomial of f given values at x0 and
x1.

Example (Linear Lagrange interpolating polynomial)

Use linear Lagrange interpolating polynomial of f where f (2) = 4 and f (5) = 1.

Solution. P(x) = −x + 6.
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Lagrange interpolating polynomial

Given n + 1 points
{
(xi , f (xi )) : 0 ≤ i ≤ n

}
. Define:

Ln,k(x) =
(x − x0) . . . (x − xk−1)(x − xk+1) . . . (x − xn)

(xk − x0) . . . (xk − xk−1)(xk − xk+1) . . . (xk − xn)

for k = 0, 1, . . . , n. Then it is easy to verify

Ln,k(x) =

{
1 if x = xk

0 if x = xj , where j ̸= k

Then the nth Lagrange interpolating polynomial of f is

P(x) =
n∑

k=0

f (xk)Ln,k(x)
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Lagrange interpolating polynomial

Illustration of Ln,k(x):

110 C H A P T E R 3 Interpolation and Polynomial Approximation

Figure 3.5

xx0 x1 xk!1 xk xk"1 xn!1 xn

Ln,k(x)

1

. . .. . .

The interpolating polynomial is easily described once the form of Ln,k is known. This
polynomial, called the nth Lagrange interpolating polynomial, is defined in the following
theorem.

The interpolation formula named
for Joseph Louis Lagrange
(1736–1813) was likely known
by Isaac Newton around 1675,
but it appears to first have been
published in 1779 by Edward
Waring (1736–1798). Lagrange
wrote extensively on the subject
of interpolation and his work had
significant influence on later
mathematicians. He published
this result in 1795.

Theorem 3.2 If x0, x1, . . . , xn are n + 1 distinct numbers and f is a function whose values are given at
these numbers, then a unique polynomial P(x) of degree at most n exists with

f (xk) = P(xk), for each k = 0, 1, . . . , n.

This polynomial is given by

P(x) = f (x0)Ln,0(x) + · · · + f (xn)Ln,n(x) =
n∑

k=0

f (xk)Ln,k(x), (3.1)

where, for each k = 0, 1, . . . , n,

Ln,k(x) = (x − x0)(x − x1) · · · (x − xk−1)(x − xk+1) · · · (x − xn)

(xk − x0)(xk − x1) · · · (xk − xk−1)(xk − xk+1) · · · (xk − xn)
(3.2)

=
n∏

i=0
i ̸=k

(x − xi)

(xk − xi)
.

The symbol
∏

is used to write
products compactly and parallels
the symbol

∑
, which is used for

writing sums.

We will write Ln,k(x) simply as Lk(x) when there is no confusion as to its degree.

Example 2 (a) Use the numbers (called nodes) x0 = 2, x1 = 2.75, and x2 = 4 to find the second
Lagrange interpolating polynomial for f (x) = 1/x.

(b) Use this polynomial to approximate f (3) = 1/3.

Solution (a) We first determine the coefficient polynomials L0(x), L1(x), and L2(x). In
nested form they are

L0(x) = (x − 2.75)(x − 4)

(2− 2.5)(2− 4)
= 2

3
(x − 2.75)(x − 4),

L1(x) = (x − 2)(x − 4)

(2.75− 2)(2.75− 4)
= −16

15
(x − 2)(x − 4),

and

L2(x) = (x − 2)(x − 2.75)

(4− 2)(4− 2.5)
= 2

5
(x − 2)(x − 2.75).
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Lagrange interpolating polynomial

The nth Lagrange interpolating polynomial of f at x0, . . . , xn is

P(x) =
n∑

k=0

f (xk)Ln,k(x)

Properties:

▶ P(x) is a polynomial of degree n

▶ P(xk) = f (xk) for all k = 0, . . . , n.
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Example

Example (Lagrange interpolating polynomial)

Let f (x) = 1
x
, x0 = 2, x1 = 2.75, x2 = 4. Find the 2nd Lagrange interpolating

polynomial P(x) of f (x) and compute P(3).

Solution. First we compute L2,k for k = 0, 1, 2:

L2,0(x) =
(x − x1)(x − x2)

(x0 − x1)(x0 − x2)
=

(x − 2.75)(x − 4)

(2 − 2.75)(2 − 4)

L2,1(x) =
(x − x0)(x − x2)

(x1 − x0)(x1 − x2)
=

(x − 2)(x − 4)

(2.75 − 2)(2.75 − 4)

L2,2(x) =
(x − x0)(x − x1)

(x2 − x0)(x2 − x1)
=

(x − 2)(x − 2.75)

(4 − 2)(4 − 2.75)

Then the 2nd Lagrange interpolating polynomial is
P(x) =

2∑
k=0

f (xk )L2,k (x) = · · · =
x2

22
−

35x

88
+

49

44

Note that P(3) = 32

22
− 35×3

88
+ 49

44
≈ 0.32955, close to f (3) = 1

3
.
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Example

Example (Lagrange interpolating polynomial)

Let f (x) = 1
x
, x0 = 2, x1 = 2.75, x2 = 4. Find the 2nd Lagrange interpolating

polynomial P(x) of f (x) and compute P(3).

3.1 Interpolation and the Lagrange Polynomial 111

Also, f (x0) = f (2) = 1/2, f (x1) = f (2.75) = 4/11, and f (x2) = f (4) = 1/4, so

P(x) =
2∑

k=0

f (xk)Lk(x)

= 1
3
(x − 2.75)(x − 4)− 64

165
(x − 2)(x − 4) + 1

10
(x − 2)(x − 2.75)

= 1
22

x2 − 35
88

x + 49
44

.

(b) An approximation to f (3) = 1/3 (see Figure 3.6) is

f (3) ≈ P(3) = 9
22
− 105

88
+ 49

44
= 29

88
≈ 0.32955.

Recall that in the opening section of this chapter (see Table 3.1) we found that no Taylor
polynomial expanded about x0 = 1 could be used to reasonably approximate f (x) = 1/x
at x = 3.

Figure 3.6

x

y

1

2

3

4

51 2 3 4

y ! f (x) 

y ! P(x) 

The interpolating polynomial P of degree less than or equal to 3 is defined in Maple
with

P := x→ interp([2, 11/4, 4], [1/2, 4/11, 1/4], x)

x→ interp
([

2,
11
4

, 4
]

,
[

1
2

,
4
11

,
1
4

]
, x
)

To see the polynomial, enter

P(x)

1
22

x2 − 35
88

x + 49
44

Evaluating P(3) as an approximation to f (3) = 1/3, is found with

evalf(P(3))

0.3295454545
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Lagrange interpolating polynomial

Theorem (Error of Lagrange interpolating polynomial)

Suppose f (x) ∈ C n+1[a, b]. Then for every x ∈ [a, b], ∃ ξ(x) between x0, . . . , xn, s.t.

f (x) = P(x) +
f (n+1)(ξ(x))

(n + 1)!
(x − x0) . . . (x − xn)
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Error of Lagrange interpolating polynomial

Proof.

For any given x ∈ [a, b] different from x0, . . . , xn, define g(t) as

g(t) = f (t)− P(t)− (f (x)− P(x))
(t − x0) . . . (t − xn)

(x − x0) . . . (x − xn)︸ ︷︷ ︸
polynomial of t, degree n + 1

Note that f (t) = P(t) and (t − x0) . . . (t − xn) = 0 for t = xk and k = 0, . . . , n. So
g(t) = 0 for t = x , x0, . . . , xn (total n + 2 points). By generalized Rolle’s Thm,
∃ ξ(x) between x0, . . . , xn s.t.

0 = g (n+1)(ξ(x)) = f (n+1)(ξ(x))− (n + 1)! · (f (x)− P(x))

(x − x0) . . . (x − xn)

since P(t) is a poly of t with degree n and (t − x0) · · · (t − xn) is a monic poly of t
with degree n + 1.
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Example

Example (Estimate error of Lagrange interpolating polynomial)

Let f (x) = 1
x
, x0 = 2, x1 = 2.75, x2 = 4. Estimate the maximal error of the 2nd

Lagrange interpolating polynomial P(x) given above on [2, 4].
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Example

Solution. Let P(x) be the Lagrange interpolating polynomial, then

f (x)− P(x) =
f (3)(ξ(x))

3!
(x − 2)(x − 2.75)(x − 4)

We know f ′(x) = − 1
x2
, f ′′(x) = 2

x3
, f ′′′(x) = − 3!

x4
, so∣∣∣∣∣ f (3)(ξ(x))3!

∣∣∣∣∣ =
∣∣∣∣− 1

(ξ(x))4

∣∣∣∣ ≤ 1

24
(∵ ξ(x) ∈ [2, 4])

Further, denote h(x) := (x − 2)(x − 2.75)(x − 4), find critical points and then the
max/min values of h(x) on [2, 4] to claim |h(x)| ≤ 9

16
for all x ∈ [2, 4]. Hence

|f (x)− P(x)| =

∣∣∣∣∣ f (3)(ξ(x))3!
h(x)

∣∣∣∣∣ ≤ 1

24
9

16
≈ 0.00586.
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Example

Example (Estimate error of Lagrange interpolating polynomial)

Suppose we use uniform partition of [0, 1] and linear Lagrange interpolating
polynomial on each segment to approximate f (x) = ex . How small the step size h
should be to guarantee the error < 10−6 everywhere?

Numerical Analysis I – Xiaojing Ye, Math & Stat, Georgia State University 95



Example

Solution. With step size h, we have xj = jh for j = 0, 1, . . . .

Then we use linear Lagrange polynomial to approximate ex on each [xj , xj+1]. The
error is

1

2
f (2)(ξ(x))(x − xj)(x − xj+1)

So | f
(2)(ξ(x))

2
| = | e

ξ(x)

2
| ≤ e

2
(∵ ξ(x) ∈ [0, 1]).

Again take h(x) = (x − xj)(x − xj+1) which has max h2

4
. Then∣∣∣∣∣ f (2)(ξ(x))2

(x − xj)(x − xj+1)

∣∣∣∣∣ ≤ e

2

h2

4
≤ 10−6

So we need h ≤ (8× 10−6 × e−1)1/2 ≈ 1.72× 10−3.

Numerical Analysis I – Xiaojing Ye, Math & Stat, Georgia State University 96



Recursive constructions of interpolating polynomials

Given points x0, . . . , xn and function values f (xk) for k = 0, . . . , n.

There are several questions regarding the use Lagrange interpolating polynomial:

▶ Can we use a subset of points to construct Lagrange interpolating polynomials
with lower degree?

▶ If yes, which interpolating points among x0, . . . , xn to choose?

▶ If the result is not satisfactory, can we improve the constructed polynomial to
get a polynomial of higher degree?
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Example

Example (Which points to choose?)

Consider the interpolation of the function f with 5 points:

k xk f (xk )

0 1.0 0.7651977
1 1.3 0.6200860
2 1.6 0.4554022
3 1.9 0.2818186
4 2.2 0.1103623

If we use an interpolating polynomial of degree n < 4, then we need to decide
which points to use.

For example, if n = 2, then we need to chose 3 points. Should we choose x0, x1, x2
or x1, x2, x3, or x0, x2, x4?
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Neville’s method

We do not know which choice is better, since true f (x) is unknown. But we can
compute all and see the trend.

Question: can we use polynomials obtained earlier (with lower degree) to get the
later ones (with higher degree)?

Definition (Partial interpolating polynomial)

Let f be a function with known values at x0, . . . , xn and suppose m1, . . . ,mk are k
integers among 0, 1, . . . , n. Then the partial Lagrange interpolating polynomial that
agrees with f at xm1 , . . . , xmk is denoted by Pm1,...,mk (x).
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Example

Example (Partial interpolating polynomial)

Let x0 = 1, x1 = 2, x2 = 3, x3 = 4, x4 = 6 for f (x) = ex . Find P1,2,4(x) and
approximate the value f (5).

Solution. We only use x1, x2, x4 to get P1,2,4(x):

P1,2,4(x) =
(x − x2)(x − x4)

(x1 − x2)(x1 − x4)
f (x1) +

(x − x1)(x − x4)

(x2 − x1)(x2 − x4)
f (x2) +

(x − x1)(x − x2)

(x4 − x1)(x4 − x2)
f (x4)

=
(x − 3)(x − 6)

(2 − 3)(2 − 6)
e2 +

(x − 2)(x − 6)

(3 − 2)(3 − 6)
e3 +

(x − 2)(x − 3)

(6 − 2)(6 − 3)
e6

P1,2,4(5) = −
1

2
e2 + e3 +

1

2
e6 ≈ 218.105
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Recursive construction of interpolating polynomials

Now we show how to recursively construct Lagrange interpolating polynomials:

Theorem (Recursive construction of interpolating polynomials)

Let f be defined at x0, . . . , xk , and xi and xj are two distinct points among them.
Then

P0,1,...,k(x) =
(x − xj)P0,...,ĵ,...,k(x)− (x − xi )P0,...,î,...,k(x)

xi − xj
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Recursive construction of interpolating polynomials

Proof.

Denote the RHS by P(x).

Both P0,...,ĵ,...,k(x) and P0,...,î,...,k(x) are polynomials of degree k − 1, we know
P(x) is a polynomial of degree ≤ k.

Verify that P(xs) = f (xs) for s = 0, 1, . . . , k. So P(x) = P0,...,k(x).

Numerical Analysis I – Xiaojing Ye, Math & Stat, Georgia State University 102



Neville’s method

Suppose there are 5 points x0, . . . , x4, and Pi := f (xi ) for all i , then we can
construct the following table:

x0 P0

x1 P1 P0,1(x) =
(x−x0)P1−(x−x1)P0

x1−x0

x2 P2 P1,2(x) =
(x−x1)P2−(x−x2)P1

x2−x1
P0,1,2(x) =

(x−x0)P1,2(x)−(x−x2)P0,1(x)

x2−x0

x3 P3 P2,3(x) =
(x−x2)P3−(x−x3)P2

x3−x2
P1,2,3(x) =

(x−x1)P2,3(x)−(x−x3)P1,2(x)

x3−x1

. . .

x4 P4 P3,4(x) =
(x−x3)P4−(x−x4)P3

x4−x3
P2,3,4(x) =

(x−x2)P3,4(x)−(x−x4)P2,3(x)

x4−x2
. . .
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Neville’s method

We introduce a new notation Qij = Pi−j,i−j+1,...,i (i is the ending index and j + 1 is
the length), then the previous table is just

x0 Q0,0

x1 Q1,0 Q1,1

x2 Q2,0 Q2,1 Q2,2

x3 Q3,0 Q3,1 Q3,2 Q3,3

x4 Q4,0 Q4,1 Q4,2 Q4,3 Q4,4

For example Q3,3 = P0,1,2,3, Q4,3 = P1,2,3,4, etc.
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Example (Neville’s method)

Consider the interpolation of the function f with 5 points:

k xk f (xk )
0 1.0 0.7651977
1 1.3 0.6200860
2 1.6 0.4554022
3 1.9 0.2818186
4 2.2 0.1103623

In addition, interpolate f (1.5) and compare to the true value2.

2The data in this table were retrieved from a Bessel function with true value f (1.5) = 0.5118277.
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Neville’s iterated interpolation

Neville’s iterated interpolation method:

▶ Input. x0, . . . , xn and values Qi,0 = f (xi ) for all i .

▶ For each i = 1, . . . , n: compute Qi,j =
(x−xi−j )Qi,j−1−(x−xi )Qi−1,j−1

xi−xi−j
for

j = 1, . . . , i .

▶ Output. Table Q with P(x) = Qn,n.

Properties of Neville’s method:

1. Add new interpolating nodes easily.

2. Can stop if |Qi,i − Qi−1,i−1| < ϵtol.
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Divided difference

We can also get the polynomials, not just the interpolating values.

Consider the polynomial Pn(x) of degree n defined by
Pn(x) = a0 + a1(x − x0) + a2(x − x0)(x − x1) + · · ·+ an(x − x0) · · · (x − xn−1)

To make it the Lagrangian interpolating polynomial of f at x0, . . . , xn, we need to
find ai s.t. Pn(xi ) = f (xi ) for all xi .

It is easy to check that:

Pn(x0) = a0 = f (x0) =⇒ a0 = f (x0)

Pn(x1) = a0 + a1(x1 − x0) = f (x1) =⇒ a1 =
f (x1)− f (x0)

x1 − x0

...
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Divided difference

We define the following notations of divided difference:

f [xi ] = f (xi )

f [xi , xi+1] =
f [xi+1]− f [xi ]

xi+1 − xi

f [xi , xi+1, xi+2] =
f [xi+1, xi+2]− f [xi , xi+1]

xi+2 − xi

...Once the (k − 1)th divided differences are determined, we can get the kth divided
difference as

f [x0, . . . , xk ] =
f [x1, . . . , xk ]− f [x0, . . . , xk−1]

xk − x0
until we get f [x0, . . . , xn]. Then set ak = f [x0, . . . , xk ] for all k:

Pn(x) = f [x0] +
n∑

k=1

f [x0, . . . , xk ](x − x0) . . . (x − xk)
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Divided difference

We can construct a table of divided difference as follows:

x0 f [x0]
x1 f [x1] f [x0, x1]
x2 f [x2] f [x1, x2] f [x0, x1, x2]
x3 f [x3] f [x2, x3] f [x1, x2, x3] f [x0, x1, x2, x3]
x4 f [x4] f [x3, x4] f [x2, x3, x4] f [x1, x2, x3, x4] f [x0, x1, x2, x3, x4]
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Divided difference

We can introduce a new notation Fi,j = f [xi−j , . . . , xi ], then the table can be
written as

x0 F0,0

x1 F1,0 F1,1

x2 F2,0 F2,1 F2,2

x3 F3,0 F3,1 F3,2 F3,3

x4 F4,0 F4,1 F4,2 F4,3 F4,4
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Newton’s divided difference formula

Newton’s divided difference

▶ Input. x0, . . . , xn and values Fi,0 = f (xi ) for all i .

▶ For each i = 1, . . . , n: set Fi,j =
Fi,j−1−Fi−1,j−1

xi−xi−j
for j = 1, . . . , i .

