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IVP of ODE

We study numerical solution for initial value problem (IVP) of
ordinary differential equations (ODE).

» A basic IVP:

‘;}; f(t,y), fora<t<b

with initial value y(a) = a.
Remark

» f is given and called the defining function of IVP,
» « is given and called the initial value.
» y(t) is called the solution of the IVP if

> y(a) = o
» y'(t) =1(t,y(t)) forall t € [a, b].
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IVP of ODE

Example
The following is a basic IVP:

Yy =y—t2+1, te[0,2], andy(0)=0.5

» The defining function is f(t,y) = y — 12 + 1.
» Initial value is y(0) = 0.5.
» The solution is y(t) = (t + 1) % because:

» y(0) = (0+1)? —%:1—%:%;
» We can check that y'(t) = f(t, y(1)):
et
y(t)—2(t+1)—5

f(t,y(t)):y(t)—t2+1:(t+1)2—%t—t2+1:2(t+1)—%t
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IVP of ODE (cont.)

More general or complex cases:
» IVP of ODE system:

with initial value yq(a) = a4, . ..

» High-order ODE:

dy

—— =
T 1(t, y1, Yo,
dy>

W - f2(t7Y1aYZ7~-~
d

% = fn(t,y1,y2,...

7yn)
7yn)
fora<t<b
7yf7)
7yn(a) = Qp.

y =ty y,. ...y D) fora<t<b

with initial value y(a) = a1, y'(a) = az,...,y""Y(a) = an.

Numerical Analysis Il — Xiaojing Ye, Math & Stat, Georgia State University



Why numerical solutions for IVP?

» ODEs have extensive applications in real-world: science,
engineering, economics, finance, public health, etc.

» Analytic solution? Not with almost all ODEs.
» Fast improvement of computers.
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Some basics about IVP

Definition (Lipschitz functions)
A function f(t,y) defined on D = {(t,y) : te R,y € R} is
called Lipschitz with respect to y if there exists a constant
L>0

(8, y1) = £(t, y2)| < Llys — yel

forallt € Ry, and y1,y» € R.

Remark
We also call f is Lipschitz with respect to y with constant L, or
simply f is L-Lipschitz with respect to y.
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Some basics about IVP

Example
Function f(t,y) = t|y| is Lipschitz with respect to y on the set
D:= {(ta y)|t € [172]7y € [7354]}

Solution: For any t € [1,2] and y1, y» € [-3, 4], we have
(2, y1) — £(t, yo)| = [tlya] — tyel| < tlyr — yo| < 2|y1 — yal.

So f(t,y) = t|y| is Lipschitz with respect to y with constant
L=2.
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Some basics about IVP

Definition (Convex sets)

A set D € R? is convex if whenever (11, 1), (tz, o) € D there is
(1 = XN)(t1, 1) + AMt2, y2) € D for all X € [0,1].

Convex Not convex

Numerical Analysis Il — Xiaojing Ye, Math & Stat, Georgia State University 8



Some basics about IVP

Theorem

If D € R? is convex, and \g—;(t, y)| < Lforall(t y) e D, thenf is
Lipschitz with respect to y with constant L.

Remark

This is a sufficient (but not necessary) condition for f to be
Lipschitz with respect to y.
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Some basics about IVP

Proof.
For any (t,y1), (t,y2) € D, define function g by

g\ =f(t,(1 = Ay1 + Ayz)

for A € [0, 1] (need convexity of D!). Then we have
g'(N\) = 0yf(t, (1 = Ny1 + A\y2) - (Vo = y1)
So |g'(N\)| < L|y2 — y1|. Then we have
1 1
9(1) - 90 =| [ ¢a| < Lire il [ ] = Lo~y

Note that g(0) = (¢, y1) and g(1) = f(t, y2). This completes the
proof. O
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Some basics about IVP

Theorem

Suppose D = [a, b] x R, a function f is continuous on D and
Lipschitz with respect to y, then the initial value problem

y' = f(t,y) for t € [a, b] with initial value y(a) = « has a unique
solution y(t) for t € [a, b).

Remark

This theorem says that there must be one and only one solution
of the IVP, provided that the defining f of the IVP is continuous
and Lipschitz with respect to y on D.
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Some basics about IVP

Example
Show thaty’ =1 + tsin(ty) for t € [0,2] with y(0) =0 has a
unique solution.

Solution: First, we know f(t,y) = 1 + tsin(ty) is continuous on
[0,2] x R. Second, we can see

of 5 5
—| = < <
‘ay‘ ‘t cos(ty)‘ <|t°| <4
So f(t, y) is Lipschitz with respect to y (with constant 4). From
theorem above, we know the IVP has a unique solution y(t) on
[0, 2].

Numerical Analysis Il — Xiaojing Ye, Math & Stat, Georgia State University 12



Some basics about IVP

Theorem (Well-posedness)
AnIVPy = f(t,y) fort € |a, b] with y(a) = « is called
well-posed if

» It has a unique solution y(t);

» There existeg > 0 and k > 0, such that Ve € (0, ¢y) and
function 6(t), which is continuous and satisfies |5(t)| < e for
all't € [a, b, the perturbed problem z' = f(t, z) + §(t) with
initial value z(a) = «a + dg (where |0p| < ¢) satisfies

|z(t) — y(b)| < ke, Vte [a,b].

Remark
This theorem says that a small perturbation on defining function

f by §(t) and initial value y(a) by do will only cause small
change to original solution y(t).
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Some basics about IVP

Theorem
Let D = [a, b] x R. If f is continuous on D and Lipschitz with
respect to y, then the IVP is well-posed.

Remark
Again, a sufficient but not necessary condition for
well-posedness of IVP,
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Euler's method

Given an IVP y' = f(t,y) for t € [a, b] and y(a) = a, we want to
compute y(t) on mesh points {{, t1,...,{y} on [a, b].

