MATH 4752/6752 – Mathematical Statistics II Sampling Distributions

Xiaojing Ye Department of Mathematics & Statistics Georgia State University

Let $f(\cdot; \theta)$ be the pdf of a specific distribution with unknown parameter θ .

Question: Can we estimate θ by getting samples of the iid RVs X_1, \ldots, X_n following $f(\cdot; \theta)$?

Definition. A set of iid RVs X_1, \ldots, X_n is called a **random sample** of their common distribution f. Given a specific function u, the random variable $Y = u(X_1, \ldots, X_n)$ is called a **statistic**.

Example. Let X_1, \ldots, X_n be iid RVs with pdf $f(\cdot; \theta)$. Then we can define two statistics:

Sample mean:
$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Sample variance: $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$

Remark. In practice, we also apply the term of a statistic (e.g., sample mean and sample variance) to its actual value in an experiment.

Sampling distribution of the mean

Theorem. If X_1, \ldots, X_n is a random sample of a distribution with mean μ and variance σ^2 , then the sample mean \overline{X} satisfies

$$\mathbb{E}[\bar{X}] = \mu, \quad \operatorname{var}[\bar{X}] = \frac{\sigma^2}{n}.$$

Proof. We can show that

$$\mathbb{E}[\bar{X}] = \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}\right] = \frac{1}{n}\sum_{i=1}^{n}\mathbb{E}[X_{i}] = \mu,$$
$$\operatorname{var}[\bar{X}] = \operatorname{var}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}\right] = \frac{1}{n^{2}}\sum_{i=1}^{n}\operatorname{var}[X_{i}] = \frac{\sigma^{2}}{n}.$$

Remark. We often denote $\mathbb{E}[\bar{X}]$ by $\mu_{\bar{X}}$ and $\operatorname{var}[\bar{X}]$ by $\sigma_{\bar{X}}^2$. Also $\sigma_{\bar{X}}$ is called the **sample error** of \bar{X} .

Theorem (Chebyshev's inequality). Let *X* be a RV with mean μ and variance σ^2 , then for any c > 0, there is

$$\mathsf{P}(|X-\mu| \ge c) \le \frac{\sigma^2}{c^2}$$

Proof. We have that

$$P(|X - \mu| \ge c) = \int_{|x - \mu| \ge c} f(x) dx$$

$$\leq \int_{|x - \mu| \ge c} \frac{|x - \mu|^2}{c^2} f(x) dx$$

$$\leq \int_{-\infty}^{\infty} \frac{|x - \mu|^2}{c^2} f(x) dx$$

$$= \frac{\sigma^2}{c^2}.$$

Example. By Chebyshev's inequality, we have for any fixed c > 0 that

$$\mathsf{P}(|\bar{X} - \mu| \le c) \ge 1 - \frac{\sigma^2}{n^2 c^2}.$$

Note that RHS tends to 1 as $n \to \infty$. This is informally known as the **Law of** Large Numbers.

Central Limit Theorem. Let X_1, \ldots, X_n be a random sample from a distribution with mean μ and variance σ^2 . Denote \overline{X}_n their sample mean. Define

$$Z_n = \frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}}.$$

Then the limiting distribution of Z_n as $n \to \infty$ is the standard normal distribution.

To prove CLT, we first recall several properties of MGFs.

Let $M_X(t)$ be the MGF of X and a, b be constants. Then

$$M_{X+a}(t) = \mathbb{E}[e^{(X+a)t}] = e^{at} \mathbb{E}[e^{Xt}] = e^{at} M_X(t),$$

$$M_{bX}(t) = \mathbb{E}[e^{bXt}] = \mathbb{E}[e^{X(bt)}] = M_X(bt),$$

$$M_{\underline{X+a}}(t) = e^{\frac{at}{b}} M_{\underline{X}}(t) = e^{\frac{at}{b}} M_X(\frac{t}{b}).$$

Proof of CLT. We notice that

$$M_{Z_n}(t) = M_{\frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}}}(t) = M_{\frac{n\bar{X}_n - n\mu}{\sqrt{n}\sigma}}(t) = e^{-\frac{\sqrt{n}\mu}{\sigma}t} M_{n\bar{X}_n}\left(\frac{t}{\sqrt{n}\sigma}\right).$$

Since $n\overline{X}_n = X_1 + \cdots + X_n$, we have

$$M_{n\bar{X}_n}\left(\frac{t}{\sqrt{n}\sigma}\right) = \prod_{i=1}^n M_{X_i}\left(\frac{t}{\sqrt{n}\sigma}\right) = \left(M_X\left(\frac{t}{\sqrt{n}\sigma}\right)\right)^n.$$

