MATH 4752/6752 - Mathematical Statistics II Sampling Distributions

Xiaojing Ye
Department of Mathematics \& Statistics
Georgia State University

Let $f(\cdot ; \theta)$ be the pdf of a specific distribution with unknown parameter θ.

Question: Can we estimate θ by getting samples of the iid $\mathrm{RVs} X_{1}, \ldots, X_{n}$ following $f(\cdot ; \theta)$?

Definition. A set of iid $\mathrm{RVs} X_{1}, \ldots, X_{n}$ is called a random sample of their common distribution f. Given a specific function u, the random variable $Y=$ $u\left(X_{1}, \ldots, X_{n}\right)$ is called a statistic.

Example. Let X_{1}, \ldots, X_{n} be iid RVs with pdf $f(\cdot ; \theta)$. Then we can define two statistics:

$$
\begin{aligned}
\text { Sample mean: } & \bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \\
\text { Sample variance: } & S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}
\end{aligned}
$$

Remark. In practice, we also apply the term of a statistic (e.g., sample mean and sample variance) to its actual value in an experiment.

Sampling distribution of the mean

Theorem. If X_{1}, \ldots, X_{n} is a random sample of a distribution with mean μ and variance σ^{2}, then the sample mean \bar{X} satisfies

$$
\mathbb{E}[\bar{X}]=\mu, \quad \operatorname{var}[\bar{X}]=\frac{\sigma^{2}}{n}
$$

Proof. We can show that

$$
\begin{aligned}
\mathbb{E}[\bar{X}] & =\mathbb{E}\left[\frac{1}{n} \sum_{i=1}^{n} X_{i}\right]=\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right]=\mu \\
\operatorname{var}[\bar{X}] & =\operatorname{var}\left[\frac{1}{n} \sum_{i=1}^{n} X_{i}\right]=\frac{1}{n^{2}} \sum_{i=1}^{n} \operatorname{var}\left[X_{i}\right]=\frac{\sigma^{2}}{n}
\end{aligned}
$$

Remark. We often denote $\mathbb{E}[\bar{X}]$ by $\mu_{\bar{X}}$ and $\operatorname{var}[\bar{X}]$ by $\sigma_{\bar{X}}^{2}$. Also $\sigma_{\bar{X}}$ is called the sample error of \bar{X}.

Theorem (Chebyshev's inequality). Let X be a RV with mean μ and variance σ^{2}, then for any $c>0$, there is

$$
\mathrm{P}(|X-\mu| \geq c) \leq \frac{\sigma^{2}}{c^{2}}
$$

Proof. We have that

$$
\begin{aligned}
\mathrm{P}(|X-\mu| \geq c) & =\int_{|x-\mu| \geq c} f(x) d x \\
& \leq \int_{|x-\mu| \geq c} \frac{|x-\mu|^{2}}{c^{2}} f(x) d x \\
& \leq \int_{-\infty}^{\infty} \frac{|x-\mu|^{2}}{c^{2}} f(x) d x \\
& =\frac{\sigma^{2}}{c^{2}} .
\end{aligned}
$$

Example. By Chebyshev's inequality, we have for any fixed $c>0$ that

$$
\mathrm{P}(|\bar{X}-\mu| \leq c) \geq 1-\frac{\sigma^{2}}{n^{2} c^{2}} .
$$

Note that RHS tends to 1 as $n \rightarrow \infty$. This is informally known as the Law of Large Numbers.

Central Limit Theorem. Let X_{1}, \ldots, X_{n} be a random sample from a distribution with mean μ and variance σ^{2}. Denote \bar{X}_{n} their sample mean. Define

$$
Z_{n}=\frac{\bar{X}_{n}-\mu}{\sigma / \sqrt{n}}
$$

Then the limiting distribution of Z_{n} as $n \rightarrow \infty$ is the standard normal distribution.

To prove CLT, we first recall several properties of MGFs.
Let $M_{X}(t)$ be the MGF of X and a, b be constants. Then

$$
\begin{aligned}
M_{X+a}(t) & =\mathbb{E}\left[e^{(X+a) t}\right]=e^{a t} \mathbb{E}\left[e^{X t}\right]=e^{a t} M_{X}(t), \\
M_{b X}(t) & =\mathbb{E}\left[e^{b X t}\right]=\mathbb{E}\left[e^{X(b t)}\right]=M_{X}(b t), \\
M_{\frac{X+a}{b}}(t) & =e^{\frac{a t}{b}} M_{\frac{X}{b}}(t)=e^{\frac{a t}{b}} M_{X}\left(\frac{t}{b}\right) .
\end{aligned}
$$

Proof of CLT. We notice that

$$
M_{Z_{n}}(t)=M_{\frac{\bar{X}_{n}-\mu}{\sigma / \sqrt{n}}}(t)=M_{\frac{n \bar{X}_{n}-n \mu}{\sqrt{n} \sigma}}(t)=e^{-\frac{\sqrt{n} \mu}{\sigma} t} M_{n \bar{X}_{n}}\left(\frac{t}{\sqrt{n} \sigma}\right)
$$