To this end, we partition [a, b] into N equal segments: set
h= 252 and define t; = a+ ihfor i = 0,1,...,N. Here his
called the step size.

y
Wity) = y(b)
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Euler's method

From Taylor's theorem, we have

Y(tip1) = y(t) + ¥ (t) (1 — &) + 55" (€) (tier — )2

for some ¢ € (4, i, 1). Note that t;, 1 — t; = hand
y'(t) = f(t;, y(t;)), we get

y(tiv1) = y(ti) + hf(t, y (1))

Denote w; = y(t;) forall i = 0,1, ..., N, we get the Euler’s
method:

Wy =«
Wi+1:W,'+hf(t,',W,'), i=0,1,...,N—1
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Euler's method

Y A ft.y)
, y' =1y,
y' =1y,
ya) = o
Slope y'(a) = f(a, @)
W
o+ =
I
et | >
ty=a t; t, ty=">b t
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Euler's method

Example
Use Euler’'s method with h = 0.5 for IVP y' = y — 1> +1 for
t € [0, 2] with initial value y(0) = 0.5.

Solution: We follow Euler's method step-by-step:

h=0: w=y(0)=0.5
th=05: wy = wy+ hf(fh, wo)
bL=1.0: we=w + hf(ti,wq)
=15: ws=ws+ hf(, wo)
ts=2.0: ws=ws+ hf(l3, ws)

5+05x%x(05-024+1)=1.25
25+05x%x(1.25-0.5241) =225
25405 x (225 -12+1) = 3.375
375+ 0.5 x (3.375 — 1.52 +- 1) = 4.437

0
1
2
3
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Error bound of Euler's method

Theorem

Suppose f(t,y) in an IVP is continuous on D = [a, b] x R and
Lipschitz with respect to y with constant L. If IM > 0 such that

ly"(t)] < M (y(t) is the unique solution of the IVP), then for all
i=0,1,...,N there is

ly(t) —w| <

2t (¢ -1)

Remark

» Numerical error depends on h (also called O(h) error).
» Also depends on M, L of f.
» Error increases for larger {;.
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Error bound of Euler's method

Proof. Taking the difference of

1
Y(tip1) = y(t;) + hf(ti, yi) + Eyll(ﬁi)(fm — t;)?

Wip1 = w; + hi(t;, w;)

we get
V(1) — Wina| < |y () — wil + hIF(t;, yi) — £(8, wi)l + I\/12l72
<1y (8) - w + ALy, — w + M7
= (1 +hL)lyi — wi| + Mzh?
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Error bound of Euler's method

Proof (cont).

Denote d; = |y({)) — wj|, then we have

MH? hM
divs < (1 +hL)d+Tf(1+hL)(d o
foralli=0,1,...,N — 1. So we obtain
hM hM
A1+ 5 < (1+hL) (di+ 57 )
hM
< (1 + hL)? (d, 1+2L)
S..

< (1 4 hL)* (d +

and hence d; < (1 + hL)'- 2

hM
2L)

h (since dy = 0).

Numerical Analysis Il — Xiaojing Ye, Math & Stat, Georgia State University

>_

hM

2L

21



Error bound of Euler's method

Proof (cont).

Note that 1 + x < e* for all x > —1, and hence (1 + x)? < e if
a>o0.

Based on this, we know (1 + hL)' < et = e!(i—4) gince

ih = t; — a. Therefore we get

M hM  AM

_ ol(t-a) hM _ bM 12y _
g <e oL oL ~oL® 1)

This completes the proof.
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Error bound of Euler's method

Example
Estimate the error of Euler’s method with h = 0.2 for IVP
y' =y —t2+1 forte|0,2] with initial value y(0) = 0.5.

Solution: We first note that 5 = 1, so f is Lipschitz with
respect to y with constant L = 1. The IVP has solution

y(t)=(t—12-%soly" () =15 -2/ <& —2= M. By
theorem above, the error of Euler's method is

y(t) —w| < % (eL(’f‘a) - 1) = 0'2(0'5262 —2) (e‘f - 1)
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Error bound of Euler's method

Example

Estimate the error of Euler’s method with h = 0.2 for IVP
y' =y —t2+1 forte|0,2] with initial value y(0) = 0.5.
Solution: (cont)

% w; yi = y() [yi — wil

0.0 0.5000000 0.5000000 0.0000000
0.2 0.8000000 0.8292986 0.0292986

0.4 1.1520000 1.2140877 0.0620877
0.6 1.5504000 1.6489406 0.0985406
0.8 1.9884800 2.1272295 0.1387495
1.0 2.4581760 2.6408591 0.1826831

12 2.9498112 3.1799415 0.2301303
1.4 3.4517734 3.7324000 0.2806266
1.6 3.9501281 4.2834838 0.3333557
1.8 4.4281538 4.8151763 0.3870225
2.0 4.8657845 5.3054720 0.4396874
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Round-off error of Euler’'s method

Due to round-off errors in computer, we instead obtain

Up = a+ d
u,-+1:u,-+hf(t,-,u,-)+6,-, i=0,1,....,N—1

Suppose 36 > 0 such that |§;| < § for all /, then we can show

ly(t) —ui] < 11_ (héw + %) (eL(’f*@ - 1) + 5etli=a),

Note that "M 4 ¢ does not approach 0 as h — 0. "M 1 &

reaches minimum at h = /23 (often much smaller than what
we choose in practice).
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Higher-order Taylor’s method

Definition (Local truncation error)
We call the difference method

Wy = a+ dg
W,'+1:W,'—|-hd)(t,',W,'), i=0,1,...,N—-1

to have local truncation error

iv1 — (Vi + ho(ti, yi
Ti+1(h):y+1 (y';; ¢(t y))

where y; = y().

Example
Euler’'s method has local truncation error

1 — (Vi + hE(t, v, —
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Higher-order Taylor’s method

Note that Euler’s method hashlglcal truncation error
Tip1(h) = 25920 f(t,yy) = 28D for some ¢ € (8, tiyq). If
Y| < Mwe know |ri1(h)| < '™ = O(h).

Question: What if we use higher-order Taylor’s approximation?
/ W h"
Y(tie1) = y(8) + hy'(6) + " (1) + -+ —y (1) + R

where R = %y(”“)(g,-) for some &; € (t;, tiq).
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Higher-order Taylor’s method

First note that we can always write y(" using f:

y'(t)=f
Y'(t) = ' = 0uf + (9yN)f
y"(t) = 1" = ¢ f + (0:0yf + (950 F)f + 0y F(Orf + (9yF)f)

yM(t) = =1 = ...

albeit it’s quickly getting very complicated.
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Higher-order Taylor’s method

Now substitute them back to high-order Taylor's approximation
(ignore residual R)

H? A"
y(tinr) = y(t) + hy'(t) + Sy (t) + -+ yO(t)
2 n
—y(t) 4t g g

We can get the n-th order Taylor’s method:
Wo = o+ dg
W,'+1:W,‘—|—hT(n)(t,',W,'), i=0,1,...,N—-1
where

h hn—1
TN, wy) = £(t, wi) + Sftw)+-+ — (4, wy)
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Higher-order Taylor’s method

» Euler's method is the first order Taylor's method.