Also note that

$$M_X\left(\frac{t}{\sqrt{n}\sigma}\right) = 1 + \underbrace{\mu'_1 \frac{t}{\sqrt{n}\sigma} + \frac{\mu'_2}{2} \left(\frac{t}{\sqrt{n}\sigma}\right)^2 + \cdots}_{=:\xi(t)}$$

where μ'_i is the *i*th moment of X. In particular, $\mu'_1 = \mu$, $\mu'_2 = \mu^2 + \sigma^2$.

Proof of CLT (cont). Recall that

$$\ln(1+x) = x + \frac{x^2}{2} + \frac{x^3}{3} + \cdots$$

Hence we have

$$n M_{Z_n}(t) = -\frac{\sqrt{n\mu}}{\sigma}t + n \ln M_X\left(\frac{t}{\sqrt{n\sigma}}\right)$$
$$= -\frac{\sqrt{n\mu}}{\sigma}t + n \ln(1 + \xi(t))$$
$$= -\frac{\sqrt{n\mu}}{\sigma}t + n\left(\xi(t) + \frac{\xi(t)^2}{2} + \cdots\right)$$
$$= \frac{t^2}{2} + \sum_{r=3}^{\infty} \frac{c_r t^r}{\sqrt{n^{r-2}}}$$

for constants c_r independent of t and n.

For any fixed $t \in (0, 1)$, we have

$$\sum_{r=3}^{\infty} \frac{c_r t^r}{\sqrt{n^{r-2}}} = O\left(\frac{1}{\sqrt{n}}\right) \to 0 \text{ as } n \to \infty.$$

Therefore In $M_{Z_n}(t) \to \frac{t^2}{2}$, i.e., $M_{Z_n}(t) \to e^{t^2/2}$. This implies that the limiting distribution of Z_n is N(0, 1), which proves CLT.

Remarks.

• It is $\frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}}$, not \bar{X}_n , that has density approaching that of the standard normal. When $n \ge 30$, the approximation accuracy is usually good enough.

• If
$$X_1, \ldots, X_n \sim N(\mu, \sigma^2)$$
, then $\overline{X}_n \sim N(\mu, \frac{\sigma^2}{n})$ for any $n \ge 1$.

Sample distribution with finite population and without replacement

Suppose we have a finite population $\{c_1, \ldots, c_N\}$, and we select n of them in order without replacement. Let X_1, \ldots, X_n be the RVs representing our selections. Then the joint pmf of (X_1, \ldots, X_n) is

$$f(x_1,...,x_n) = \frac{1}{P_N^n} = \frac{(N-n)!}{N!}$$

The marginal distribution $f_r(x_r)$ of X_r is

$$f_r(x_r) = \sum_{\substack{x_s \neq x_r, s \neq r}} f(x_1, \dots, x_n) = \frac{1}{P_N^n} \cdot P_{N-1}^{n-1} = \frac{(N-n)!}{N!} \cdot \frac{(N-1)!}{(N-n)!} = \frac{1}{N}$$

for any $x_r = c_1, \dots, c_N$.

To see the above, notice that when x_r is fixed, $(X_1, \ldots, \widehat{x_r}, \ldots, X_n)$ can take any permutation of the remaining N - 1 objects (all but x_r). For any r = 1, ..., n, from the marginal pmf $f_r(c_r)$ we have

$$\mu_r = \mathbb{E}[X_r] = \sum_{i=1}^N c_i f_r(c_i) = \frac{1}{N} \sum_{i=1}^N c_i =: \mu$$

$$\sigma_r^2 = \mathbb{E}[(X_r - \mu)^2] = \sum_{i=1}^N (c_i - \mu_r)^2 f_r(c_i) = \frac{1}{N} \sum_{i=1}^N (c_i - \mu_r)^2 =: \sigma^2$$

For any $r \neq s$, the joint pmf of (X_r, X_s) is

$$g_{rs}(x_r, x_s) = \frac{1}{P_N^n} \cdot P_{N-2}^{n-2} = \frac{(N-n)!}{N!} \cdot \frac{(N-2)!}{(N-n)!} = \frac{1}{N(N-1)}$$

for any $x_r \neq x_s$.