▶ Output. Fi,i for i = 0, . . . , n, and set

Pn(x) = F0,0 +
n∑

i=1

Fi,i (x − x0) . . . (x − xi−1)
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Special case

In the special case where xi+1 − xi = h for all i , then xi = x0 + ih.
Now if we want to know the value of f at xs = x0 + sh (s can be non-integer), then

Pn(xs) = f [x0] +
n∑

k=1

f [x0, . . . , xk ](xs − x0) . . . (xs − xk−1)

= f [x0] +
n∑

k=1

f [x0, . . . , xk ](sh)((s − 1)h) . . . ((s − k + 1)h)

= f [x0] +
n∑

k=1

f [x0, . . . , xk ]h
k s(s − 1) . . . (s − k + 1)

k!
k!

= f [x0] +
n∑

k=1

f [x0, . . . , xk ]h
kk!

(
s

k

)
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Special case

If we adopt the Aitkin’s ∆2 to simplify notations:

f [x0, x1] =
f (x1) − f (x0)

x1 − x0
=

1

h
(f (x1) − f (x0)) =

1

h
∆f (x0)

f [x0, x1, x2] =
f [x1, x2] − f [x0, x1]

x2 − x0
=

1

2h
(
1

h
∆f (x1) −

1

h
∆f (x0)) =

1

2h2
∆2f (x0)

.

.

.

f [x0, . . . , xk ] = · · · =
1

k!hk
∆k f (x0)

Newton’s divided difference becomes:

Pn(x) = f [x0] +
n∑

k=1

(
s

k

)
∆k f (x0)
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Backward difference

We can also use the backward differences:

∇pn := pn − pn−1 and ∇kpn = ∇(∇k−1pn)
3

Suppose the points are in reverse order: xn, xn−1, . . . , x0, then

Pn(x) = f [xn] + f [xn, xn−1](x − xn) + · · ·+ f [xn, . . . , x0](x − xn) . . . (x − x1).

If xs = xn + sh (s is negative non-integer), then we can derive:

Pn(x) = f [xn] +
n∑

k=1

(−1)k
(
−s

k

)
∇k f (xn)

3For example, ∇2pn = (pn − pn−1) − (pn−1 − pn−2) = pn − 2pn−1 + pn−2.
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Hermite interpolation

Suppose we also have derivatives f (k)(xi ) at points xi for k = 0, . . . ,mi , we can find
the polynomial P(x) s.t.

P(k)(xi ) = f (k)(xi ), ∀ i , k

The total number of conditions (values) we have is

n̂ :=
n∑

i=0

(mi + 1) = (n + 1) +
n∑

i=0

mi

So we can find a polynomial P of degree n̂ − 1.

Such a polynomial is called an osculating polynomial.
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Hermite polynomial

We’re mostly interested in the case with mi = 1, ∀ i . That is, we have f (xi ) and
f ′(xi ) at each xi .

We want to construct a polynomial P(x) of degree 2n + 1, s.t. P(xi ) = f (xi ) and
P ′(xi ) = f ′(xi ), ∀ i .

Let Ln,j(x) be the Lagrange polynomial of degree n such that

Ln,j(xi ) =

{
0, if i ̸= j

1, if i = j

We define two polynomials (both of degree 2n + 1):

Hn,j(x) = (1− 2(x − xj)L
′
n,j(xj))L

2
n,j(x)

Ĥn,j(x) = (x − xj)L
2
n,j(x)
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Hermite polynomial

Theorem (Construction of Hermite polynomial)

If f ∈ C 1[a, b] and x0, . . . , xn ∈ [a, b] are distinct, then the polynomial of least
degree that satisfies P(xi ) = f (xi ) and P ′(xi ) = f ′(xi ) is

H2n+1(x) :=
n∑

j=0

f (xj)Hn,j(x) +
n∑

j=0

f ′(xj)Ĥn,j(x)

which has degree ≤ 2n + 1.
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Hermite polynomial

Proof.

It’s clear the degree ≤ 2n + 1. Also,

Hn,j(xi ) =

{
0, if i ̸= j

1, if i = j
and Ĥn,j(xi ) = 0, ∀ i

So H2n+1(xi ) = f (xi ) ∀ i . Also

H ′
n,j(x) = −2L′

n,j(xj)L
2
n,j(x) + (2− 4(x − xj)L

′
n,j(xj))Ln,j(x)L

′
n,j(x)

Ĥ ′
n,j(x) = L2

n,j(x) + 2(x − xj)Ln,j(x)L
′
n,j(x)

Therefore
H ′

n,j(xi ) = 0 ∀ i , and Ĥ ′
n,j(xi ) =

{
0, if i ̸= j

1, if i = j

Hence H ′
2n+1(x) = f ′(xi ), ∀ i .
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Hermite polynomials

We can also construct Hermite polynomials using divided difference.

Suppose we have x0, x1, . . . , xn and f (xi ), f
′(xi ) are given. Define z2i = z2i+1 = xi

for i = 0, . . . , n

For example, z0 = z1 = x0, z2 = z3 = x1, etc.

Now we have z0, z1, . . . , z2n+1, total of 2(n + 1) points. So

H2n+1(x) = f [z0] +
2n∑
k=1

f [z0, . . . , zk ](x − z0) · · · (x − zk)

and use f ′(xi ) as f [z2i , z2i+1] for all i = 0, . . . , n.
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Hermite polynomial

Then we construct the table as follows,

z0 = x0 f [z0] = f (x0)

z1 = x0 f [z1] = f (x0) f [z0, z1] = f ′(x0)

z2 = x1 f [z2] = f (x1) f [z1, z2] =
f [z2]−f [z1]

z2−z1
f [z0, z1, z2]

z3 = x1 f [z3] = f (x1) f [z2, z3] = f ′(x1) f [z1, z2, z3] f [z0, z1, z2, z3]

z4 = x2 f [z4] = f (x2) f [z3, z4] =
f [z4]−f [z3]

z4−z3
f [z2, z3, z4] f [z1, z2, z3, z4] f [z0, z1, z2, z3, z4]

z5 = x3 f [z5] = f (x3) f [z4, z5] = f ′(x2) f [z3, z4, z5] f [z2, z3, z4, z5] f [z1, z2, z3, z4, z5]

.

.

.
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Hermite interpolation

Hermite interpolation polynomial

▶ Input. Distinct x0, . . . , xn, f (xi ), f
′(xi ) ∀ i .

▶ For i = 0, . . . , n, do (# Assign values Q·,0,Q·,1)
1. Set z2i = z2i+1 = xi , Q2i,0 = Q2i+1,0 = f (xi ), Q2i+1,1 = f ′(xi ).

2. If i ̸= 0, then set Q2i,1 =
Q2i,0−Q2i−1,0

z2i−z2i−1
.

▶ For i = 2, . . . , 2n + 1 and j = 2, . . . , i , set

Qi,j =
Qi,j−1 − Qi−1,j−1

zi − zi−j

▶ Output. Hermite polynomial coeff. Q0,0, . . . ,Q2n+1,2n+1, s.t.

H(x) =Q0,0 + Q1,1(x − x0) + Q2,2(x − x0)
2 + · · ·

+ Q2n+1,2n+1(x − x0)
2 . . . (x − xn)

2

Numerical Analysis I – Xiaojing Ye, Math & Stat, Georgia State University 121



Cubic spline interpolation

High-degree polynomial fitting has strong oscillations.

Can we get a piecewise “low degree” polynomial interpolation instead?

146 C H A P T E R 3 Interpolation and Polynomial Approximation

Figure 3.8

x0 x1 x2 xj xj!1 xj!2 xn"1 xn. . . . . .

S(x)

xxn"2

S0

S1 Sj Sj!1

Sn"1

Sn"2

Sj(xj!1) # f (xj!1) # Sj!1(xj!1)
Sj(xj!1) # Sj!1(xj!1)$ $

%Sj (xj!1) # Sj!1(xj!1)%

Definition 3.10 Given a function f defined on [a, b] and a set of nodes a = x0 < x1 < · · · <

xn = b, a cubic spline interpolant S for f is a function that satisfies the following
conditions:

(a) S (x) is a cubic polynomial, denoted S j(x), on the subinterval [xj, xj+1] for each
j = 0, 1, . . . , n− 1;

(b) S j(xj) = f (xj) and S j(xj+1) = f (xj+1) for each j = 0, 1, . . . , n− 1;

(c) S j+1(xj+1) = S j(xj+1) for each j = 0, 1, . . . , n− 2; (Implied by (b).)

(d) S ′j+1(xj+1) = S ′j(xj+1) for each j = 0, 1, . . . , n− 2;

(e) S ′′j+1(xj+1) = S ′′j (xj+1) for each j = 0, 1, . . . , n− 2;

(f) One of the following sets of boundary conditions is satisfied:

(i) S ′′(x0) = S ′′(xn) = 0 (natural (or free) boundary);
(ii) S ′(x0) = f ′(x0) and S ′(xn) = f ′(xn) (clamped boundary).

A natural spline has no conditions
imposed for the direction at its
endpoints, so the curve takes the
shape of a straight line after it
passes through the interpolation
points nearest its endpoints. The
name derives from the fact that
this is the natural shape a flexible
strip assumes if forced to pass
through specified interpolation
points with no additional
constraints. (See Figure 3.9.)

Figure 3.9

Although cubic splines are defined with other boundary conditions, the conditions given
in (f) are sufficient for our purposes. When the free boundary conditions occur, the spline is
called a natural spline, and its graph approximates the shape that a long flexible rod would
assume if forced to go through the data points {(x0, f (x0)), (x1, f (x1)), . . . , (xn, f (xn))}.

In general, clamped boundary conditions lead to more accurate approximations because
they include more information about the function. However, for this type of boundary
condition to hold, it is necessary to have either the values of the derivative at the endpoints
or an accurate approximation to those values.

Example 1 Construct a natural cubic spline that passes through the points (1, 2), (2, 3), and (3, 5).

Solution This spline consists of two cubics. The first for the interval [1, 2], denoted

S 0(x) = a0 + b0(x − 1) + c0(x − 1)2 + d0(x − 1)3,
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Cubic spline interpolation

Suppose we are given x0, . . . , xn and f (xi ), ∀ i , we want to find a cubic spline
interpolation S(x), s.t.

1. S(x) is a cubic polynomial, denoted by Sj(x), on [xj , xj+1];

2. Sj(xj) = f (xj), Sj(xj+1) = f (xj+1)

3. Sj(xj) = Sj+1(xj) for all j (consequence of Item 2.)

4. S ′
j+1(xj+1) = S ′

j (xj+1) for all j

5. S ′′
j+1(xj+1) = S ′′

j (xj+1) for all j

6. One of the following boundary condition is satisfied:
▶ S ′′(x0) = S ′′(xn) = 0 (natural/free boundary condition)
▶ S ′(x0) = f ′(x0) and S ′(xn) = f ′(xn) (clamped boundary condition)

Numerical Analysis I – Xiaojing Ye, Math & Stat, Georgia State University 123



Cubic spline interpolation

Remarks

1. S(x) only agrees with f (x) at xi , not necessarily f ′(x).

2. Clamped boundary condition is more accurate than natural boundary
condition, but needs f ′(a), f ′(b).
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Example

Example (Construct a natural cubic spline)

Construct natural cubic spline for f (x) = ex using xi = i for i = 0, 1, 2, 3.

3.5 Cubic Spline Interpolation 151

Solving for the remaining constants gives

b0 = 1
h0

(a1 − a0)−
h0

3
(c1 + 2c0)

= (e− 1)− 1
15

(−e3 + 6e2 − 9e + 4) ≈ 1.46600,

b1 = 1
h1

(a2 − a1)−
h1

3
(c2 + 2c1)

= (e2 − e)− 1
15

(2e3 + 3e2 − 12e + 7) ≈ 2.22285,

b2 = 1
h2

(a3 − a2)−
h2

3
(c3 + 2c2)

= (e3 − e2)− 1
15

(8e3 − 18e2 + 12e− 2) ≈ 8.80977,

d0 = 1
3h0

(c1 − c0) = 1
15

(−e3 + 6e2 − 9e + 4) ≈ 0.25228,

d1 = 1
3h1

(c2 − c1) = 1
3
(e3 − 3e2 + 3e− 1) ≈ 1.69107,

and

d2 = 1
3h2

(c3 − c1) = 1
15

(−4e3 + 9e2 − 6e + 1) ≈ −1.94336.

The natural cubic spine is described piecewise by

S (x)=

⎧
⎪⎨

⎪⎩

1 + 1.46600x + 0.25228x3, for x ∈ [0, 1],
2.71828 + 2.22285(x −1) + 0.75685(x −1)2 +1.69107(x −1)3, for x ∈ [1, 2],
7.38906 + 8.80977(x −2) + 5.83007(x −2)2 −1.94336(x −2)3, for x ∈ [2, 3].

The spline and its agreement with f (x) = ex are shown in Figure 3.10.

Figure 3.10

x

y

1

1 2 3

e

e

e

3

2

y = S(x)

y = e x
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Construction of cubic splines

Given {(xi , f (xi )) : i = 0, . . . , n}, we need to construct n cubic polynomials, each
with 4 coefficients

Sj(x) = aj + bj(x − xj) + cj(x − xj)
2 + dj(x − xj)

3 on [xj , xj+1], ∀ j

So we have 4n unknowns to determine:

aj , bj , cj , dj , for j = 0, . . . , n − 1
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Construction of cubic splines

The cubic spline conditions will determine these 4n coefficients uniquely
(hj := xj+1 − xj) according to the 6 rules:

1. By definition of Sj .

2. Since Sj(xj) = aj = f (xj), we get aj for j = 0, . . . , n − 1.

3. aj+1 = Sj+1(xj+1) = Sj(xj+1) = aj + bjhj + cjh
2
j + djh

3
j .

4. S ′
j (x) = bj + 2cj(x − xj) + 3dj(x − xj)

2, therefore S ′
j (xj) = bj and

bj+1 = S ′
j+1(xj+1) = S ′

j (xj+1) = bj + 2cjhj + 3djh
2
j .

5. S ′′
j (x) = 2cj + 6dj(x − xj). Then we have S ′′

j (xj) = 2cj . So
2cj+1 = S ′′

j+1(xj+1) = S ′′
j (xj) = 2cj + 6djhj .

6. Use the required boundary condition.
▶ Natural boundary condition: c0 = cn = 0
▶ Clamped boundary condition: b0 = f ′(a), bn = f ′(b).
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Construction of cubic splines

As we have known the values of aj , we can combine equations from the last 3 items
to solve for cj and obtain

hj−1cj−1 + 2(hj−1 + hj)cj + hjcj+1 =
3

hj
(aj+1 − aj)−

3

hj−1
(aj − aj−1)

for each j = 1, . . . , n − 1. If we assume natural splines with S ′′
0 (x0) = S ′′

n−1(xn) = 0,
then c0 = cn = 0.
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Section 4

Numerical Differentiation and Integration
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Numerical differentiation

Recall the definition of derivative is

f ′(x0) = lim
h→0

f (x0 + h)− f (x0)

h

We can approximate f ′(x0) by

f (x0 + h)− f (x0)

h
, for some small h
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Numerical differentiation

Approximate f ′(x0) by

f (x0 + h)− f (x0)

h
, for some small h

4.1 Numerical Differentiation 175

Figure 4.1
y

xx0

Slope  f !(x0)

Slope 
h 

f (x0 "  h) #  f (x0)

x0 "  h

with h = 0.1 gives

ln 1.9 − ln 1.8
0.1

= 0.64185389 − 0.58778667
0.1

= 0.5406722.

Because f ′′(x) = − 1/x2 and 1.8 < ξ < 1.9, a bound for this approximation error is

|hf ′′(ξ)|
2

= |h|
2ξ 2

<
0.1

2(1.8)2
= 0.0154321.

The approximation and error bounds when h = 0.05 and h = 0.01 are found in a similar
manner and the results are shown in Table 4.1.

Table 4.1
h f (1.8 + h)

f (1.8 + h) − f (1.8)

h
|h|

2(1.8)2

0.1 0.64185389 0.5406722 0.0154321
0.05 0.61518564 0.5479795 0.0077160
0.01 0.59332685 0.5540180 0.0015432

Since f ′(x) = 1/x, the exact value of f ′(1.8) is 0.555, and in this case the error bounds are
quite close to the true approximation error.

To obtain general derivative approximation formulas, suppose that {x0, x1, . . . , xn} are
(n + 1) distinct numbers in some interval I and that f ∈ Cn+ 1(I). From Theorem 3.3 on
page 112,

f (x) =
n∑

k= 0

f (xk)Lk(x) + (x − x0) · · · (x − xn)

(n + 1)! f (n+ 1)(ξ(x)),
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Numerical differentiation

If f ∈ C 2, then Taylor’s theorem says ∃ ξ ∈ (x0, x0 + h) s.t.

f (x0 + h) = f (x0) + f ′(x0)h +
1

2
f ′′(ξ)h2

⇐⇒ f ′(x0) =
f (x0 + h)− f (x0)

h
− 1

2
f ′′(ξ)h

If ∃M > 0 s.t. |f ′′(x)| ≤ M for all x near x0, then

Error =

∣∣∣∣f ′(x0)− f (x0 + h)− f (x0)

h

∣∣∣∣ = ∣∣∣∣12 f ′′(ξ)h
∣∣∣∣ ≤ Mh

2

So the error is of order “O(h)”.
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Example

Example (Error of numerical differentiations)

Let f (x) = ln(x) at x0 = 1.8. Use h = 0.1, 0.05, 0.01 to approximate f ′(x0).
Determine the approxiamtion errors.

Solution. We compute for h = 0.1, 0.05, 0.01 that

f (1.8 + h)− f (1.8)

h
=

ln(1.8 + h)− ln(1.8)

h

Then |f ′′(x)| = | − 1
x2
| ≤ 1

1.82
=: M for all x > 1.8. Error is bounded by Mh

2
.
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Numerical differentiation

Example (Error of numerical differentiations)

Let f (x) = ln(x) at x0 = 1.8. Use h = 0.1, 0.05, 0.01 to approximate f ′(x0).
Determine the approxiamtion errors.