» High-order Taylor's method is more accurate than Euler’'s
method, but at much higher computational cost.

» Together with Hermite interpolating polynomials, it can be
used to interpolate values not on mesh points more
accurately.
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Higher-order Taylor's method

Theorem

If y(t) € C™[a, b], then the n-th order Taylor method has local
truncation error O(h").
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Runge-Kutta (RK) method

Runge-Kutta (RK) method attains high-order local truncation
error without expensive evaluations of derivatives of f.
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Runge-Kutta (RK) method

To derive RK method, first recall Taylor’s formula for two
variables (t, y):

f(t,y) = Pn(t,y) + Bn(t,y)

where 0] Kok f = gtnf(’ﬁg;fk) and

Pn(t, y) = f(to, Yo) + (Oif - (t — o) + Oyf - (¥ — Y0))
1 (82f- (t—10)? +20,0if - (t — to)(y — Yo) + Of - (v — yo)"‘)

,Z( )a" KOS (t— 1) (v — yo)*

n+1

Z (n+1)5”“ “OFH(E 1) - (1= 1)Ky — yo)

Rn(t>y):(n |
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Runge-Kutta (RK) method

The second order Taylor's method uses
@) h, h
r=(ty) = f(ty) + 51t y) = H(t,y) + 5(0f + Oyf - 1)
to get O(h?) error.

Suppose we use af(t + «, y + ) (with some a, «, 5 to be
determined) to reach the same order of error. To that end, we
first have

af(t+a,y+6):a<f+6'tf-a+8yf-5+l-?>

where R = 3(97f(&, 1) - o + 20y 0ef (&, 1) - af + OFH(€, 1) - ).
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Runge-Kutta (RK) method

Suppose we try to match the terms of these two formulas
(ignore R):

hf
TO(ty)=f+ ga,f+ o Ot

af(t+ o,y + p) = af + aadif + apoyf

then we have

So instead of T(3)(t, y), we use

h  h
af(t+ o,y +8) =1 (t+5.y+51(t.y))
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Runge-Kutta (RK) method

Note that R we ignored is

2 2

1 h h
R=3 (a,zf(gyu)- (5) +20,04f(&, 1) - (5) f+ OGf(& 1) (
which means R = O(h?).

Also note that
R=TA(ty)—f(t+ L y)) = O(t?)
b 27 2 b

and T@)(t,y) = O(h?), we know

f (t+ g,y - gf(t, y)) = O(H?)
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Runge-Kutta (RK) method

This is the RK2 method (Midpoint method):
Wy =«

h h .
Wiiq :W,'—{-hf(l‘,’—}—E,W/—}—Ef(ti,Wi)), i=0,1,...,N—1.

Remark
If we have (1;, w;), we only need to evaluate f twice (i.e.,
compute ki = f(t, w;) and ky = f(t; + 3, w; + Bky)) to get wi+.
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Runge-Kutta (RK) method

We can also consider higher-order RK method by fitting

TOt,y) = (t.y) + 2F(t.y) + of'(t.Y)

with af(t, y) + bf(t + o, y + 3) (has 4 parameters a, b, , 5).

Unfortunately we can make match to the 2= term of T(®), which

contains %27‘- (9,f)2, by this way But it leaves us open choices if
we're OK with O(h?) error: leta= b =1, a = h, 3 = hi(t,y),
then we get the modified Euler’s method:

h .
Wigy = Wit 5 (1t W) + F(tsr, wi+ hi(t W) ) L 1= 0,1, N = 1.

Also need evaluation of f twice in each step.
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Runge-Kutta (RK) method

Example
Use Midpoint method (RK2) and Modified Euler’'s method with
h=0.2tosolve IVPy =y —1t>+1 fort c[0,2] and y(0) = 0.5.

Solution:
Apply the main steps in the two methods:

Midpoint : wi. =w; + h f <t,- n g Wi + gf(t,-, w,))

h
Modified Euler's : w; { =w; + > (f(t,-, w;) + f(tioq, w; + hf(t;, W,')))
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Runge-Kutta (RK) method

Example

Use Midpoint method (RK2) and Modified Euler’s method with

h=0.2tosolve IVPy' =y —1t>+1 fort € [0,2] and y(0) = 0.5.
Solution: (cont)

Midpoint Modified Euler

t; y(t) Method Error Method Error
0.0 0.5000000 0.5000000 0 0.5000000 0

0.2 0.8292986 0.8280000 0.0012986 0.8260000 0.0032986
0.4 1.2140877 1.2113600 0.0027277 1.2069200 0.0071677
0.6 1.6489406 1.6446592 0.0042814 1.6372424 0.0116982
0.8 2.1272295 2.1212842 0.0059453 2.1102357 0.0169938
1.0 2.6408591 2.6331668 0.0076923 2.6176876 0.0231715
1.2 3.1799415 3.1704634 0.0094781 3.1495789 0.0303627
14 3.7324000 3.7211654 0.0112346 3.6936862 0.0387138
1.6 4.2834838 4.2706218 0.0128620 4.2350972 0.0483866
1.8 4.8151763 4.8009586 0.0142177 4.7556185 0.0595577
2.0 5.3054720 5.2903695 0.0151025 5.2330546 0.0724173

Midpoint (RK2) method is better than modified Euler's method.
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Runge-Kutta (RK) method

We can also consider higher-order RK method by fitting

TOty) = f(t.y) + 2F(t.y) + of'(t.Y)

with af(t, y) + bf(t + ar, y + 01(f(t + az, y + 02f(t, ¥)) ) (has 6
parameters a, b, a1, ap, 81, d2) to reach O(h3) error.

