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IVP of ODE

We study numerical solution for initial value problem (IVP) of
ordinary differential equations (ODE).

I A basic IVP:

dy
dt

= f (t , y), for a ≤ t ≤ b

with initial value y(a) = α.

Remark
I f is given and called the defining function of IVP.
I α is given and called the initial value.
I y(t) is called the solution of the IVP if

I y(a) = α;
I y ′(t) = f (t , y(t)) for all t ∈ [a,b].
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IVP of ODE

Example
The following is a basic IVP:

y ′ = y − t2 + 1, t ∈ [0,2], and y(0) = 0.5

I The defining function is f (t , y) = y − t2 + 1.
I Initial value is y(0) = 0.5.
I The solution is y(t) = (t + 1)2 − et

2 because:
I y(0) = (0 + 1)2 − e0

2 = 1− 1
2 = 1

2 ;
I We can check that y ′(t) = f (t , y(t)):

y ′(t) = 2(t + 1)−
et

2

f (t , y(t)) = y(t)− t2 + 1 = (t + 1)2 −
et

2
− t2 + 1 = 2(t + 1)−

et

2
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IVP of ODE (cont.)
More general or complex cases:

I IVP of ODE system:

dy1

dt
= f1(t , y1, y2, . . . , yn)

dy2

dt
= f2(t , y1, y2, . . . , yn)

...
dyn

dt
= fn(t , y1, y2, . . . , yn)

for a ≤ t ≤ b

with initial value y1(a) = α1, . . . , yn(a) = αn.
I High-order ODE:

y (n) = f (t , y , y ′, . . . , y (n−1)) for a ≤ t ≤ b

with initial value y(a) = α1, y ′(a) = α2, . . . , y (n−1)(a) = αn.
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Why numerical solutions for IVP?

I ODEs have extensive applications in real-world: science,
engineering, economics, finance, public health, etc.

I Analytic solution? Not with almost all ODEs.
I Fast improvement of computers.
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Some basics about IVP

Definition (Lipschitz functions)
A function f (t , y) defined on D = {(t , y) : t ∈ R+, y ∈ R} is
called Lipschitz with respect to y if there exists a constant
L > 0

|f (t , y1)− f (t , y2)| ≤ L|y1 − y2|

for all t ∈ R+, and y1, y2 ∈ R.

Remark
We also call f is Lipschitz with respect to y with constant L, or
simply f is L-Lipschitz with respect to y.
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Some basics about IVP

Example
Function f (t , y) = t |y | is Lipschitz with respect to y on the set
D := {(t , y)|t ∈ [1,2], y ∈ [−3,4]}.

Solution: For any t ∈ [1,2] and y1, y2 ∈ [−3,4], we have

|f (t , y1)− f (t , y2)| =
∣∣t |y1| − t |y2|

∣∣ ≤ t |y1 − y2| ≤ 2|y1 − y2|.

So f (t , y) = t |y | is Lipschitz with respect to y with constant
L = 2.
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Some basics about IVP

Definition (Convex sets)
A set D ∈ R2 is convex if whenever (t1, y1), (t2, y2) ∈ D there is
(1− λ)(t1, y1) + λ(t2, y2) ∈ D for all λ ∈ [0,1].

5.1 The Elementary Theory of Initial-Value Problems 261

Definition 5.1 A function f (t, y) is said to satisfy a Lipschitz condition in the variable y on a set D ⊂ R2

if a constant L > 0 exists with

|f (t, y1)− f (t, y2, )| ≤ L| y1 − y2|,

whenever (t, y1) and (t, y2) are in D. The constant L is called a Lipschitz constant for f .

Example 1 Show that f (t, y) = t| y| satisfies a Lipschitz condition on the interval D = {(t, y) | 1 ≤
t ≤ 2 and − 3 ≤ y ≤ 4}.
Solution For each pair of points (t, y1) and (t, y2) in D we have

|f (t, y1)− f (t, y2)| = |t| y1|− t| y2∥ = |t|∥ y1|− | y2∥ ≤ 2| y1 − y2|.

Thus f satisfies a Lipschitz condition on D in the variable y with Lipschitz constant 2. The
smallest value possible for the Lipschitz constant for this problem is L = 2, because, for
example,

|f (2, 1)− f (2, 0)| = |2 − 0| = 2|1− 0|.

Definition 5.2 A set D ⊂ R2 is said to be convex if whenever (t1, y1) and (t2, y2) belong to D, then
((1− λ)t1 + λt2, (1− λ)y1 + λy2) also belongs to D for every λ in [0, 1].

In geometric terms, Definition 5.2 states that a set is convex provided that whenever
two points belong to the set, the entire straight-line segment between the points also belongs
to the set. (See Figure 5.1.) The sets we consider in this chapter are generally of the form
D = {(t, y) | a ≤ t ≤ b and −∞ < y <∞} for some constants a and b. It is easy to verify
(see Exercise 7) that these sets are convex.

Figure 5.1

(t1, y1)

(t1, y1)(t 2, y2)
(t2, y2)

Convex Not convex

Theorem 5.3 Suppose f (t, y) is defined on a convex set D ⊂ R2. If a constant L > 0 exists with
∣∣∣∣
∂f

∂y
(t, y)

∣∣∣∣ ≤ L, for all (t, y) ∈ D, (5.1)

then f satisfies a Lipschitz condition on D in the variable y with Lipschitz constant L.

The proof of Theorem 5.3 is discussed in Exercise 6; it is similar to the proof of the
corresponding result for functions of one variable discussed in Exercise 27 of Section 1.1.

Rudolf Lipschitz (1832–1903)
worked in many branches of
mathematics, including number
theory, Fourier series, differential
equations, analytical mechanics,
and potential theory. He is best
known for this generalization of
the work of Augustin-Louis
Cauchy (1789–1857) and
Guiseppe Peano (1856–1932).

As the next theorem will show, it is often of significant interest to determine whether
the function involved in an initial-value problem satisfies a Lipschitz condition in its second
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Some basics about IVP

Theorem
If D ∈ R2 is convex, and | ∂f

∂y (t , y)| ≤ L for all (t , y) ∈ D, then f is
Lipschitz with respect to y with constant L.

Remark
This is a sufficient (but not necessary) condition for f to be
Lipschitz with respect to y.
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Some basics about IVP

Proof.
For any (t , y1), (t , y2) ∈ D, define function g by

g(λ) = f (t , (1− λ)y1 + λy2)

for λ ∈ [0,1] (need convexity of D!). Then we have

g′(λ) = ∂y f (t , (1− λ)y1 + λy2) · (y2 − y1)

So |g′(λ)| ≤ L|y2 − y1|. Then we have

|g(1)− g(0)| =
∣∣∣∫ 1

0
g′(λ) dλ

∣∣∣ ≤ L|y2 − y1|
∣∣∣∫ 1

0
dλ
∣∣∣ = L|y2 − y1|

Note that g(0) = f (t , y1) and g(1) = f (t , y2). This completes the
proof.
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Some basics about IVP

Theorem
Suppose D = [a,b]× R, a function f is continuous on D and
Lipschitz with respect to y, then the initial value problem
y ′ = f (t , y) for t ∈ [a,b] with initial value y(a) = α has a unique
solution y(t) for t ∈ [a,b].

Remark
This theorem says that there must be one and only one solution
of the IVP, provided that the defining f of the IVP is continuous
and Lipschitz with respect to y on D.
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Some basics about IVP

Example
Show that y ′ = 1 + t sin(ty) for t ∈ [0,2] with y(0) = 0 has a
unique solution.

Solution: First, we know f (t , y) = 1 + t sin(ty) is continuous on
[0,2]× R. Second, we can see∣∣∣∣ ∂f

∂y

∣∣∣∣ =
∣∣∣t2 cos(ty)

∣∣∣ ≤ |t2| ≤ 4

So f (t , y) is Lipschitz with respect to y (with constant 4). From
theorem above, we know the IVP has a unique solution y(t) on
[0,2].
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Some basics about IVP

Theorem (Well-posedness)
An IVP y ′ = f (t , y) for t ∈ [a,b] with y(a) = α is called
well-posed if

I It has a unique solution y(t);
I There exist ε0 > 0 and k > 0, such that ∀ε ∈ (0, ε0) and

function δ(t), which is continuous and satisfies |δ(t)| < ε for
all t ∈ [a,b], the perturbed problem z ′ = f (t , z) + δ(t) with
initial value z(a) = α + δ0 (where |δ0| ≤ ε) satisfies

|z(t)− y(t)| < kε, ∀t ∈ [a,b].

Remark
This theorem says that a small perturbation on defining function
f by δ(t) and initial value y(a) by δ0 will only cause small
change to original solution y(t).
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Some basics about IVP

Theorem
Let D = [a,b]× R. If f is continuous on D and Lipschitz with
respect to y, then the IVP is well-posed.

Remark
Again, a sufficient but not necessary condition for
well-posedness of IVP.
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Euler’s method

Given an IVP y ′ = f (t , y) for t ∈ [a,b] and y(a) = α, we want to
compute y(t) on mesh points {t0, t1, . . . , tN} on [a,b].

To this end, we partition [a,b] into N equal segments: set
h = b−a

N , and define ti = a + ih for i = 0,1, . . . ,N. Here h is
called the step size.

268 C H A P T E R 5 Initial-Value Problems for Ordinary Differential Equations

The graph of the function highlighting y(ti) is shown in Figure 5.2. One step in Euler’s
method appears in Figure 5.3, and a series of steps appears in Figure 5.4.

Figure 5.2
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Example 1 Euler’s method was used in the first illustration with h = 0.5 to approximate the solution
to the initial-value problem

y′ = y − t2 + 1, 0 ≤ t ≤ 2, y(0) = 0.5.

Use Algorithm 5.1 with N = 10 to determine approximations, and compare these with the
exact values given by y(t) = (t + 1)2 − 0.5et .