Solution (cont.)

h f (1.8+h)−f (1.8)
h

Mh
2

0.10 0.5406722 0.0154321
0.05 0.5479795 0.0077160
0.01 0.5540180 0.0015432

The exact value is f ′(1.8) = 1
1.8

= 0.555̄.
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Three-point endpoint formula

Recall the Lagrange interpolating polynomial for x0, . . . , xn is

f (x) =
n∑

k=0

f (xk) Lk(x) +
(x − x0) · · · (x − xn)

(n + 1)!
f (n+1)(ξ(x))

Suppose we have x0, x1 ≜ x0 + h, x2 ≜ x0 + 2h, then

f (x) =
2∑

k=0

f (xk) Lk(x) +
(x − x0)(x − x1)(x − x2)

6
f (3)(ξ(x))

where ξ(x) ∈ (x0, x0 + 2h).
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Three-point endpoint formula

Take derivative w.r.t. x of

f (x) =
2∑

k=0

f (xk) Lk(x) +
(x − x0)(x − x1)(x − x2)

6
f (3)(ξ(x))

and set x = x0 yields4 the Three-point endpoint formula:

f ′ (x0) =
1

2h

[
−3f (x0) + 4f (x0 + h)− f (x0 + 2h)

]
+

h2

3
f (3)

(
ξ(x0)

)
where ξ(x0) ∈ (x0, x0 + 2h).

4Note that
(x−x0)(x−x1)(x−x2)

6
d f (3)(ξ(x))

dx |x=x0
= 0.
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Three-point midpoint formula

Suppose we have x−1 = x0 − h, x0, x1 ≜ x0 + h, then

f (x) =
1∑

k=−1

f (xk) Lk(x) +
(x − x−1)(x − x0)(x − x1)

6
f (3)(ξ1)

where ξ1 ∈ (x0 − h, x0 + h).

Take derivative w.r.t. x , and set x = x0 yields Three-point midpoint formula:

f ′ (x0) =
1

2h

[
f (x0 + h)− f (x0 − h)

]
− h2

6
f (3) (ξ1)
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Three-point midpoint formula

Illustration of Three-point midpoint formula:

178 C H A P T E R 4 Numerical Differentiation and Integration

Figure 4.2
y

x

Slope 2h 
[ f (x0 ! h) " f (x0 " h)]1

Slope  f #(x0)

x0 " h x0 ! hx0

Five-Point Formulas

The methods presented in Eqs. (4.4) and (4.5) are called three-point formulas (even though
the third point f (x0) does not appear in Eq. (4.5)). Similarly, there are five-point formulas
that involve evaluating the function at two additional points. The error term for these for-
mulas is O(h4). One common five-point formula is used to determine approximations for
the derivative at the midpoint.

Five-Point Midpoint Formula

• f ′(x0) = 1
12h

[f (x0 − 2h) − 8f (x0 − h) + 8f (x0 + h) − f (x0 + 2h)] + h4

30
f (5)(ξ),

(4.6)

where ξ lies between x0 − 2h and x0 + 2h.

The derivation of this formula is considered in Section 4.2. The other five-point formula is
used for approximations at the endpoints.

Five-Point Endpoint Formula

• f ′(x0) = 1
12h

[− 25f (x0) + 48f (x0 + h) − 36f (x0 + 2h)

+ 16f (x0 + 3h) − 3f (x0 + 4h)] + h4

5
f (5)(ξ), (4.7)

where ξ lies between x0 and x0 + 4h.

Left-endpoint approximations are found using this formula with h > 0 and right-endpoint
approximations with h < 0. The five-point endpoint formula is particularly useful for the
clamped cubic spline interpolation of Section 3.5.

Example 2 Values for f (x) = xex are given in Table 4.2. Use all the applicable three-point and five-point
formulas to approximate f ′(2.0).
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Five-point midpoint formula

We can also consider xk = x0 + kh for k = −2,−1, 0, 1, 2, then

f (x) =
2∑

k=−2

f (xk) Lk(x) +

∏2
k=−2(x − xk)

5!
f (5)(ξ0)

where ξ0 ∈ (x0 − 2h, x0 + 2h).

Show that you can get the Five-point midpoint formula:

f ′ (x0) =
1

12h

[
f (x0 − 2h)− 8f (x0 − h) + 8f (x0 + h)− f (x0 + 2h)

]
+

h4

30
f (5)(ξ0)
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Five-point endpoint formula

We can also consider xk = x0 + kh for k = 0, 1, . . . , 4, then

f (x) =
4∑

k=0

f (xk) Lk(x) +

∏4
k=0(x − xk)

5!
f (5)(ξ0)

where ξ0 ∈ (x0, x0 + 4h).

Show that you can get the Five-point endpoint formula:

f ′ (x0) =
1

12h

[
− 25f (x0) + 48f (x0 + h)− 36f (x0 + 2h)

+ 16f (x0 + 3h)− 3f (x0 + 4h)

]
+

h4

5
f (5)(ξ0)
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Example

Example (3-point and 5-point formulas)

Use the values in the table to find f ′(2.0):

x f (x)

1.8 10.889365
1.9 12.703199
2.0 14.778112
2.1 17.148957
2.2 19.855030

Compare your result with the true value f ′(2) = 22.167168.

Hint: Use three-point midpoint formula with h = 0.1, 0.2, endpoint with h = ±0.1,
and five-pint midpoint formula with h = 0.1.
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Second derivative midpoint formula

Expand f in a third Taylor polynomial about a point x0 and evaluate at x0 + h and
x0 − h:

f (x0 + h) = f (x0) + f ′ (x0) h +
1

2
f ′′ (x0) h

2 +
1

6
f ′′′ (x0) h

3 +
1

24
f (4) (ξ1) h

4

f (x0 − h) = f (x0)− f ′ (x0) h +
1

2
f ′′ (x0) h

2 −
1

6
f ′′′ (x0) h

3 +
1

24
f (4)

(
ξ−1

)
h4

where ξ±1 is between x0 and x0 ± h.

Adding the two and using IVT f (4)(ξ) = 1
2

[
f (4) (ξ1) + f (4) (ξ−1)

]
(assuming

f ∈ C 4) yield:

f ′′ (x0) =
1

h2

[
f (x0 − h)− 2f (x0) + f (x0 + h)

]
− h2

12
f (4)(ξ)

where x0 − h < ξ < x0 + h.
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Roundoff error instability

Recall we have three-point midpoint approximation

f ′ (x0) =
1

2h

[
f (x0 + h)− f (x0 − h)

]
− h2

6
f (3) (ξ1)

for ξ1 ∈ (x0 − h, x0 + h).

Will we get better accuracy as h → 0? Not necessarily.
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Round-off error instability

In numerical computations, round-off error is inevitable:

f (x0 + h) = f̃ (x0 + h) + e (x0 + h)

f (x0 − h) = f̃ (x0 − h) + e (x0 − h)

Hence we’re approximating f ′(x0) by
f̃ (x0+h)−f̃ (x0−h)

2h
with error:

f ′ (x0)−
f̃ (x0 + h)− f̃ (x0 − h)

2h
=

e (x0 + h)− e (x0 − h)

2h
−

h2

6
f (3) (ξ1)

Suppose |e(x)| ≤ ε, ∀ x , then the error bound is:∣∣∣∣∣f ′ (x0)− f̃ (x0 + h)− f̃ (x0 − h)

2h

∣∣∣∣∣ ≤ ε

h
+

h2

6
M

So the error does not go to 0 as h → 0, due to the round-off error.
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Richardson’s extrapolation

Goal: generate high-accuracy results by low-order formula.

Suppose we have formula N1(h) to approximate M with 5

M = N1(h) + K1h + K2h
2 + K3h

3 + · · ·

with some unknown K1,K2,K3, . . . .

For h small enough, the error is dominated by K1h, then

M = N1

(
h

2

)
+ K1

h

2
+ K2

h2

4
+ K3

h3

8
+ · · ·

5E.g., M = f ′(x0) and N1(h) =
f (x0+h)−f (x0)

h .
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Richardson’s extrapolation

Therefore

M = N1

(
h

2

)
+

[
N1

(
h

2

)
− N1(h)

]
+ K2

(
h2

2
− h2

)
+ K3

(
h3

4
− h3

)
+ · · ·

Define

N2(h) = N1

(
h

2

)
+

[
N1

(
h

2

)
− N1(h)

]
then M can be approximated by N2(h) with order O(h2):

M = N2(h)−
K2

2
h2 − 3K3

4
h3 − · · ·
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Example

Example (Richardson’s extrapolation)

Let f (x) = ln(x). Approximate f ′ at x0 = 1.8 with forward difference using h = 0.1
and h = 0.05. Then approximate using N2(0.1).

Solution. We know the forward difference is O(h), and

N1(h) =
f (x0 + h)− f (x0)

h
=

{
0.5406722, for h = 0.1

0.5479795, for h = 0.05

N2(0.1) = N1(0.05) + (N1(0, 05)− N1(0.1)) = 0.555287.

Formula N1(0.1) N1(0.05) N2(0.1)

Error 1.5× 10−2 7.7× 10−3 2.7× 10−4
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Richardson’s extrapolation

Suppose M = N1(h) + K1h
2 + K2h

4 + K3h
6 + . . . , then for j = 2, 3, . . . , we have

O(h2j) approximation:

Nj(h) = Nj−1

(
h

2

)
+

Nj−1(h/2)− Nj−1(h)

4j−1 − 1

We can show the order of generating these Nj(h)
6:

O(h2) O(h4) O(h6) O(h8)

1: N1(h)
2: N1(

h
2
) 3: N2(h)

4: N1(
h
4
) 5: N2(

h
2
) 6: N3(h)

7: N1(
h
8
) 8: N2(

h
4
) 9: N3(

h
2
) 10: N4(h)

6Exercise: write a computer program for Richardson’s extrapolation.
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Example

Example (Richardson’s extrapolation)

Consider approximation of f ′(x0):

f ′ (x0) =
1

2h

[
f (x0 + h)− f (x0 − h)

]
−

h2

6
f ′′′ (x0)−

h4

120
f (5) (x0)− · · ·

Find the approximation errors of order O(h2),O(h4),O(h6) for f ′(2.0) when
f (x) = xex and h = 0.2.

Solution. We have O(h2) approximation

f ′ (x0) = N1(h)−
h2

6
f ′′′ (x0)−

h4

120
f (5) (x0)− · · ·

where N1(h) =
1
2h

[
f (x0 + h)− f (x0 − h)

]
. Then compute

N1(h),N1(
h
2
),N2(h),N1(

h
4
),N2(

h
2
), . . . in order.
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Numerical integration

Recall that Lagrange interpolation of f by

f (x) =
n∑

i=0

f (xi )Ln,i (x)︸ ︷︷ ︸
Lagrange polynomial Pn(x)

+
f (n+1)(ξ(x))

(n + 1)!

n∏
i=0

(x − xi )

So we can take integral on both sides:∫ b

a
f (x) dx =

∫ b

a

n∑
i=0

f (xi ) Ln,i (x) dx +

∫ b

a

f (n+1)(ξ(x))

(n + 1)!

n∏
i=0

(x − xi ) dx

=
n∑

i=0

ai f (xi ) + E(f )

where for i = 0, . . . , n,

ai =

∫ b

a
Ln,i (x) dx and E(f ) =

1

(n + 1)!

∫ b

a

f (n+1)(ξ(x))

(n + 1)!

n∏
i=0

(x − xi ) dx

Numerical Analysis I – Xiaojing Ye, Math & Stat, Georgia State University 150



Trapezoidal rule

Suppose we know f at x0 = a and x1 = b, then

P1(x) =
(x − x1)

(x0 − x1)
f (x0) +

(x − x0)

(x1 − x0)
f (x1)

Then taking integral of f yields∫ b

a

f (x) dx =

∫ x1

x0

[
(x − x1)

(x0 − x1)
f (x0) +

(x − x0)

(x1 − x0)
f (x1)

]
dx

+
1

2

∫ x1

x0

f ′′(ξ(x)) (x − x0) (x − x1) dx
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Trapezoidal rule

Integral of the first term on the right is straightforward.

Note that the second term on the right is∫ x1

x0

f ′′(ξ(x)) (x − x0) (x − x1) dx

= f ′′(ξ)

∫ x1

x0

(x − x0) (x − x1) dx

= f ′′(ξ)

[
x3

3
− (x1 + x0)

2
x2 + x0x1x

]x1
x0

= −h3

6
f ′′(ξ)

where ξ ∈ (x0, x1) by MVT for integrals and
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Trapezoidal rule

Therefore, we obtain∫ b

a

f (x)dx =

[
(x − x1)

2

2 (x0 − x1)
f (x0) +

(x − x0)
2

2 (x1 − x0)
f (x1)

]x1
x0

− h3

12
f ′′(ξ)

=
(x1 − x0)

2

[
f (x0) + f (x1)

]
− h3

12
f ′′(ξ)

Trapezoidal rule: ∫ b

a

f (x) dx =
h

2

[
f (x0) + f (x1)

]
− h3

12
f ′′(ξ)
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Trapezoidal rule

Illustration of Trapezoidal rule:

194 C H A P T E R 4 Numerical Differentiation and Integration

TheTrapezoidal Rule

To derive the Trapezoidal rule for approximating
∫ b

a f (x) dx, let x0 = a, x1 = b, h = b − a
and use the linear Lagrange polynomial:

P1(x) = (x − x1)

(x0 − x1)
f (x0) + (x − x0)

(x1 − x0)
f (x1).

Then
∫ b

a
f (x) dx =

∫ x1

x0

[
(x − x1)

(x0 − x1)
f (x0) + (x − x0)

(x1 − x0)
f (x1)

]
dx

+ 1
2

∫ x1

x0

f ′′(ξ(x))(x − x0)(x − x1) dx. (4.23)

The product (x − x0)(x − x1) does not change sign on [x0, x1], so the Weighted Mean Value
Theorem for Integrals 1.13 can be applied to the error term to give, for some ξ in (x0, x1),

∫ x1

x0

f ′′(ξ(x))(x − x0)(x − x1) dx = f ′′(ξ)
∫ x1

x0

(x − x0)(x − x1) dx

= f ′′(ξ)

[
x3

3
− (x1 + x0)

2
x2 + x0x1x

]x1

x0

= − h3

6
f ′′(ξ).

Consequently, Eq. (4.23) implies that
∫ b

a
f (x) dx =

[
(x − x1)

2

2(x0 − x1)
f (x0) + (x − x0)

2

2(x1 − x0)
f (x1)

]x1

x0

− h3

12
f ′′(ξ)

= (x1 − x0)

2
[f (x0) + f (x1)] −

h3

12
f ′′(ξ).

Using the notation h = x1 − x0 gives the following rule:

Trapezoidal Rule:
∫ b

a
f (x) dx = h

2
[f (x0) + f (x1)] −

h3

12
f ′′(ξ).

This is called the Trapezoidal rule because when f is a function with positive values,

When we use the term trapezoid
we mean a four-sided figure that
has at least two of its sides
parallel. The European term for
this figure is trapezium. To further
confuse the issue, the European
word trapezoidal refers to a
four-sided figure with no sides
equal, and the American word for
this type of figure is trapezium.

∫ b
a f (x) dx is approximated by the area in a trapezoid, as shown in Figure 4.3.

Figure 4.3
y

xa ! x0 x1 ! b

y ! f (x)

y ! P1(x)
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Simpson’s rule

If we have values of f at x0 = a, x1 =
a+b
2
, and x2 = b. Then∫ b

a
f (x) dx =

∫ x2

x0

[
(x − x1) (x − x2)

(x0 − x1) (x0 − x2)
f (x0) +

(x − x0) (x − x2)

(x1 − x0) (x1 − x2)
f (x1)

+
(x − x0) (x − x1)

(x2 − x0) (x2 − x1)
f (x2)] dx

+

∫ x2

x0

(x − x0) (x − x1) (x − x2)

6
f (3)(ξ(x)) dx
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Simpson’s rule

With similar idea, we can derive the Simpson’s rule:∫ x2

x0

f (x)dx =
h

3

[
f (x0) + 4f (x1) + f (x2)

]
− h5

90
f (4)(ξ)

4.3 Elements of Numerical Integration 195

The error term for the Trapezoidal rule involves f ′′, so the rule gives the exact
result when applied to any function whose second derivative is identically zero, that is, any
polynomial of degree one or less.

Simpson’s Rule

Simpson’s rule results from integrating over [a, b] the second Lagrange polynomial with
equally-spaced nodes x0 = a, x2 = b, and x1 = a + h, where h = (b − a)/2. (See
Figure 4.4.)

Figure 4.4
y

xa ! x0 x2 ! bx1

y ! f (x)

y ! P2(x)

Therefore
∫ b

a
f (x) dx =

∫ x2

x0

[
(x − x1)(x − x2)

(x0 − x1)(x0 − x2)
f (x0) + (x − x0)(x − x2)

(x1 − x0)(x1 − x2)
f (x1)

+ (x − x0)(x − x1)

(x2 − x0)(x2 − x1)
f (x2)

]
dx

+
∫ x2

x0

(x − x0)(x − x1)(x − x2)

6
f (3)(ξ(x)) dx.