For example, Heun's choiceisa=1,b=2, a1 =2 a, =1
&1 = 21, 5p = Df.

b

Nevertheless, methods of order O(h®) are rarely used in
practice.
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4-th Order Runge-Kutta (RK4) method

Most commonly used is the 4-th order Runge-Kutta method
(RK4): start with wy = «, and iteratively do

k1 = f(t,, W,)
h h
k2:f(t,' 2 W,+2k1)
h h
ks =t + 5., Wi+ ko)
kg = f(ti11, Wi + hk)
h
Wip1 = W+ é(k1 + 2ko + 2k3 + k4)
\

Need to evaluate f for 4 times in each step. Reach error O(h*).
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4-th Order Runge-Kutta (RK4) method

Example
Use RK4 (withh = 0.2) to solve IVP y' = y — 2 +1 fort € [0, 2]
and y(0) = 0.5.

Solution: With h = 0.2, we have N = 10 and f; = 0.2/ for
i=0,1,...,10. First set wy = 0.5, then the first iteration is

2
ks = f(fo + g Wo -+ gkg) = £(0.1,0.5+ 0.1 x 1.64) = 1.654

ke = f(t, wo + hks) = £(0.2,0.5 + 0.2 x 1.654) = 1.7908
h
Wy = Wy + 6(/(1 + 2ko + 2ks + k4) = 0.8292933

So wy is our RK4 approximation of y(t1) = y(0.2).
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4-th Order Runge-Kutta (RK4) method

Example

Use RK4 (withh = 0.2) to solve IVPy' = y — 12 +1 fort € [0, 2]

and y(0) = 0.5.

Solution: (cont) Continue withi =1,2,--- ,9:

Runge-Kutta
Exact Order Four Error

14 yi = y(&) w; lyi — wi
0.0 0.5000000 0.5000000 0
0.2 0.8292986 0.8292933 0.0000053
0.4 1.2140877 1.2140762 0.0000114
0.6 1.6489406 1.6489220 0.0000186
0.8 2.1272295 2.1272027 0.0000269
1.0 2.6408591 2.6408227 0.0000364
1.2 3.1799415 3.1798942 0.0000474
1.4 3.7324000 3.7323401 0.0000599
1.6 4.2834838 4.2834095 0.0000743
1.8 4.8151763 4.8150857 0.0000906
2.0 5.3054720 5.3053630 0.0001089
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High-order Runge-Kutta method

Can we use even higher-order method to improve accuracy?

#f eval 2 3 4 5<n<7 8<n<9 n>10
Besterror | O(h?) O(K®) O(h*) O(h™T)  O(h"~2) O(h"~3)

So RK4 is the sweet spot.

Remark

Note that RK4 requires 4 evaluations of f each step. So it would
make sense only if it's accuracy with step size 4h is higher than
Midpoint with 2h or Euler’s with h!
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High-order Runge-Kutta method

Example

Use RK4 (with h = 0.1), Midpoint (with h = 0.05), and Euler’s
method (with h = 0.025) to solve IVP y' = y — 12 +1 for

t €[0,0.5] and y(0) = 0.5.

Solution:

Modified Runge-Kutta

Euler Euler Order Four

t; Exact h =0.025 h = 0.05 h=0.1

0.0 0.5000000 0.5000000 0.5000000 0.5000000

0.1 0.6574145 0.6554982 0.6573085 0.6574144

0.2 0.8292986 0.8253385 0.8290778 0.8292983

0.3 1.0150706 1.0089334 1.0147254 1.0150701

04 1.2140877 1.2056345 1.2136079 1.2140869

0.5 1.4256394 1.4147264 1.4250141 1.4256384

RK4 is better with same computation cost!
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Error control

Can we control the error of Runge-Kutta method by using
variable step sizes?

Let’s compare two difference methods with errors O(h") and
O(h™) (say, RK4 and RKS5) for fixed step size h, which have
schemes below:

Wir1 = W, + ho(t;, w;, h) O(h")
Wiy = W; + ho(t;, W, h) O(h™T)
Suppose w; ~ w; ~ y(tj) =: y;. Then for any given ¢ > 0, we

want to see how small h should be for the O(h") method so that
its error |71 (h)| < €?
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Error control

We recall that the local truncation errors of these two methods
are:

v (h) = PEL (1, i, ) = O(h")

Fra(h) = 22 Gty ) ~ O(h+)

Given that w; ~ W; ~ y; and O(h"t1) < O(h") for small h, we
see

i1 (h) = i1 (h) = 74 (h) = 6(t, ¥, h) = 6(, v, h)
b 1 ‘7V - W W; — W;
~ ¢(ti? Wfah)_¢(ti,W/,h) — it P Wit i

h h
o Wist = Wit n
h

for some K > 0 independent of h, since 7, 1(h) = O(h").
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Error control

Suppose that we can scale h by g > 0, such that

re1(ah)| ~ K(qh)" = gk  gn s = Ml <

So we need q to satisfy
1/n

h
B ()

» g < 1: reject the initial h and recalculate using gh.
» g > 1: accept computed value and use gh for next step.
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Runge-Kutta-Fehlberg method

The Runge-Kutta-Fehlberg (RKF) method uses specific
4th-order and 5th-order RK schemes, which share some
computed values and together only need 6 evaluation of f, to
estimate

h 1/4 h 1/4
7= <2|‘7Vi+16— Wi+1‘) =084 <‘V~Vi+1 6— Wit1 ’>

This g is used to tune step size so that error is always bounded
by the prescribed e.

Numerical Analysis Il — Xiaojing Ye, Math & Stat, Georgia State University 50



Multistep method

Definition
Let m > 1 be an integer, then an m-step multistep method is
given by the form of

Wit1 = @m-1W; + @m—2Wj—1 + -+ - + aoWi—m+1
+ h [bmf(tix1, Wit) 4+ Bm—1 F(ti, W) + - - - + bof(timms1, Wiem1)]

fori=m—-1m,... . N—1.

Here ay, . ..,am-1, bo, ..., by are constants. Also
Wo=a, Wi =aq,...,Wn_1 = am_y Need to be given.

» by = 0: Explicit m-step method.
» by # 0: Implicit m-step method.