Solution With N = 10 we have h = 0.2, ti = 0.2i, w0 = 0.5, and

wi+1 = wi + h(wi − t2
i + 1) = wi + 0.2[wi − 0.04i2 + 1] = 1.2wi − 0.008i2 + 0.2,

for i = 0, 1, . . . , 9. So

w1 = 1.2(0.5)− 0.008(0)2 + 0.2 = 0.8; w2 = 1.2(0.8)− 0.008(1)2 + 0.2 = 1.152;

and so on. Table 5.1 shows the comparison between the approximate values at ti and the
actual values.
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Euler’s method

From Taylor’s theorem, we have

y(ti+1) = y(ti) + y ′(ti)(ti+1 − ti) +
1
2

y ′′(ξi)(ti+1 − ti)2

for some ξi ∈ (ti , ti+1). Note that ti+1 − ti = h and
y ′(ti) = f (ti , y(ti)), we get

y(ti+1) ≈ y(ti) + hf (t , y(ti))

Denote wi = y(ti) for all i = 0,1, . . . ,N, we get the Euler’s
method:{

w0 = α

wi+1 = wi + hf (ti ,wi), i = 0,1, . . . ,N − 1
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Euler’s method
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Euler’s method

Example
Use Euler’s method with h = 0.5 for IVP y ′ = y − t2 + 1 for
t ∈ [0,2] with initial value y(0) = 0.5.

Solution: We follow Euler’s method step-by-step:

t0 = 0 : w0 = y(0) = 0.5

t1 = 0.5 : w1 = w0 + hf (t0,w0) = 0.5 + 0.5× (0.5− 02 + 1) = 1.25

t2 = 1.0 : w2 = w1 + hf (t1,w1) = 1.25 + 0.5× (1.25− 0.52 + 1) = 2.25

t3 = 1.5 : w3 = w2 + hf (t2,w2) = 2.25 + 0.5× (2.25− 12 + 1) = 3.375

t4 = 2.0 : w4 = w3 + hf (t3,w3) = 3.375 + 0.5× (3.375− 1.52 + 1) = 4.4375
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Error bound of Euler’s method

Theorem
Suppose f (t , y) in an IVP is continuous on D = [a,b]× R and
Lipschitz with respect to y with constant L. If ∃M > 0 such that
|y ′′(t)| ≤ M (y(t) is the unique solution of the IVP), then for all
i = 0,1, . . . ,N there is∣∣y(ti)− wi

∣∣ ≤ hM
2L

(
eL(ti−a) − 1

)

Remark
I Numerical error depends on h (also called O(h) error).
I Also depends on M,L of f .
I Error increases for larger ti .
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Error bound of Euler’s method

Proof. Taking the difference of

y(ti+1) = y(ti) + hf (ti , yi) +
1
2

y ′′(ξi)(ti+1 − ti)2

wi+1 = wi + hf (ti ,wi)

we get

|y(ti+1)− wi+1| ≤ |y(ti)− wi |+ h|f (ti , yi)− f (ti ,wi)|+
Mh2

2

≤ |y(ti)− wi |+ hL|yi − wi |+
Mh2

2

= (1 + hL)|yi − wi |+
Mh2

2
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Error bound of Euler’s method

Proof (cont).
Denote di = |y(ti)− wi |, then we have

di+1 ≤ (1 + hL)di +
Mh2

2
= (1 + hL)

(
di +

hM
2L

)
− hM

2L

for all i = 0,1, . . . ,N − 1. So we obtain

di+1 +
hM
2L
≤ (1 + hL)

(
di +

hM
2L

)
≤ (1 + hL)2

(
di−1 +

hM
2L

)
≤ · · ·

≤ (1 + hL)i+1
(

d0 +
hM
2L

)
and hence di ≤ (1 + hL)i · hM

2L −
hM
2L (since d0 = 0).
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Error bound of Euler’s method

Proof (cont).
Note that 1 + x ≤ ex for all x > −1, and hence (1 + x)a ≤ eax if
a > 0.
Based on this, we know (1 + hL)i ≤ eihL = eL(ti−a) since
ih = ti − a. Therefore we get

di ≤ eL(ti−a) · hM
2L
− hM

2L
=

hM
2L

(eL(ti−a) − 1)

This completes the proof.
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Error bound of Euler’s method

Example
Estimate the error of Euler’s method with h = 0.2 for IVP
y ′ = y − t2 + 1 for t ∈ [0,2] with initial value y(0) = 0.5.

Solution: We first note that ∂f
∂y = 1, so f is Lipschitz with

respect to y with constant L = 1. The IVP has solution
y(t) = (t − 1)2 − et

2 so |y ′′(t)| = |et

2 − 2| ≤ e2

2 − 2 =: M. By
theorem above, the error of Euler’s method is

∣∣y(ti)− wi
∣∣ ≤ hM

2L

(
eL(ti−a) − 1

)
=

0.2(0.5e2 − 2)

2

(
eti − 1

)
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Error bound of Euler’s method

Example
Estimate the error of Euler’s method with h = 0.2 for IVP
y ′ = y − t2 + 1 for t ∈ [0,2] with initial value y(0) = 0.5.
Solution: (cont) 5.2 Euler’s Method 269

Table 5.1 ti wi yi = y(ti) |yi − wi|
0.0 0.5000000 0.5000000 0.0000000
0.2 0.8000000 0.8292986 0.0292986
0.4 1.1520000 1.2140877 0.0620877
0.6 1.5504000 1.6489406 0.0985406
0.8 1.9884800 2.1272295 0.1387495
1.0 2.4581760 2.6408591 0.1826831
1.2 2.9498112 3.1799415 0.2301303
1.4 3.4517734 3.7324000 0.2806266
1.6 3.9501281 4.2834838 0.3333557
1.8 4.4281538 4.8151763 0.3870225
2.0 4.8657845 5.3054720 0.4396874

Note that the error grows slightly as the value of t increases. This controlled error
growth is a consequence of the stability of Euler’s method, which implies that the error is
expected to grow in no worse than a linear manner.

Maple has implemented Euler’s method as an option with the command Initial-
ValueProblem within the NumericalAnalysis subpackage of the Student package. To use
it for the problem in Example 1 first load the package and the differential equation.

with(Student[NumericalAnalysis]): deq := diff(y(t), t) = y(t)− t2 + 1

Then issue the command

C := InitialValueProblem(deq, y(0) = 0.5, t = 2, method = euler, numsteps = 10,
output = information, digits = 8)

Maple produces
⎡

⎢⎢⎣

1 . . 12× 1 . . 4 Array
Data Type: anything
Storage: rectangular
Order: Fortran_order

⎤

⎥⎥⎦

Double clicking on the output brings up a table that gives the values of ti, actual solution
values y(ti), the Euler approximations wi, and the absolute errors | y(ti)− wi|. These agree
with the values in Table 5.1.

To print the Maple table we can issue the commands

for k from 1 to 12 do
print(C[k, 1], C[k, 2], C[k, 3], C[k, 4])
end do

The options within the InitialValueProblem command are the specification of the first order
differential equation to be solved, the initial condition, the final value of the independent
variable, the choice of method, the number of steps used to determine that h = (2 − 0)/

(numsteps), the specification of form of the output, and the number of digits of rounding
to be used in the computations. Other output options can specify a particular value of t or
a plot of the solution.

Error Bounds for Euler’s Method

Although Euler’s method is not accurate enough to warrant its use in practice, it is sufficiently
elementary to analyze the error that is produced from its application. The error analysis for

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Numerical Analysis II – Xiaojing Ye, Math & Stat, Georgia State University 24



Round-off error of Euler’s method

Due to round-off errors in computer, we instead obtain{
u0 = α + δ0

ui+1 = ui + hf (ti ,ui) + δi , i = 0,1, . . . ,N − 1

Suppose ∃δ > 0 such that |δi | ≤ δ for all i , then we can show

∣∣y(ti)− ui
∣∣ ≤ 1

L

(hM
2

+
δ

h

)(
eL(ti−a) − 1

)
+ δeL(ti−a).

Note that hM
2 + δ

h does not approach 0 as h→ 0. hM
2 + δ

h

reaches minimum at h =
√

2δ
M (often much smaller than what

we choose in practice).
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Higher-order Taylor’s method
Definition (Local truncation error)
We call the difference method{

w0 = α + δ0

wi+1 = wi + hφ(ti ,wi), i = 0,1, . . . ,N − 1

to have local truncation error

τi+1(h) =
yi+1 − (yi + hφ(ti , yi))

h

where yi := y(ti).

Example
Euler’s method has local truncation error

τi+1(h) =
yi+1 − (yi + hf (ti , yi))

h
=

yi+1 − yi

h
− f (ti , yi)
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Higher-order Taylor’s method

Note that Euler’s method has local truncation error
τi+1(h) =

yi+1−yi
h − f (ti , yi) = hy ′′(ξi )

2 for some ξi ∈ (ti , ti+1). If
|y ′′| ≤ M we know |τi+1(h)| ≤ hM

2 = O(h).