Deriving Simpson’s rule in this manner, however, provides only an O(h4) error term involv-
ing f (3). By approaching the problem in another way, a higher-order term involving f (4)

can be derived.
To illustrate this alternative method, suppose that f is expanded in the third Taylor

polynomial about x1. Then for each x in [x0, x2], a number ξ(x) in (x0, x2) exists with

f (x) = f (x1) + f ′(x1)(x − x1) +
f ′′(x1)

2
(x − x1)

2 + f ′′′(x1)

6
(x − x1)

3 + f (4)(ξ(x))
24

(x − x1)
4

and
∫ x2

x0

f (x) dx =
[
f (x1)(x − x1) + f ′(x1)

2
(x − x1)

2 + f ′′(x1)

6
(x − x1)

3

+ f ′′′(x1)

24
(x − x1)

4
]x2

x0

+ 1
24

∫ x2

x0

f (4)(ξ(x))(x − x1)
4 dx. (4.24)
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Example

Example (Trapezoidal and Simpson’s rules for integration)

Compare Trapezoidal and Simpson’s rules on
∫ 2

0
f (x) dx where f is

(a) x2 (b) x4 (c) (x + 1)−1

(d)
√
1 + x2 (e) sin x (f) ex

Solution. Apply the the formulas respectively to get:

Problem (a) (b) (c) (d) (e) (f)

f (x) x2 x4 (x + 1)−1
√
1 + x2 sin x ex

Exact value 2.667 6.400 1.099 2.958 1.416 6.389
Trapezoidal 4.000 16.000 1.333 3.326 0.909 8.389
Simpson’s 2.667 6.667 1.111 2.964 1.425 6.421
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Newton-Cotes formula

We can follow the same idea to get higher-order approximations, called the
Netwon-Cotes formulas.

For n = 3 where ξ ∈ (x0, x3):∫ x3

x0

f (x) dx =
3h

8

[
f (x0) + 3f (x1) + 3f (x2) + f (x3)

]
−

3h5

80
f (4)(ξ)

For n = 4 where ξ ∈ (x0, x4):∫ x4

x0

f (x) dx =
2h

45

[
7f (x0) + 32f (x1) + 12f (x2) + 32f (x3) + 7f (x4)

]
−

8h7

945
f (6)(ξ)
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Composite numerical integration

Problem with Newton-Cotes rule for high degree is oscillations.

198 C H A P T E R 4 Numerical Differentiation and Integration

Closed Newton-Cotes Formulas

The (n + 1)-point closed Newton-Cotes formulauses nodes xi = x0 + ih, for i = 0, 1, . . . , n,
where x0 = a, xn = b and h = (b − a)/n. (See Figure 4.5.) It is called closed because the
endpoints of the closed interval [a, b] are included as nodes.

Figure 4.5
y

xxn!1a " x0 x1 x2 xn " b

y = Pn(x)
y = f (x)

The formula assumes the form
∫ b

a
f (x) dx ≈

n∑

i= 0

aif (xi),

where

ai =
∫ xn

x0

Li(x) dx =
∫ xn

x0

n∏

j= 0
j ̸= i

(x − xj)

(xi − xj)
dx.

Roger Cotes (1682–1716) rose
from a modest background to
become, in 1704, the first
Plumian Professor at Cambridge
University. He made advances in
numerous mathematical areas
including numerical methods for
interpolation and integration.
Newton is reputed to have said of
Cotes …if he had lived we might
have known something.

The following theorem details the error analysis associated with the closed Newton-
Cotes formulas. For a proof of this theorem, see [IK], p. 313.

Theorem 4.2 Suppose that
∑n

i= 0 aif (xi) denotes the (n + 1)-point closed Newton-Cotes formula with
x0 = a, xn = b, and h = (b − a)/n. There exists ξ ∈ (a, b) for which

∫ b

a
f (x) dx =

n∑

i= 0

aif (xi) + hn+ 3f (n+ 2)(ξ)

(n + 2)!

∫ n

0
t2(t − 1) · · · (t − n) dt,

if n is even and f ∈ Cn+ 2[a, b], and

∫ b

a
f (x) dx =

n∑

i= 0

aif (xi) + hn+ 2f (n+ 1)(ξ)

(n + 1)!

∫ n

0
t(t − 1) · · · (t − n) dt,

if n is odd and f ∈ Cn+ 1[a, b].
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Instead, we can approximate the integral “piecewisely”.
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Composite midpoint rule

Let x−1 = a, x0, x1, . . . , xn, xn+1 = b be a uniform partition of [a, b] with h = b−a
n+2

.
Then we obtain the composite midpoint rule:∫ b

a

f (x) dx = 2h

n/2∑
j=0

f (x2j) +
b − a

6
h2f ′′(µ)

4.4 Composite Numerical Integration 207

Figure 4.8
y

xa ! x0 b ! xn

y ! f (x)

xj"1 xjx1 xn"1

For the Composite Midpoint rule, n must again be even. (See Figure 4.9.)

Figure 4.9

x

y

a ! x"1 x0 x1 xnx2j"1 xn"1x2j x2j#1 b ! xn#1

y ! f (x)

Theorem 4.6 Let f ∈ C2[a, b], n be even, h = (b − a)/(n + 2), and xj = a + (j + 1)h for each
j = − 1, 0, . . . , n + 1. There exists a µ ∈ (a, b) for which the Composite Midpoint rule
for n + 2 subintervals can be written with its error term as

∫ b

a
f (x) dx = 2h

n/2∑

j= 0

f (x2 j) + b − a
6

h2f ′′(µ).

Example 2 Determine values of h that will ensure an approximation error of less than 0.00002 when
approximating

∫ π
0 sin x dx and employing

(a) Composite Trapezoidal rule and (b) Composite Simpson’s rule.

Solution (a) The error form for the Composite Trapezoidal rule for f (x) = sin x on [0,π ]
is

∣∣∣∣
πh2

12
f ′′(µ)

∣∣∣∣ =
∣∣∣∣
πh2

12
(− sin µ)

∣∣∣∣ = πh2

12
| sin µ|.
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Composite trapezoidal rule

Let x0 = a, x1, . . . , xn = b be a uniform partition of [a, b] with h = b−a
n

. Then we
obtain the composite Trapezoidal rule:

∫ b

a

f (x) dx =
h

2

f (a) + 2
n−1∑
j=1

f (xj) + f (b)

− b − a

12
h2f ′′(µ)

4.4 Composite Numerical Integration 207

Figure 4.8
y

xa ! x0 b ! xn

y ! f (x)

xj"1 xjx1 xn"1

For the Composite Midpoint rule, n must again be even. (See Figure 4.9.)

Figure 4.9

x

y

a ! x"1 x0 x1 xnx2j"1 xn"1x2j x2j#1 b ! xn#1

y ! f (x)

Theorem 4.6 Let f ∈ C2[a, b], n be even, h = (b − a)/(n + 2), and xj = a + (j + 1)h for each
j = − 1, 0, . . . , n + 1. There exists a µ ∈ (a, b) for which the Composite Midpoint rule
for n + 2 subintervals can be written with its error term as

∫ b

a
f (x) dx = 2h

n/2∑

j= 0

f (x2 j) + b − a
6

h2f ′′(µ).

Example 2 Determine values of h that will ensure an approximation error of less than 0.00002 when
approximating

∫ π
0 sin x dx and employing

(a) Composite Trapezoidal rule and (b) Composite Simpson’s rule.

Solution (a) The error form for the Composite Trapezoidal rule for f (x) = sin x on [0,π ]
is

∣∣∣∣
πh2

12
f ′′(µ)

∣∣∣∣ =
∣∣∣∣
πh2

12
(− sin µ)

∣∣∣∣ = πh2

12
| sin µ|.
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Composite Simpson’s rule

Let x0, x1, . . . , xn (n even) be a uniform partition of [a, b]. Then apply Simpson’s
rule on [x0, x2], [x2, x4], . . . , a total of n such intervals. Then we obtain the
composite Simpson’s rule:∫ b

a

f (x)dx =
h

3

f (a) + 2

(n/2)−1∑
j=1

f
(
x2j
)
+ 4

n/2∑
j=1

f
(
x2j−1

)
+ f (b)

−
b − a

180
h4f (4)(µ)

204 C H A P T E R 4 Numerical Differentiation and Integration

Solution Simpson’s rule on [0, 4] uses h = 2 and gives
∫ 4

0
ex dx ≈ 2

3
(e0 + 4e2 + e4) = 56.76958.

The exact answer in this case is e4 − e0 = 53.59815, and the error − 3.17143 is far larger
than we would normally accept.

Applying Simpson’s rule on each of the intervals [0, 2] and [2, 4] uses h = 1 and gives
∫ 4

0
ex dx =

∫ 2

0
ex dx +

∫ 4

2
ex dx

≈ 1
3

(
e0 + 4e + e2) + 1

3

(
e2 + 4e3 + e4)

= 1
3

(
e0 + 4e + 2e2 + 4e3 + e4)

= 53.86385.

The error has been reduced to − 0.26570.
For the integrals on [0, 1],[1, 2],[3, 4], and [3, 4] we use Simpson’s rule four times with

h = 1
2 giving
∫ 4

0
ex dx =

∫ 1

0
ex dx +

∫ 2

1
ex dx +

∫ 3

2
ex dx +

∫ 4

3
ex dx

≈ 1
6

(
e0 + 4e1/2 + e

)
+ 1

6

(
e + 4e3/2 + e2)

+ 1
6

(
e2 + 4e5/2 + e3) + 1

6

(
e3 + 4e7/2 + e4)

= 1
6

(
e0 + 4e1/2 + 2e + 4e3/2 + 2e2 + 4e5/2 + 2e3 + 4e7/2 + e4)

= 53.61622.

The error for this approximation has been reduced to − 0.01807.

To generalize this procedure for an arbitrary integral
∫ b

a
f (x) dx, choose an even

integer n. Subdivide the interval [a, b] into n subintervals, and apply Simpson’s rule on
each consecutive pair of subintervals. (See Figure 4.7.)

Figure 4.7
y

xa ! x0 x2 b ! xn

y ! f (x)

x2j"2 x2j"1 x2j
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Gauss quadrature

Previously we chose points (nodes) with fixed gaps. What if we are allowed to to
choose points x0, . . . , xn and evaluate f there?

4.7 Gaussian Quadrature 229

Figure 4.15

y

x

yy

xa ! x1 a ! x1 a ! x1x2 ! b x2 ! b x2 ! bx

y ! f (x)
y ! f (x)

y ! f (x)

The Trapezoidal rule approximates the integral of the function by integrating the linear
function that joins the endpoints of the graph of the function. But this is not likely the best
line for approximating the integral. Lines such as those shown in Figure 4.16 would likely
give much better approximations in most cases.

Figure 4.16

yyy

x x xa x1 bx2 a x1 bx2 a x1 bx2

y ! f (x)

y ! f (x)
y ! f (x)

Gauss demonstrated his method
of efficient numerical integration
in a paper that was presented to
the Göttingen Society in 1814.
He let the nodes as well as the
coefficients of the function
evaluations be parameters in the
summation formula and found
the optimal placement of the
nodes. Goldstine [Golds],
pp 224–232, has an interesting
description of his development.

Gaussian quadrature chooses the points for evaluation in an optimal, rather than equally-
spaced, way. The nodes x1, x2, . . . , xn in the interval [a, b] and coefficients c1, c2, . . . , cn, are
chosen to minimize the expected error obtained in the approximation

∫ b

a
f (x) dx ≈

n∑

i= 1

cif (xi).

To measure this accuracy, we assume that the best choice of these values produces the exact
result for the largest class of polynomials, that is, the choice that gives the greatest degree
of precision.

The coefficients c1, c2, . . . , cn in the approximation formula are arbitrary, and the nodes
x1, x2, . . . , xn are restricted only by the fact that they must lie in [a, b], the interval of
integration. This gives us 2n parameters to choose. If the coefficients of a polynomial are
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cif (xi).

To measure this accuracy, we assume that the best choice of these values produces the exact
result for the largest class of polynomials, that is, the choice that gives the greatest degree
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The coefficients c1, c2, . . . , cn in the approximation formula are arbitrary, and the nodes
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Gauss quadrature

Gauss quadrature tries to determine x1, . . . , xn and c1, . . . , cn s.t.∫ b

a

f (x) dx ≈
n∑

i=1

ci f (xi )

Conceptually, since we have 2n parameters, i.e., ci , xi for i = 1, . . . , n, we expect to
get “=” if f (x) is a polynomial of degree ≤ 2n − 1.
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Gauss quadrature

Let’s first try the case with interval [−1, 1] and two points x1, x2 ∈ [−1, 1]. Then we
need to find x1, x2, c1, c2 such that∫ 1

−1

f (x)dx ≈ c1f (x1) + c2f (x2)

and “=” holds for all polynomials of degree ≤ 3.
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Gauss quadrature

We first note∫ (
a0 + a1x + a2x

2 + a3x
3
)
dx = a0

∫
1 dx + a1

∫
x dx + a2

∫
x2 dx + a3

∫
x3 dx

Then we need x1, x2, c1, c2 s.t.
∫ 1

−1
f (x) dx = c1f (x1) + c2f (x2) for f (x) = 1, x , x2,

and x3:

c1 · 1 + c2 · 1 =

∫ 1

−1

1 dx = 2,

c1 · x1 + c2 · x2 =

∫ 1

−1

x dx = 0

c1 · x2
1 + c2 · x2

2 =

∫ 1

−1

x2 dx =
2

3
,

c1 · x3
1 + c2 · x3

2 =

∫ 1

−1

x3 dx = 0
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Gauss quadrature

Solve the system of four equations to obtain x1, x2, c1, c2:

c1 = 1, c2 = 1, x1 = −
√
3

3
, and x2 =

√
3

3

So the approximation is∫ 1

−1

f (x) dx ≈ f

(
−
√
3

3

)
+ f

(√
3

3

)
which is exact for all polynomials of degree ≤ 3.

This point and weight selection is called Gauss quadrature.
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Legendre polynomials

To obtain Gauss quadrature for larger n, we need the Legendre polynomials
{Pn : n = 0, 1, . . . }: which are determined to satisfy:

1. All Pn are monic (leading coefficient =1)

2. For each n ≥ 1, there is ∫ 1

−1

P(x)Pn(x) dx = 0

for all polynomial P of degree less than n.

Thus the Legendre polynomials Pn are like an orthogonal basis of polynomials
(orthogonal in the sense that

∫ 1

−1
Pn(x)Pm(x) dx = 0 for all n ̸= m.
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Legendre polynomials

The first five Legendre polynomials:

P0(x) = 1

P1(x) = x

P2(x) = x2 − 1

3

P3(x) = x3 − 3

5
x

P4(x) = x4 − 6

7
x2 +

3

35

In practice, there is a simple recursive formula to obtain Pn using Pn−1 and Pn−2

(with some scalings of the monic ones):

(n + 1)Pn+1(x) = (2n + 1)xPn(x)− nPn−1(x)
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Gauss quadrature and Legendre polynomial

Theorem (Obtain Gauss quadrature by Legendre polynomials)

Suppose x1, . . . , xn are the roots of the nth Legendre polynomial Pn(x), and define

ci =

∫ 1

−1

n∏
j=1
j ̸=i

x − xj
xi − xj

dx

If P(x) is any polynomial of degree less than 2n, then∫ 1

−1

P(x)dx =
n∑

i=1

ciP (xi )
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Gauss quadrature and Legendre polynomial

Proof. First consider the the case deg(P) ≤ n − 1. Given the roots x1, . . . , xn of
Pn(x), let Ln−1,i (x) be the Lagrange polynomial for xi . Then we know

P(x) =
n∑

i=1

P (xi ) Li (x) =
n∑

i=1

n∏
j=1
j ̸=i

x − xj
xi − xj

P (xi )

and therefore

∫ 1

−1

P(x)dx =

∫ 1

−1

 n∑
i=1

n∏
j=1
j ̸=i

x − xj
xi − xj

P (xi )

 dx

=
n∑

i=1

∫ 1

−1

n∏
j=1
j ̸=i

x − xj
xi − xj

dx

P (xi ) =
n∑

i=1

ciP (xi )
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Gauss quadrature and Legendre polynomial

Proof (cont.) If n ≤ deg(P) ≤ 2n − 1, then we know

P(x) = Q(x)Pn(x) + R(x)

for some polynomials Q(x),R(x) that are of degree at most n − 1. Since x1, . . . , xn
are roots of Pn(x), we have

P(xi ) = Q(xi )Pn(xi ) + R(xi ) = R(xi )

for all i = 1, . . . , n. Furthermore, we know∫ 1

−1

P(x)dx =

∫ 1

−1

[
Q(x)Pn(x) + R(x)

]
dx =

∫ 1

−1

R(x)dx =
n∑

i=1

ciR (xi ) =
n∑

i=1

ciP (xi )

because
∫ 1

−1
Q(x)Pn(x) dx = 0 given that the degree of Q is at most n − 1.
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Gauss quadrature

n Roots rn,i Coefficients cn,i
2 0.5773502692 1.0000000000

-0.5773502692 1.0000000000
3 0.7745966692 0.5555555556

0.0000000000 0.8888888889
-0.7745966692 0.5555555556

4 0.8611363116 0.3478548451
0.3399810436 0.6521451549
-0.3399810436 0.6521451549
-0.8611363116 0.3478548451

5 0.9061798459 0.2369268850
0.5384693101 0.4786286705
0.0000000000 0.5688888889
-0.5384693101 0.4786286705
-0.9061798459 0.2369268850
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Example

Example (Gauss quadrature)

Approximate
∫ 1

−1
ex cos x dx using Gauss quadrature with n = 3.

Solution. We need to use the roots of Legendre polynomial and coefficient values
for n = 3:

n Roots rn,i Coefficients cn,i
3 0.7745966692 0.5555555556

0.0000000000 0.8888888889
-0.7745966692 0.5555555556∫ 1

−1

ex cos x dx ≈0.5e0.77459692 cos(0.774596692) + 0.8 cos(0)

+ 0.5e−0.77459692 cos(−0.774596692)

=1.9333904

True value is
∫ 1

−1
ex cos x dx = 1.9334214. Our error is 3.2× 10−5.
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Gauss quadrature on arbitrary interval

So far the Gauss quadrature is only considered on [−1, 1].