Numerical Analysis Il — Xiaojing Ye, Math & Stat, Georgia State University 51



Multistep method

Definition
The local truncation error of the m-step multistep method
above is defined by

i1 — (@m_1Yi+ -+ ayi-
’r,'+1(h) _ Yit1 ( m—1Yi - 0Yi m+1)

— [bmf(tis1, Yig1) + b1 £(ti, i) + -+ + bof(ti—mits Yiem+1)]

where y; .= y(t).
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Adams-Bashforth Explicit method

Adams-Bashforth Two-Step Explicit method:
Wo =a, Wi =ay,
h
Wip1 =W+ 5 [3f(fi, w;) — f(ti—1, wi_q)
fori=1,....N—1.
The local truncation error is
S " 2
Tiv1(h) = 15y (wi)h

for some p; € (i1, tii1).
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Adams-Bashforth Explicit method

Adams-Bashforth Three-Step Explicit method:
Wo=a, Wi=a, W=ap,

h
Wip1 = 12 23f(t;, w;) — 16f(ti_1, wj_1) + 5F(ti_2, wj_»)

fori=2...,N—1.

The local truncation error is
3
Tir1(h) = §Y(4)(Mi)h3

for some p; € (ti_2, tii1).
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Adams-Bashforth Explicit method

Adams-Bashforth Four-Step Explicit method:
{ Wo=a, W =aoa1, W =aoa, W3=a3

h
Wip1 =W + g [551‘(1’,‘, W,‘) — 59f(t,‘,1, Wi_4q ) + 37f(t,‘,2, W,‘,Q) - 9f(t,‘,3, W,‘,3):|

fori=3,....,N—1.

The local truncation error is

251
Tir1(h) = ﬁy(s)(ui)h"’

for some p; € (ti_3, tii1).
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Adams-Bashforth Explicit method

Adams-Bashforth Five-Step Explicit method:

Wo = a, W17041, Wo = ap, W3 =a3, W=y
Wipy = Wi + [1901f(t,,wl)72774f(t/ 1, Wi—1) 4 2616f(ti_2, wi_2)
—1274f(ti_3, wi—3) + 251f(ti_4, Wi_4)]

fori=4,...,N—1.

The local truncation error is

95

for some p; € (ti_4, tivq).
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Adams-Moulton Implicit method

Adams-Moulton Two-Step Implicit method:
Wo=oa, Wy=a,
Wip1 = Wi + 1/?2[5f(f/+1, Wii1) + 8F(ti, wi) — f(ti—q, wi_1)]
fori=1,... N—1.
The local truncation error is
riaa(h) = g YOk

for some p; € (ti_1, tivq).
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Adams-Moulton Implicit method

Adams-Moulton Three-Step Implicit method:

{ Wo=a, W=, W =a

h
Wiy = W; + 5[97‘(1‘,417 Wig1) + 19F(8, wy) — 5F(ti_1, wi_q1) + f(ti—2, wi_2)]
fori=2,...,N—1.

The local truncation error is

19

for some p; € (ti_2, tiiq).
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Adams-Moulton Implicit method

Adams-Moulton Four-Step Implicit method:

W =a, W =ao, W =a, W3 =ag
h
Wipq = W + ﬁolzm (b1, Wipq) + 6461(L;, w;) — 264f(ti_1, wi_1)
+ 106f(ti_2, wi_2) — 19f(ti_3, w;_3)]

fori=3,...,N—1.

The local truncation error is

3
YO (uj)h®

Ti+1(h) =~ 355

for some p; € (ti_3, tiiq).
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Steps to develop multistep methods

» Construct interpolating polynomial P(t) (e.g., Newton’s
backward difference method) using previously computed

(ti—m+17 Wi—m+1 )7 sy (ti7 Wi)'
» Approximate y(t.1) based on

lit1

lit1
i) =yt + [ ydt=y(t) + / (L, y(1) dt

i
lit1
%y(l‘,-)—k/ f(t, P(t)) dt
t.
and construct difference method:

Wip1 = Wi+ ho(li, ..., timyt, Wiy o, Wimmygt)
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Explicit vs. Implicit

» Implicit methods are generally more accurate than the
explicit ones (e.g., Adams-Moulton three-step implicit
method is even more accurate than Adams-Bashforth
four-step explicit method).

» Implicit methods require solving for w;, { from

h
Wiy =+ —F(lip1, W
i+1 T o (fiv1, Wit1) +

which can be difficult or even impossible.

» There could be multiple solutions of w;, 1 when solving the
equation above in implicit methods.
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Predictor-Corrector method

Due to the aforementioned issues, implicit methods are often
cast in “predictor-corrector” form in practice.

In each step i:

» Prediction: Compute w;, 1 using an explicit method ¢ to
get wi4 p using

Wittp = Wi+ ho(ti, Wi, ... liomit, Wimmid)

» Correction: Substitute w; ¢ by w1 p in the implicit
method ¢ and compute w;, 1 using

Witq = W + (e, Wit p G, Wiy oot Wimmet)
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Predictor-Corrector method

Example

Use the Adams-Bashforth 4-step explicit method and
Adams-Moulton 3-step implicit method to form the Adams
4th-order Predictor-Corrector method.

With initial value wy = «, suppose we first generate wy, wo, ws
using RK4 method. Then fori=3,4,...,N —1:
» Use Adams-Bashforth 4-step explicit method to get a
predictor w1 p:
Wip1,p = Wﬁ% [55f(1‘/7 w;) — 89f(ti_1, wi_1) + 37f(ti_2, wi_2) — 9f(ti_3, Wi—S)]

» Use Adams-Moulton 3-step implicit method to get a
corrector w;, 1:

h
Wity = Wi + §[9f(fi+17 Wii1,p) + 19F(ti, w;) — 5F(tiq1, wi—1) + f(ti_2, wi_2)]
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Predictor-Corrector method

Example

Use Adams Predictor-Corrector Method with h = 0.2 to solve
IVPy' =y — 12 +1 fort € [0,2] and y(0) = 0.5.

Error
t yi =y() w; lyi — wil

0.0 0.5000000 0.5000000 0
0.2 0.8292986 0.8292933 0.0000053

0.4 1.2140877 1.2140762 0.0000114
0.6 1.6489406 1.6489220 0.0000186
0.8 2.1272295 2.1272056 0.0000239

1.0 2.6408591 2.6408286 0.0000305
1.2 3.1799415 3.1799026 0.0000389
1.4 3.7324000 3.7323505 0.0000495
1.6 4.2834838 4.2834208 0.0000630
1.8 4.8151763 4.8150964 0.0000799
2.0 5.3054720 5.3053707 0.0001013
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Other Predictor-Corrector method

We can also use Milne’s 3-step explicit method and Simpson’s
2-step implicit method below:

4h
Wit p = Wiog + - [20(t;, W) = F(ti1, Wioy) + 2f(ti_z. Wi_2)|

h
Wity = Wi_1 + g[f(tHh Wit1,p) + 4F(t, wi) + F(ti—1, wi—1)]

This method is O(h*) and generally has better accuracy than
Adams PC method. However it is more likely to be vulnurable to
sound-off error.
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Predictor-Corrector method

» PC methods have comparable accuracy as RK4, but often
require only 2 evaluations of f in each step.