Since $n \bar{X}_{n}=X_{1}+\cdots+X_{n}$, we have

$$
M_{n \bar{X}_{n}}\left(\frac{t}{\sqrt{n} \sigma}\right)=\prod_{i=1}^{n} M_{X_{i}}\left(\frac{t}{\sqrt{n} \sigma}\right)=\left(M_{X}\left(\frac{t}{\sqrt{n} \sigma}\right)\right)^{n}
$$

Also note that

$$
M_{X}\left(\frac{t}{\sqrt{n} \sigma}\right)=1+\underbrace{\mu_{1}^{\prime} \frac{t}{\sqrt{n} \sigma}+\frac{\mu_{2}^{\prime}}{2}\left(\frac{t}{\sqrt{n} \sigma}\right)^{2}+\cdots}_{=: \xi(t)}
$$

where μ_{i}^{\prime} is the i th moment of X. In particular, $\mu_{1}^{\prime}=\mu, \mu_{2}^{\prime}=\mu^{2}+\sigma^{2}$.

Proof of CLT (cont). Recall that

$$
\ln (1+x)=x+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\cdots .
$$

Hence we have

$$
\begin{aligned}
\ln M_{Z_{n}}(t) & =-\frac{\sqrt{n} \mu}{\sigma} t+n \ln M_{X}\left(\frac{t}{\sqrt{n} \sigma}\right) \\
& =-\frac{\sqrt{n} \mu}{\sigma} t+n \ln (1+\xi(t)) \\
& =-\frac{\sqrt{n} \mu}{\sigma} t+n\left(\xi(t)+\frac{\xi(t)^{2}}{2}+\cdots\right) \\
& =\frac{t^{2}}{2}+\sum_{r=3}^{\infty} \frac{c_{r} t^{r}}{\sqrt{n^{r-2}}}
\end{aligned}
$$

for constants c_{r} independent of t and n.

For any fixed $t \in(0,1)$, we have

$$
\sum_{r=3}^{\infty} \frac{c_{r} t^{r}}{\sqrt{n^{r-2}}}=O\left(\frac{1}{\sqrt{n}}\right) \rightarrow 0 \text { as } n \rightarrow \infty
$$

Therefore $\ln M_{Z_{n}}(t) \rightarrow \frac{t^{2}}{2}$, i.e., $M_{Z_{n}}(t) \rightarrow e^{t^{2} / 2}$. This implies that the limiting distribution of Z_{n} is $N(0,1)$, which proves CLT.

Remarks.

- It is $\frac{\bar{X}_{n}-\mu}{\sigma / \sqrt{n}}$, not \bar{X}_{n}, that has density approaching that of the standard normal. When $n \geq 30$, the approximation accuracy is usually good enough.
- If $X_{1}, \ldots, X_{n} \sim N\left(\mu, \sigma^{2}\right)$, then $\bar{X}_{n} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right)$ for any $n \geq 1$.

Sample distribution with finite population and without replacement

Suppose we have a finite population $\left\{c_{1}, \ldots, c_{N}\right\}$, and we select n of them in order without replacement. Let X_{1}, \ldots, X_{n} be the RVs representing our selections. Then the joint pmf of $\left(X_{1}, \ldots, X_{n}\right)$ is

$$
f\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{P_{N}^{n}}=\frac{(N-n)!}{N!}
$$

The marginal distribution $f_{r}\left(x_{r}\right)$ of X_{r} is
$f_{r}\left(x_{r}\right)=\sum_{x_{s} \neq x_{r}, s \neq r} f\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{P_{N}^{n}} \cdot P_{N-1}^{n-1}=\frac{(N-n)!}{N!} \cdot \frac{(N-1)!}{(N-n)!}=\frac{1}{N}$
for any $x_{r}=c_{1}, \ldots, c_{N}$.

To see the above, notice that when x_{r} is fixed, $\left(X_{1}, \ldots, \widehat{x_{r}}, \ldots, X_{n}\right)$ can take any permutation of the remaining $N-1$ objects (all but x_{r}).

For any $r=1, \ldots, n$, from the marginal pmf $f_{r}\left(c_{r}\right)$ we have

$$
\begin{aligned}
\mu_{r} & =\mathbb{E}\left[X_{r}\right]=\sum_{i=1}^{N} c_{i} f_{r}\left(c_{i}\right)=\frac{1}{N} \sum_{i=1}^{N} c_{i}=: \mu \\
\sigma_{r}^{2} & =\mathbb{E}\left[\left(X_{r}-\mu\right)^{2}\right]=\sum_{i=1}^{N}\left(c_{i}-\mu_{r}\right)^{2} f_{r}\left(c_{i}\right)=\frac{1}{N} \sum_{i=1}^{N}\left(c_{i}-\mu_{r}\right)^{2}=: \sigma^{2}
\end{aligned}
$$

For any $r \neq s$, the joint pmf of $\left(X_{r}, X_{s}\right)$ is

$$
g_{r s}\left(x_{r}, x_{s}\right)=\frac{1}{P_{N}^{n}} \cdot P_{N-2}^{n-2}=\frac{(N-n)!}{N!} \cdot \frac{(N-2)!}{(N-n)!}=\frac{1}{N(N-1)}
$$

for any $x_{r} \neq x_{s}$.