To find Gauss quadrature on arbitrary x ∈ [a, b], just do a change of variable:

t =
2x − a− b

b − a
⇐⇒ x =

1

2
[(b − a)t + a+ b]

Then t ∈ [−1, 1] and the integral is∫ b

a

f (x) dx =

∫ 1

−1

f

(
(b − a)t + (b + a)

2

)
(b − a)

2
dt

Then apply Gauss quadrature to the right side.
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Multiple integrals

Now we consider multiple integral∫ b

a

∫ d

c

f (x , y) dy dx

4.8 Multiple Integrals 235

7. Verify the entries for the values of n = 2 and 3 in Table 4.12 on page 232 by finding the roots of the
respective Legendre polynomials, and use the equations preceding this table to find the coefficients
associated with the values.

8. Show that the formula Q(P) = ∑n
i= 1 ciP(xi) cannot have degree of precision greater than 2n − 1,

regardless of the choice of c1, . . . , cn and x1, . . . , xn. [Hint: Construct a polynomial that has a double
root at each of the xi’s.]

9. Apply Maple’s Composite Gaussian Quadrature routine to approximate
∫ 1
− 1 x2ex dx in the following

manner.
a. Use Gaussian Quadrature with n = 8 on the single interval [− 1, 1].
b. Use Gaussian Quadrature with n = 4 on the intervals [− 1, 0] and [0, 1].
c. Use Gaussian Quadrature with n = 2 on the intervals [− 1, − 0.5], [− 0.5, 0], [0, 0.5] and [0.5, 1].
d. Give an explanation for the accuracy of the results.

4.8 Multiple Integrals

The techniques discussed in the previous sections can be modified for use in the approxi-
mation of multiple integrals. Consider the double integral

∫∫

R

f (x, y) dA,

where R = { (x, y) | a ≤ x ≤ b, c ≤ y ≤ d }, for some constants a, b, c, and d, is a
rectangular region in the plane. (See Figure 4.18.)

Figure 4.18
z

z ! f (x, y)

a

b

c
d

R

x

y

The following illustration shows how the Composite Trapezoidal rule using two subin-
tervals in each coordinate direction would be applied to this integral.

Illustration Writing the double integral as an iterated integral gives
∫∫

R

f (x, y) dA =
∫ b

a

(∫ d

c
f (x, y) dy

)
dx.
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Multiple integrals

First consider a 2× 2 grid on the domain [a, b]× [c, d ]:

236 C H A P T E R 4 Numerical Differentiation and Integration

To simplify notation, let k = (d − c)/2 and h = (b− a)/2. Apply the Composite Trapezoidal
rule to the interior integral to obtain

∫ d

c
f (x, y) dy ≈ k

2

[
f (x, c) + f (x, d) + 2f

(
x,

c + d
2

)]
.

This approximation is of order O
(
(d − c)3

)
. Then apply the Composite Trapezoidal rule

again to approximate the integral of this function of x:

∫ b

a

(∫ d

c
f (x, y) dy

)
dx ≈

∫ b

a

(
d − c

4

)[
f (x, c) + 2f

(
x,

c + d
2

)
+ f (d)

]
dx

= b − a
4

(
d − c

4

)[
f (a, c) + 2f

(
a,

c + d
2

)
+ f (a, d)

]

+ b − a
4

(
2
(

d − c
4

)[
f

(
a + b

2
, c
)

+ 2f

(
a + b

2
,

c + d
2

)
+
(

a + b
2

, d
)])

+ b − a
4

(
d − c

4

)[
f (b, c) + 2f

(
b,

c + d
2

)
+ f (b, d)

]

= (b − a)(d − c)
16

[
f (a, c) + f (a, d) + f (b, c) + f (b, d)

+ 2
(

f

(
a + b

2
, c
)

+ f

(
a + b

2
, d
)

+ f

(
a,

c + d
2

)

+ f

(
b,

c + d
2

))
+ 4f

(
a + b

2
,

c + d
2

)]

This approximation is of order O
(
(b − a)(d − c)

[
(b − a)2 + (d − c)2

])
. Figure 4.19

shows a grid with the number of functional evaluations at each of the nodes used in the
approximation. !

Figure 4.19

x

y

a (a ! b) b

c

d
2

2 2

1 1

4

1 12

1
2

(c ! d) 1
2
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Here k = d−c
2

and h = b−a
2
.
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Multiple integrals

We first approximate the inner integral using composite Trapezoidal rule:∫ d

c

f (x , y) dy =

∫ c+k

c

f (x , y) dy +

∫ d

c+k

f (x , y) dy

≈ k

2
(f (x , c) + f (x , c + k)) +

k

2
(f (x , c + k) + f (x , d))

=
k

2
(f (x , c) + 2f (x , c + k) + f (x , d)) =: g(x)

Then approximate the outer integral:∫ b

a

g(x) dx ≈ h

2
(g(a) + 2g(a+ h) + g(b))
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Multiple integrals

Combine the two to obtain:∫ b

a

(∫ d

c

f (x, y) dy

)
dx ≈

(b − a)(d − c)

16

{
f (a, c) + f (a, d) + f (b, c) + f (b, d)

+ 2

[
f

(
a + b

2
, c

)
+ f

(
a + b

2
, d

)
+ f

(
a,

c + d

2

)
+ f

(
b,

c + d

2

)]
+ 4f

(
a + b

2
,
c + d

2

)}
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To simplify notation, let k = (d − c)/2 and h = (b− a)/2. Apply the Composite Trapezoidal
rule to the interior integral to obtain

∫ d

c
f (x, y) dy ≈ k

2

[
f (x, c) + f (x, d) + 2f

(
x,

c + d
2

)]
.

This approximation is of order O
(
(d − c)3

)
. Then apply the Composite Trapezoidal rule

again to approximate the integral of this function of x:

∫ b

a

(∫ d

c
f (x, y) dy

)
dx ≈

∫ b

a

(
d − c

4

)[
f (x, c) + 2f

(
x,

c + d
2

)
+ f (d)

]
dx

= b − a
4

(
d − c

4

)[
f (a, c) + 2f

(
a,

c + d
2

)
+ f (a, d)

]

+ b − a
4

(
2
(

d − c
4

)[
f

(
a + b

2
, c
)

+ 2f

(
a + b

2
,

c + d
2

)
+
(

a + b
2

, d
)])

+ b − a
4

(
d − c

4

)[
f (b, c) + 2f

(
b,

c + d
2

)
+ f (b, d)

]

= (b − a)(d − c)
16

[
f (a, c) + f (a, d) + f (b, c) + f (b, d)

+ 2
(

f

(
a + b

2
, c
)

+ f

(
a + b

2
, d
)

+ f

(
a,

c + d
2

)

+ f

(
b,

c + d
2

))
+ 4f

(
a + b

2
,

c + d
2

)]

This approximation is of order O
(
(b − a)(d − c)

[
(b − a)2 + (d − c)2

])
. Figure 4.19

shows a grid with the number of functional evaluations at each of the nodes used in the
approximation. !

Figure 4.19
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Multiple integrals

We can also consider a 2× 4 grid on the domain [a, b]× [c, d ]:

4.8 Multiple Integrals 239

Example 1 Use Composite Simpson’s rule with n = 4 and m = 2 to approximate
∫ 2.0

1.4

∫ 1.5

1.0
ln(x + 2y) dy dx,

Solution The step sizes for this application are h = (2.0 − 1.4)/4 = 0.15 and k =
(1.5 − 1.0)/2 = 0.25. The region of integration R is shown in Figure 4.20, together with
the nodes (xi, yj), where i = 0, 1, 2, 3, 4 and j = 0, 1, 2. It also shows the coefficients wi,j of
f (xi, yi) = ln(xi + 2yi) in the sum that gives the Composite Simpson’s rule approximation
to the integral.

Figure 4.20
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The approximation is

∫ 2.0

1.4

∫ 1.5

1.0
ln(x + 2y) dy dx ≈ (0.15)(0.25)

9

4∑

i= 0

2∑

j= 0

wi,j ln(xi + 2yj)

= 0.4295524387.

We have

∂4f

∂x4
(x, y) = − 6

(x + 2y)4
and

∂4f

∂y4
(x, y) = − 96

(x + 2y)4
,

and the maximum values of the absolute values of these partial derivatives occur on R when
x = 1.4 and y = 1.0. So the error is bounded by

|E| ≤ (0.5)(0.6)

180

[
(0.15)4 max

(x,y)inR

6
(x + 2y)4

+ (0.25)4 max
(x,y)inR

96
(x + 2y)4

]
≤ 4.72× 10 − 6.

The actual value of the integral to ten decimal places is
∫ 2.0

1.4

∫ 1.5

1.0
ln(x + 2y) dy dx = 0.4295545265,

so the approximation is accurate to within 2.1× 10 − 6.

The same techniques can be applied for the approximation of triple integrals as well as
higher integrals for functions of more than three variables. The number of functional evalu-
ations required for the approximation is the product of the number of functional evaluations
required when the method is applied to each variable.
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Here k = d−c
4

and h = b−a
2
.
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Composite Simpson’s rule on non-rectangular region

Now we consider multiple integrals on non-rectangular regions:∫ b

a

∫ d(x)

c(x)

f (x , y) dy dx

For each integral set k(x) = d(x)−c(x)
2

, then∫ b

a

∫ d(x)

c(x)

f (x, y) dy dx ≈
∫ b

a

k(x)

3
[f (x, c(x)) + 4f (x, c(x) + k(x)) + f (x, d(x))] dx

≈
h

3

{
k(a)

3
[f (a, c(a)) + 4f (a, c(a) + k(a)) + f (a, d(a))]

+
4k(a + h)

3
[f (a + h, c(a + h)) + 4f (a + h, c(a + h)

+ k(a + h)) + f (a + h, d(a + h))]

+
k(b)

3

[
f (b, c(b)) + 4f (b, c(b) + k(b)) + f (b, d(b))

]}
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Gauss quadrature for non-rectangular region

We can also use Gauss quadrature for non-rectangular region:∫ b

a

∫ d(x)

c(x)

f (x , y) dy dx

4.8 Multiple Integrals 241

Non-Rectangular Regions

The use of approximation methods for double integrals is not limited to integrals with
rectangular regions of integration. The techniques previously discussed can be modified to
approximate double integrals of the form

∫ b

a

∫ d(x)

c(x)
f (x, y) dy dx (4.42)

or

∫ d

c

∫ b(y)

a(y)
f (x, y) dx dy. (4.43)

In fact, integrals on regions not of this type can also be approximated by performing appro-
priate partitions of the region. (See Exercise 10.)

To describe the technique involved with approximating an integral in the form

∫ b

a

∫ d(x)

c(x)
f (x, y) dy dx,

we will use the basic Simpson’s rule to integrate with respect to both variables. The
step size for the variable x is h = (b − a)/2, but the step size for y varies with x (see
Figure 4.21) and is written

k(x) = d(x) − c(x)
2

.

Figure 4.21
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Gauss quadrature for non-rectangular region

We can also use Gauss quadrature for non-rectangular region:∫ b

a

∫ d(x)

c(x)

f (x , y) dy dx

For each x ∈ [a, b], transform [c(x), d(x)] into variable t in [−1, 1]:

f (x , y) = f

(
x ,

(d(x)− c(x))t + d(x) + c(x)

2

)
dy =

d(x)− c(x)

2
dt

Numerical Analysis I – Xiaojing Ye, Math & Stat, Georgia State University 183



Gauss quadrature for non-rectangular region

So the inner integral can be approximated by Gauss quadrature:∫ d(x)

c(x)

f (x, y) dy =
d(x) − c(x)

2

∫ 1

−1

f

(
x,

(d(x) − c(x))t + d(x) + c(x)

2

)
dt

≈
d(x) − c(x)

2

n∑
j=1

cn,j f

(
x,

(d(x) − c(x))rn,j + d(x) + c(x)

2

)
=: g(x)

Then we apply Gauss quadrature to the outer integral:∫ b

a

∫ d(x)

c(x)

f (x, y) dy dx ≈
∫ b

a

g(x) dx

=

∫ 1

−1

g

(
(b − a)t + (b + a)

2

)
(b − a)

2
dt

≈
m∑
i=1

cm,ig

(
(b − a)rm,i + (b + a)

2

)
(b − a)

2
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Section 5

Approximation Theory
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Least squares approximation

Given N data points {(xi , yi )} for i = 1, . . . ,N, can we determine a linear model
y = a1x + a0 (i.e., find a0, a1) that fits the data?

498 C H A P T E R 8 Approximation Theory

8.1 Discrete Least Squares Approximation

Consider the problem of estimating the values of a function at nontabulated points, given
the experimental data in Table 8.1.

Table 8.1
xi yi xi yi

1 1.3 6 8.8
2 3.5 7 10.1
3 4.2 8 12.5
4 5.0 9 13.0
5 7.0 10 15.6

Figure 8.1 shows a graph of the values in Table 8.1. From this graph, it appears that the
actual relationship between x and y is linear. The likely reason that no line precisely fits the
data is because of errors in the data. So it is unreasonable to require that the approximating
function agree exactly with the data. In fact, such a function would introduce oscillations
that were not originally present. For example, the graph of the ninth-degree interpolating
polynomial shown in unconstrained mode for the data in Table 8.1 is obtained in Maple
using the commands

p := interp([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], [1.3, 3.5, 4.2, 5.0, 7.0, 8.8, 10.1, 12.5, 13.0, 15.6], x):
plot(p, x = 1..10)

Figure 8.1
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The plot obtained (with the data points added) is shown in Figure 8.2.

Figure 8.2
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Matrix formulation

We can simplify notations by using matrices and vectors:

y =


y1
y2
...
yN

 ∈ RN , X =


1 x1
1 x2
...

...
1 xN

 ∈ RN×2

So we want to find a = (a0, a1)
⊤ ∈ R2 such that y ≈ Xa.
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Several types of fitting criteria

There are several types of criteria for “best fitting”:

▶ Define the error function as

E∞(a) = ∥y − Xa∥∞

and find a∗ ∈ argmina E∞(a). This is also called the minimax problem since
the problem mina E∞(a) can be written as

min
a

max
1≤i≤n

|yi − (a0 + a1xi )|

▶ Define the error function as

E1(a) = ∥y − Xa∥1

and find a∗ ∈ argmina E1(a). E1 is also called the absolute deviation.
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Least squares fitting

In this course, we focus on the widely used least squares.

Define the least squares error function as

E2(a) = ∥y − Xa∥22 =
n∑

i=1

|yi − (a0 + a1xi )|2

and the least squares solution a∗ is

a∗ = argmin
a

E2(a)
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Least squares fitting

To find the optimal parameter a, we need to solve

∇E2(a) = 2X⊤(Xa− y) = 0

This is equivalent to the so-called normal equation:

X⊤Xa = X⊤y

Note that X⊤X ∈ R2×2 and X⊤y ∈ R2, so the normal equation is easy to solve!
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Least squares fitting

It is easy to show that

X⊤X =

[
N

∑N
i=1 xi∑N

i=1 xi
∑N

i=1 x
2
i

]
, X⊤y =

[ ∑N
i=1 yi∑N

i=1 xiyi

]
Using the close-form of inverse of 2-by-2 matrix, we have

(X⊤X )−1 =
1

N
∑N

i=1 x
2
i − (

∑N
i=1 xi )

2

[ ∑N
i=1 x

2
i −

∑N
i=1 xi

−
∑N

i=1 xi N

]
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Least squares fitting

Therefore we have the solution

a∗ =

[
a0
a1

]
= (X⊤X )−1(X⊤y)

=


∑N

i=1 x2i
∑N

i=1 yi−
∑N

i=1 xi yi
∑N

i=1 xi
N
∑N

i=1 x2i −(
∑N

i=1 xi )
2

N
∑N

i=1 xi yi−
∑N

i=1 xi
∑N

i=1 yi
N
∑N

i=1 x2i −(
∑N

i=1 xi )
2
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Least squares fitting

Example

Least squares fitting of the data gives a0 = −0.36 and a1 = 1.538.

498 C H A P T E R 8 Approximation Theory

8.1 Discrete Least Squares Approximation

Consider the problem of estimating the values of a function at nontabulated points, given
the experimental data in Table 8.1.

Table 8.1
xi yi xi yi

1 1.3 6 8.8
2 3.5 7 10.1
3 4.2 8 12.5
4 5.0 9 13.0
5 7.0 10 15.6

Figure 8.1 shows a graph of the values in Table 8.1. From this graph, it appears that the
actual relationship between x and y is linear. The likely reason that no line precisely fits the
data is because of errors in the data. So it is unreasonable to require that the approximating
function agree exactly with the data. In fact, such a function would introduce oscillations
that were not originally present. For example, the graph of the ninth-degree interpolating
polynomial shown in unconstrained mode for the data in Table 8.1 is obtained in Maple
using the commands

p := interp([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], [1.3, 3.5, 4.2, 5.0, 7.0, 8.8, 10.1, 12.5, 13.0, 15.6], x):
plot(p, x = 1..10)
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The plot obtained (with the data points added) is shown in Figure 8.2.
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8.1 Discrete Least Squares Approximation 501

The normal equations (8.1) and (8.2) imply that

a0 = 385(81)− 55(572.4)

10(385)− (55)2
= −0.360

and

a1 = 10(572.4)− 55(81)

10(385)− (55)2
= 1.538,

so P(x) = 1.538x − 0.360. The graph of this line and the data points are shown in Fig-
ure 8.3. The approximate values given by the least squares technique at the data points are
in Table 8.2.

Figure 8.3
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Polynomial Least Squares

The general problem of approximating a set of data, {(xi, yi) | i = 1, 2, . . . , m}, with an
algebraic polynomial

Pn(x) = anxn + an−1xn−1 + · · · + a1x + a0,

of degree n < m− 1, using the least squares procedure is handled similarly. We choose the
constants a0, a1, . . ., an to minimize the least squares error E = E2(a0, a1, . . . , an), where

E =
m∑

i=1

(yi − Pn(xi))
2

=
m∑

i=1

y2
i − 2

m∑

i=1

Pn(xi)yi +
m∑

i=1

(Pn(xi))
2
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Polynomial least squares

The least squares fitting presented above is also called linear least squares due to
the linear model y = a0 + a1x .

For general least squares fitting problems with data {(xi , yi ) : i = 1, . . . ,N}, we
may use polynomial

Pn(x) = a0 + a1x + a2x
2 + · · ·+ anx

n

as the fitting model. Note that n = 1 reduces to linear model.