» Need to store values of f for several previous steps.

» Sometimes are more restrictive on step size h, e.g., in the
stiff differential equation case later.
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Variable step-size multistep method

Now let’s take a closer look at the errors of the multistep
methods. Denote y; := y(t).

The Adams-Bashforth 4-step explicit method has error

251
Tir1(h) = ﬁy(s)(ﬂi)hd'

The Adams-Moulton 3-step implicit method has error

19

ARy CHEAY

Fip1(h) =
where y; € (ti_3, tiyq) and fi; € (ti_z, tip1).

Question: Can we find a way to scale step size h so the error is
under control?
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Variable step-size multistep method

Consider the their local truncation errors:

251
Yit1 — Wipd o 720y(5)( )h

19 -
Yigt — Wipq = —ﬁoy ¥ (fi;)h°

Assume y©®) (1) =~ y©®)(ji;), we take their difference to get

1 3
Wit = Wir1,p = 555 (19 + 251)y®)(u)h° ~ gy(s)(ui)hs

So the error of Adams-Moulton (corrector step) is

W 19(Werqs — Wi
7’:i+1 (h) _ ’yI—H - WI+1’ ~ ‘WI+217OhWI+1,P’ _ Kh4

where K is independent of h since 7i,1(h) = O(h*).
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Variable step-size multistep method

If we want to keep error under a prescribed ¢, then we need to
find g > 0 such that with step size gh, there is

ly(ti + qh) — wiq| _ 19G* Wit — Wipqpl

ah ~ 270h <€

iv1(qh) =
This implies that

B ( 270he )1/4 ~ 2< he )
19|Wip1 — Wit1 p| |Wit1 — Wit pl

1/4

To be conservative, we may replace 2 by 1.5 above.

In practice, we tune g (as less as possible) such that the
estimated error is between (¢/10, ¢)
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System of differential equations

The IVP for a system of ODE has form

du
T;:f1(tau17u27"'aum)
du:
T::fZ(tau17u27"'7um)

fora<t<b
du
Tr:fm(t,U1,U2,...,Um)

with initial value uq(a) = a4, ..., un(a) = am.

Definition
A set of functions uy(t), ..., um(t) is a solution of the IVP
above if they satisfy both the system of ODEs and the initial

values.
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System of differential equations

In this case, we will solve for uy(t), ..., un(t) which are
interdependent according to the ODE system.

y y y
a{ll . Wos3 uy(2) 3:”‘3 L?“) =,
w:% N Wn 'm2 ® u, (1)
\ e
@=a MO :
N, —
(a) = o,
IR PR,
F—t—+— F—t—+—+
‘a =fhty, b b 1 ‘a =ttty t, 13 !
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System of differential equations

Definition
A function f is called Lipschitz with respect to uy, ..., Un on
D :=[a, b] x R™ if there exists L > 0 s.t.

m
If(t,ug,...,um)—f(t,z1,...,2m)| < LZ|uj_Zj
=

forall (t,uq,...,Um),(t,21,...,2m) € D.
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System of differential equations

Theorem
Iff € C'(D) and | L \ < L for all j, then f is Lipschitz with

respect to u = (u1,..., Um) on D.

Proof.
Note that D is convex. For any
(t,uy,...,Um),(t,z1,...,2m) € D, define
g(/\) = f(t’ (1 - /\)U1 + )\217 SRR (1 - )‘)Um + )\Zm)
forall A € [0, 1]. Then from |g(1) — g(0)| < fo |g’(\)|dX and the
definition of g, the conclusion foIIows Ol
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System of differential equations

Theorem
If f € C'(D) and is Lipschitz with respect to u = (uy, . .., Un),

then the IVP with f as defining function has a unique solution.
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System of differential equations

Now let’s use vector notations below

a=(a,...,am)
y:(y17 7Ym)
w=(Wy,...,Wn)

f(t,w) = (f1(t,wy),...,fm(t, wm))

Then the IVP of ODE system can be written as
y =1(ty), telab]
with initial value y(a) = a.

So the difference methods developed above, such as RK4, still
apply.
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System of differential equations

Example
Use RK4 (with h = 0.1) to solve IVP for ODE system

Kt = (k) = —4l + 3l +6
/é(t) = fg(t, Iy, /2) =24 +1.6L + 3.6

with initial value 11(0) = k(0) = 0.
Solution: The exact solution is

li(t) = —3.375e %' + 1.875¢ 94 115
l(t) = 2.25e 2! + 2.25¢7 04

forall t > 0.
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System of differential equations

Example
Use RK4 (with h = 0.1) to solve IVP for ODE system

K(t) = fi(t, s b) = —4ly + 31+ 6
/é(t) == fg(t, Iy, /2) =-24/l; +16h + 3.6

with initial value 1;(0) = k(0) = 0.
Solution: (cont) The result by RK4 is

7 wy, wo,; [ (%) — wy [ (1) — wa;
0.0 0 0 0 0

0.1 0.5382550 0.3196263 0.8285 x 107 0.5803 x 10~
0.2 0.9684983 0.5687817 0.1514 x 10~* 0.9596 x 107
0.3 1.310717 0.7607328 0.1907 x 10~ 0.1216 x 107*
0.4 1.581263 0.9063208 0.2098 x 10~* 0.1311 x 10~*
0.5 1.793505 1.014402 0.2193 x 10~* 0.1240 x 10~
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High-order ordinary differential equations

A general IVP for mth-order ODE is
y(m):f(t7y7y/7"‘7y(m_1))7 te[a7b]

with initial value y(a) = a1,y(a) = ag, ...,y (&) = an.
Definition
A function y(t) is a solution of IVP for the mth-order ODE

above if y(t) satisfies the differential equation fort € [a, b] and
all initial value conditions at t = a.
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High-order ordinary differential equations

We can define a set of functions uy, ..., un s.t.

ur(t) =y(t), w(t)=y'O), ... um(t)=y""()

Then we can convert the mth-order ODE to a system of
first-order ODEs:

Uy = U
Uy = Uz
fora<t<b
U;n: f(t)u17u27"'7um)
with initial values uy(a) = a4, ..., Un(a) = am.
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High-order ordinary differential equations

Example
Use RK4 (with h = 0.1) to solve IVP for ODE system

y" -2y +2y =e?sint, tel0,1]

with initial value y(0) = —0.4,y’(0) = —0.6.