Question: What if we use higher-order Taylor’s approximation?

y(ti+1) = y(ti) + hy ′(ti) +
h2

2
y ′′(ti) + · · ·+ hn

n!
y (n)(ti) + R

where R = hn+1

(n+1)!y
(n+1)(ξi) for some ξi ∈ (ti , ti+1).
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Higher-order Taylor’s method

First note that we can always write y (n) using f :

y ′(t) = f
y ′′(t) = f ′ = ∂t f + (∂y f )f

y ′′′(t) = f ′′ = ∂2
t f + (∂t∂y f + (∂2

y f )f )f + ∂y f (∂t f + (∂y f )f )

· · ·
y (n)(t) = f (n−1) = · · ·

albeit it’s quickly getting very complicated.
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Higher-order Taylor’s method
Now substitute them back to high-order Taylor’s approximation
(ignore residual R)

y(ti+1) = y(ti) + hy ′(ti) +
h2

2
y ′′(ti) + · · ·+ hn

n!
y (n)(ti)

= y(ti) + hf +
h2

2
f ′ + · · ·+ hn

n!
f (n−1)

We can get the n-th order Taylor’s method:{
w0 = α + δ0

wi+1 = wi + hT (n)(ti ,wi), i = 0,1, . . . ,N − 1

where

T (n)(ti ,wi) = f (ti ,wi) +
h
2

f ′(ti ,wi) + · · ·+ hn−1

n!
f (n−1)(ti ,wi)
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Higher-order Taylor’s method

I Euler’s method is the first order Taylor’s method.
I High-order Taylor’s method is more accurate than Euler’s

method, but at much higher computational cost.
I Together with Hermite interpolating polynomials, it can be

used to interpolate values not on mesh points more
accurately.
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Higher-order Taylor’s method

Theorem
If y(t) ∈ Cn+1[a,b], then the n-th order Taylor method has local
truncation error O(hn).
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Runge-Kutta (RK) method

Runge-Kutta (RK) method attains high-order local truncation
error without expensive evaluations of derivatives of f .
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Runge-Kutta (RK) method

To derive RK method, first recall Taylor’s formula for two
variables (t , y):

f (t , y) = Pn(t , y) + Rn(t , y)

where ∂n−k
t ∂k

y f = ∂nf (t0,y0)
∂tn−k∂yk and

Pn(t , y) = f (t0, y0) + (∂t f · (t − t0) + ∂y f · (y − y0))

+
1
2

(
∂2

t f · (t − t0)2 + 2∂y∂t f · (t − t0)(y − y0) + ∂2
y f · (y − y0)2

)
+ · · ·+ 1

n!

n∑
k=0

(
n
k

)
∂n−k

t ∂k
y f · (t − t0)n−k (y − y0)k

Rn(t , y) =
1

(n + 1)!

n+1∑
k=0

(
n + 1

k

)
∂n+1−k

t ∂k
y f (ξ, µ) · (t − t0)n+1−k (y − y0)k
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Runge-Kutta (RK) method

The second order Taylor’s method uses

T (2)(t , y) = f (t , y) +
h
2

f ′(t , y) = f (t , y) +
h
2

(∂t f + ∂y f · f )

to get O(h2) error.

Suppose we use af (t + α, y + β) (with some a, α, β to be
determined) to reach the same order of error. To that end, we
first have

af (t + α, y + β) = a
(

f + ∂t f · α + ∂y f · β + R
)

where R = 1
2(∂2

t f (ξ, µ) · α2 + 2∂y∂t f (ξ, µ) · αβ + ∂2
y f (ξ, µ) · β2).
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Runge-Kutta (RK) method

Suppose we try to match the terms of these two formulas
(ignore R):

T (2)(t , y) = f +
h
2
∂t f +

hf
2
∂y f

af (t + α, y + β) = af + aα∂t f + aβ∂y f

then we have

a = 1, α =
h
2
, β =

h
2

f (t , y)

So instead of T (2)(t , y), we use

af (t + α, y + β) = f
(

t +
h
2
, y +

h
2

f (t , y)
)
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Runge-Kutta (RK) method

Note that R we ignored is

R =
1
2

(
∂2

t f (ξ, µ) ·
(h

2

)2

+ 2∂y∂t f (ξ, µ) ·
(h

2

)2

f + ∂2
y f (ξ, µ) ·

(h
2

)2

f 2
)

which means R = O(h2).

Also note that

R = T (2)(t , y)− f
(

t +
h
2
, y +

h
2

f (t , y)
)

= O(h2)

and T (2)(t , y) = O(h2), we know

f
(

t +
h
2
, y +

h
2

f (t , y)
)

= O(h2)
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Runge-Kutta (RK) method

This is the RK2 method (Midpoint method):
w0 = α

wi+1 = wi + h f
(

ti +
h
2
,wi +

h
2

f (ti ,wi)
)
, i = 0,1, . . . ,N − 1.

Remark
If we have (ti ,wi), we only need to evaluate f twice (i.e.,
compute k1 = f (ti ,wi) and k2 = f (ti + h

2 ,wi + h
2k1)) to get wi+1.
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Runge-Kutta (RK) method

We can also consider higher-order RK method by fitting

T (3)(t , y) = f (t , y) +
h
2

f ′(t , y) +
h
6

f ′′(t , y)

with af (t , y) + bf (t + α, y + β) (has 4 parameters a,b, α, β).

Unfortunately we can make match to the hf ′′
6 term of T (3), which

contains h2

6 f · (∂y f )2, by this way But it leaves us open choices if
we’re OK with O(h2) error: let a = b = 1, α = h, β = hf (t , y),
then we get the modified Euler’s method:

w0 = α

wi+1 = wi +
h
2

(
f (ti ,wi ) + f (ti+1,wi + hf (ti ,wi ))

)
, i = 0,1, . . . ,N − 1.

Also need evaluation of f twice in each step.
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Runge-Kutta (RK) method

Example
Use Midpoint method (RK2) and Modified Euler’s method with
h = 0.2 to solve IVP y ′ = y − t2 + 1 for t ∈ [0,2] and y(0) = 0.5.

Solution:
Apply the main steps in the two methods:

Midpoint : wi+1 =wi + h f
(

ti +
h
2
,wi +

h
2

f (ti ,wi)
)

Modified Euler’s : wi+1 =wi +
h
2

(
f (ti ,wi) + f (ti+1,wi + hf (ti ,wi))

)
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Runge-Kutta (RK) method

Example
Use Midpoint method (RK2) and Modified Euler’s method with
h = 0.2 to solve IVP y ′ = y − t2 + 1 for t ∈ [0,2] and y(0) = 0.5.
Solution: (cont)

5.4 Runge-Kutta Methods 287

and

Midpoint method: w2 = 1.22(0.828)− 0.0088(0.2)2 − 0.008(0.2) + 0.218

= 1.21136;

Modified Euler method: w2 = 1.22(0.826)− 0.0088(0.2)2 − 0.008(0.2) + 0.216

= 1.20692,

Table 5.6 lists all the results of the calculations. For this problem, the Midpoint method
is superior to the Modified Euler method.

Table 5.6 Midpoint Modified Euler
ti y(ti) Method Error Method Error

0.0 0.5000000 0.5000000 0 0.5000000 0
0.2 0.8292986 0.8280000 0.0012986 0.8260000 0.0032986
0.4 1.2140877 1.2113600 0.0027277 1.2069200 0.0071677
0.6 1.6489406 1.6446592 0.0042814 1.6372424 0.0116982
0.8 2.1272295 2.1212842 0.0059453 2.1102357 0.0169938
1.0 2.6408591 2.6331668 0.0076923 2.6176876 0.0231715
1.2 3.1799415 3.1704634 0.0094781 3.1495789 0.0303627
1.4 3.7324000 3.7211654 0.0112346 3.6936862 0.0387138
1.6 4.2834838 4.2706218 0.0128620 4.2350972 0.0483866
1.8 4.8151763 4.8009586 0.0142177 4.7556185 0.0595577
2.0 5.3054720 5.2903695 0.0151025 5.2330546 0.0724173

Runge-Kutta methods are also options within the Maple command InitialValueProblem.
The form and output for Runge-Kutta methods are the same as available under the Euler’s
and Taylor’s methods, as discussed in Sections 5.1 and 5.2.

Higher-Order Runge-Kutta Methods

The term T (3)(t, y) can be approximated with error O(h3) by an expression of the form

f (t + α1, y + δ1f (t + α2, y + δ2f (t, y))),

involving four parameters, the algebra involved in the determination of α1, δ1,α2, and δ2 is
quite involved. The most common O(h3) is Heun’s method, given by

w0 = α

wi+1 = wi + h
4

(
f (ti, wi) + 3f

(
ti + 2h

3 , wi + 2h
3 f

(
ti + h

3 , wi + h
3f (ti, wi)

)))
,

for i = 0, 1, . . . , N − 1.

Karl Heun (1859–1929) was a
professor at the Technical
University of Karlsruhe. He
introduced this technique in a
paper published in 1900. [Heu]

Illustration Applying Heun’s method with N = 10, h = 0.2, ti = 0.2i, and w0 = 0.5 to approximate
the solution to our usual example,

y′ = y − t2 + 1, 0 ≤ t ≤ 2, y(0) = 0.5.
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Midpoint (RK2) method is better than modified Euler’s method.
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Runge-Kutta (RK) method

We can also consider higher-order RK method by fitting

T (3)(t , y) = f (t , y) +
h
2

f ′(t , y) +
h
6

f ′′(t , y)

with af (t , y) + bf (t + α1, y + δ1(f (t + α2, y + δ2f (t , y)) ) (has 6
parameters a,b, α1, α2, δ1, δ2) to reach O(h3) error.

For example, Heun’s choice is a = 1
4 , b = 3

4 , α1 = 2h
3 , α2 = h

3 ,
δ1 = 2h

3 f , δ2 = h
3 f .

