Error analysis

Definition (Order of convergence)

Suppose $p_n \to p$. If $\exists \lambda, \alpha > 0$ s.t.

$$\lim_{n\to\infty}\frac{|p_{n+1}-p|}{|p_n-p|^{\alpha}}=\lambda$$

then $\{p_n\}$ is said to converge to p of **order** α , with asymptotic error constant λ .

Error analysis

Definition (Convergence order of numerical methods)

An iterative method $p_n = g(p_{n-1})$ is of **order** α if the generated $\{p_n\}$ converges to the solution p of p = g(p) at order α .

In particular:

- ho $\alpha = 1$: linearly convergent
- ho α = 2: quadratically convergent

Example

Example (Speed comparison: linear vs quadratic)

Suppose p_n (and q_n respectively) converges to 0 linearly (quadratically) with constant 0.5, enumerate the upper bound of $|p_n|$ and $|q_n|$.

Solution. By definition of convergence order, we know

$$\lim_{n \to \infty} \frac{|p_{n+1}|}{|p_n|} = 0.5$$
 and $\lim_{n \to \infty} \frac{|q_{n+1}|}{|q_n|^2} = 0.5$

Suppose that p_0 and q_0 are close enough to 0 s.t. $|p_{n+1}|/|p_n| \approx 0.5$ and $|q_{n+1}|/|q_n| \approx 0.5$ for all n, then

$$|p_n| \approx 0.5 |p_{n-1}| \approx 0.5^2 |p_{n-2}| \approx \cdots \approx 0.5^n |p_0|$$

 $|q_n| \approx 0.5 |q_{n-1}|^2 \approx 0.5 \cdot 0.5^2 |q_{n-2}|^4 \approx \cdots \approx 0.5^{2^n - 1} |q_0|^{2^n}$

Example

Example (Speed comparison: linear vs quadratic)

Suppose $p_0, q_0 \approx 0.5$. Then

	Linear	Quadratic
n	0.5 ⁿ	0.5^{2^n-1}
1	5.0000×10^{-1}	5.0000×10^{-1}
2	$2.5000 imes 10^{-1}$	$1.2500 imes 10^{-1}$
3	$1.2500 imes 10^{-1}$	7.8125×10^{-3}
4	6.2500×10^{-2}	3.0518×10^{-5}
5	3.1250×10^{-2}	4.6566×10^{-10}
6	1.5625×10^{-2}	1.0842×10^{-19}
7	7.8125×10^{-3}	5.8775×10^{-39}

Convergence rate of fixed point iteration algorithm

Theorem (FPI alg has linear convergence rate)

Suppose $g \in C[a,b]$ s.t. $g(x) \in [a,b]$, $\forall x \in [a,b]$. If $\exists k \in (0,1)$ s.t. $|g'(x)| \le k$, $\forall x \in (a,b)$, then $\{p_n\}$ generated by FPI algorithm converges to the unique FP of g(x) on [a,b] linearly.

Proof.

We already know $p_n \to p$ where p is the unique fixed point of g by FPI theorem. Also $p_{n+1} - p = g(p_n) - g(p) = g'(\xi(p_n))(p_n - p)$ where $\xi(p_n)$ is between p_n and p. So

$$\lim_{n \to \infty} \frac{|p_{n+1} - p|}{|p_n - p|} = \lim_{n \to \infty} |g'(\xi(p_n))| = |g'(\lim_{n \to \infty} \xi(p_n))| = |g'(p)| \le k < 1$$

So $p_n \to p$ linearly with constant k.

Improve convergence order of FPI to quadratic

Theorem (Additional condition for quadratic rate)

If $g \in C^2[a,b]$ and g'(p) = 0 for a FP $p \in (a,b)$, then $\exists M > 0$ s.t. $|g''(x)| \leq M$, $\forall x \in [a,b]$ and $\exists \delta > 0$ s.t. sequence $\{p_n\}$ by FPI stared in $[p-\delta,p+\delta]$ satisfies

$$|p_{n+1}-p|\leq \frac{M}{2}|p_n-p|^2, \qquad \forall r$$

Improve convergence order of FPI

Proof.

 $g \in C^2$, g(p) = p, g'(p) = 0 together imply $\exists \delta > 0$ and $k \in (0, 1)$ s.t. $|g'(x)| \le k < 1$ for all $x \in [p - \delta, p + \delta]$ and $g : [p - \delta, p + \delta] \to [p - \delta, p + \delta]$. Also

$$g(p_n) = g(p) + g'(p)(p_n - p) + \frac{1}{2}g''(\xi(p_n))(p_n - p)^2$$

where $\xi(p_n)$ is between p_n and p.

Since
$$p_{n+1} = g(p_n)$$
, $g(p) = p$, and $g'(p) = 0$, we have $p_{n+1} = p + \frac{1}{2}g''(\xi(p_n))(p_n - p)^2$. So

$$\frac{|p_{n+1}-p|}{|p_n-p|^2}=\frac{1}{2}|g''(\xi(p_n))|\leq \frac{M}{2}$$

Improve convergence order of FPI

Suppose we have a fixed point method with $g(x) = x - \phi(x)f(x)$. How to choose ϕ such that FPI converges quadratically?