Solution:
The exact solution is y(t) = uy(t) = 0.2€?!(sint — 2cos ). Also
ux(t) = y'(t) = U (t) but we don’t need it.
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High-order ordinary differential equations

Example

Use RK4 (with h = 0.1) to solve IVP for ODE system

y" -2y +2y = e?lsint,

with initial value y(0) = —0.4,y’(0) = —0.6.

Solution: (cont) The result by RK4 is

te[0,1]

lj () = u () wi; V() = () ) [y(t) — wyyl [Y(55) — wayl
0.0 —0.40000000 —0.40000000 —0.6000000 —0.60000000 0 0

0.1 —0.46173297 —0.46173334 —0.6316304 —0.63163124 3.7 x 1077 7.75 x 1077
0.2 —0.52555905 —0.52555988 —0.6401478 —0.64014895 8.3 x 1077 1.01 x 107¢
0.3 —0.58860005 —0.58860144 —0.6136630 —0.61366381 1.39 x 107¢ 8.34 x 1077
0.4 —0.64661028 —0.64661231 —0.5365821 —0.53658203 2.03 x 107° 1.79 x 1077
0.5 —0.69356395 —0.69356666 —0.3887395 —0.38873810 2.71 x 107° 5.96 x 1077
0.6 —0.72114849 —0.72115190 —0.1443834 —0.14438087 341 x 107 7.75 x 1077
0.7 —0.71814890 —0.71815295 0.2289917 0.22899702 4.05 x 107° 2.03 x 107°
0.8 —0.66970677 —0.66971133 0.7719815 0.77199180 4.56 x 107° 5.30 x 107°
0.9 —0.55643814 —0.55644290 1.534764 1.5347815 4.76 x 107° 9.54 x 107°
1.0 —0.35339436 —0.35339886 2.578741 2.5787663 4.50 x 10~° 1.34 x 107°
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A brief summary

The difference methods we developed above, e.g., Euler’s,
midpoints, RK4, multistep explicit/implicit, predictor-corrector
methods, are

» based on step-by-step derivation and easy to understand;
» widely used in many practical problems;
» fundamental to more advanced and complex techniques.
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Stability of difference methods

Definition (Consistency)
A difference method is called consistent if
lim (max T,-(h)) -0

h—0 \1<i<N
where 1;(h) is the local truncation error of the method.

Remark

Since local truncation error T;( h) is defined assuming previous
w; = y;, it does not take error accumulation into account. So the
consistency definition above only considers how good

o(t, w;, h) in the difference method is.
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Stability of difference methods

For any step size h > 0, the difference method

wi 1 = w; + ho(t;, w;, h) can generate a sequence of w; which
depend on h. We call them {w;(h)};. Note that w; gradually
accumulate errorsas i =1,2,...,N.

Definition (Convergent)
A difference method is called convergent if

lim (max \yi — W,-(h)|) =0

h—0 \1<i<N
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Stability of difference methods

Example
Show that Euler’'s method is convergent.
Solution: We have showed before that for fixed h > 0 there is

Yo wil < MM i-a) AM ¢ 1(b-a)
() = w| < 5 (4079 1) < 5 (072 1)
foralli=0,...,N. Therefore we have

Nl < M ib-a)
1r2%>;v}y(t,)—w,\gz(e a—1>—>0

as h — 0. Therefore limy_,o(max<j<n|y(t) — w;|) = 0.
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Stability of difference method

Definition
A numerical method is called stable if its results depend on the
initial data continuously.
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Stability of difference methods

Theorem
Foragiven IVP y' = f(t,y), t € |a, b] with y(a) = «, consider a
difference method w; 1 = w; + ho(t;, w;, h) with wo = «. If there
exists hy > 0 such that ¢ is continuous on [a, b] x R x [0, hy],
and ¢ is L-Lipschitz with respect to w, then
» The difference method is stable.
» The difference method is convergent if and only if it is
consistent (i.e., ¢(t,y,0) = f(t,y)).
» If there exists bound 7(h) such that |ij(h )\ < 7(h) for all
i=1,...,N, then|y(t;) — wj| < r(h)eti-a/L.
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Stability of difference methods

Proof.
Let h be fixed, then w;(«) generated by the difference method
are functions of «. For any two values «, &, there is

[Wit1(a) — wip1 (&) = [(wia) — hé(t;, wi(a))) — (wi(&) — he(t, wi(&)))]
< wi(e) — wi(&)] + hlo(t, wi(a)) — (8, wi(8))]
< [wi(e) — wi(8)] + hLwi(a) — w;(8)]
= (1+ hL)|wj(a) — wi(&)]
< (14 hL) ™ wo(a) — wo(6)|
= +h)Ha - éa
< (14 h)Na — 4|

Therefore w;j(«) is Lipschitz with respect to « (with constant at
most (1 + AL)V), and hence is continuous with respect to a.
We omit the proofs for the other two assertions here. O]
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Stability of difference method

Example

Use the result of Theorem above to show that the Modified
Euler’'s method is stable.

Solution:
Recall the Modified Euler’s method is given by
h
Wip1 = Wi+ 3 (f(th w;) + f(tiyq, wi + hE(t;, Wi)))
So we have ¢(t, w, h) = S(f(t,w) + f(t + h,w + hf(t, w))).