Nevertheless, methods of order O(h3) are rarely used in
practice.
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4-th Order Runge-Kutta (RK4) method

Most commonly used is the 4-th order Runge-Kutta method
(RK4): start with w0 = α, and iteratively do

k1 = f (ti ,wi)

k2 = f (ti +
h
2
,wi +

h
2

k1)

k3 = f (ti +
h
2
,wi +

h
2

k2)

k4 = f (ti+1,wi + hk3)

wi+1 = wi +
h
6

(k1 + 2k2 + 2k3 + k4)

Need to evaluate f for 4 times in each step. Reach error O(h4).
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4-th Order Runge-Kutta (RK4) method

Example
Use RK4 (with h = 0.2) to solve IVP y ′ = y − t2 + 1 for t ∈ [0,2]
and y(0) = 0.5.
Solution: With h = 0.2, we have N = 10 and ti = 0.2i for
i = 0,1, . . . ,10. First set w0 = 0.5, then the first iteration is

k1 = f (t0,w0) = f (0,0.5) = 0.5− 02 + 1 = 1.5

k2 = f (t0 +
h
2
,w0 +

h
2

k1) = f (0.1,0.5 + 0.1× 1.5) = 1.64

k3 = f (t0 +
h
2
,w0 +

h
2

k2) = f (0.1,0.5 + 0.1× 1.64) = 1.654

k4 = f (t1,w0 + hk3) = f (0.2,0.5 + 0.2× 1.654) = 1.7908

w1 = w0 +
h
6

(k1 + 2k2 + 2k3 + k4) = 0.8292933

So w1 is our RK4 approximation of y(t1) = y(0.2).
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4-th Order Runge-Kutta (RK4) method

Example
Use RK4 (with h = 0.2) to solve IVP y ′ = y − t2 + 1 for t ∈ [0,2]
and y(0) = 0.5.
Solution: (cont) Continue with i = 1,2, · · · ,9:

5.4 Runge-Kutta Methods 289

Step 1 Set h = (b− a)/N ;
t = a;
w = α;

OUTPUT (t, w).

Step 2 For i = 1, 2, . . . , N do Steps 3–5.

Step 3 Set K1 = hf (t, w);
K2 = hf (t + h/2, w + K1/2);
K3 = hf (t + h/2, w + K2/2);
K4 = hf (t + h, w + K3).

Step 4 Set w = w + (K1 + 2K2 + 2K3 + K4)/6; (Compute wi.)
t = a + ih. (Compute ti.)

Step 5 OUTPUT (t, w).

Step 6 STOP.

Example 3 Use the Runge-Kutta method of order four with h = 0.2, N = 10, and ti = 0.2i to obtain
approximations to the solution of the initial-value problem

y′ = y − t2 + 1, 0 ≤ t ≤ 2, y(0) = 0.5.

Solution The approximation to y(0.2) is obtained by

w0 = 0.5

k1 = 0.2f (0, 0.5) = 0.2(1.5) = 0.3

k2 = 0.2f (0.1, 0.65) = 0.328

k3 = 0.2f (0.1, 0.664) = 0.3308

k4 = 0.2f (0.2, 0.8308) = 0.35816

w1 = 0.5 + 1
6
(0.3 + 2(0.328) + 2(0.3308) + 0.35816) = 0.8292933.

The remaining results and their errors are listed in Table 5.8.

Table 5.8 Runge-Kutta
Exact Order Four Error

ti yi = y(ti) wi |yi − wi|
0.0 0.5000000 0.5000000 0
0.2 0.8292986 0.8292933 0.0000053
0.4 1.2140877 1.2140762 0.0000114
0.6 1.6489406 1.6489220 0.0000186
0.8 2.1272295 2.1272027 0.0000269
1.0 2.6408591 2.6408227 0.0000364
1.2 3.1799415 3.1798942 0.0000474
1.4 3.7324000 3.7323401 0.0000599
1.6 4.2834838 4.2834095 0.0000743
1.8 4.8151763 4.8150857 0.0000906
2.0 5.3054720 5.3053630 0.0001089
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High-order Runge-Kutta method

Can we use even higher-order method to improve accuracy?

#f eval 2 3 4 5 ≤ n ≤ 7 8 ≤ n ≤ 9 n ≥ 10
Best error O(h2) O(h3) O(h4) O(hn−1) O(hn−2) O(hn−3)

So RK4 is the sweet spot.

Remark
Note that RK4 requires 4 evaluations of f each step. So it would
make sense only if it’s accuracy with step size 4h is higher than
Midpoint with 2h or Euler’s with h!
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High-order Runge-Kutta method

Example
Use RK4 (with h = 0.1), Midpoint (with h = 0.05), and Euler’s
method (with h = 0.025) to solve IVP y ′ = y − t2 + 1 for
t ∈ [0,0.5] and y(0) = 0.5.
Solution:

5.4 Runge-Kutta Methods 291

Table 5.10 Modified Runge-Kutta
Euler Euler Order Four

ti Exact h = 0.025 h = 0.05 h = 0.1

0.0 0.5000000 0.5000000 0.5000000 0.5000000
0.1 0.6574145 0.6554982 0.6573085 0.6574144
0.2 0.8292986 0.8253385 0.8290778 0.8292983
0.3 1.0150706 1.0089334 1.0147254 1.0150701
0.4 1.2140877 1.2056345 1.2136079 1.2140869
0.5 1.4256394 1.4147264 1.4250141 1.4256384

E X E R C I S E S E T 5.4

1. Use the Modified Euler method to approximate the solutions to each of the following initial-value
problems, and compare the results to the actual values.
a. y′ = te3t − 2y, 0 ≤ t ≤ 1, y(0) = 0, with h = 0.5; actual solution y(t) = 1

5 te3t − 1
25 e3t +

1
25 e−2t .

b. y′ = 1 + (t − y)2, 2 ≤ t ≤ 3, y(2) = 1, with h = 0.5; actual solution y(t) = t + 1
1−t .

c. y′ = 1 + y/t, 1 ≤ t ≤ 2, y(1) = 2, with h = 0.25; actual solution y(t) = t ln t + 2t.
d. y′ = cos 2t + sin 3t, 0 ≤ t ≤ 1, y(0) = 1, with h = 0.25; actual solution y(t) =

1
2 sin 2t − 1

3 cos 3t + 4
3 .

2. Use the Modified Euler method to approximate the solutions to each of the following initial-value
problems, and compare the results to the actual values.
a. y′ = et−y, 0 ≤ t ≤ 1, y(0) = 1, with h = 0.5; actual solution y(t) = ln(et + e− 1).

b. y′ = 1 + t
1 + y

, 1 ≤ t ≤ 2, y(1) = 2, with h = 0.5; actual solution y(t) =
√

t2 + 2t + 6− 1.

c. y′ = −y + ty1/2, 2 ≤ t ≤ 3, y(2) = 2, with h = 0.25; actual solution y(t) =(
t − 2 +

√
2ee−t/2

)2
.

d. y′ = t−2(sin 2t − 2ty), 1 ≤ t ≤ 2, y(1) = 2, with h = 0.25; actual solution y(t) =
1
2 t−2(4 + cos 2 − cos 2t).

3. Use the Modified Euler method to approximate the solutions to each of the following initial-value
problems, and compare the results to the actual values.

a. y′ = y/t − (y/t)2, 1 ≤ t ≤ 2, y(1) = 1, with h = 0.1; actual solution y(t) = t/(1 + ln t).

b. y′ = 1 + y/t + (y/t)2, 1 ≤ t ≤ 3, y(1) = 0, with h = 0.2; actual solution y(t) = t tan(ln t).

c. y′ = −(y + 1)(y + 3), 0 ≤ t ≤ 2, y(0) = −2, with h = 0.2; actual solution y(t) =
−3 + 2(1 + e−2t)−1.

d. y′ = −5y+5t2 +2t, 0 ≤ t ≤ 1, y(0) = 1
3 , with h = 0.1; actual solution y(t) = t2 + 1

3 e−5t .

4. Use the Modified Euler method to approximate the solutions to each of the following initial-value
problems, and compare the results to the actual values.

a. y′ = 2 − 2ty
t2 + 1

, 0 ≤ t ≤ 1, y(0) = 1, with h = 0.1; actual solution y(t) = 2t + 1
t2 + 1

.

b. y′ = y2

1 + t
, 1 ≤ t ≤ 2, y(1) = −(ln 2)−1, with h = 0.1; actual solution y(t) = −1

ln(t + 1)
.

c. y′ = (y2 + y)/t, 1 ≤ t ≤ 3, y(1) = −2, with h = 0.2; actual solution y(t) = 2t
1− 2t

.

d. y′ = −ty + 4t/y, 0 ≤ t ≤ 1, y(0) = 1, with h = 0.1; actual solution y(t) =
√

4− 3e−t2 .
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Error control

Can we control the error of Runge-Kutta method by using
variable step sizes?

Let’s compare two difference methods with errors O(hn) and
O(hn+1) (say, RK4 and RK5) for fixed step size h, which have
schemes below:

wi+1 = wi + hφ(ti ,wi ,h) O(hn)

w̃i+1 = w̃i + hφ̃(ti , w̃i ,h) O(hn+1)

Suppose wi ≈ w̃i ≈ y(ti) =: yi . Then for any given ε > 0, we
want to see how small h should be for the O(hn) method so that
its error |τi+1(h)| ≤ ε?
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Error control

We recall that the local truncation errors of these two methods
are:

τi+1(h) =
yi+1 − yi

h
− φ(ti , yi ,h) ≈ O(hn)

τ̃i+1(h) =
yi+1 − yi

h
− φ̃(ti , yi ,h) ≈ O(hn+1)

Given that wi ≈ w̃i ≈ yi and O(hn+1)� O(hn) for small h, we
see

τi+1(h) ≈ τi+1(h)− τ̃i+1(h) = φ̃(ti , yi ,h)− φ(ti , yi ,h)

≈ φ̃(ti , w̃i ,h)− φ(ti ,wi ,h) =
w̃i+1 − w̃i

h
− wi+1 − wi

h

≈ w̃i+1 − wi+1

h
≈ Khn

for some K > 0 independent of h, since τi+1(h) ≈ O(hn).
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Error control

Suppose that we can scale h by q > 0, such that

|τi+1(qh)| ≈ K (qh)n = qnKhn ≈ qn |w̃i+1 − wi+1|
h

≤ ε

So we need q to satisfy

q ≤
( εh
|w̃i+1 − wi+1|

)1/n

I q < 1: reject the initial h and recalculate using qh.
I q ≥ 1: accept computed value and use qh for next step.
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Runge-Kutta-Fehlberg method

The Runge-Kutta-Fehlberg (RKF) method uses specific
4th-order and 5th-order RK schemes, which share some
computed values and together only need 6 evaluation of f , to
estimate

q =
( εh

2|w̃i+1 − wi+1|

)1/4
= 0.84

( εh
|w̃i+1 − wi+1|

)1/4

This q is used to tune step size so that error is always bounded
by the prescribed ε.
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Multistep method

Definition
Let m > 1 be an integer, then an m-step multistep method is
given by the form of

wi+1 = am−1wi + am−2wi−1 + · · ·+ a0wi−m+1

+ h
[
bmf (ti+1,wi+1) + bm−1f (ti ,wi ) + · · ·+ b0f (ti−m+1,wi−m+1)

]
for i = m − 1,m, . . . ,N − 1.