From the joint pmf, we have

$$
\begin{aligned}
\operatorname{cov}\left(X_{r}, X_{s}\right) & =\mathbb{E}\left[\left(X_{r}-\mu\right)\left(X_{s}-\mu\right)\right] \\
& =\sum_{i \neq j}\left(c_{i}-\mu\right)\left(c_{j}-\mu\right) g_{r s}\left(c_{i}, c_{j}\right) \\
& =\sum_{i \neq j}\left(c_{i}-\mu\right)\left(c_{j}-\mu\right) \frac{1}{N(N-1)} \\
& =\frac{1}{N(N-1)} \sum_{i=1}^{N}\left(c_{i}-\mu\right) \sum_{j \neq i}\left(c_{j}-\mu\right) \\
& =-\frac{1}{N-1} \cdot \frac{1}{N} \sum_{i=1}^{N}\left(c_{i}-\mu\right)^{2} \\
& =-\frac{1}{N-1} \sigma^{2}
\end{aligned}
$$

where we used $\sum_{j \neq i}\left(c_{j}-\mu\right)=-\left(c_{i}-\mu\right)$ in the second last equality.

Now we can find the mean and variance of $\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$:

$$
\begin{aligned}
\mathbb{E}\left[\bar{X}_{n}\right] & =\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right]=\mu \\
\operatorname{var}\left[\bar{X}_{n}\right] & =\operatorname{var}\left[\frac{1}{n} \sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} \frac{1}{n^{2}} \operatorname{var}\left[X_{i}\right]+2 \sum_{r<s} \frac{1}{n^{2}} \operatorname{cov}\left(X_{r}, X_{s}\right) \\
& =n \cdot \frac{\sigma^{2}}{n^{2}}+\frac{n(n-1)}{2} \cdot \frac{2}{n^{2}} \cdot\left(-\frac{\sigma^{2}}{N-1}\right)=\frac{\sigma^{2}}{n} \cdot \frac{N-n}{N-1}
\end{aligned}
$$

Remark. We can see $\operatorname{var}\left[\bar{X}_{n}\right]$ differs from $\frac{\sigma^{2}}{n}$ by a factor of $\frac{N-n}{N-1}$. If $N=n$, then there is no variance since $\bar{X}_{n}=\frac{1}{N} \sum_{i=1}^{n} c_{i}$ for sure. If $N \gg n$, then $\frac{N-n}{N-1} \approx 1$ which is close to the infinite population case.

Chi-square distribution

We have seen that if $Z \sim N(0,1)$, then $X:=Z^{2} \sim \Gamma\left(\frac{1}{2}, 2\right)$. Here X is said to have chi-square distribution with degree of freedom (df) 1 . We denote $X \sim \chi_{1}^{2}$.

In general, X is said to have chi-square distribution with df ν if $X \sim \Gamma\left(\frac{\nu}{2}, 2\right)$, i.e.,

$$
f(x)=\frac{1}{2^{\nu / 2} \Gamma(\nu / 2)} x^{(\nu-2) / 2} e^{-x / 2}
$$

for $x>0$ and $f(x)=0$ if $x \leq 0$. Hence

$$
\mathbb{E}[X]=\frac{\nu}{2} \cdot 2=\nu, \quad \operatorname{var}[X]=\frac{\nu}{2} \cdot 2^{2}=2 \nu, \quad M_{X}(t)=(1-2 t)^{-\nu / 2}
$$

Remark. Recall that if $X_{i} \sim \Gamma\left(\alpha_{i}, \beta\right)$ for $i=1, \ldots, n$ and are independent, then

$$
Y=\sum_{i=1}^{n} X_{i} \sim \Gamma\left(\sum_{i=1}^{n} \alpha_{i}, \beta\right) .
$$

Therefore, if $Z_{i} \sim N(0,1)$ are independent standard normal, then $Z_{i}^{2} \sim$ $\Gamma\left(\frac{1}{2}, 2\right)$ are independent χ_{1}^{2}, and

$$
Y=\sum_{i=1}^{n} Z_{i}^{2} \sim \Gamma\left(\frac{n}{2}, 2\right)=\chi_{n}^{2} .
$$

Theorem. Let $X_{1}, \ldots, X_{n} \sim N\left(\mu, \sigma^{2}\right)$ be a random sample, then \bar{X} and S^{2} are independent, and

$$
\frac{(n-1) S^{2}}{\sigma^{2}} \sim \chi_{n-1}^{2}
$$

To prove this theorem, we need a series of lemmas.

Lemma. We have the following identities:

$$
\begin{aligned}
(n-1) S^{2} & =\sum_{i=1}^{n} X_{i}^{2}-n \bar{X}^{2} \\
\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2} & =\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}+n(\bar{X}-\mu)^{2}
\end{aligned}
$$

Lemma.

- If $Z \sim N(0,1)$, then $Z^{2} \sim \chi_{1}^{2}$.
- If $X_{1}, \ldots, X_{n} \sim N(0,1)$ is a random sample, then $Y=\sum_{i=1}^{n} X_{i}^{2} \sim \chi_{n}^{2}$.

Lemma. If $X_{1}, \ldots, X_{n} \sim N\left(\mu, \sigma^{2}\right)$ is a random sample, then \bar{X} is independent of $X_{i}-\bar{X}$ for all $i=1, \ldots, n$.