Now the polynomial least squares error is defined by

E(a) =
N∑
i=1

|yi − Pn(xi )|2

where a = (a0, a1, . . . , an)
⊤ ∈ Rn+1.
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Matrices in polynomial least squares fitting

Like before, we use matrices and vectors:

y =


y1
y2
...
yN

 ∈ RN , X =


1 x1 x2

1 · · · xn
1

1 x2 x2
2 · · · xn

2

...
...

...
...

1 xN x2
N · · · xn

N

 ∈ RN×(n+1)

So we want to find a = (a0, a1, . . . , an)
⊤ ∈ Rn+1 such that y ≈ Xa.
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Polynomial least squares fitting

Same as above, we need to find a such that

∇E2(a) = 2X⊤(Xa− y) = 0

which has normal equation:
X⊤Xa = X⊤y

Note that now X⊤X ∈ R(n+1)×(n+1) and X⊤y ∈ Rn+1. From normal equation we
can solve for the fitting parameter

a∗ =


a0
a1
...
an

 = (X⊤X )−1(X⊤y)
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Polynomial least squares

Example

Least squares fitting of the data using n = 2 gives
a0 = 1.0051, a1 = 0.86468, a2 = 0.84316.

502 C H A P T E R 8 Approximation Theory

=
m∑

i=1

y2
i − 2

m∑

i=1

⎛

⎝
n∑

j=0

ajx
j
i

⎞

⎠ yi +
m∑

i=1

⎛

⎝
n∑

j=0

ajx
j
i

⎞

⎠
2

=
m∑

i=1

y2
i − 2

n∑

j=0

aj

(
m∑

i=1

yix
j
i

)

+
n∑

j=0

n∑

k=0

ajak

(
m∑

i=1

xj+k
i

)

.

As in the linear case, for E to be minimized it is necessary that ∂E/∂aj = 0, for each
j = 0, 1, . . . , n. Thus, for each j, we must have

0 = ∂E
∂aj

= −2
m∑

i=1

yix
j
i + 2

n∑

k=0

ak

m∑

i=1

xj+k
i .

This gives n + 1 normal equations in the n + 1 unknowns aj. These are

n∑

k=0

ak

m∑

i=1

xj+k
i =

m∑

i=1

yix
j
i , for each j = 0, 1, . . . , n. (8.3)

It is helpful to write the equations as follows:

a0

m∑

i=1

x0
i + a1

m∑

i=1

x1
i + a2

m∑

i=1

x2
i + · · · + an

m∑

i=1

xn
i =

m∑

i=1

yix0
i ,

a0

m∑

i=1

x1
i + a1

m∑

i=1

x2
i + a2

m∑

i=1

x3
i + · · · + an

m∑

i=1

xn+1
i =

m∑

i=1

yix1
i ,

...

a0

m∑

i=1

xn
i + a1

m∑

i=1

xn+1
i + a2

m∑

i=1

xn+2
i + · · · + an

m∑

i=1

x2n
i =

m∑

i=1

yixn
i .

These normal equations have a unique solution provided that the xi are distinct (see
Exercise 14).

Example 2 Fit the data in Table 8.3 with the discrete least squares polynomial of degree at most 2.

Solution For this problem, n = 2, m = 5, and the three normal equations are

5a0 + 2.5a1 + 1.875a2 = 8.7680,

2.5a0 + 1.875a1 + 1.5625a2 = 5.4514,

1.875a0 + 1.5625a1 + 1.3828a2 = 4.4015.

Table 8.3
i xi yi

1 0 1.0000
2 0.25 1.2840
3 0.50 1.6487
4 0.75 2.1170
5 1.00 2.7183

To solve this system using Maple, we first define the equations

eq1 := 5a0 + 2.5a1 + 1.875a2 = 8.7680:
eq2 := 2.5a0 + 1.875a1 + 1.5625a2 = 5.4514 :
eq3 := 1.875a0 + 1.5625a1 + 1.3828a2 = 4.4015

and then solve the system with

solve({eq1, eq2, eq3}, {a0, a1, a2})
This gives

{a0 = 1.005075519, a1 = 0.8646758482, a2 = .8431641518}
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8.1 Discrete Least Squares Approximation 503

Thus the least squares polynomial of degree 2 fitting the data in Table 8.3 is

P2(x) = 1.0051 + 0.86468x + 0.84316x2,

whose graph is shown in Figure 8.4. At the given values of xi we have the approximations
shown in Table 8.4.

Figure 8.4

y ! 1.0051 " 0.86468x " 0.84316x2

0.25 0.50 0.75 1.00

1

2

y

x

Table 8.4 i 1 2 3 4 5

xi 0 0.25 0.50 0.75 1.00
yi 1.0000 1.2840 1.6487 2.1170 2.7183

P(xi) 1.0051 1.2740 1.6482 2.1279 2.7129
yi − P(xi) −0.0051 0.0100 0.0004 −0.0109 0.0054

The total error,

E =
5∑

i=1

(yi − P(xi))
2 = 2.74× 10−4,

is the least that can be obtained by using a polynomial of degree at most 2.

Maple has a function called LinearFit within the Statistics package which can be used
to compute the discrete least squares approximations. To compute the approximation in
Example 2 we first load the package and define the data

with(Statistics): xvals := Vector([0, 0.25, 0.5, 0.75, 1]): yvals := Vector([1, 1.284, 1.6487,
2.117, 2.7183]):
To define the least squares polynomial for this data we enter the command

P := x→ LinearFit([1, x, x2], xvals, yvals, x): P(x)
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Other least squares fitting models

In some situations, one may design model as

y = beax

y = bxa

as well as many others.

To use least squares fitting, we note that they are equivalent to, respectively,

log y = log b + ax

log y = log b + a log x

Therefore, we can first convert (xi , yi ) to (xi , log yi ) and (log xi , log yi ), and then
apply standard linear least squares fitting.
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Approximating functions

We now consider fitting (approximation) of a given function

f (x) ∈ C [a, b]

Suppose we use a polynomial Pn(x) of degree n to fit f (x), where

Pn(x) = a0 + a1x + a2x
2 + · · ·+ anx

n

with fitting parameters a = (a0, a1, . . . , an)
⊤ ∈ Rn+1. Then the least squares error is

E(a) =

∫ b

a

|f (x)− Pn(x)|2 dx =

∫ b

a

∣∣∣f (x)− n∑
k=0

akx
k
∣∣∣2 dx
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Approximating functions

The fitting parameter a needs to be solved from ∇E(a) = 0.

To this end, we first rewrite E(a) as

E(a) =

∫ b

a

(f (x))2 dx − 2
n∑

k=0

ak

∫ b

a

xk f (x) dx +

∫ b

a

( n∑
k=0

akx
k
)2

dx

Therefore ∇E(a) = ( ∂E
∂a0

, ∂E
∂a1

, . . . , ∂E
∂an

)⊤ ∈ Rn+1 where

∂E

∂aj
= −2

∫ b

a

x j f (x) dx + 2
n∑

k=0

ak

∫ b

a

x j+k dx

for j = 0, 1, . . . , n.
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Approximating functions

By setting ∂E
∂aj

= 0 for all j , we obtain the normal equation

n∑
k=0

(∫ b

a

x j+k dx
)
ak =

∫ b

a

x j f (x) dx

for j = 0, . . . , n. This is a linear system of n+ 1 equations, from which we can solve
for a∗ = (a0, . . . , an)

⊤.
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Approximating functions

For the given function f (x) ∈ C [a, b], we obtain least squares approximating
polynomial Pn(x):

8.2 Orthogonal Polynomials and Least Squares Approximation 511

Figure 8.6

x

y

f (x)

a b

!
k"0

n

akxkPn(x) "

!
k"0

n

akxkf (x) #
2( (

Since

E =
∫ b

a
[f (x)]2 dx − 2

n∑

k=0

ak

∫ b

a
xkf (x) dx +

∫ b

a

( n∑

k=0

akxk
)2

dx,

we have

∂E
∂aj

= −2
∫ b

a
xjf (x) dx + 2

n∑

k=0

ak

∫ b

a
xj+k dx.

Hence, to find Pn(x), the (n + 1) linear normal equations

n∑

k=0

ak

∫ b

a
xj+k dx =

∫ b

a
xjf (x) dx, for each j = 0, 1, . . . , n, (8.6)

must be solved for the (n + 1) unknowns aj. The normal equations always have a unique
solution provided that f ∈ C[a, b]. (See Exercise 15.)

Example 1 Find the least squares approximating polynomial of degree 2 for the function f (x) = sin πx
on the interval [0, 1].

Solution The normal equations for P2(x) = a2x2 + a1x + a0 are

a0

∫ 1

0
1 dx + a1

∫ 1

0
x dx + a2

∫ 1

0
x2 dx =

∫ 1

0
sin πx dx,

a0

∫ 1

0
x dx + a1

∫ 1

0
x2 dx + a2

∫ 1

0
x3 dx =

∫ 1

0
x sin πx dx,

a0

∫ 1

0
x2 dx + a1

∫ 1

0
x3 dx + a2

∫ 1

0
x4 dx =

∫ 1

0
x2 sin πx dx.

Performing the integration yields

a0 + 1
2

a1 + 1
3

a2 = 2
π

,
1
2

a0 + 1
3

a1 + 1
4

a2 = 1
π

,
1
3

a0 + 1
4

a1 + 1
5

a2 = π2 − 4
π3

.
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Approximating functions

Example

Use least squares approximating polynomial of degree 2 for the function
f (x) = sin(πx) on the interval [0, 1].

512 C H A P T E R 8 Approximation Theory

These three equations in three unknowns can be solved to obtain

a0 = 12π2 − 120
π3

≈ −0.050465 and a1 = −a2 = 720− 60π2

π3
≈ 4.12251.

Consequently, the least squares polynomial approximation of degree 2 for f (x) = sin πx
on [0, 1] is P2(x) = −4.12251x2 + 4.12251x − 0.050465. (See Figure 8.7.)

Figure 8.7
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Example 1 illustrates a difficulty in obtaining a least squares polynomial approximation.
An (n + 1) × (n + 1) linear system for the unknowns a0, . . . , an must be solved, and the
coefficients in the linear system are of the form

∫ b

a
xj+k dx = bj+k+1 − aj+k+1

j + k + 1
,

a linear system that does not have an easily computed numerical solution. The matrix in the
linear system is known as a Hilbert matrix, which is a classic example for demonstrating
round-off error difficulties. (See Exercise 11 of Section 7.5.)

David Hilbert (1862–1943) was
the dominant mathematician at
the turn of the 20th century. He is
best remembered for giving a talk
at the International Congress of
Mathematicians in Paris in 1900
in which he posed 23 problems
that he thought would be
important for mathematicians in
the next century.

Another disadvantage is similar to the situation that occurred when the Lagrange poly-
nomials were first introduced in Section 3.1. The calculations that were performed in ob-
taining the best nth-degree polynomial, Pn(x), do not lessen the amount of work required
to obtain Pn+1(x), the polynomial of next higher degree.

Linearly Independent Functions

A different technique to obtain least squares approximations will now be considered. This
turns out to be computationally efficient, and once Pn(x) is known, it is easy to determine
Pn+1(x). To facilitate the discussion, we need some new concepts.

Definition 8.1 The set of functions {φ0, . . . ,φn} is said to be linearly independent on [a, b] if, whenever

c0φ0(x) + c1φ1(x) + · · · + cnφn(x) = 0, for all x ∈ [a, b],
we have c0 = c1 = · · · = cn = 0. Otherwise the set of functions is said to be linearly
dependent.
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Least squares approximations with polynomials

Remark

▶ The matrix in the normal equation is called Hilbert matrix, with entries of
form ∫ b

a

x j+k dx =
bj+k+1 − aj+k+1

j + k + 1

which is prune to round-off errors.

▶ The parameters a = (a0, . . . , an)
⊤ we obtained for polynomial Pn(x) cannot be

used for Pn+1(x) – we need to start the computations from beginning.
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Linearly independent functions

Definition

The set of functions {ϕ1, . . . , ϕn} is called linearly independent on [a, b] if

c1ϕ1(x) + c2ϕ2(x) + · · ·+ cnϕn(x) = 0, for all x ∈ [a, b]

implies that c1 = c2 = · · · = cn = 0.

Otherwise the set of functions is called linearly dependent.
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Linearly independent functions

Example

Suppose ϕj(x) is a polynomial of degree j for j = 0, 1, . . . , n, then {ϕ0, . . . , ϕn} is
linearly independent on any interval [a, b].

Proof.

Suppose there exist c0, . . . , cn such that

c0ϕ0(x) + · · ·+ cnϕn(x) = 0

for all x ∈ [a, b]. If cn ̸= 0, then this is a polynomial of degree n and can have at
most n roots, contradiction. Hence cn = 0. Repeat this to show that
c0 = · · · = cn = 0.

Numerical Analysis I – Xiaojing Ye, Math & Stat, Georgia State University 206



Linearly independent functions

Example

Suppose ϕ0(x) = 2, ϕ1(x) = x − 3, ϕ2(x) = x2 + 2x + 7, and
Q(x) = a0 + a1x + a2x

2. Show that there exist constants c0, c1, c2 such that
Q(x) = c0ϕ0(x) + c1ϕ1(x) + c2ϕ2(x).

Solution. Substitute ϕj into Q(x), and solve for c0, c1, c2.
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Linearly independent functions

We denote Πn = {a0 + a1x + · · ·+ anx
n | a0, a1, . . . , an ∈ R}, i.e., Πn is the set of

polynomials of degree ≤ n.

Theorem

Suppose {ϕ0, . . . , ϕn} is a collection of linearly independent polynomials in Πn, then
any polynomial in Πn can be written uniquely as a linear combination of
ϕ0(x), . . . , ϕn(x).

{ϕ0, . . . , ϕn} is called a basis of Πn.
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Orthogonal functions

Definition

An integrable function w is called a weight function on the interval I if w(x) ≥ 0,
for all x ∈ I , but w(x) ̸≡ 0 on any subinterval of I .
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Orthogonal functions

Example

Define a weight function w(x) = 1√
1−x2

on interval (−1, 1).

514 C H A P T E R 8 Approximation Theory

Orthogonal Functions

To discuss general function approximation requires the introduction of the notions of weight
functions and orthogonality.

Definition 8.4 An integrable function w is called a weight function on the interval I if w(x) ≥ 0, for all
x in I , but w(x) ̸≡ 0 on any subinterval of I .

The purpose of a weight function is to assign varying degrees of importance to approx-
imations on certain portions of the interval. For example, the weight function

w(x) = 1√
1− x2

places less emphasis near the center of the interval (−1, 1) and more emphasis when |x| is
near 1 (see Figure 8.8). This weight function is used in the next section.

Suppose {φ0,φ1, . . . ,φn} is a set of linearly independent functions on [a, b] and w is a
weight function for [a, b]. Given f ∈ C[a, b], we seek a linear combination

P(x) =
n∑

k=0

akφk(x)

to minimize the error

E = E(a0, . . . , an) =
∫ b

a
w(x)

[
f (x)−

n∑

k=0

akφk(x)
]2

dx.

This problem reduces to the situation considered at the beginning of this section in the

Figure 8.8
(x)

1!1

1

x

special case when w(x) ≡ 1 and φk(x) = xk , for each k = 0, 1, . . . , n.
The normal equations associated with this problem are derived from the fact that for

each j = 0, 1, . . . , n,

0 = ∂E
∂aj

= 2
∫ b

a
w(x)

[
f (x)−

n∑

k=0

akφk(x)
]
φj(x) dx.

The system of normal equations can be written
∫ b

a
w(x)f (x)φj(x) dx =

n∑

k=0

ak

∫ b

a
w(x)φk(x)φj(x) dx, for j = 0, 1, . . . , n.

If the functions φ0,φ1, . . . ,φn can be chosen so that
∫ b

a
w(x)φk(x)φj(x) dx =

{
0, when j ̸= k,
αj > 0, when j = k,

(8.7)

then the normal equations will reduce to
∫ b

a
w(x)f (x)φj(x) dx = aj

∫ b

a
w(x)[φj(x)]2 dx = ajαj,

for each j = 0, 1, . . . , n. These are easily solved to give

aj = 1
αj

∫ b

a
w(x)f (x)φj(x) dx.

Hence the least squares approximation problem is greatly simplified when the functions
φ0,φ1, . . . ,φn are chosen to satisfy the orthogonality condition in Eq. (8.7). The remainder
of this section is devoted to studying collections of this type.

The word orthogonal means
right-angled. So in a sense,
orthogonal functions are
perpendicular to one another.
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Orthogonal functions

Suppose {ϕ0, . . . , ϕn} is a set of linearly independent functions in C [a, b] and w is a
weight function on [a, b]. Given f (x) ∈ C [a, b], we seek a linear combination

n∑
k=0

akϕk(x)

to minimize the least squares error:

E(a) =

∫ b

a

w(x)
[
f (x)−

n∑
k=0

akϕk(x)
]2

dx

where a = (a0, . . . , an).
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Orthogonal functions

As before, we need to solve a∗ from ∇E(a) = 0:

∂E

∂aj
=

∫ b

a

w(x)
[
f (x)−

n∑
k=0

akϕk(x)
]
ϕj(x) dx = 0

for all j = 0, . . . , n. Then we obtain the normal equation

n∑
k=0

(∫ b

a

w(x)ϕk(x)ϕj(x) dx
)
ak =

∫ b

a

w(x)f (x)ϕj(x) dx

which is a linear system of n + 1 equations about a = (a0, . . . , an)
⊤.
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Orthogonal functions

If we chose the basis {ϕ0, . . . , ϕn} such that∫ b

a

w(x)ϕk(x)ϕj(x) dx =

{
0, when j ̸= k

αj , when j = k

for some αj > 0, then the LHS of the normal equation simplifies to αjaj . Hence we
obtain closed form solution aj :

aj =
1

αj

∫ b

a

w(x)f (x)ϕj(x) dx

for j = 0, . . . , n.
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Orthogonal functions

Definition

A set {ϕ0, . . . , ϕn} is called orthogonal on the interval [a, b] with respect to weight
function w if ∫ b

a

w(x)ϕk(x)ϕj(x) dx =

{
0, when j ̸= k

αj , when j = k

for some αj > 0 for all j = 0, . . . , n.