Here a0, . . . ,am−1, b0, . . . ,bm are constants. Also
w0 = α,w1 = α1, . . . ,wm−1 = αm−1 need to be given.

I bm = 0: Explicit m-step method.
I bm 6= 0: Implicit m-step method.
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Multistep method

Definition
The local truncation error of the m-step multistep method
above is defined by

τi+1(h) =
yi+1 − (am−1yi + · · ·+ a0yi−m+1)

h
−
[
bmf (ti+1, yi+1) + bm−1f (ti , yi ) + · · ·+ b0f (ti−m+1, yi−m+1)

]
where yi := y(ti).
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Adams-Bashforth Explicit method

Adams-Bashforth Two-Step Explicit method:
w0 = α, w1 = α1,

wi+1 = wi +
h
2

[
3f (ti ,wi)− f (ti−1,wi−1)

]
for i = 1, . . . ,N − 1.

The local truncation error is

τi+1(h) =
5

12
y ′′′(µi)h2

for some µi ∈ (ti−1, ti+1).
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Adams-Bashforth Explicit method

Adams-Bashforth Three-Step Explicit method:
w0 = α, w1 = α1, w2 = α2,

wi+1 = wi +
h
12

[
23f (ti ,wi)− 16f (ti−1,wi−1) + 5f (ti−2,wi−2)

]
for i = 2, . . . ,N − 1.

The local truncation error is

τi+1(h) =
3
8

y (4)(µi)h3

for some µi ∈ (ti−2, ti+1).
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Adams-Bashforth Explicit method

Adams-Bashforth Four-Step Explicit method:
w0 = α, w1 = α1, w2 = α2, w3 = α3

wi+1 = wi +
h
24

[
55f (ti ,wi )− 59f (ti−1,wi−1) + 37f (ti−2,wi−2)− 9f (ti−3,wi−3)

]
for i = 3, . . . ,N − 1.

The local truncation error is

τi+1(h) =
251
720

y (5)(µi)h4

for some µi ∈ (ti−3, ti+1).
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Adams-Bashforth Explicit method

Adams-Bashforth Five-Step Explicit method:
w0 = α, w1 = α1, w2 = α2, w3 = α3, w4 = α4

wi+1 = wi +
h

720
[1901f (ti ,wi )− 2774f (ti−1,wi−1) + 2616f (ti−2,wi−2)

− 1274f (ti−3,wi−3) + 251f (ti−4,wi−4)]

for i = 4, . . . ,N − 1.

The local truncation error is

τi+1(h) =
95

288
y (6)(µi)h5

for some µi ∈ (ti−4, ti+1).
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Adams-Moulton Implicit method

Adams-Moulton Two-Step Implicit method:
w0 = α, w1 = α1,

wi+1 = wi +
h
12

[5f (ti+1,wi+1) + 8f (ti ,wi)− f (ti−1,wi−1)]

for i = 1, . . . ,N − 1.

The local truncation error is

τi+1(h) = − 1
24

y (4)(µi)h3

for some µi ∈ (ti−1, ti+1).
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Adams-Moulton Implicit method

Adams-Moulton Three-Step Implicit method:
w0 = α, w1 = α1, w2 = α2

wi+1 = wi +
h
24

[9f (ti+1,wi+1) + 19f (ti ,wi )− 5f (ti−1,wi−1) + f (ti−2,wi−2)]

for i = 2, . . . ,N − 1.

The local truncation error is

τi+1(h) = − 19
720

y (5)(µi)h4

for some µi ∈ (ti−2, ti+1).
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Adams-Moulton Implicit method

Adams-Moulton Four-Step Implicit method:
w0 = α, w1 = α1, w2 = α2, w3 = α3

wi+1 = wi +
h

720
[251f (ti+1,wi+1) + 646f (ti ,wi )− 264f (ti−1,wi−1)

+ 106f (ti−2,wi−2)− 19f (ti−3,wi−3)]

for i = 3, . . . ,N − 1.

The local truncation error is

τi+1(h) = − 3
160

y (6)(µi)h5

for some µi ∈ (ti−3, ti+1).
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Steps to develop multistep methods

I Construct interpolating polynomial P(t) (e.g., Newton’s
backward difference method) using previously computed
(ti−m+1,wi−m+1), . . . , (ti ,wi).

I Approximate y(ti+1) based on

y(ti+1) = y(ti ) +

∫ ti+1

ti
y ′(t) dt = y(ti ) +

∫ ti+1

ti
f (t , y(t)) dt

≈ y(ti ) +

∫ ti+1

ti
f (t ,P(t)) dt

and construct difference method:

wi+1 = wi + hφ(ti , . . . , ti−m+1,wi , . . . ,wi−m+1)
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Explicit vs. Implicit

I Implicit methods are generally more accurate than the
explicit ones (e.g., Adams-Moulton three-step implicit
method is even more accurate than Adams-Bashforth
four-step explicit method).

I Implicit methods require solving for wi+1 from

wi+1 = · · ·+ h
xxx

f (ti+1,wi+1) + · · ·

which can be difficult or even impossible.
I There could be multiple solutions of wi+1 when solving the

equation above in implicit methods.
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Predictor-Corrector method

Due to the aforementioned issues, implicit methods are often
cast in “predictor-corrector” form in practice.

In each step i :
I Prediction: Compute wi+1 using an explicit method φ to

get wi+1,p using

wi+1,p = wi + hφ(ti ,wi , . . . , ti−m+1,wi−m+1)

I Correction: Substitute wi+1 by wi+1,p in the implicit
method φ̃ and compute wi+1 using

wi+1 = wi + hφ̃(ti+1,wi+1,p, ti ,wi , . . . , ti−m+1,wi−m+1)
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Predictor-Corrector method

Example
Use the Adams-Bashforth 4-step explicit method and
Adams-Moulton 3-step implicit method to form the Adams
4th-order Predictor-Corrector method.
With initial value w0 = α, suppose we first generate w1,w2,w3
using RK4 method. Then for i = 3,4, . . . ,N − 1:

I Use Adams-Bashforth 4-step explicit method to get a
predictor wi+1,p:

wi+1,p = wi +
h
24

[
55f (ti ,wi )− 59f (ti−1,wi−1) + 37f (ti−2,wi−2)− 9f (ti−3,wi−3)

]
I Use Adams-Moulton 3-step implicit method to get a

corrector wi+1:

wi+1 = wi +
h
24

[9f (ti+1,wi+1,p) + 19f (ti ,wi )− 5f (ti−1,wi−1) + f (ti−2,wi−2)]
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Predictor-Corrector method

Example
Use Adams Predictor-Corrector Method with h = 0.2 to solve
IVP y ′ = y − t2 + 1 for t ∈ [0,2] and y(0) = 0.5.

5.6 Multistep Methods 313

= 2.1272056 + 0.0083333(9(2.6409314) + 19(2.4872056) − 5(2.2889220)

+ (2.0540762))

= 2.6408286.

In Example 1 we found that using the explicit Adams-Bashforth method alone produced
results that were inferior to those of Runge-Kutta. However, these approximations to y(0.8)

and y(1.0) are accurate to within

|2.1272295 − 2.1272056| = 2.39× 10− 5 and |2.6408286 − 2.6408591| = 3.05× 10− 5.

respectively, compared to those of Runge-Kutta, which were accurate, respectively, to within

|2.1272027 − 2.1272892| = 2.69× 10− 5 and |2.6408227 − 2.6408591| = 3.64× 10− 5.

The remaining predictor-corrector approximations were generated using Algorithm 5.4 and
are shown in Table 5.14.

Table 5.14 Error
ti yi = y(ti) wi |yi − wi|

0.0 0.5000000 0.5000000 0
0.2 0.8292986 0.8292933 0.0000053
0.4 1.2140877 1.2140762 0.0000114
0.6 1.6489406 1.6489220 0.0000186
0.8 2.1272295 2.1272056 0.0000239
1.0 2.6408591 2.6408286 0.0000305
1.2 3.1799415 3.1799026 0.0000389
1.4 3.7324000 3.7323505 0.0000495
1.6 4.2834838 4.2834208 0.0000630
1.8 4.8151763 4.8150964 0.0000799
2.0 5.3054720 5.3053707 0.0001013

Adams Fourth Order Predictor-Corrector method is implemented in Maple for the
example problem with

C := InitialValueProblem(deq, y(0) = 0.5, t = 2, method = adamsbashforthmoulton,
submethod = step4, numsteps = 10, output = information, digits = 8)

and generates the same values as in Table 5.14.
Other multistep methods can be derived using integration of interpolating polynomials

over intervals of the form [tj, ti+1], for j ≤ i − 1, to obtain an approximation to y(ti+1). When
an interpolating polynomial is integrated over [ti− 3, ti+1], the result is the explicit Milne’s
method:

wi+1 = wi− 3 + 4h
3

[2f (ti, wi) − f (ti− 1, wi− 1) + 2f (ti− 2, wi− 2)],

which has local truncation error 14
45 h4y(5)(ξi), for some ξi ∈ (ti− 3, ti+1).