Now we want to show ¢ is continuous in (t, w, h), and Lipschitz
with respect to w.
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Stability of difference method

Solution: (cont) It is obvious that ¢ is continuous in (t, w, h)
since f(t, w) is continuous. Fix t and h. For any w, w € R, there
is

608, w, ) — (8, 7, B)| = J11(t, w) — (2, )

;
+ S+ how - hi(t w)) = £(t + h, % + hi(t, W)

< g|w— w| + él(w-ﬁ- hf(t, w)) — (w + hf(t, w))|

_ Lh _
< Ljw = W] + 5 [t w) — F(t, ®)]

L2h
< Liw — | + 5~ |w — |

L?h _
=(L+ 7)|W* w

So ¢ is Lipschitz with respect to w. By first part of Theorem
above, the Modified Euler’'s method is stable.
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Stability of multistep difference method
Definition
Suppose a multistep difference method given by
Wir1 = @m-1W; + 8m_2aWj—1 + - + @Wi—ms1 + hF (&, b, Wiy, ..., Wi_miq)

Then we call the following the characteristic polynomial of
the method:

A (am_1>\m*1 +-~+a1>\+ao)

Definition
A difference method is said to satisfy the root condition if all
the m roots \1, ..., A\m Of its characteristic polynomial have

magnitudes < 1, and all of those which have magnitude =1 are
single roots.
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Stability of multistep difference method

Definition
» A difference method that satisfies root condition is called
strongly stable if the only root with magnitude 1 is A = 1.

» A difference method that satisfies root condition is called
weakly stable if there are multiple roots with magnitude 1.

» A difference method that does not satisfy root condition is
called unstable.
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Stability of multistep difference method

Theorem

» A difference method is stable if and only if it satisfies the
root condition.

» If a difference method is consistent, then it is stable if and
only if it is covergent.

Numerical Analysis Il — Xiaojing Ye, Math & Stat, Georgia State University 93



Stability of multistep difference method

Example

Show that the Adams-Bashforth 4-step explicit method is
strongly stable.

Solution: Recall that the method is given by

h
Wir1 = W + - |55F(t;, w;) — 59F(ti_1, wi—_1) + 37f(fi_a, wi_p) — 9f(fi_3, wj_3)
24

So the characteristic polynomial is simply A\* — A3 = A3(\ — 1),
which only has one root A = 1 with magnitude 1. So the
method is strongly stable.
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Stability of multistep difference method

Example

Show that the Milne’s 3-step explicit method is weakly stable
but not strongly stable.

Solution: Recall that the method is given by

4h
Wit1 = Wj_3 + ? |:2f(l’,', W,') — f(t,'_1, Wi_1)+ 2f(t,'_2, Wi—Z)]

So the characteristic polynomial is simply A* — 1, which have
roots A = +1, +i. So the method is weakly stable but not
strongly stable.

Remark

This is the reason we chose Adams-Bashforth-Moulton PC
rather than Milne-Simpsons PC since the former is strongly
stable and likely to be more robust.
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Stiff differential equations

Stiff differential equations have e~ terms (¢ > 0 large) in their
solutions. These terms — 0 quickly, but their derivatives (of
form ¢"e~°!) do not, especially at small t.

Recall that difference methods have errors proportional to the
derivatives, and hence they may be inaccurate for stiff ODEs.
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Stiff differential equations

Example

Use RK4 to solve the IVP for a system of two ODEs:

1 .
Uy = 9uy +24u2+5003t—§smt

1 .
u, = —24u4 —51u2—9003t+§smt

with initial values u1(0) = 4/3 and u>(0) = 2/3.
Solution: The exact solution is

1
us(t) =283 — 739 4 5 0ost

’
up(t) = —e 3 42739 — g cost

forall t > 0.
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Stiff differential equations

Solution: (cont) When we apply RK4 to this stiff ODE, we

obtain
wy (1) w (1) w (1) ws (1)

t u (1) h=0.05 h=0.1 u (1) h =0.05 h=0.1
0.1 1.793061 1.712219 —2.645169 —1.032001 —0.8703152 7.844527
0.2 1.423901 1.414070 —18.45158 —0.8746809 —0.8550148 38.87631
0.3 1.131575 1.130523 —87.47221 —0.7249984 —0.7228910 176.4828
0.4 0.9094086 0.9092763 —934.0722 —0.6082141 —0.6079475 789.3540
0.5 0.7387877 9.7387506 —1760.016 —0.5156575 —0.5155810 3520.00
0.6 0.6057094 0.6056833 —7848.550 —0.4404108 —0.4403558 15697.84
0.7 0.4998603 0.4998361 —34989.63 —0.3774038 —0.3773540 69979.87
0.8 0.4136714 0.4136490 —155979.4 —0.3229535 —0.3229078 311959.5
0.9 0.3416143 0.3415939 —695332.0 —0.2744088 —0.2743673 1390664.
1.0 0.2796748 0.2796568 —3099671. —0.2298877 —0.2298511 6199352.

which can blow up for larger step size h.
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Stiff differential equations

Now let’s use a simple example to see why this happens:
consider an IVP y’ = \y, t > 0, and y(0) = . Here A < 0. We
know the problem has solution y(t) = ae.

Suppose we apply Euler's method, which is

Wip1 = W+ hf(t,', W,') =W+ h)\W, = (1 + )\h)W,
==+ 1) wy =1+ Ah)* o

Therefore we simply have w; = (1 + Ah)’a. So the error is
() — wi| = [ae™" — (1 + Ah)'a| = [ — (1 + Ah)'[|a]

In order for the error not to blow up, we need at least

|1+ Ah| < 1, which yields h < |27‘ So h needs to be sulfficiently

small for large .
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Stiff differential equations

Similar issue occurs for other one-step methods, which for this
IVP can be written as wj.1 = Q\h)w; = --- = (Q(\h)) T a.
For the solution not to blow up, we need |Q(\h)| < 1.

For example, in nth-order Taylor's method, we need

A2 PR APHT
QOB =1+ A+ 25 4o+

<1
which requires h to be very small.

The same issue occurs for multistep methods too.

Numerical Analysis Il — Xiaojing Ye, Math & Stat, Georgia State University 100



Stiff differential equations

A remedy of stiff ODE is using implicit method, e.g., the implicit
Trapezoid method:

h
& (F(tip1, wipq) + (6, wy))

Wigi = Wit 5

In each step, we need to solve for w;, ¢ from the equation
above.
Namely, we need to solve for the root of F(w):

F(W) =W - w— g(f(ti-i-h W) + f(f,', W,')) =0

We can use Newton’s method to solve F(x) = 0. For ODE
system with f of high dimension, use secant method.
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