From the joint pmf, we have

$$\begin{aligned} \operatorname{cov}(X_r, X_s) &= \mathbb{E}[(X_r - \mu)(X_s - \mu)] \\ &= \sum_{i \neq j} (c_i - \mu)(c_j - \mu)g_{rs}(c_i, c_j) \\ &= \sum_{i \neq j} (c_i - \mu)(c_j - \mu)\frac{1}{N(N - 1)} \\ &= \frac{1}{N(N - 1)} \sum_{i=1}^N (c_i - \mu) \sum_{j \neq i} (c_j - \mu) \\ &= -\frac{1}{N - 1} \cdot \frac{1}{N} \sum_{i=1}^N (c_i - \mu)^2 \\ &= -\frac{1}{N - 1} \sigma^2 \end{aligned}$$

where we used $\sum_{j \neq i} (c_j - \mu) = -(c_i - \mu)$ in the second last equality.

Now we can find the mean and variance of $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$:

$$\mathbb{E}[\bar{X}_n] = \frac{1}{n} \sum_{i=1}^n \mathbb{E}[X_i] = \mu$$

$$\operatorname{var}[\bar{X}_n] = \operatorname{var}\left[\frac{1}{n} \sum_{i=1}^n X_i\right] = \sum_{i=1}^n \frac{1}{n^2} \operatorname{var}[X_i] + 2 \sum_{r < s} \frac{1}{n^2} \operatorname{cov}(X_r, X_s)$$

$$= n \cdot \frac{\sigma^2}{n^2} + \frac{n(n-1)}{2} \cdot \frac{2}{n^2} \cdot \left(-\frac{\sigma^2}{N-1}\right) = \frac{\sigma^2}{n} \cdot \frac{N-n}{N-1}$$

Remark. We can see $var[\bar{X}_n]$ differs from $\frac{\sigma^2}{n}$ by a factor of $\frac{N-n}{N-1}$. If N = n, then there is no variance since $\bar{X}_n = \frac{1}{N} \sum_{i=1}^n c_i$ for sure. If $N \gg n$, then $\frac{N-n}{N-1} \approx 1$ which is close to the infinite population case.

Chi-square distribution

We have seen that if $Z \sim N(0, 1)$, then $X := Z^2 \sim \Gamma(\frac{1}{2}, 2)$. Here X is said to have chi-square distribution with degree of freedom (df) 1. We denote $X \sim \chi_1^2$.

In general, X is said to have chi-square distribution with df ν if $X \sim \Gamma(\frac{\nu}{2}, 2)$, i.e.,

$$f(x) = \frac{1}{2^{\nu/2} \Gamma(\nu/2)} x^{(\nu-2)/2} e^{-x/2}$$

for x > 0 and f(x) = 0 if $x \le 0$. Hence

$$\mathbb{E}[X] = \frac{\nu}{2} \cdot 2 = \nu, \quad \text{var}[X] = \frac{\nu}{2} \cdot 2^2 = 2\nu, \quad M_X(t) = (1 - 2t)^{-\nu/2}.$$

Remark. Recall that if $X_i \sim \Gamma(\alpha_i, \beta)$ for i = 1, ..., n and are independent, then

$$Y = \sum_{i=1}^{n} X_i \sim \Gamma\left(\sum_{i=1}^{n} \alpha_i, \beta\right).$$

Therefore, if $Z_i \sim N(0,1)$ are independent standard normal, then $Z_i^2 \sim \Gamma(\frac{1}{2},2)$ are independent χ_1^2 , and

$$Y = \sum_{i=1}^{n} Z_i^2 \sim \Gamma\left(\frac{n}{2}, 2\right) = \chi_n^2.$$

Theorem. Let $X_1, \ldots, X_n \sim N(\mu, \sigma^2)$ be a random sample, then \overline{X} and S^2 are independent, and

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2_{n-1}.$$

To prove this theorem, we need a series of lemmas.

Lemma. We have the following identities:

$$(n-1)S^{2} = \sum_{i=1}^{n} X_{i}^{2} - n\bar{X}^{2}$$
$$\sum_{i=1}^{n} (X_{i} - \mu)^{2} = \sum_{i=1}^{n} (X_{i} - \bar{X})^{2} + n(\bar{X} - \mu)^{2}$$

Lemma.

• If
$$Z \sim N(0, 1)$$
, then $Z^2 \sim \chi_1^2$.

• If $X_1, \ldots, X_n \sim N(0, 1)$ is a random sample, then $Y = \sum_{i=1}^n X_i^2 \sim \chi_n^2$.