Edward Arthur Milne
(1896–1950) worked in ballistic
research during World War I, and
then for the Solar Physics
Observatory at Cambridge. In
1929 he was appointed the
W. W. Rouse Ball chair at
Wadham College in Oxford.

Milne’s method is occasionally used as a predictor for the implicit Simpson’s method,

wi+1 = wi− 1 + h
3
[f (ti+1, wi+1) + 4f (ti, wi) + f (ti− 1, wi− 1)],

which has local truncation error − (h4/90)y(5)(ξi), for some ξi ∈ (ti− 1, ti+1), and is obtained
by integrating an interpolating polynomial over [ti− 1, ti+1].

Simpson’s name is associated
with this technique because it is
based on Simpson’s rule for
integration.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Numerical Analysis II – Xiaojing Ye, Math & Stat, Georgia State University 64



Other Predictor-Corrector method

We can also use Milne’s 3-step explicit method and Simpson’s
2-step implicit method below:

wi+1,p = wi−3 +
4h
3

[
2f (ti ,wi )− f (ti−1,wi−1) + 2f (ti−2,wi−2)

]
wi+1 = wi−1 +

h
3

[f (ti+1,wi+1,p) + 4f (ti ,wi ) + f (ti−1,wi−1)]

This method is O(h4) and generally has better accuracy than
Adams PC method. However it is more likely to be vulnurable to
sound-off error.
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Predictor-Corrector method

I PC methods have comparable accuracy as RK4, but often
require only 2 evaluations of f in each step.

I Need to store values of f for several previous steps.
I Sometimes are more restrictive on step size h, e.g., in the

stiff differential equation case later.
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Variable step-size multistep method

Now let’s take a closer look at the errors of the multistep
methods. Denote yi := y(ti).

The Adams-Bashforth 4-step explicit method has error

τi+1(h) =
251
720

y (5)(µi)h4

The Adams-Moulton 3-step implicit method has error

τ̃i+1(h) = − 19
720

y (5)(µ̃i)h4

where µi ∈ (ti−3, ti+1) and µ̃i ∈ (ti−2, ti+1).

Question: Can we find a way to scale step size h so the error is
under control?
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Variable step-size multistep method

Consider the their local truncation errors:

yi+1 − wi+1,p =
251
720

y (5)(µi)h5

yi+1 − wi+1 = − 19
720

y (5)(µ̃i)h5

Assume y (5)(µi) ≈ y (5)(µ̃i), we take their difference to get

wi+1 − wi+1,p =
1

720
(19 + 251)y (5)(µi)h5 ≈ 3

8
y (5)(µi)h5

So the error of Adams-Moulton (corrector step) is

τ̃i+1(h) =
|yi+1 − wi+1|

h
≈

19|wi+1 − wi+1,p|
270h

= Kh4

where K is independent of h since τ̃i+1(h) = O(h4).
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Variable step-size multistep method

If we want to keep error under a prescribed ε, then we need to
find q > 0 such that with step size qh, there is

τ̃i+1(qh) =
|y(ti + qh)− wi+1|

qh
≈

19q4|wi+1 − wi+1,p|
270h

< ε

This implies that

q <
( 270hε

19|wi+1 − wi+1,p|

)1/4
≈ 2

( hε
|wi+1 − wi+1,p|

)1/4

To be conservative, we may replace 2 by 1.5 above.

In practice, we tune q (as less as possible) such that the
estimated error is between (ε/10, ε)
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System of differential equations

The IVP for a system of ODE has form

du1

dt
= f1(t ,u1,u2, . . . ,um)

du2

dt
= f2(t ,u1,u2, . . . ,um)

...
dum

dt
= fm(t ,u1,u2, . . . ,um)

for a ≤ t ≤ b

with initial value u1(a) = α1, . . . ,um(a) = αm.

Definition
A set of functions u1(t), . . . ,um(t) is a solution of the IVP
above if they satisfy both the system of ODEs and the initial
values.

Numerical Analysis II – Xiaojing Ye, Math & Stat, Georgia State University 70



System of differential equations

In this case, we will solve for u1(t), . . . ,um(t) which are
interdependent according to the ODE system.

330 C H A P T E R 5 Initial-Value Problems for Ordinary Differential Equations

Let an integer N > 0 be chosen and set h= (b − a)/N . Partition the interval [a, b] into
N subintervals with the mesh points

tj = a + jh, for each j = 0, 1, . . . , N .

Use the notation wij, for each j = 0, 1, . . . , N and i = 1, 2, . . . , m, to denote an approx-
imation to ui(tj). That is, wij approximates the ith solution ui(t) of (5.45) at the jth mesh
point tj. For the initial conditions, set (see Figure 5.6)

w1,0 = α1, w2,0 = α2, . . . , wm,0 = αm. (5.48)

Figure 5.6

y

t
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w23w22
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a ! t0 t1 t2 t3 a ! t0 t1 t2 t3

u1(a) ! α1

u2(a) ! α2

u2(t)

u1(t)

y

t

wm3wm2

wm1

a ! t0 t1 t2 t3

um(t)

um(a) ! αm

Suppose that the values w1, j, w2, j, . . . , wm, j have been computed. We obtain w1, j+1,
w2, j+1, . . . , wm, j+1 by first calculating

k1,i = hfi(tj, w1, j, w2, j, . . . , wm, j), for each i = 1, 2, . . . , m; (5.49)

k2,i = hfi

(
tj + h

2
, w1, j + 1

2
k1,1, w2, j + 1

2
k1,2, . . . , wm, j + 1

2
k1,m

)
, (5.50)

for each i = 1, 2, . . . , m;

k3,i = hfi

(
tj + h

2
, w1, j + 1

2
k2,1, w2, j + 1

2
k2,2, . . . , wm, j + 1

2
k2,m

)
, (5.51)

for each i = 1, 2, . . . , m;

k4,i = hfi(tj + h, w1, j + k3,1, w2, j + k3,2, . . . , wm, j + k3,m), (5.52)

for each i = 1, 2, . . . , m; and then

wi, j+1 = wi, j + 1
6
(k1,i + 2k2,i + 2k3,i + k4,i), (5.53)

for each i = 1, 2, . . . , m. Note that all the values k1,1, k1,2, . . . , k1,m must be computed before
any of the terms of the form k2,i can be determined. In general, each kl,1, kl,2, . . . , kl,m must be
computed before any of the expressions kl+1,i. Algorithm 5.7 implements the Runge-Kutta
fourth-order method for systems of initial-value problems.
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System of differential equations

Definition
A function f is called Lipschitz with respect to u1, . . . ,um on
D := [a,b]× Rm if there exists L > 0 s.t.

|f (t ,u1, . . . ,um)− f (t , z1, . . . , zm)| ≤ L
m∑

j=1

|uj − zj |

for all (t ,u1, . . . ,um), (t , z1, . . . , zm) ∈ D.
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System of differential equations

Theorem
If f ∈ C1(D) and | ∂f

∂uj
| ≤ L for all j , then f is Lipschitz with

respect to u = (u1, . . . ,um) on D.

Proof.
Note that D is convex. For any
(t ,u1, . . . ,um), (t , z1, . . . , zm) ∈ D, define

g(λ) = f (t , (1− λ)u1 + λz1, . . . , (1− λ)um + λzm)

for all λ ∈ [0,1]. Then from |g(1)− g(0)| ≤
∫ 1

0 |g
′(λ)|dλ and the

definition of g, the conclusion follows.
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System of differential equations

Theorem
If f ∈ C1(D) and is Lipschitz with respect to u = (u1, . . . ,um),
then the IVP with f as defining function has a unique solution.
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System of differential equations

Now let’s use vector notations below

a = (α1, . . . , αm)

y = (y1, . . . , ym)

w = (w1, . . . ,wm)

f(t ,w) = (f1(t ,w1), . . . , fm(t ,wm))

Then the IVP of ODE system can be written as

y′ = f(t ,y), t ∈ [a,b]

with initial value y(a) = a.

So the difference methods developed above, such as RK4, still
apply.
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System of differential equations

Example
Use RK4 (with h = 0.1) to solve IVP for ODE system{

I′1(t) = f1(t , I1, I2) = −4I1 + 3I2 + 6
I′2(t) = f2(t , I1, I2) = −2.4I1 + 1.6I2 + 3.6

with initial value I1(0) = I2(0) = 0.
Solution: The exact solution is{

I1(t) = −3.375e−2t + 1.875e−0.4t + 1.5

I2(t) = 2.25e−2t + 2.25e−0.4t

for all t ≥ 0.
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System of differential equations

Example
Use RK4 (with h = 0.1) to solve IVP for ODE system{

I′1(t) = f1(t , I1, I2) = −4I1 + 3I2 + 6
I′2(t) = f2(t , I1, I2) = −2.4I1 + 1.6I2 + 3.6

with initial value I1(0) = I2(0) = 0.
Solution: (cont) The result by RK4 is

5.9 Higher-Order Equations and Systems of Differential Equations 333

As a consequence,

I1(0.1) ≈ w1,1 = w1,0 + 1
6
(k1,1 + 2k2,1 + 2k3,1 + k4,1)

= 0 + 1
6

(0.6 + 2(0.534) + 2(0.54072) + 0.4800912) = 0.5382552

and

I2(0.1) ≈ w2,1 = w2,0 + 1
6
(k1,2 + 2k2,2 + 2k3,2 + k4,2) = 0.3196263.

The remaining entries in Table 5.19 are generated in a similar manner. !