Sketch proof. The joint pdf of $\left(X_{1}, \ldots, X_{n}\right)$ is

$$
f\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{(2 \pi)^{n / 2} \sigma^{n}} e^{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}} .
$$

Consider the transformation:

$$
\left\{\begin{aligned}
Y_{1} & =\bar{X} \\
Y_{2} & =X_{2}-\bar{X} \\
& \vdots \\
Y_{n} & =X_{n}-\bar{X}
\end{aligned} \Longleftrightarrow \quad \Longleftrightarrow \begin{array}{rl}
X_{1} & =Y_{1}-Y_{2}-\cdots-Y_{n} \\
X_{2} & =Y_{2}+Y_{1} \\
& \vdots \\
X_{n} & =Y_{n}+Y_{1}
\end{array}\right.
$$

Sketch proof (cont). Then the joint pdf of Y_{1}, \ldots, Y_{n} is

$$
g\left(y_{1}, y_{2}, \ldots, y_{n}\right)=C \cdot \underbrace{e^{-\frac{1}{2 \sigma^{2}}\left(\left(\sum_{i=1}^{n} y_{i}\right)^{2}+\sum_{i=2}^{n} y_{i}^{2}\right)}}_{\mathrm{fn} \text { of } y_{2}, \ldots, y_{n}} \cdot \underbrace{e^{\frac{n}{2 \sigma^{2}}\left(y_{1}-\mu\right)^{2}}}_{\mathrm{fn} \text { of } y_{1}} .
$$

This implies that Y_{1} is independent of Y_{2}, \ldots, Y_{n}. Hence \bar{X} is independent of $X_{2}-\bar{X}, \ldots, X_{n}-\bar{X}$ and thus also $X_{1}-\bar{X}=-\sum_{i=2}^{n}\left(X_{i}-\bar{X}\right)$.

With the lemma above, we can prove that \bar{X} and S^{2} are independent.
Proof of the theorem. Since $S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)$ is a function of $X_{1}-\bar{X}, \ldots, X_{n}-\bar{X}$, we know \bar{X} is independent of S^{2}.

Now recall that we have

$$
\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}=\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}+n(\bar{X}-\mu)^{2}
$$

Dividing σ^{2} we obtain

$$
\sum_{i=1}^{n}\left(\frac{X_{i}-\mu}{\sigma}\right)^{2}=\frac{(n-1) S^{2}}{\sigma^{2}}+\left(\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}\right)^{2}
$$

Proof of the theorem (cont). Noticing that

$$
\sum_{i=1}^{n}\left(\frac{X_{i}-\mu}{\sigma}\right)^{2} \sim \chi_{n}^{2}, \quad\left(\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}\right)^{2} \sim \chi_{1}^{2}
$$

and that $\frac{(n-1) S^{2}}{\sigma^{2}}$ and $\left(\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}\right)^{2}$ are independent, we get that

$$
\frac{(n-1) S^{2}}{\sigma^{2}} \sim \chi_{n-1}^{2}
$$

This completes the proof.

Let $X \sim \chi_{\nu}^{2}$ and $\alpha \in(0,1)$, then $\chi_{\alpha, \nu}^{2}$ is the value such that

$$
\mathrm{P}\left(X \geq \chi_{\alpha, \nu}^{2}\right)=\alpha
$$

For certain given $\nu>0$ and $\alpha \in(0,1)$, we can look up the value of $\chi_{\alpha, \nu}^{2}$ in the χ^{2} table (Table V in textbook):

| Table V: Values of $\chi_{\alpha, \nu}^{2}{ }^{\dagger}$ | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | ---: | ---: | ---: | ---: |
| v | $\alpha=.995$ | $\alpha=.99$ | $\alpha=.975$ | $\alpha=.95$ | $\alpha=.05$ | $\alpha=.025$ | $\alpha=.01$ | $\alpha=.005$ |
| 1 | .0000393 | .000157 | .000982 | .00393 | 3.841 | 5.024 | 6.635 | 7.879 |
| 2 | .0100 | .0201 | .0506 | .103 | 5.991 | 7.378 | 9.210 | 10.597 |
| 3 | .0717 | .115 | .216 | .352 | 7.815 | 9.348 | 11.345 | 12.838 |
| 4 | .207 | .297 | .484 | .711 | 9.488 | 11.143 | 13.277 | 14.860 |
| 5 | .412 | .554 | .831 | 1.145 | 11.070 | 12.832 | 15.086 | 16.750 |
| | | | | | | | | |
| 6 | .676 | .872 | 1.237 | 1.635 | 12.592 | 14.449 | 16.812 | 18.548 |
| 7 | .989 | 1.239 | 1.690 | 2.167 | 14.067 | 16.013 | 18.475 | 20.278 |
| 8 | 1.344 | 1.646 | 2.180 | 2.733 | 15.507 | 17.535 | 20.090 | 21.955 |
| 9 | 1.735 | 2.088 | 2.700 | 3.325 | 16.919 | 19.023 | 21.666 | 23.589 |
| 10 | 2.156 | 2.558 | 3.247 | 3.940 | 18.307 | 20.483 | 23.209 | 25.188 |
| | | | | | | | | |

Example. Suppose a semiconductor company wants to test the thickness of their semiconductors. They tested a sample of size 20 (assuming the thicknesses are from a normal distribution $N\left(\mu, \sigma^{2}\right)$). The production process is considered "out of control" if $\sigma>0.60$ with probability 0.01 . Suppose the test shows $s=0.84$, is the process out of control?