Lemma. If $X_1, \ldots, X_n \sim N(\mu, \sigma^2)$ is a random sample, then \overline{X} is independent of $X_i - \overline{X}$ for all $i = 1, \ldots, n$.

Sketch proof. The joint pdf of (X_1, \ldots, X_n) is

$$f(x_1,...,x_n) = \frac{1}{(2\pi)^{n/2}\sigma^n} e^{-\frac{1}{2\sigma^2}\sum_{i=1}^n (x_i - \mu)^2}.$$

Consider the transformation:

$$\begin{cases} Y_1 &= \bar{X} \\ Y_2 &= X_2 - \bar{X} \\ \vdots \\ Y_n &= X_n - \bar{X} \end{cases} \iff \begin{cases} X_1 &= Y_1 - Y_2 - \dots - Y_n \\ X_2 &= Y_2 + Y_1 \\ \vdots \\ X_n &= Y_n + Y_1 \end{cases}$$

Sketch proof (cont). Then the joint pdf of Y_1, \ldots, Y_n is

$$g(y_1, y_2, \dots, y_n) = C \cdot \underbrace{e^{-\frac{1}{2\sigma^2}((\sum_{i=1}^n y_i)^2 + \sum_{i=2}^n y_i^2)}}_{\text{fn of } y_2, \dots, y_n} \cdot \underbrace{e^{\frac{n}{2\sigma^2}(y_1 - \mu)^2}}_{\text{fn of } y_1}.$$

This implies that Y_1 is independent of Y_2, \ldots, Y_n . Hence \overline{X} is independent of $X_2 - \overline{X}, \ldots, X_n - \overline{X}$ and thus also $X_1 - \overline{X} = -\sum_{i=2}^n (X_i - \overline{X})$.

With the lemma above, we can prove that \overline{X} and S^2 are independent.

Proof of the theorem. Since $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})$ is a function of $X_1 - \bar{X}, \dots, X_n - \bar{X}$, we know \bar{X} is independent of S^2 .

Now recall that we have

$$\sum_{i=1}^{n} (X_i - \mu)^2 = \sum_{i=1}^{n} (X_i - \bar{X})^2 + n(\bar{X} - \mu)^2$$

Dividing σ^2 we obtain

$$\sum_{i=1}^{n} \left(\frac{X_i - \mu}{\sigma}\right)^2 = \frac{(n-1)S^2}{\sigma^2} + \left(\frac{\bar{X} - \mu}{\sigma/\sqrt{n}}\right)^2$$

Proof of the theorem (cont). Noticing that

$$\sum_{i=1}^{n} \left(\frac{X_{i} - \mu}{\sigma}\right)^{2} \sim \chi_{n}^{2}, \qquad \left(\frac{\bar{X} - \mu}{\sigma/\sqrt{n}}\right)^{2} \sim \chi_{1}^{2},$$

and that $\frac{(n-1)S^{2}}{\sigma^{2}}$ and $\left(\frac{\bar{X} - \mu}{\sigma/\sqrt{n}}\right)^{2}$ are independent, we get that
 $\frac{(n-1)S^{2}}{\sigma^{2}} \sim \chi_{n-1}^{2}.$

This completes the proof.

For certain given $\nu > 0$ and $\alpha \in (0, 1)$, we can look up the value of $\chi^2_{\alpha,\nu}$ in the χ^2 table (Table V in textbook):

Table V: Values of $\chi^2_{\alpha,\nu}^{\dagger}$														
ν	$\alpha = .995$	$\alpha = .99$	$\alpha = .975$	<i>α</i> = .95	$\alpha = .05$	$\alpha = .023$	$5 \alpha = .01$	$\alpha = .005$						
1	.0000393	.000157	.000982	.00393	3.841	5.024	6.635	7.879						
2	.0100	.0201	.0506	.103	5.991	7.378	9.210	10.597						
3	.0717	.115	.216	.352	7.815	9.348	11.345	12.838						
4	.207	.297	.484	.711	9.488	11.143	13.277	14.860						
5	.412	.554	.831	1.145	11.070	12.832	15.086	16.750						
6	.676	.872	1.237	1.635	12.592	14.449	16.812	18.548						
7	.989	1.239	1.690	2.167	14.067	16.013	18.475	20.278						
8	1.344	1.646	2.180	2.733	15.507	17.535	20.090	21.955						
9	1.735	2.088	2.700	3.325	16.919	19.023	21.666	23.589						
10	2.156	2.558	3.247	3.940	18.307	20.483	23.209	25.188						

Example. Suppose a semiconductor company wants to test the thickness of their semiconductors. They tested a sample of size 20 (assuming the thicknesses are from a normal distribution $N(\mu, \sigma^2)$). The production process is considered "out of control" if $\sigma > 0.60$ with probability 0.01. Suppose the test shows s = 0.84, is the process out of control?