We need g s.t. g'(p) = 0 at a FP p (root of f):

$$g'(p) = 1 - \phi'(p)f(p) - \phi(p)f'(p) = 0$$

Since f(p) = 0 we have $\phi(p) = \frac{1}{f'(p)}$. Choose $\phi(x) = \frac{1}{f'(x)}$ s.t.

$$g(x) = x - \frac{f(x)}{f'(x)}$$

This is exactly Newton's method!

So Newton's method converges quadratically.

Convergence of Newton's method when f'(p) = 0

We mentioned condition $f'(p) \neq 0$ at the root p of f in the convergence proof of Newton's method above.

What if f'(p) = 0? When will this happen and how to address it?

Multiple roots

f'(p) = 0 at root p means p is not a "simple root".

Definition (Root multiplicity)

A solution p of f(x) is a **root (zero) of multiplicity** m if $f(x) = (x - p)^m q(x)$ for some q s.t. $\lim_{x \to p} q(x) \neq 0$.

Definition (Simple root)

p is a **simple root (zero)** of f if its multiplicity m = 1.

Multiple roots

Theorem (S.N.C. for simple root)

 $f \in C^1[a, b]$ has a simple root $p \in (a, b)$ iff f(p) = 0 and $f'(p) \neq 0$.

Proof.

"\imp":
$$f(x) = (x - p)q(x)$$
 where $\lim_{x \to p} q(x) \neq 0$. Then $f'(x) = q(x) + (x - p)q'(x)$. So $f \in C^1$ implies
$$f'(p) = \lim_{x \to p} f'(x) = \lim_{x \to p} (q(x) + (x - p)q'(x)) \neq 0$$

"\(\infty\): $f(x) = f(p) + f'(\xi(x))(x - p)$ where $\xi(x)$ between x and p. Define $q(x) = f'(\xi(x))$ then

$$\lim_{x\to p} q(x) = \lim_{x\to p} f'(\xi(x)) = f'(\lim_{x\to p} \xi(x)) = f'(p) \neq 0$$

So f has a simple root at p.

Multiple roots

Theorem (S.N.C. for multiple root)

 $f \in C^m[a, b]$ has a zero p of multiplicity m iff

$$f(p) = f'(p) = \cdots = f^{(m-1)}(p) = 0$$
 and $f^{(m)}(p) \neq 0$

Proof.

Hint: Follow the proof above and use

$$(uv)^{(n)} = \sum_{k=0}^{n} {n \choose k} u^{(k)} v^{(n-k)}$$

Example

Example (Multiple root)

Let $f(x) = e^x - x - 1$, show that f(x) has a zero of multiplicity 2 at x = 0.

Solution. $f(x) = e^x - x - 1$, $f'(x) = e^x - 1$, and $f''(x) = e^x$. So f(0) = f'(0) = 0 and $f''(0) = 1 \neq 0$. By Theorem above f has root (zero) at x = 0 of multiplicity 2.

Modified Newton's method

Instead of using f(x) in Newton's method, we can replace f by

$$\mu(x) := \frac{f(x)}{f'(x)}$$

We need to show:

p is a root (simple or not) of $f \Longrightarrow p$ is a simple root of μ

Modified Newton's method

Recall that f has a root p of multiplicity m if $f(x) = (x - p)^m q(x)$ for some q with $\lim_{x\to p} q(x) \neq 0$.

Now there is

$$\mu(x) = \frac{f(x)}{f'(x)} = \frac{(x-p)^m q(x)}{m(x-p)^{m-1} q(x) + (x-p)^m q'(x)}$$
$$= (x-p) \cdot \frac{q(x)}{mq(x) + (x-p)q'(x)}$$

where
$$\frac{q(x)}{mq(x)+(x-p)q'(x)} \to \frac{1}{m} \neq 0$$
 as $x \to p$.

By definition, $\mu(x)$ has simple root at p, i.e., $\mu(p)=0$ and $\mu'(p)\neq 0$.

Modified Newton's method

Now we use $\mu(x)$ instead of f(x) in Newton's method:

$$g(x) = x - \frac{\mu(x)}{\mu'(x)} = x - \frac{(f(x)/f'(x))}{(f(x)/f'(x))'} = \dots = x - \frac{f(x)f'(x)}{(f'(x))^2 - f(x)f''(x)}$$

The modified Newton's method is

$$p_n = p_{n-1} - \frac{f(p_{n-1})f'(p_{n-1})}{(f'(p_{n-1}))^2 - f(p_{n-1})f''(p_{n-1})}$$

Drawbacks of the modified Newton's method:

- ightharpoonup Needs f'' in computation.
- ▶ Denominator approximates 0 as $p_n \rightarrow p$, so round-off may degrade convergence.