Table 5.19 tj w1,j w2,j |I1(tj) − w1,j| |I2(tj) − w2,j|
0.0 0 0 0 0

0.1 0.5382550 0.3196263 0.8285× 10− 5 0.5803× 10− 5

0.2 0.9684983 0.5687817 0.1514× 10− 4 0.9596× 10− 5

0.3 1.310717 0.7607328 0.1907× 10− 4 0.1216× 10− 4

0.4 1.581263 0.9063208 0.2098× 10− 4 0.1311× 10− 4

0.5 1.793505 1.014402 0.2193× 10− 4 0.1240× 10− 4

Recall that Maple reserves the
letter D to represent
differentiation.

Maple’s NumericalAnalysis package does not currently approximate the solution to
systems of initial value problems, but systems of first-order differential equations can by
solved using dsolve. The system in the Illustration is defined with

sys 2 := D(u1)(t) = − 4u1(t) + 3u2(t) + 6, D(u2)(t) = − 2.4u1(t) + 1.6u2(t) + 3.6

and the initial conditions with

init 2 := u1(0) = 0, u2(0) = 0

The system is solved with the command

sol 2 := dsolve({sys 2, init 2}, {u1(t), u2(t)})
and Maple responds with

{
u1(t) = − 27

8
e− 2t + 15

8
e−

5
2 t + 3

2
, u2(t) = − 9

4
e− 2t + 9

4
e−

5
2 t
}

To isolate the individual functions we use

r1 := rhs(sol 2[1]); r2 := rhs(sol 2[2])
producing

− 27
8

e− 2t+15
8

e−
5
2 t + 3

2

− 9
4

e− 2t+9
4

e−
5
2 t

and to determine the value of the functions at t = 0.5 we use

evalf (subs(t = 0.5, r1)); evalf (subs(t = 0.5, r2))
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High-order ordinary differential equations

A general IVP for mth-order ODE is

y (m) = f (t , y , y ′, . . . , y (m−1)), t ∈ [a,b]

with initial value y(a) = α1, y ′(a) = α2, . . . , y (m−1)(a) = αm.

Definition
A function y(t) is a solution of IVP for the mth-order ODE
above if y(t) satisfies the differential equation for t ∈ [a,b] and
all initial value conditions at t = a.
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High-order ordinary differential equations

We can define a set of functions u1, . . . ,um s.t.

u1(t) = y(t), u2(t) = y ′(t), . . . , um(t) = y (m−1)(t)

Then we can convert the mth-order ODE to a system of
first-order ODEs:

u′1 = u2

u′2 = u3

...
u′m = f (t ,u1,u2, . . . ,um)

for a ≤ t ≤ b

with initial values u1(a) = α1, . . . ,um(a) = αm.
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High-order ordinary differential equations

Example
Use RK4 (with h = 0.1) to solve IVP for ODE system

y ′′ − 2y ′ + 2y = e2t sin t , t ∈ [0,1]

with initial value y(0) = −0.4, y ′(0) = −0.6.
Solution:
The exact solution is y(t) = u1(t) = 0.2e2t (sin t − 2 cos t). Also
u2(t) = y ′(t) = u′1(t) but we don’t need it.
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High-order ordinary differential equations

Example
Use RK4 (with h = 0.1) to solve IVP for ODE system

y ′′ − 2y ′ + 2y = e2t sin t , t ∈ [0,1]

with initial value y(0) = −0.4, y ′(0) = −0.6.
Solution: (cont) The result by RK4 is
336 C H A P T E R 5 Initial-Value Problems for Ordinary Differential Equations

Table 5.20

tj y(tj) = u1(tj) w1,j y′(tj) = u2(tj) w2,j |y(tj) − w1,j| |y′(tj) − w2,j|
0.0 − 0.40000000 − 0.40000000 − 0.6000000 − 0.60000000 0 0
0.1 − 0.46173297 − 0.46173334 − 0.6316304 − 0.63163124 3.7× 10− 7 7.75× 10− 7

0.2 − 0.52555905 − 0.52555988 − 0.6401478 − 0.64014895 8.3× 10− 7 1.01× 10− 6

0.3 − 0.58860005 − 0.58860144 − 0.6136630 − 0.61366381 1.39× 10− 6 8.34× 10− 7

0.4 − 0.64661028 − 0.64661231 − 0.5365821 − 0.53658203 2.03× 10− 6 1.79× 10− 7

0.5 − 0.69356395 − 0.69356666 − 0.3887395 − 0.38873810 2.71× 10− 6 5.96× 10− 7

0.6 − 0.72114849 − 0.72115190 − 0.1443834 − 0.14438087 3.41× 10− 6 7.75× 10− 7

0.7 − 0.71814890 − 0.71815295 0.2289917 0.22899702 4.05× 10− 6 2.03× 10− 6

0.8 − 0.66970677 − 0.66971133 0.7719815 0.77199180 4.56× 10− 6 5.30× 10− 6

0.9 − 0.55643814 − 0.55644290 1.534764 1.5347815 4.76× 10− 6 9.54× 10− 6

1.0 − 0.35339436 − 0.35339886 2.578741 2.5787663 4.50× 10− 6 1.34× 10− 5

In Maple the nth derivative y(n)(t)
is specified by (D@@n)(y)(t).

We can also use dsolve from Maple on higher-order equations. To define the differential
equation in Example 1, use

def 2 := (D@@2)(y)(t) − 2D(y)(t) + 2y(t) = e2t sin(t)

and to specify the initial conditions use

init 2 := y(0) = − 0.4, D(y)(0) = − 0.6

The solution is obtained with the command

sol 2 := dsolve({def 2, init 2}, y(t))

to obtain

y(t) = 1
5

e2t(sin(t) − 2 cos(t))

We isolate the solution in function form using

g := rhs(sol 2)

To obtain y(1.0) = g(1.0), enter

evalf (subs(t = 1.0, g))

which gives − 0.3533943574.
Runge-Kutta-Fehlberg is also available for higher-order equations via the dsolve com-

mand with the numeric option. It is employed in the same manner as illustrated for systems
of equations.

The other one-step methods can be extended to systems in a similar way. When error
control methods like the Runge-Kutta-Fehlberg method are extended, each component of
the numerical solution (w1j, w2j, . . . , wmj) must be examined for accuracy. If any of the
components fail to be sufficiently accurate, the entire numerical solution (w1j, w2j, . . . , wmj)

must be recomputed.
The multistep methods and predictor-corrector techniques can also be extended to

systems. Again, if error control is used, each component must be accurate. The extension
of the extrapolation technique to systems can also be done, but the notation becomes quite
involved. If this topic is of interest, see [HNW1].

Convergence theorems and error estimates for systems are similar to those considered
in Section 5.10 for the single equations, except that the bounds are given in terms of vector
norms, a topic considered in Chapter 7. (A good reference for these theorems is [Ge1],
pp. 45–72.)
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A brief summary

The difference methods we developed above, e.g., Euler’s,
midpoints, RK4, multistep explicit/implicit, predictor-corrector
methods, are

I based on step-by-step derivation and easy to understand;
I widely used in many practical problems;
I fundamental to more advanced and complex techniques.

Numerical Analysis II – Xiaojing Ye, Math & Stat, Georgia State University 82



Stability of difference methods

Definition (Consistency)
A difference method is called consistent if

lim
h→0

(
max

1≤i≤N
τi(h)

)
= 0

where τi(h) is the local truncation error of the method.

Remark
Since local truncation error τi(h) is defined assuming previous
wi = yi , it does not take error accumulation into account. So the
consistency definition above only considers how good
φ(t ,wi ,h) in the difference method is.
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Stability of difference methods

For any step size h > 0, the difference method
wi+1 = wi + hφ(ti ,wi ,h) can generate a sequence of wi which
depend on h. We call them {wi(h)}i . Note that wi gradually
accumulate errors as i = 1,2, . . . ,N.

Definition (Convergent)
A difference method is called convergent if

lim
h→0

(
max

1≤i≤N
|yi − wi(h)|

)
= 0
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Stability of difference methods

Example
Show that Euler’s method is convergent.
Solution: We have showed before that for fixed h > 0 there is∣∣y(ti)− wi

∣∣ ≤ hM
2L

(
eL(ti−a) − 1

)
≤ hM

2L

(
eL(b−a) − 1

)
for all i = 0, . . . ,N. Therefore we have

max
1≤i≤N

∣∣y(ti)− wi
∣∣ ≤ hM

2L

(
eL(b−a) − 1

)
→ 0

as h→ 0. Therefore limh→0(max1≤i≤N
∣∣y(ti)− wi

∣∣) = 0.
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Stability of difference method

Definition
A numerical method is called stable if its results depend on the
initial data continuously.
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Stability of difference methods

Theorem
For a given IVP y ′ = f (t , y), t ∈ [a,b] with y(a) = α, consider a
difference method wi+1 = wi + hφ(ti ,wi ,h) with w0 = α. If there
exists h0 > 0 such that φ is continuous on [a,b]× R× [0,h0],
and φ is L-Lipschitz with respect to w, then

I The difference method is stable.
I The difference method is convergent if and only if it is

consistent (i.e., φ(t , y ,0) = f (t , y)).
I If there exists bound τ(h) such that |τi(h)| ≤ τ(h) for all

i = 1, . . . ,N, then |y(ti)− wi | ≤ τ(h)eL(ti−a)/L.
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Stability of difference methods

Proof.
Let h be fixed, then wi(α) generated by the difference method
are functions of α. For any two values α, α̂, there is

|wi+1(α)− wi+1(α̂)| = |(wi (α)− hφ(ti ,wi (α)))− (wi (α̂)− hφ(ti ,wi (α̂)))|
≤ |wi (α)− wi (α̂)|+ h|φ(ti ,wi (α))− φ(ti ,wi (α̂))|
≤ |wi (α)− wi (α̂)|+ hL|wi (α)− wi (α̂)|
= (1 + hL)|wi (α)− wi (α̂)|
≤ · · ·