Idea. Assuming $\sigma=0.60$, we want to see how unlikely (i.e., with probability <0.01) that $s=0.84$ occurs. If it is indeed unlikely, we will declare that the assumption $\sigma=0.60$ is inappropriate and we should have $\sigma>0.60$.

Solution. The process is out of control if $\frac{(n-1) s^{2}}{\sigma^{2}}$ with $n=20$ and $\sigma=0.60$ exceeds $\chi_{0.01,19}^{2}=36.191$. Since

$$
\frac{(n-1) s^{2}}{\sigma^{2}}=\frac{19 \cdot(0.84)^{2}}{(0.60)^{2}}=37.24(>36.191)
$$

we declare that $\sigma=0.60$ is inappropriate and the process is out of control.

The student t distribution

Suppose we have a random sample from a normal population $N\left(\mu, \sigma^{2}\right)$. Can we test the mean μ without knowing σ^{2} ?

Theorem. Let $Y \sim \chi_{\nu}^{2}$ and $Z \sim N(0,1)$ be independent, then

$$
T=\frac{Z}{\sqrt{Y / \nu}}
$$

has the probability density function given by

$$
f_{T}(t)=\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\pi \nu}\left\ulcorner\left(\frac{\nu}{2}\right)\right.} \cdot\left(1+\frac{t^{2}}{\nu}\right)^{-\frac{\nu+1}{2}} \quad \text { for }-\infty<t<\infty
$$

Here T is said to have the student t distribution with df ν, i.e., $T \sim t_{\nu}$.

Proof. First notice that the joint pdf of (Y, Z) is

$$
f_{Y, Z}(y, z)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} z^{2}} \cdot \frac{1}{\Gamma\left(\frac{\nu}{2}\right) 2^{\frac{\nu}{2}}} y^{\frac{\nu}{2}-1} e^{-\frac{y}{2}} .
$$

Consider the transformation $(x, t)=\boldsymbol{u}(y, z)$ and its inverse $(y, z)=\boldsymbol{w}(x, t)$ where

$$
(x, t)=\boldsymbol{u}(y, z)=\left(y, \frac{z}{\sqrt{y / \nu}}\right), \quad(y, z)=\boldsymbol{w}(x, t)=(x, t \sqrt{x / \nu}) .
$$

So $\operatorname{det}(D \boldsymbol{w}(x, t))=\sqrt{x / \nu}$.
Hence the joint pdf of (X, T) is

$$
g(x, t)=f_{Y, Z}(\boldsymbol{w}(x, t))|\operatorname{det}(D \boldsymbol{w}(x, t))|=f_{Y, Z}(x, t \sqrt{x / \nu}) \sqrt{x / \nu}
$$

Applying the formula of $f_{Y, Z}$ and noticing that $Y=X$, we have

$$
g(y, t)= \begin{cases}\frac{1}{\sqrt{2 \pi \nu}\left\ulcorner\left(\frac{\nu}{2}\right) 2^{\frac{\nu}{2}}\right.} y^{\frac{\nu-1}{2}} e^{-\frac{y}{2}\left(1+\frac{t^{2}}{\nu}\right)} & \text { for } y>0 \text { and }-\infty<t<\infty \\ 0 & \text { elsewhere }\end{cases}
$$

For any fixed t, we notice that $g(y, t)$ is proportional to the pdf of $\Gamma(\alpha, \beta)$ where

$$
\alpha=\frac{\nu+1}{2}, \quad \beta=\frac{2}{1+\frac{t^{2}}{\nu}} .
$$

Hence we get
$f_{T}(t)=\int_{0}^{\infty} g(y, t) d y=\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\pi \nu}\left\ulcorner\left(\frac{\nu}{2}\right)\right.} \cdot\left(1+\frac{t^{2}}{\nu}\right)^{-\frac{\nu+1}{2}} \quad$ for $-\infty<t<\infty$.

Theorem. Suppose \bar{X} and S^{2} are respectively the sample mean and sample variance of a random sample from $N\left(\mu, \sigma^{2}\right)$, then

$$
\frac{\bar{X}-\mu}{S / \sqrt{n}} \sim t_{n-1}
$$

Proof. We let

$$
Y:=\frac{(n-1) S^{2}}{\sigma^{2}}, \quad Z:=\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} .
$$

Then we know $Y \sim \chi_{n-1}^{2}, Z \sim N(0,1)$, and Y and Z are independent. Therefore,

$$
T:=\frac{Z}{\sqrt{Y /(n-1)}}=\frac{\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}}{\sqrt{S^{2} / \sigma^{2}}} \sim t_{n-1} .
$$

Comparison of the density functions of $N(0,1), t_{2}$, and t_{10} :

Remark. t_{ν} is approximately $N(0,1)$ when $\nu \geq 30$.