Idea. Assuming $\sigma = 0.60$, we want to see how unlikely (i.e., with probability < 0.01) that s = 0.84 occurs. If it is indeed unlikely, we will declare that the assumption $\sigma = 0.60$ is inappropriate and we should have $\sigma > 0.60$.

Solution. The process is out of control if $\frac{(n-1)s^2}{\sigma^2}$ with n = 20 and $\sigma = 0.60$ exceeds $\chi^2_{0.01,19} = 36.191$. Since

$$\frac{(n-1)s^2}{\sigma^2} = \frac{19 \cdot (0.84)^2}{(0.60)^2} = 37.24 \ (> 36.191),$$

we declare that $\sigma = 0.60$ is inappropriate and the process is out of control.

The student t distribution

Suppose we have a random sample from a normal population $N(\mu, \sigma^2)$. Can we test the mean μ without knowing σ^2 ?

Theorem. Let $Y \sim \chi^2_{\nu}$ and $Z \sim N(0, 1)$ be independent, then

$$T = \frac{Z}{\sqrt{Y/\nu}}$$

has the probability density function given by

$$f_T(t) = \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\pi\nu}\Gamma\left(\frac{\nu}{2}\right)} \cdot \left(1 + \frac{t^2}{\nu}\right)^{-\frac{\nu+1}{2}} \quad \text{for } -\infty < t < \infty$$

Here T is said to have the student t distribution with df ν , i.e., $T \sim t_{\nu}$.

Proof. First notice that the joint pdf of (Y, Z) is

$$f_{Y,Z}(y,z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^2} \cdot \frac{1}{\Gamma\left(\frac{\nu}{2}\right)2^{\frac{\nu}{2}}} y^{\frac{\nu}{2}-1} e^{-\frac{y}{2}}.$$

Consider the transformation (x, t) = u(y, z) and its inverse (y, z) = w(x, t)where

$$(x,t) = u(y,z) = \left(\frac{y}{\sqrt{y/\nu}}\right), \qquad (y,z) = w(x,t) = \left(x, t\sqrt{x/\nu}\right).$$

So det $(Dw(x,t)) = \sqrt{x/\nu}.$

Hence the joint pdf of (X, T) is

$$g(x,t) = f_{Y,Z}(w(x,t)) |\det(Dw(x,t))| = f_{Y,Z}(x,t\sqrt{x/\nu})\sqrt{x/\nu}$$

Applying the formula of $f_{Y,Z}$ and noticing that Y = X, we have

$$g(y,t) = \begin{cases} \frac{1}{\sqrt{2\pi\nu}} y^{\frac{\nu-1}{2}} e^{-\frac{y}{2}\left(1+\frac{t^2}{\nu}\right)} & \text{for } y > 0 \text{ and } -\infty < t < \infty \\ 0 & \text{elsewhere} \end{cases}$$

For any fixed t, we notice that g(y,t) is proportional to the pdf of $\Gamma(\alpha,\beta)$ where

$$\alpha = \frac{\nu + 1}{2}, \quad \beta = \frac{2}{1 + \frac{t^2}{\nu}}$$

Hence we get

$$f_T(t) = \int_0^\infty g(y,t) \, dy = \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\pi\nu}\Gamma\left(\frac{\nu}{2}\right)} \cdot \left(1 + \frac{t^2}{\nu}\right)^{-\frac{\nu+1}{2}} \quad \text{for } -\infty < t < \infty.$$

Theorem. Suppose \overline{X} and S^2 are respectively the sample mean and sample variance of a random sample from $N(\mu, \sigma^2)$, then

$$\frac{\bar{X} - \mu}{S/\sqrt{n}} \sim t_{n-1}$$

Proof. We let

$$Y := \frac{(n-1)S^2}{\sigma^2}, \qquad Z := \frac{\bar{X} - \mu}{\sigma/\sqrt{n}}$$

Then we know $Y \sim \chi^2_{n-1}$, $Z \sim N(0,1)$, and Y and Z are independent. Therefore,

$$T := \frac{Z}{\sqrt{Y/(n-1)}} = \frac{\frac{\bar{X}-\mu}{\sigma/\sqrt{n}}}{\sqrt{S^2/\sigma^2}} \sim t_{n-1}.$$

Comparison of the density functions of N(0, 1), t_2 , and t_{10} :

Remark. t_{ν} is approximately N(0, 1) when $\nu \geq 30$.