≤ (1 + hL)i+1|w0(α)− w0(α̂)|

= (1 + hL)i+1|α− α̂|

≤ (1 + hL)N |α− α̂|

Therefore wi(α) is Lipschitz with respect to α (with constant at
most (1 + hL)N ), and hence is continuous with respect to α.
We omit the proofs for the other two assertions here.
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Stability of difference method

Example
Use the result of Theorem above to show that the Modified
Euler’s method is stable.
Solution:
Recall the Modified Euler’s method is given by

wi+1 = wi +
h
2

(
f (ti ,wi) + f (ti+1,wi + hf (ti ,wi))

)
So we have φ(t ,w ,h) = 1

2(f (t ,w) + f (t + h,w + hf (t ,w))).
Now we want to show φ is continuous in (t ,w ,h), and Lipschitz
with respect to w .
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Stability of difference method

Solution: (cont) It is obvious that φ is continuous in (t ,w ,h)
since f (t ,w) is continuous. Fix t and h. For any w , w̄ ∈ R, there
is

|φ(t ,w , h)− φ(t , w̄ , h)| =
1
2
|f (t ,w)− f (t , w̄)|

+
1
2
|f (t + h,w + hf (t ,w))− f (t + h, w̄ + hf (t , w̄))|

≤
L
2
|w − w̄ |+

L
2
|(w + hf (t ,w))− (w̄ + hf (t , w̄))|

≤ L|w − w̄ |+
Lh
2
|f (t ,w)− f (t , w̄)|

≤ L|w − w̄ |+
L2h
2
|w − w̄ |

= (L +
L2h
2

)|w − w̄ |

So φ is Lipschitz with respect to w . By first part of Theorem
above, the Modified Euler’s method is stable.
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Stability of multistep difference method

Definition
Suppose a multistep difference method given by

wi+1 = am−1wi + am−2wi−1 + · · ·+ a0wi−m+1 + hF (ti ,h,wi+1, . . . ,wi−m+1)

Then we call the following the characteristic polynomial of
the method:

λm − (am−1λ
m−1 + · · ·+ a1λ+ a0)

Definition
A difference method is said to satisfy the root condition if all
the m roots λ1, . . . , λm of its characteristic polynomial have
magnitudes ≤ 1, and all of those which have magnitude =1 are
single roots.
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Stability of multistep difference method

Definition
I A difference method that satisfies root condition is called

strongly stable if the only root with magnitude 1 is λ = 1.
I A difference method that satisfies root condition is called

weakly stable if there are multiple roots with magnitude 1.
I A difference method that does not satisfy root condition is

called unstable.
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Stability of multistep difference method

Theorem
I A difference method is stable if and only if it satisfies the

root condition.
I If a difference method is consistent, then it is stable if and

only if it is covergent.
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Stability of multistep difference method

Example
Show that the Adams-Bashforth 4-step explicit method is
strongly stable.
Solution: Recall that the method is given by

wi+1 = wi +
h
24

[
55f (ti ,wi )− 59f (ti−1,wi−1) + 37f (ti−2,wi−2)− 9f (ti−3,wi−3)

]

So the characteristic polynomial is simply λ4 − λ3 = λ3(λ− 1),
which only has one root λ = 1 with magnitude 1. So the
method is strongly stable.
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Stability of multistep difference method

Example
Show that the Milne’s 3-step explicit method is weakly stable
but not strongly stable.
Solution: Recall that the method is given by

wi+1 = wi−3 +
4h
3

[
2f (ti ,wi )− f (ti−1,wi−1) + 2f (ti−2,wi−2)

]

So the characteristic polynomial is simply λ4 − 1, which have
roots λ = ±1,±i. So the method is weakly stable but not
strongly stable.

Remark
This is the reason we chose Adams-Bashforth-Moulton PC
rather than Milne-Simpsons PC since the former is strongly
stable and likely to be more robust.
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Stiff differential equations

Stiff differential equations have e−ct terms (c > 0 large) in their
solutions. These terms→ 0 quickly, but their derivatives (of
form cne−ct ) do not, especially at small t .

Recall that difference methods have errors proportional to the
derivatives, and hence they may be inaccurate for stiff ODEs.
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Stiff differential equations

Example
Use RK4 to solve the IVP for a system of two ODEs:

u′1 = 9u1 + 24u2 + 5 cos t − 1
3

sin t

u′2 = −24u1 − 51u2 − 9 cos t +
1
3

sin t

with initial values u1(0) = 4/3 and u2(0) = 2/3.
Solution: The exact solution is

u1(t) = 2e−3t − e−39t +
1
3

cos t

u2(t) = −e−3t + 2e−39t − 1
3

cos t

for all t ≥ 0.
Numerical Analysis II – Xiaojing Ye, Math & Stat, Georgia State University 97



Stiff differential equations

Solution: (cont) When we apply RK4 to this stiff ODE, we
obtain

5.11 Stiff Differential Equations 349

has the unique solution

u1(t) = 2e− 3t − e− 39t + 1
3

cos t, u2(t) = − e− 3t + 2e− 39t − 1
3

cos t.

The transient term e− 39t in the solution causes this system to be stiff. Applying Algorithm
5.7, the Runge-Kutta Fourth-Order Method for Systems, gives results listed in Table 5.22.
When h = 0.05, stability results and the approximations are accurate. Increasing the step
size to h= 0.1, however, leads to the disastrous results shown in the table. !

Table 5.22 w1(t) w1(t) w2(t) w2(t)
t u1(t) h= 0.05 h= 0.1 u2(t) h= 0.05 h= 0.1

0.1 1.793061 1.712219 − 2.645169 − 1.032001 − 0.8703152 7.844527
0.2 1.423901 1.414070 − 18.45158 − 0.8746809 − 0.8550148 38.87631
0.3 1.131575 1.130523 − 87.47221 − 0.7249984 − 0.7228910 176.4828
0.4 0.9094086 0.9092763 − 934.0722 − 0.6082141 − 0.6079475 789.3540
0.5 0.7387877 9.7387506 − 1760.016 − 0.5156575 − 0.5155810 3520.00
0.6 0.6057094 0.6056833 − 7848.550 − 0.4404108 − 0.4403558 15697.84
0.7 0.4998603 0.4998361 − 34989.63 − 0.3774038 − 0.3773540 69979.87
0.8 0.4136714 0.4136490 − 155979.4 − 0.3229535 − 0.3229078 311959.5
0.9 0.3416143 0.3415939 − 695332.0 − 0.2744088 − 0.2743673 1390664.
1.0 0.2796748 0.2796568 − 3099671. − 0.2298877 − 0.2298511 6199352.

Although stiffness is usually associated with systems of differential equations, the
approximation characteristics of a particular numerical method applied to a stiff system can
be predicted by examining the error produced when the method is applied to a simple test
equation,

y′ = λy, y(0) = α, where λ < 0. (5.64)

The solution to this equation is y(t) = αeλt , which contains the transient solution eλt . The
steady-state solution is zero, so the approximation characteristics of a method are easy to
determine. (A more complete discussion of the round-off error associated with stiff systems
requires examining the test equation when λ is a complex number with negative real part;
see [Ge1], p. 222.)

First consider Euler’s method applied to the test equation. Letting h= (b − a)/N and
tj = jh, for j = 0, 1, 2, . . . , N , Eq. (5.8) on page 266 implies that

w0 = α, and wj+1 = wj + h(λwj) = (1 + hλ)wj,

so

wj+1 = (1 + hλ)j+1w0 = (1 + hλ)j+1α, for j = 0, 1, . . . , N − 1. (5.65)

Since the exact solution is y(t) = αeλt , the absolute error is

| y(tj) − wj| =
∣∣ejhλ − (1 + hλ) j

∣∣ |α| =
∣∣(ehλ) j − (1 + hλ) j

∣∣ |α|,

and the accuracy is determined by how well the term 1+hλ approximates ehλ. When λ < 0,
the exact solution (ehλ) j decays to zero as j increases, but by Eq.(5.65), the approximation
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which can blow up for larger step size h.
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Stiff differential equations

Now let’s use a simple example to see why this happens:
consider an IVP y ′ = λy , t ≥ 0, and y(0) = α. Here λ < 0. We
know the problem has solution y(t) = αeλt .

Suppose we apply Euler’s method, which is

wi+1 = wi + hf (ti ,wi) = wi + hλwi = (1 + λh)wi

= · · · = (1 + λh)i+1w0 = (1 + λh)i+1α

Therefore we simply have wi = (1 + λh)iα. So the error is

|y(ti)− wi | = |αeλih − (1 + λh)iα| = |eλih − (1 + λh)i ||α|

In order for the error not to blow up, we need at least
|1 + λh| < 1, which yields h < 2

|λ| . So h needs to be sufficiently
small for large λ.
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Stiff differential equations

Similar issue occurs for other one-step methods, which for this
IVP can be written as wi+1 = Q(λh)wi = · · · = (Q(λh))i+1α.
For the solution not to blow up, we need |Q(λh)| < 1.

For example, in nth-order Taylor’s method, we need

|Q(λh)| =
∣∣∣1 + λh +

λ2h2

2
+ · · ·+ λnhn

n!

∣∣∣ < 1

which requires h to be very small.

The same issue occurs for multistep methods too.
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Stiff differential equations

A remedy of stiff ODE is using implicit method, e.g., the implicit
Trapezoid method:

wi+1 = wi +
h
2

(f (ti+1,wi+1) + f (ti ,wi))

In each step, we need to solve for wi+1 from the equation
above.
Namely, we need to solve for the root of F (w):

F (w) := w − wi −
h
2

(f (ti+1,w) + f (ti ,wi)) = 0

We can use Newton’s method to solve F (x) = 0. For ODE
system with f of high dimension, use secant method.
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