Let $T \sim t_{\nu}$ and $\alpha \in(0.5,1)$ (we do not need $\alpha \leq 0.5$ since f_{T} is symmetric about $t=0$), then $t_{\alpha, \nu}$ is the value such that

$$
\mathrm{P}\left(T \geq t_{\alpha, \nu}\right)=\alpha
$$

For certain given $\nu>0$ and $\alpha \in(0.5,1)$, we can look up the value of $t_{\alpha, \nu}$ in the t-distribution table (Table IV in textbook):

Table IV: Values of $t_{\alpha, \nu}{ }^{\dagger}$

ν	$\alpha=.10$	$\alpha=.05$	$\alpha=.025$	$\alpha=.01$	$\alpha=.005$
1	3.078	6.314	12.706	31.821	63.657
2	1.886	2.920	4.303	6.965	9.925
3	1.638	2.353	3.182	4.541	5.841
4	1.533	2.132	2.776	3.747	4.604
5	1.476	2.015	2.571	3.365	4.032
6	1.440	1.943	2.447	3.143	3.707
7	1.415	1.895	2.365	2.998	3.499
8	1.397	1.860	2.306	2.896	3.355
9	1.383	1.833	2.262	2.821	3.250
10	1.372	1.812	2.228	2.764	3.169

Example. Suppose we obtain a random sample of size 16 from a normal population. Using this sample, we figure that $\bar{x}=16.1$ and $s=2.1$. Can we declare that the true mean $\mu>12.0$ with confidence 0.99 ?

Idea. Assuming $\mu=12.0$, we want to see how unlikely (i.e., with probability <0.01) that $\bar{x}=16.1$ occurs. If it is indeed unlikely, we will declare that the assumption $\mu=12.0$ is inappropriate, and we should have $\mu>12.0$.

Solution. Given that $n=16, \bar{x}=16.1, s=2.1$, and assuming $\mu=12.0$, we have

$$
t=\frac{\bar{x}-\mu}{s / \sqrt{n}}=\frac{16.4-12.0}{2.1 / \sqrt{16}}=8.38
$$

On the other hand, we have $t_{0.005,15}=2.947$ from the t-distribution table. Since $t \geq t_{0.005,15}$, we declare that the true mean $\mu>12.0$ with confidence 0.99 .

Fisher F distribution

Question: how do we draw statistical inferences about the ratio of two sample variances?

Theorem. Suppose $U \sim \chi_{\nu_{1}}^{2}$ and $V \sim \chi_{\nu_{2}}^{2}$ are independent, then

$$
F=\frac{U / \nu_{1}}{V / \nu_{2}}
$$

has the pdf given by

$$
g(f)= \begin{cases}\frac{\Gamma\left(\frac{\nu_{1}+\nu_{2}}{2}\right)}{\Gamma\left(\frac{\nu_{1}}{2}\right) \Gamma\left(\frac{\nu_{2}}{2}\right)}\left(\frac{\nu_{1}}{\nu_{2}}\right)^{\frac{\nu_{1}}{2}} \cdot f^{\frac{\nu_{1}}{2}-1}\left(1+\frac{\nu_{1}}{\nu_{2}} f\right)^{-\frac{1}{2}\left(\nu_{1}+\nu_{2}\right)}, & \text { if } f>0 \\ 0, & \text { elsewhere. }\end{cases}
$$

Here F is said to have the F-distribution with degrees of freedoms ν_{1} and ν_{2}, denoted by $F \sim F_{\nu_{1}, \nu_{2}}$.

Proof. The joint pdf of (U, V) is

$$
\begin{aligned}
f_{U, V}(u, v) & =\frac{1}{2^{\nu_{1} / 2} \Gamma\left(\frac{\nu_{1}}{2}\right)} \cdot u^{\frac{\nu_{1}}{2}-1} e^{-\frac{u}{2}} \cdot \frac{1}{2^{\nu_{2} / 2} \Gamma\left(\frac{\nu_{2}}{2}\right)} \cdot v^{\frac{\nu_{2}}{2}-1} e^{-\frac{v}{2}} \\
& =\frac{1}{2^{\left(\nu_{1}+\nu_{2}\right) / 2} \Gamma\left(\frac{\nu_{1}}{2}\right) \Gamma\left(\frac{\nu_{2}}{2}\right)} \cdot u^{\frac{\nu_{1}}{2}-1} v^{\frac{\nu_{2}}{2}-1} e^{-\frac{\mu+v}{2}}
\end{aligned}
$$

Consider the transformation $f=\frac{u / \nu_{1}}{v / \nu_{2}}$, then $u=\frac{\nu_{1}}{\nu_{2}} f v$ and hence $\frac{\partial u}{\partial f}=\frac{\nu_{1}}{\nu_{2}} v$. Thus the joint pdf of (F, V) is

$$
\begin{aligned}
g_{F, V}(f, v) & =f_{U, V}\left(\frac{\nu_{1}}{\nu_{2}} f v, v\right) \cdot \frac{\nu_{1}}{\nu_{2}} v \\
& =\frac{\left(\frac{\nu_{1}}{\nu_{2}}\right)^{\nu_{1} / 2}}{2^{\left(\nu_{1}+\nu_{2}\right) / 2} \Gamma\left(\frac{\nu_{1}}{2}\right) \Gamma\left(\frac{\nu_{2}}{2}\right)} \cdot f^{\frac{\nu_{1}}{2}-1} v^{\frac{\nu_{1}+\nu_{2}}{2}-1} e^{-\frac{v}{2}\left(\frac{\nu_{1} f}{\nu_{2}}+1\right)}
\end{aligned}
$$

for $f, v>0$.