Accelerating convergence

We showed that FPI generally has linear convergence only. How to improve?

Suppose N is large, and p_n, p_{n+1}, p_{n+2} satisfy

$$\frac{p_{n+1} - p}{p_n - p} \approx \frac{p_{n+2} - p}{p_{n+1} - p}$$

$$\iff (p_{n+1} - p)^2 \approx (p_n - p)(p_{n+2} - p) = p_n p_{n+2} - p(p_{n+2} + p_n) + p^2$$

$$\iff p \approx \frac{p_n p_{n+2} - p_{n+1}^2}{p_{n+2} - 2p_{n+2} + p_n} = \dots = p_n - \frac{(p_{n+1} - p_n)^2}{p_{n+2} - 2p_{n+1} + p_n}$$

Aitken's Δ^2 method

Denote $\Delta p_n := p_{n+1} - p_n$, called **forward difference**, and

$$\Delta^2 p_n := \Delta(\Delta p_n) = \Delta(p_{n+1} - p_n)$$

$$= (p_{n+2} - p_{n+1}) - (p_{n+1} - p_n)$$

$$= p_{n+2} - 2p_{n+1} + p_n$$

So the result above can be written as $p \approx p_n - \frac{(\Delta p_n)^2}{\Delta^2 p_n}$.

Aitken's Δ^2 method:

Given $\{p_n\}$ generated by FPI, set $\hat{p}_n = p_n - \frac{(\Delta p_n)^2}{\Delta^2 p_n}$. Then $\hat{p}_n \to p$ faster than p_n .

Aitken's Δ^2 method

What does it mean by "faster"?

Theorem (Faster convergence by Aitken's Δ^2 method)

If $p_n \to p$ linearly with $\lim_{n\to\infty} \frac{p_{n+1}-p}{p_n-p} < 1$, then \hat{p}_n computed by Aitken's Δ^2 method satisfy

$$\lim_{n\to\infty}\frac{\hat{p}_n-p}{p_n-p}=0$$

Proof.

Hint: Define $e_n := p_n - p$, then $\Delta e_n = \Delta p_n$, $\Delta^2 e_n = \Delta^2 p_n$, and $\frac{e_{n+1}}{e_n} \to \lambda < 1$. Then

$$\frac{\hat{p}_n - p}{p_n - p} = \frac{p_n - \frac{(\Delta p_n)^2}{\Delta^2 p_n} - p}{p_n - p} = \frac{e_n - \frac{(\Delta e_n)^2}{\Delta^2 e_n}}{e_n} = \frac{\frac{e_{n+2}}{e_{n+1}} - \frac{e_{n+1}}{e_n}}{\frac{e_{n+2}}{e_{n+1}} - 2 + \frac{e_n}{e_{n+1}}} \to \frac{\lambda - \lambda}{\lambda - 2 + \frac{1}{\lambda}} = 0$$

Steffenson's method

Aitken's method computes \hat{p}_n separately from p_n . Steffenson's method makes use of \hat{p}_n to compute future p_n .

Steffenson's method: given g for FPI, compute

$$\begin{aligned} p_0^{(0)}, & p_0^{(0)} = g(p_0^{(0)}), & p_0^{(0)} = g(p_0^{(0)}) \\ p_0^{(1)} = p_0^{(0)} - \frac{(\Delta p_0^{(0)})^2}{\Delta^2 p_0^{(0)}}, & p_1^{(1)} = g(p_0^{(1)}), & p_2^{(1)} = g(p_1^{(1)}) \\ p_0^{(2)} = p_0^{(1)} - \frac{(\Delta p_0^{(1)})^2}{\Delta^2 p_0^{(1)}}, & p_1^{(2)} = g(p_0^{(2)}), & p_2^{(2)} = g(p_1^{(2)}) \\ & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \end{aligned}$$

Numerical Analysis I - Xiaojing Ye, Math & Stat, Georgia State University

Steffenson's method

Steffenson's method

- ▶ **Input.** Initial guess p_0 , ϵ_{tol} , N_{max} . Set N=1.
- ightharpoonup While $N \leq N_{\text{max}}$, do :
 - 1. Set $p_1 = g(p_0)$, $p_2 = g(p_1)$ and $p = p_0 \frac{(p_1 p_0)^2}{p_2 2p_1 + p_0}$
 - 2. If $|p p_0| < \epsilon_{\text{tol}}$, STOP
 - 3. $p_0 = p$
 - 4. Set N = N + 1
- ▶ **Output.** Return p. If $N \ge N_{\text{max}}$, print("Max iteration reached.").

Steffenson's method

Theorem

Suppose g(x) has a fixed point p and $g'(p) \neq 1$. If $\exists \delta > 0$, s.t. $f \in C^3[p-\delta,p+\delta]$, then Steffenson's method generates a sequence $\{p_n\}$ converging to p quadratically for any initial $p_0 \in [p-\delta,p+\delta]$.