If in addition αj = 1 for all j = 0, . . . , n, then the set is called orthonormal with
respect to w .

The definition above applies to general functions, but for now we focus on
orthogonal/orthonormal polynomials only.
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Gram-Schmidt process

Theorem

A set of orthogonal polynomials {ϕ0, . . . , ϕn} on [a, b] with respect to weight
function w can be constructed in the recursive way

▶ First define

ϕ0(x) = 1, ϕ1(x) = x −
∫ b

a
xw(x) dx∫ b

a
w(x) dx

▶ Then for every k ≥ 2, define

ϕk(x) = (x − Bk)ϕk−1(x)− Ckϕk−2(x)

where

Bk =

∫ b

a
xw(x)[ϕk−1(x)]

2 dx∫ b

a
w(x)[ϕk−1(x)]2 dx

, Ck =

∫ b

a
xw(x)ϕk−1(x)ϕk−2(x) dx∫ b

a
w(x)[ϕk−2(x)]2 dx
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Orthogonal polynomials

Corollary

Let {ϕ0, . . . , ϕn} be constructed by the Gram-Schmidt process in the theorem
above, then for any polynomial Qk(x) of degree k < n, there is∫ b

a

w(x)ϕn(x)Qk(x) dx = 0

Proof.

Qk(x) can be written as a linear combination of ϕ0(x), . . . , ϕk(x), which are all
orthogonal to ϕn with respect to w .
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Legendre polynomials

Using weight function w(x) ≡ 1 on [−1, 1], we can construct Legendre
polynomials using the recursive process above to get

P0(x) = 1

P1(x) = x

P2(x) = x2 − 1

3

P3(x) = x3 − 3

5
x

P4(x) = x4 − 6

7
x2 +

3

35

P5(x) = x5 − 10

9
x3 +

5

21
x

...

Use the Gram-Schmidt process to construct them by yourself.
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Legendre polynomials

The first few Legendre polynomials:

8.2 Orthogonal Polynomials and Least Squares Approximation 517

Figure 8.9
y

x

y = P1(x)

y = P2(x)

y = P3(x)
y = P4(x)
y = P5(x)
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!1

!1

!0.5
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For example, the Maple command int is used to compute the integrals B3 and C3:

B3 :=
int
(

x
(
x2 − 1

3

)2
, x = −1..1

)

int
((

x2 − 1
3

)2
, x = −1..1

) ; C3 := int
(
x
(
x2 − 1

3

)
, x = −1..1

)

int(x2, x = −1..1)

0

4
15

Thus

P3(x) = xP2(x)−
4
15

P1(x) = x3 − 1
3

x − 4
15

x = x3 − 3
5

x.

The next two Legendre polynomials are

P4(x) = x4 − 6
7

x2 + 3
35

and P5(x) = x5 − 10
9

x3 + 5
21

x. !

The Legendre polynomials were introduced in Section 4.7, where their roots, given on
page 232, were used as the nodes in Gaussian quadrature.
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Chebyshev polynomials

Using weight function w(x) = 1√
1−x2

on (−1, 1), we can construct Chebyshev

polynomials using the recursive process above to get

T0(x) = 1

T1(x) = x

T2(x) = 2x2 − 1

T3(x) = 4x3 − 3x

T4(x) = 8x4 − 8x2 + 1

...

It can be shown that Tn(x) = cos(n arccos x) for n = 0, 1, . . .
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Chebyshev polynomials

The first few Chebyshev polynomials:

520 C H A P T E R 8 Approximation Theory

Figure 8.10
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y

To show the orthogonality of the Chebyshev polynomials with respect to the weight
function w(x) = (1− x2)−1/2, consider

∫ 1

−1

Tn(x)Tm(x)√
1− x2

dx =
∫ 1

−1

cos(n arccos x) cos(m arccos x)√
1− x2

dx.

Reintroducing the substitution θ = arccos x gives

dθ = − 1√
1− x2

dx

and
∫ 1

−1

Tn(x)Tm(x)√
1− x2

dx = −
∫ 0

π

cos(nθ) cos(mθ) dθ =
∫ π

0
cos(nθ) cos(mθ) dθ .

Suppose n ̸= m. Since

cos(nθ) cos(mθ) = 1
2
[cos(n + m)θ + cos(n− m)θ ],

we have
∫ 1

−1

Tn(x)Tm(x)√
1− x2

dx = 1
2

∫ π

0
cos((n + m)θ) dθ + 1

2

∫ π

0
cos((n− m)θ) dθ

=
[

1
2(n + m)

sin((n + m)θ) + 1
2(n− m)

sin((n− m)θ)

]π

0
= 0.

By a similar technique (see Exercise 9), we also have
∫ 1

−1

[Tn(x)]2

√
1− x2

dx = π

2
, for each n ≥ 1. (8.10)

The Chebyshev polynomials are used to minimize approximation error. We will see
how they are used to solve two problems of this type:
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Chebyshev polynomials

The Chebyshev polynomials Tn(x) of degree n ≥ 1 has n simple zeros in [−1, 1]
(from right to left) at

x̄k = cos
(2k − 1

2n
π
)
, for each k = 1, 2, . . . , n

Moreover, Tn has maximum/minimum (from right to left) at

x̄ ′
k = cos

(kπ
n

)
where Tn(x̄

′
k) = (−1)k for each k = 0, 1, 2, . . . , n

Therefore Tn(x) has n distinct roots and n + 1 extreme points on [−1, 1]. These
2n + 1 points, from right to left, are max, zero, min, zero, max ...
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Monic Chebyshev polynomials

The monic Chebyshev polynomials T̃n(x) are given by T̃0 = 1 and

T̃n =
1

2n−1
Tn(x)

for n ≥ 1.

522 C H A P T E R 8 Approximation Theory

The recurrence relationship satisfied by the Chebyshev polynomials implies that

T̃2(x) = xT̃1(x)−
1
2

T̃0(x) and (8.12)

T̃n+1(x) = xT̃n(x)−
1
4

T̃n−1(x), for each n ≥ 2.

The graphs of T̃1, T̃2, T̃3, T̃4, and T̃5 are shown in Figure 8.11.

Figure 8.11

x1

1

!1

!1

y

y = T2(x)
!

y = T1(x)
!

y = T3(x)
!

y = T4(x)
!y = T5(x)

!

Because T̃n(x) is just a multiple of Tn(x), Theorem 8.9 implies that the zeros of T̃n(x)
also occur at

x̄k = cos
(

2k − 1
2n

π

)
, for each k = 1, 2, . . . , n,

and the extreme values of T̃n(x), for n ≥ 1, occur at

x̄′k = cos
(

kπ
n

)
, with T̃n(x̄′k) = (−1)k

2n−1
, for each k = 0, 1, 2, . . . , n. (8.13)

Let
∏̃

n denote the set of all monic polynomials of degree n. The relation expressed
in Eq. (8.13) leads to an important minimization property that distinguishes T̃n(x) from the
other members of

∏̃
n.

Theorem 8.10 The polynomials of the form T̃n(x), when n ≥ 1, have the property that

1
2n−1

= max
x∈[−1,1]

|T̃n(x)| ≤ max
x∈[−1, 1]

|Pn(x)|, for all Pn(x) ∈
∏̃

n
.

Moreover, equality occurs only if Pn ≡ T̃n.
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Monic Chebyshev polynomials

The monic Chebyshev polynomials are

T̃0(x) = 1

T̃1(x) = x

T̃2(x) = x2 − 1

2

T̃3(x) = x3 − 3

4
x

T̃4(x) = x4 − x2 +
1

8
...
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Monic Chebyshev polynomials

The monic Chebyshev polynomials T̃n(x) of degree n ≥ 1 has n simple zeros in
[−1, 1] at

x̄k = cos
(2k − 1

2n
π
)
, for each k = 1, 2, . . . , n

Moreover, Tn has maximum/minimum at

x̄ ′
k = cos

(kπ
n

)
where Tn(x̄

′
k) =

(−1)k

2n−1
, for each k = 0, 1, . . . , n

Therefore T̃n(x) also has n distinct roots and n + 1 extreme points on [−1, 1].
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Monic Chebyshev polynomials

Denote Π̃n be the set of monic polynomials of degree n.

Theorem

For any Pn ∈ Π̃n, there is

1

2n−1
= max

x∈[−1,1]
|T̃n(x)| ≤ max

x∈[−1,1]
|Pn(x)|

The “=” holds only if Pn ≡ T̃n.
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Monic Chebyshev polynomials

Proof.

Assume not, then ∃Pn(x) ∈ Π̃n, s.t. maxx∈[−1,1] |Pn(x)| < 1
2n−1 .

Let Q(x) := T̃n(x)− Pn(x). Since T̃n,Pn ∈ Π̃n, we know Q(x) is a ploynomial of
degree at most n − 1. At the n + 1 extreme points x̄ ′

k = cos
(
kπ
n

)
for

k = 0, 1, . . . , n, there are

Q(x̄ ′
k) = T̃n(x̄

′
k)− Pn(x̄

′
k) =

(−1)k

2n−1
− Pn(x̄

′
k)

Hence Q(x̄ ′
k) > 0 when k is even and < 0 when k odd. By intermediate value

theorem, Q has at least n distinct roots, contradiction to deg(Q) ≤ n − 1.
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Minimizing Lagrange interpolation error

Let x0, . . . , xn be n+ 1 distinct points on [−1, 1] and f (x) ∈ C n+1[−1, 1], recall that
the Lagrange interpolating polynomial P(x) =

∑n
i=0 f (xi )Li (x) satisfies

f (x)− P(x) =
f (n+1)(ξ(x))

(n + 1)!
(x − x0)(x − x1) · · · (x − xn)

for some ξ(x) ∈ (−1, 1) at every x ∈ [−1, 1].

We can control the size of (x − x0)(x − x1) · · · (x − xn) since it belongs to Π̃n+1: set

(x − x0)(x − x1) · · · (x − xn) = T̃n+1(x). That is, set xk = cos
(

2k−1
2n

π
)
, the kth

root of T̃n+1(x) for k = 1, . . . , n + 1. This results in the minimal
maxx∈[−1,1] |(x − x0)(x − x1) · · · (x − xn)| = 1

2n
.
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Minimizing Lagrange interpolation error

Corollary

Let P(x) be the Lagrange interpolating polynomial with n + 1 points chosen as the
roots of T̃n+1(x), there is

max
x∈[−1,1]

|f (x)− P(x)| ≤ 1

2n(n + 1)!
max

x∈[−1,1]
|f (n+1)(x)|
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Minimizing Lagrange interpolation error

If the interval of apporximation is on [a, b] instead of [−1, 1], we can apply change
of variable

x̃ =
1

2
[(b − a)x + (a+ b)]

Hence, we can convert the roots x̄k on [−1, 1] to x̃k on [a, b],
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Minimizing Lagrange interpolation error

Example

Let f (x) = xex on [0, 1.5]. Find the Lagrange interpolating polynomial using

1. the 4 equally spaced points 0, 0.5, 1, 1.5.

2. the 4 points transformed from roots of T̃4.
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Minimizing Lagrange interpolation error

Solution. For each of the four points x0 = 0, x1 = 0.5, x2 = 1, x3 = 1.5, we obtain

Li (x) =
∏

j ̸=i (x−xj )∏
j ̸=i (xi−xj )

for i = 0, 1, 2, 3:

L0(x) = −1.3333x3 + 4.0000x2 − 3.6667x + 1,

L1(x) = 4.0000x3 − 10.000x2 + 6.0000x ,

L2(x) = −4.0000x3 + 8.0000x2 − 3.0000x ,

L3(x) = 1.3333x3 − 2.000x2 + 0.66667x

so the Lagrange interpolating polynomial is

P3(x) =
3∑

i=0

f (xi )Li (x) = 1.3875x3 + 0.057570x2 + 1.2730x .
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Minimizing Lagrange interpolation error

Solution. (cont.) The four roots of T̃4(x) on [−1, 1] are x̄k = cos( 2k−1
8

π) for
k = 1, 2, 3, 4. Shifting the points using x̃ = 1

2
(1.5x + 1.5), we obtain four points

x̃0 = 1.44291, x̃1 = 1.03701, x̃2 = 0.46299, x̃3 = 0.05709

with the same procedure as above to get L̃0, . . . , L̃3 using these 4 points, and then
the Lagrange interpolating polynomial:

P̃3(x) = 1.3811x3 + 0.044652x2 + 1.3031x − 0.014352.
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Minimizing Lagrange interpolation error

Now compare the approximation accuracy of the two polynomials

P3(x) = 1.3875x3 + 0.057570x2 + 1.2730x

P̃3(x) = 1.3811x3 + 0.044652x2 + 1.3031x − 0.014352

8.3 Chebyshev Polynomials and Economization of Power Series 525

The functional values required for these polynomials are given in the last two columns
of Table 8.7. The interpolation polynomial of degree at most 3 is

P̃3(x) = 1.3811x3 + 0.044652x2 + 1.3031x−0.014352.

Table 8.7 x f (x) = xex x̃ f (x̃) = xex

x0 = 0.0 0.00000 x̃0 = 1.44291 6.10783
x1 = 0.5 0.824361 x̃1 = 1.03701 2.92517
x2 = 1.0 2.71828 x̃2 = 0.46299 0.73560
x3 = 1.5 6.72253 x̃3 = 0.05709 0.060444

For comparison, Table 8.8 lists various values of x, together with the values of
f (x), P3(x), and P̃3(x). It can be seen from this table that, although the error using P3(x) is
less than using P̃3(x) near the middle of the table, the maximum error involved with using
P̃3(x), 0.0180, is considerably less than when using P3(x), which gives the error 0.0290.
(See Figure 8.12.)

Table 8.8 x f (x) = xex P3(x) |xex−P3(x)| P̃3(x) |xex−P̃3(x)|
0.15 0.1743 0.1969 0.0226 0.1868 0.0125
0.25 0.3210 0.3435 0.0225 0.3358 0.0148
0.35 0.4967 0.5121 0.0154 0.5064 0.0097
0.65 1.245 1.233 0.012 1.231 0.014
0.75 1.588 1.572 0.016 1.571 0.017
0.85 1.989 1.976 0.013 1.974 0.015
1.15 3.632 3.650 0.018 3.644 0.012
1.25 4.363 4.391 0.028 4.382 0.019
1.35 5.208 5.237 0.029 5.224 0.016

Figure 8.12
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Minimizing Lagrange interpolation error

The approximation using P̃3(x)

P̃3(x) = 1.3811x3 + 0.044652x2 + 1.3031x − 0.014352

8.3 Chebyshev Polynomials and Economization of Power Series 525

The functional values required for these polynomials are given in the last two columns
of Table 8.7. The interpolation polynomial of degree at most 3 is

P̃3(x) = 1.3811x3 + 0.044652x2 + 1.3031x − 0.014352.

Table 8.7 x f (x) = xex x̃ f (x̃) = xex

x0 = 0.0 0.00000 x̃0 = 1.44291 6.10783
x1 = 0.5 0.824361 x̃1 = 1.03701 2.92517
x2 = 1.0 2.71828 x̃2 = 0.46299 0.73560
x3 = 1.5 6.72253 x̃3 = 0.05709 0.060444

For comparison, Table 8.8 lists various values of x, together with the values of
f (x), P3(x), and P̃3(x). It can be seen from this table that, although the error using P3(x) is
less than using P̃3(x) near the middle of the table, the maximum error involved with using
P̃3(x), 0.0180, is considerably less than when using P3(x), which gives the error 0.0290.
(See Figure 8.12.)

Table 8.8 x f (x) = xex P3(x) |xex − P3(x)| P̃3(x) |xex − P̃3(x)|
0.15 0.1743 0.1969 0.0226 0.1868 0.0125
0.25 0.3210 0.3435 0.0225 0.3358 0.0148
0.35 0.4967 0.5121 0.0154 0.5064 0.0097
0.65 1.245 1.233 0.012 1.231 0.014
0.75 1.588 1.572 0.016 1.571 0.017
0.85 1.989 1.976 0.013 1.974 0.015
1.15 3.632 3.650 0.018 3.644 0.012
1.25 4.363 4.391 0.028 4.382 0.019
1.35 5.208 5.237 0.029 5.224 0.016

Figure 8.12
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Reducing the degree of approximating polynomials

As Chebyshev polynomials are efficient in approximating functions, we may use
approximating polynomials of smaller degree for a given error tolerance.

For example, let Qn(x) = a0 + · · ·+ anx
n be a polynomial of degree n on [−1, 1].