Integrating out v, we obtain the marginal pdf of F as

$$
g(f)=\frac{\Gamma\left(\frac{\nu_{1}+\nu_{2}}{2}\right)}{\Gamma\left(\frac{\nu_{1}}{2}\right)\left\ulcorner\left(\frac{\nu_{2}}{2}\right)\right.}\left(\frac{\nu_{1}}{\nu_{2}}\right)^{\frac{\nu_{1}}{2}} \cdot f^{\frac{\nu_{1}}{2}-1}\left(1+\frac{\nu_{1}}{\nu_{2}} f\right)^{-\frac{1}{2}\left(\nu_{1}+\nu_{2}\right)}
$$

for $f>0$. It is obvious that $g(f)=0$ if $f \leq 0$.

Let $F \sim F_{\nu_{1}, \nu_{2}}$ and $\alpha \in(0,1)$, then $f_{\alpha, \nu_{1}, \nu_{2}}$ is the value such that

$$
\mathrm{P}\left(F \geq f_{\alpha, \nu_{1}, \nu_{2}}\right)=\alpha
$$

For certain given $\nu_{1}, \nu_{2}>0$ and $\alpha \in(0,1)$, we can look up the value of $F_{\alpha, \nu_{1}, \nu_{2}}$ in the F-distribution table (Table VI in textbook for $\alpha=0.05$ and 0.01):

Table VI: Values of $f_{0.05, \nu_{1}, \nu_{2}}{ }^{\dagger}$

$\nu_{1}=$ Degrees of freedom for numerator																				
	1	2	3	4	5	6	7	8	9	10	12	15	20	24	30	40	60	120	∞	
¢ 1	161	200	216	225	230	234	237	239	241	242	244	246	248	249	250	251	252	253	254	
\% 2	18.5	19.0	19.2	19.2	19.3	19.3	19.4	19.4	19.4	19.4	19.4	19.4	19.4	19.5	19.5	19.5	19.5	19.5	19.5	
- 3	10.1	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.79	8.74	8.70	8.66	8.64	8.62	8.59	8.57	8.55	8.53	
\bigcirc	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96	5.91	5.86	5.80	5.77	5.75	5.72	5.69	5.66	5.63	
\% 5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74	4.68	4.62	4.56	4.53	4.50	4.46	4.43	4.40	4.37	
¢ 6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06	4.00	3.94	3.87	3.84	3.81	3.77	3.74	3.70	3.67	
E 7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64	3.57	3.51	3.44	3.41	3.38	3.34	3.30	3.27	3.23	
- 8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.35	3.28	3.22	3.15	3.12	3.08	3.04	3.01	2.97	2.93	
\% 9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.14	3.07	3.01	2.94	2.90	2.86	2.83	2.79	2.75	2.71	
± 10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98	2.91	2.85	2.77	2.74	2.70	2.66	2.62	2.58	2.54	
$\overbrace{\circlearrowleft} \quad 11$	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90	2.85	2.79	2.72	2.65	2.61	2.57	2.53	2.49	2.45	2.40	
- 12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80	2.75	2.69	2.62	2.54	2.51	2.47	2.43	2.38	2.34	2.30	
-13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71	2.67	2.60	2.53	2.46	2.42	2.38	2.34	2.30	2.25	2.21	
\|	14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	2.60	2.53	2.46	2.39	2.35	2.31	2.27	2.22	2.18	2.13
~ 15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54	2.48	2.40	2.33	2.29	2.25	2.20	2.16	2.11	2.07	

Application of F statistics: compare the ratio of σ_{1}^{2} and σ_{2}^{2} from two independent normal populations.

Theorem. Suppose there are two independent normal populations with variances σ_{1}^{2} and σ_{2}^{2}, and S_{1}^{2} and S_{2}^{2} are the sample variances of two random samples of size n_{1} and n_{2} from these two populations. Then

$$
F=\frac{S_{1}^{2} / \sigma_{1}^{2}}{S_{2}^{2} / \sigma_{2}^{2}}=\frac{\sigma_{2}^{2} S_{1}^{2}}{\sigma_{1}^{2} S_{2}^{2}} \sim F_{n_{1}-1, n_{2}-1} .
$$

Proof. Notice that

$$
\frac{\left(n_{i}-1\right) S_{i}^{2}}{\sigma_{i}^{2}} \sim \chi_{n_{i}-1}^{2}
$$

for $i=1,2$ are independent.

Order Statistics

We consider nonparametric statistics (in contrast to parametric statistics before where we assumed normal population). Suppose $X_{1}, \ldots, X_{n} \sim f$ is a random sample for an arbitrary f, then the order statistics are defined as

$$
Y_{1}=X_{(1)}, \quad Y_{2}=X_{(2)}, \quad \ldots, \quad Y_{n}=X_{(n)}
$$

where $X_{(r)}$ is the r-th smallest one among X_{1}, \ldots, X_{n}.
Question: what is the pdf of Y_{r} for $r=1, \ldots, n$?

Theorem. The pdf g_{r} of Y_{r} is given by

$$
g_{r}\left(y_{r}\right)=\frac{n!}{(r-1)!(n-r)!}\left[\int_{-\infty}^{y_{r}} f(x) d x\right]^{r-1} f\left(y_{r}\right)\left[\int_{y_{r}}^{\infty} f(x) d x\right]^{n-r}
$$

for $-\infty<y_{r}<\infty$.

Proof. For any $h>0$, we partition \mathbb{R} into three intervals using y_{r} and $y_{r}+h$, then the probability that Y_{1}, \ldots, Y_{r-1} fall into the interval $\left(-\infty, y_{r}\right], Y_{r}$ falls into $\left(y_{r}, y_{r}+h\right.$], and Y_{r+1}, \ldots, Y_{n} fall into $\left(y_{r}+h, \infty\right)$ is
$\frac{n!}{(r-1)!1!(n-r)!}\left[\int_{-\infty}^{y_{r}} f(x) d x\right]^{r-1}\left[\int_{y_{r}}^{y_{r}+h} f(x) d x\right]\left[\int_{y_{r}+h}^{\infty} f(x) d x\right]^{n-r}$. If h is close to 0 , then the probability above is $\mathrm{P}\left(y_{r}<Y_{r} \leq y_{r}+h\right)$ (since Y_{r+1} will be outside of this interval almost surely).

Proof (cont). On the one hand, we know

$$
\frac{\mathrm{P}\left(y_{r}<Y_{r} \leq y_{r}+h\right)}{h}=\frac{F_{r}\left(y_{r}+h\right)-F_{r}\left(y_{r}\right)}{h} \rightarrow g_{r}\left(y_{r}\right),
$$

as $h \rightarrow 0$, where F_{r} is the cumulative distribution function of Y_{r}.

On the other hand, we have

$$
\begin{aligned}
\frac{1}{h} \int_{y_{r}}^{y_{r}+h} f(x) d x & \rightarrow f\left(y_{r}\right) \\
\int_{y_{r}+h}^{\infty} f(x) d x & \rightarrow \int_{y_{r}}^{\infty} f(x) d x
\end{aligned}
$$

as $h \rightarrow 0$.

Combining the results above proves the theorem.

Several special order statistics

- Minimal statistic Y_{1} has pdf

$$
g_{1}\left(y_{1}\right)=n \cdot f\left(y_{1}\right)\left[\int_{y_{1}}^{\infty} f(x) d x\right]^{n-1} \quad \text { for }-\infty<y_{1}<\infty
$$

- Maximal statistic Y_{n} has pdf

$$
g_{n}\left(y_{n}\right)=n \cdot f\left(y_{n}\right)\left[\int_{-\infty}^{y_{n}} f(x) d x\right]^{n-1} \quad \text { for }-\infty<y_{n}<\infty
$$

- If $n=2 m+1$ is odd, then the sample median Y_{m+1} has pdf

$$
h(\tilde{x})=\frac{(2 m+1)!}{m!m!}\left[\int_{-\infty}^{\tilde{x}} f(x) d x\right]^{m} f(\tilde{x})\left[\int_{\tilde{x}}^{\infty} f(x) d x\right]^{m}
$$

$$
\text { for }-\infty<\tilde{x}<\infty .
$$

Example. Suppose X_{1}, \ldots, X_{n} is a random sample from $\operatorname{Exp}(\theta)$, i.e., the pdf is $f(x)=\frac{1}{\theta} e^{-x / \theta}$, then the pdf of Y_{1} is

$$
g_{1}\left(y_{1}\right)= \begin{cases}\frac{n}{\theta} \cdot e^{-n y_{1} / \theta} & \text { for } y_{1}>0 \\ 0 & \text { elsewhere }\end{cases}
$$

The pdf of Y_{n} is

$$
g_{n}\left(y_{n}\right)= \begin{cases}\frac{n}{\theta} \cdot e^{-y_{n} / \theta}\left[1-e^{-y_{n} / \theta}\right]^{n-1} & \text { for } y_{n}>0 \\ 0 & \text { elsewhere }\end{cases}
$$

If $n=2 m+1$, then the pdf of the sample median Y_{m} is

$$
h(\tilde{x})= \begin{cases}\frac{(2 m+1)!}{m!m!\theta} \cdot e^{-\tilde{x}(m+1) / \theta}\left[1-e^{-\tilde{x} / \theta}\right]^{m} & \text { for } \tilde{x}>0 \\ 0 & \text { elsewhere }\end{cases}
$$

Suppose f is continuous and nonzero at $\tilde{\mu}$ where $\tilde{\mu}$ is the population median such that

$$
\int_{-\infty}^{\tilde{\mu}} f(x) d x=\frac{1}{2}
$$

Then for large $n=2 m+1$, the sample median Y_{m} approximately follows the normal distribution:

$$
N\left(\tilde{\mu}, \frac{1}{4 n f(\tilde{\mu})^{2}}\right) .
$$

In particular, if $f(\cdot)=N\left(\cdot ; \mu, \sigma^{2}\right)$ and sample size $n=2 m+1$ is very large, then $f(\tilde{\mu})=f(\mu)=\frac{1}{\sqrt{2 \pi} \sigma}$ and there is approximately

$$
Y_{m} \sim N\left(\mu, \frac{\pi \sigma^{2}}{4 m}\right)
$$

In contrast, the sample mean $\bar{X}_{2 m+1} \sim N\left(\mu, \frac{\sigma^{2}}{2 m+1}\right)$ which has smaller variance.