Can we find a polynomial of degree n − 1 to approximate Qn?
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Reducing the degree of approximating polynomials

So our goal is to find Pn−1(x) ∈ Πn−1 such that

max
x∈[−1,1]

|Qn(x)− Pn−1(x)|

is minimized. Note that 1
an
(Qn(x)− Pn−1(x)) ∈ Π̃n, we know the best choice is

1
an
(Qn(x)− Pn−1(x)) = T̃n(x), i.e., Pn−1 = Qn − anT̃n. In this case, we have

approximation error

max
x∈[−1,1]

|Qn(x)− Pn−1(x)| = max
x∈[−1,1]

|anT̃n| =
|an|
2n−1

Numerical Analysis I – Xiaojing Ye, Math & Stat, Georgia State University 236



Reducing the degree of approximating polynomials

Example

Recall that Q4(x) be the 4th Maclaurin polynomial of f (x) = ex about 0 on [−1, 1].
That is

Q4(x) = 1 + x +
x2

2
+

x3

6
+

x4

24

which has a4 =
1
24

and truncation error

|R4(x)| = | f
(5)(ξ(x))x5

5!
| = |e

ξ(x)x5

5!
| ≤ e

5!
≈ 0.023

for x ∈ (−1, 1). Given error tolerance 0.05, find the polynomial of small degree to
approximate f (x).
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Reducing the degree of approximating polynomials

Solution. Let’s first try Π3. Note that T̃4(x) = x4 − x2 + 1
8
, so we can set

P3(x) = Q4(x)− a4T̃4(x)

=
(
1 + x +

x2

2
+

x3

6
+

x4

24

)
− 1

24

(
x4 − x2 +

1

8

)
=

191

192
+ x +

13

24
x2 +

1

6
x3 ∈ Π3

Therefore, the approximating error is bounded by

|f (x)− P3(x)| ≤ |f (x)− Q4(x)|+ |Q4(x)− P3(x)|

≤ 0.023 +
|a4|
23

= 0.023 +
1

192
≤ 0.0283.
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Reducing the degree of approximating polynomials

Solution. (cont.) We can further try Π2. Then we need to approximate P3 (note
a3 =

1
6
) above by the following P2 ∈ Π2:

P2(x) = P3(x)− a3T̃3(x)

=
191

192
+ x +

13

24
x2 +

1

6
x3 − 1

6

(
x3 − 3

4
x
)

=
191

192
+

9

8
x +

13

24
x2 ∈ Π2

Therefore, the approximating error is bounded by

|f (x)− P2(x)| ≤ |f (x)− Q4(x)|+ |Q4(x)− P3(x)|+ |P3(x)− P2(x)|

≤ 0.0283 +
|a3|
22

= 0.0283 +
1

24
= 0.0703.

Unfortunately this is larger than 0.05.
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Reducing the degree of approximating polynomials

Although the error bound is larger than 0.05, the actual error is much smaller:

8.3 Chebyshev Polynomials and Economization of Power Series 527

With this choice, we have

|P4(x)− P3(x)| = |a4T̃4(x)| ≤
1

24
· 1

23
= 1

192
≤ 0.0053.

Adding this error bound to the bound for the Maclaurin truncation error gives

0.023 + 0.0053 = 0.0283,

which is within the permissible error of 0.05.

The polynomial of degree 2 or less that best uniformly approximates P3(x) on [−1, 1] is

P2(x) = P3(x)−
1
6

T̃3(x)

= 191
192

+ x + 13
24

x2 + 1
6

x3 − 1
6
(x3 − 3

4
x) = 191

192
+ 9

8
x + 13

24
x2.

However,

|P3(x)− P2(x)| =
∣∣∣∣
1
6

T̃3(x)
∣∣∣∣ = 1

6

(
1
2

)2

= 1
24
≈ 0.042,

which—when added to the already accumulated error bound of 0.0283—exceeds the tol-
erance of 0.05. Consequently, the polynomial of least degree that best approximates ex on
[−1, 1] with an error bound of less than 0.05 is

P3(x) = 191
192

+ x + 13
24

x2 + 1
6

x3.

Table 8.9 lists the function and the approximating polynomials at various points in [−1, 1].
Note that the tabulated entries for P2 are well within the tolerance of 0.05, even though the
error bound for P2(x) exceeded the tolerance. !

Table 8.9 x ex P4(x) P3(x) P2(x) |ex − P2(x)|
−0.75 0.47237 0.47412 0.47917 0.45573 0.01664
−0.25 0.77880 0.77881 0.77604 0.74740 0.03140

0.00 1.00000 1.00000 0.99479 0.99479 0.00521
0.25 1.28403 1.28402 1.28125 1.30990 0.02587
0.75 2.11700 2.11475 2.11979 2.14323 0.02623

E X E R C I S E S E T 8.3

1. Use the zeros of T̃3 to construct an interpolating polynomial of degree 2 for the following functions
on the interval [−1, 1].
a. f (x) = ex b. f (x) = sin x c. f (x) = ln(x + 2) d. f (x) = x4

2. Use the zeros of T̃4 to construct an interpolating polynomial of degree 3 for the functions in Exercise 1.
3. Find a bound for the maximum error of the approximation in Exercise 1 on the interval [−1, 1].
4. Repeat Exercise 3 for the approximations computed in Exercise 3.
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Pros and cons of polynomial approxiamtion

Advantages:

▶ Polynomials can approximate continuous function to arbitrary accuracy;

▶ Polynomials are easy to evaluate;

▶ Derivatives and integrals are easy to compute.

Disadvantages:

▶ Significant oscillations;

▶ Large max absolute error in approximating;

▶ Not accurate when approximating discontinuous functions.
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Rational function approximation

Rational function of degree N = n +m is written as

r(x) =
p(x)

q(x)
=

p0 + p1x + · · ·+ pnx
n

q0 + q1x + · · ·+ qmxm

Now we try to approximate a function f on an interval containing 0 using r(x).

WLOG, we set q0 = 1, and will need to determine the N + 1 unknowns
p0, . . . , pn, q1, . . . , qm.
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Padé approximation

The idea of Padé approximation is to find r(x) such that

f (k)(0) = r (k)(0), k = 0, 1, . . . ,N

This is an extension of Taylor series but in the rational form.

Denote the Maclaurin series expansion f (x) =
∑∞

i=0 aix
i . Then

f (x)− r(x) =
(
∑∞

i=0 aix
i ) · (

∑m
i=0 qix

i )−
∑n

i=0 pix
i

q(x)

If we want f (k)(0)− r (k)(0) = 0 for k = 0, . . . ,N, we need the numerator to have 0
as a root of multiplicity N + 1.
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Padé approximation

This turns out to be equivalent to

k∑
i=0

aiqk−i = pk , k = 0, 1, . . . ,N

for convenience we used convention pn+1 = · · · = pN = 0 and qm+1 = · · · = qN = 0.

From these N + 1 equations, we can determine the N + 1 unknowns:

p0, p1, . . . , pn, q1, . . . , qm
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Padé approximation

Example

Find the Padé approximation to e−x of degree 5 with n = 3 and m = 2.

Solution. We first write the Maclaurin series of e−x as

e−x = 1− x +
1

2
x2 − 1

6
x3 +

1

24
x4 + · · · =

∞∑
i=0

(−1)i

i !
x i

Then for r(x) = p0+p1x+p2x
2+p3x

3

1+q1x+q2x2
, we need(

1− x +
1

2
x2 − 1

6
x3 + · · ·

)
(1 + q1x + q2x

2)− (p0 + p1x + p2x
2 + p3x

3)

to have 0 coefficients for terms 1, x , . . . , x5.
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Padé approximation

Solution. (cont.) By solving this, we get p0, p1, p2, q1, q2 and hence

r(x) =
1− 3

5
x + 3

20
x2 − 1

60
x3

1 + 2
5
x + 1

20
x2

530 C H A P T E R 8 Approximation Theory

Find the Padé approximation to e−x of degree 5 with n = 3 and m = 2.

Solution To find the Padé approximation we need to choose p0, p1, p2, p3, q1, and q2 so that
the coefficients of xk for k = 0, 1, . . . , 5 are 0 in the expression

(
1− x + x2

2
− x3

6
+ · · ·

)
(1 + q1x + q2x2)− (p0 + p1x + p2x2 + p3x3).

Expanding and collecting terms produces

x5 : − 1
120

+ 1
24

q1 −
1
6

q2 = 0; x2 :
1
2
− q1 + q2 = p2;

x4 :
1

24
− 1

6
q1 + 1

2
q2 = 0; x1 : −1 + q1 = p1;

x3 : −1
6

+ 1
2

q1 − q2 = p3; x0 : 1 = p0.

To solve the system in Maple, we use the following commands:

eq1 := −1 + q1 = p1:
eq2 := 1

2 − q1 + q2 = p2:
eq3 := − 1

6 + 1
2 q1− q2 = p3:

eq4 := 1
24 − 1

6 q1 + 1
2 q2 = 0:

eq5 := − 1
120 + 1

24 q1− 1
6 q2 = 0:

solve({eq1, eq2, eq3, eq4, eq5}, {q1, q2, p1, p2, p3})
This gives

{
p1 = −3

5
, p2 = 3

20
, p3 = − 1

60
, q1 = 2

5
, q2 = 1

20

}

So the Padé approximation is

r(x) = 1− 3
5 x + 3

20 x2 − 1
60 x3

1 + 2
5 x + 1

20 x2
.

Table 8.10 lists values of r(x) and P5(x), the fifth Maclaurin polynomial. The Padé approx-
imation is clearly superior in this example.

Table 8.10 x e−x P5(x) |e−x − P5(x)| r(x) |e−x − r(x)|
0.2 0.81873075 0.81873067 8.64× 10−8 0.81873075 7.55× 10−9

0.4 0.67032005 0.67031467 5.38× 10−6 0.67031963 4.11× 10−7

0.6 0.54881164 0.54875200 5.96× 10−5 0.54880763 4.00× 10−6

0.8 0.44932896 0.44900267 3.26× 10−4 0.44930966 1.93× 10−5

1.0 0.36787944 0.36666667 1.21× 10−3 0.36781609 6.33× 10−5

Maple can also be used directly to compute a Padé approximation. We first compute
the Maclaurin series with the call

series(exp(−x), x)

to obtain

1− x + 1
2

x2 − 1
6

x3 + 1
24

x4 − 1
120

x5 + O(x6)

The Padé approximation r(x) with n = 3 and m = 2 is found using the command
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where P5(x) is Maclaurin polynomial of degree 5 for comparison.
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Chebyshev rational function approximation

To obtain more uniformly accurate approximation, we can use Chebyshev
polynomials Tk(x) in Padé approximation framework.

For N = n +m, we use

r(x) =

∑n
k=0 pkTk(x)∑m
k=0 qkTk(x)

where q0 = 1. Also write f (x) using Chebyshev polynomials as

f (x) =
∞∑
k=0

akTk(x)
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Chebyshev rational function approximation

Now we have

f (x)− r(x) =

∑∞
k=0 akTk(x)

∑m
k=0 qkTk(x)−

∑n
k=0 pkTk(x)∑m

k=0 qkTk(x)

We again seek for p0, . . . , pn, q1, . . . , qm such that coefficients of 1, x , . . . , xN are 0.

To that end, the computations can be simplified due to

Ti (x)Tj(x) =
1

2

(
Ti+j(x) + T|i−j|(x)

)
Also note that we also need to compute Chebyshev series coefficients ak first.
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Chebyshev rational function approximation

Example

Approximate e−x using the Chebyshev rational approximation of degree n = 3 and
m = 2. The result is rT (x).

8.4 Rational Function Approximation 535

The solution to this system produces the rational function

rT (x) = 1.055265T0(x)− 0.613016T1(x) + 0.077478T2(x)− 0.004506T3(x)
T0(x) + 0.378331T1(x) + 0.022216T2(x)

.

We found at the beginning of Section 8.3 that

T0(x) = 1, T1(x) = x, T2(x) = 2x2 − 1, T3(x) = 4x3 − 3x.

Using these to convert to an expression involving powers of x gives

rT (x) = 0.977787− 0.599499x + 0.154956x2 − 0.018022x3

0.977784 + 0.378331x + 0.044432x2
.

Table 8.11 lists values of rT (x) and, for comparison purposes, the values of r(x) obtained
in Example 1. Note that the approximation given by r(x) is superior to that of rT (x) for
x = 0.2 and 0.4, but that the maximum error for r(x) is 6.33×10−5 compared to 9.13×10−6

for rT (x).

Table 8.11 x e−x r(x) |e−x − r(x)| rT (x) |e−x − rT (x)|
0.2 0.81873075 0.81873075 7.55× 10−9 0.81872510 5.66× 10−6

0.4 0.67032005 0.67031963 4.11× 10−7 0.67031310 6.95× 10−6

0.6 0.54881164 0.54880763 4.00× 10−6 0.54881292 1.28× 10−6

0.8 0.44932896 0.44930966 1.93× 10−5 0.44933809 9.13× 10−6

1.0 0.36787944 0.36781609 6.33× 10−5 0.36787155 7.89× 10−6

The Chebyshev approximation can be generated using Algorithm 8.2.

ALGORITHM

8.2
Chebyshev Rational Approximation

To obtain the rational approximation

rT (x) =
∑n

k=0 pkTk(x)∑m
k=0 qkTk(x)

for a given function f (x):

INPUT nonnegative integers m and n.

OUTPUT coefficients q0, q1, . . . , qm and p0, p1, . . . , pn.

Step 1 Set N = m + n.

Step 2 Set a0 = 2
π

∫ π

0
f (cos θ) dθ ; (The coefficient a0 is doubled for computational

efficiency.)
For k = 1, 2, . . . , N + m set

ak = 2
π

∫ π

0
f (cos θ) cos kθ dθ .

(The integrals can be evaluated using a numerical integration procedure or the
coefficients can be input directly.)

Step 3 Set q0 = 1.

Step 4 For i = 0, 1, . . . , N do Steps 5–9. (Set up a linear system with matrix B.)
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where r(x) is the standard Padé approximation shown earlier.
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Trigonometric polynomial approximation

Recall the Fourier series uses a set of 2n orthogonal functions with respect to
weight w ≡ 1 on [−π, π]:

ϕ0(x) =
1

2

ϕk(x) = cos kx , k = 1, 2, . . . , n

ϕn+k(x) = sin kx , k = 1, 2, . . . , n − 1

We denote the set of linear combinations of ϕ0, ϕ1, . . . , ϕ2n−1 by Tn, called the set
of trigonometric polynomials of degree ≤ n.
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Trigonometric polynomial approximation

For a function f ∈ C [−π, π], we want to find Sn ∈ Tn of form

Sn(x) =
a0
2

+ an cos nx +
n−1∑
k=1

(ak cos kx + bk sin kx)

to minimize the least squares error

E(a0, . . . , an, b1, . . . , bn−1) =

∫ π

−π

|f (x)− Sn(x)|2 dx

Due to orthogonality of Fourier series ϕ0, . . . , ϕ2n−1, we get

ak =
1

π

∫ π

−π

f (x) cos kx dx , bk =
1

π

∫ π

−π

f (x) sin kx dx
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Trigonometric polynomial approximation

Example

Approximate f (x) = |x | for x ∈ [−π, π] using trigonometric polynomial from Tn.

Solution. It is easy to check that a0 =
1
π

∫ π

−π
|x | dx = π and

ak =
1

π

∫ π

−π

|x | cos kx dx =
2

πk2
((−1)k − 1), k = 1, 2, . . . , n

bk =
1

π

∫ π

−π

|x | sin kx dx = 0, k = 1, 2, . . . , n − 1

Therefore

Sn(x) =
π

2
+

2

π

n∑
k=1

(−1)k − 1

k2
cos kx
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Trigonometric polynomial approximation

Sn(x) for the first few n are shown below:

540 C H A P T E R 8 Approximation Theory

Solution We first need to find the coefficients

a0 = 1
π

∫ π

−π
|x| dx = − 1

π

∫ 0

−π
x dx + 1

π

∫ π

0
x dx = 2

π

∫ π

0
x dx = π ,

ak = 1
π

∫ π

−π
|x| cos kx dx = 2

π

∫ π

0
x cos kx dx = 2

πk2

[
(−1)k − 1

]
,

for each k = 1, 2, . . . , n, and

bk = 1
π

∫ π

−π
|x| sin kx dx = 0, for each k = 1, 2, . . . , n− 1.

That the bk’s are all 0 follows from the fact that g(x) = |x| sin kx is an odd function for
each k, and the integral of a continuous odd function over an interval of the form [−a, a]
is 0. (See Exercises 13 and 14.) The trigonometric polynomial from Tn approximating f is
therefore,

Sn(x) = π

2
+ 2
π

n∑

k=1

(−1)k − 1
k2

cos kx.

The first few trigonometric polynomials for f (x) = |x| are shown in Figure 8.13.

Figure 8.13

x

y

! π!π

π y "   ! x !

y " S0(x) " 

y " S3(x) "     ! 4π
π
2

π
2

π
2

π
2

4
9πcos x ! cos 3x

y " S1(x) " S2(x) "     ! 4
π

π
2

π
2

cos x

The Fourier series for f is

S(x) = lim
n→∞

Sn(x) = π

2
+ 2
π

∞∑

k=1

(−1)k − 1
k2

cos kx.

Since | cos kx| ≤ 1 for every k and x, the series converges, and S(x) exists for all real
numbers x.
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Discrete trigonometric approximation

If we have 2m paired data points {(xj , yj)}2m−1
j=0 where xj are equally spaced on

[−π, π], i.e.,

xj = −π +
( j

m

)
π, j = 0, 1, . . . , 2m − 1

Then we can also seek for Sn ∈ Tn such that the discrete least square error below is
minimized:

E(a0, . . . , an, b1, . . . , bn−1) =
2m−1∑
j=0

(yj − Sn(xj))
2
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Discrete trigonometric approximation

Theorem

Define

ak =
1

m

2m−1∑
j=0

yj cos kxj , bk =
1

m

2m−1∑
j=0

yj sin kxj

Then the trigonometric Sn ∈ Tn defined by

Sn(x) =
a0
2

+ an cos nx +
n−1∑
k=1

(ak cos kx + bk sin kx)

minimizes the discrete least squares error

E(a0, . . . , an, b1, . . . , bn−1) =
2m−1∑
j=0

(yj − Sn(xj))
2
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Fast Fourier transforms

The fast Fourier transform (FFT) employs the Euler formula ezi = cos z + i sin z
for all z ∈ R and i =

√
−1, and compute the discrete Fourier transform of data to

get

1

m

2m−1∑
k=0

cke
kxi, where ck =

2m−1∑
j=0

yje
kπi/m k = 0, . . . , 2m − 1

Then one can recover ak , bk ∈ R from

ak + ibk =
(−1)k

m
ck ∈ C
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Fast Fourier transforms

The discrete trigonometric approximation for 2m data points requires a total of
(2m)2 multiplications, not scalable for large m.

The cost of FFT is only

3m +m log2 m = O(m log2 m)

For example, if m = 1024, then (2m)2 ≈ 4.2× 106 and 3m +m log2 m ≈ 1.3× 104.
The larger m is, the more benefit FFT gains.
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