Let $T \sim t_{\nu}$ and $\alpha \in (0.5, 1)$ (we do not need $\alpha \leq 0.5$ since f_T is symmetric about t = 0), then $t_{\alpha,\nu}$ is the value such that

 $\mathsf{P}(T \ge t_{\alpha,\nu}) = \alpha$

For certain given $\nu > 0$ and $\alpha \in (0.5, 1)$, we can look up the value of $t_{\alpha,\nu}$ in the *t*-distribution table (Table IV in textbook):

Table IV: Values of $t_{\alpha,\nu}^{\dagger}$												
ν	$\alpha = .10$	$\alpha = .05$	$\alpha = .025$	$\alpha = .01$	$\alpha = .005$							
1	3.078	6.314	12.706	31.821	63.657							
2	1.886	2.920	4.303	6.965	9.925							
3	1.638	2.353	3.182	4.541	5.841							
4	1.533	2.132	2.776	3.747	4.604							
5	1.476	2.015	2.571	3.365	4.032							
6	1.440	1.943	2.447	3.143	3.707							
7	1.415	1.895	2.365	2.998	3.499							
8	1.397	1.860	2.306	2.896	3.355							
9	1.383	1.833	2.262	2.821	3.250							
10	1.372	1.812	2.228	2.764	3.169							

Example. Suppose we obtain a random sample of size 16 from a normal population. Using this sample, we figure that $\bar{x} = 16.1$ and s = 2.1. Can we declare that the true mean $\mu > 12.0$ with confidence 0.99?

Idea. Assuming $\mu = 12.0$, we want to see how unlikely (i.e., with probability < 0.01) that $\bar{x} = 16.1$ occurs. If it is indeed unlikely, we will declare that the assumption $\mu = 12.0$ is inappropriate, and we should have $\mu > 12.0$.

Solution. Given that n = 16, $\bar{x} = 16.1$, s = 2.1, and assuming $\mu = 12.0$, we have

$$t = \frac{\bar{x} - \mu}{s/\sqrt{n}} = \frac{16.4 - 12.0}{2.1/\sqrt{16}} = 8.38.$$

On the other hand, we have $t_{0.005,15} = 2.947$ from the *t*-distribution table. Since $t \ge t_{0.005,15}$, we declare that the true mean $\mu > 12.0$ with confidence 0.99.

Fisher *F* **distribution**

Question: how do we draw statistical inferences about the ratio of two sample variances?

Theorem. Suppose $U \sim \chi^2_{\nu_1}$ and $V \sim \chi^2_{\nu_2}$ are independent, then

$$F = \frac{U/\nu_1}{V/\nu_2}$$

has the pdf given by

$$g(f) = \begin{cases} \frac{\Gamma\left(\frac{\nu_1 + \nu_2}{2}\right)}{\Gamma\left(\frac{\nu_1}{2}\right)\Gamma\left(\frac{\nu_2}{2}\right)} \left(\frac{\nu_1}{\nu_2}\right)^{\frac{\nu_1}{2}} \cdot f^{\frac{\nu_1}{2} - 1} \left(1 + \frac{\nu_1}{\nu_2}f\right)^{-\frac{1}{2}(\nu_1 + \nu_2)}, & \text{if } f > 0, \\ 0, & \text{elsewhere.} \end{cases}$$

Here *F* is said to have the *F*-distribution with degrees of freedoms ν_1 and ν_2 , denoted by $F \sim F_{\nu_1,\nu_2}$.

Proof. The joint pdf of (U, V) is

$$f_{U,V}(u,v) = \frac{1}{2^{\nu_1/2} \Gamma\left(\frac{\nu_1}{2}\right)} \cdot u^{\frac{\nu_1}{2} - 1} e^{-\frac{u}{2}} \cdot \frac{1}{2^{\nu_2/2} \Gamma\left(\frac{\nu_2}{2}\right)} \cdot v^{\frac{\nu_2}{2} - 1} e^{-\frac{v}{2}}$$
$$= \frac{1}{2^{(\nu_1 + \nu_2)/2} \Gamma\left(\frac{\nu_1}{2}\right) \Gamma\left(\frac{\nu_2}{2}\right)} \cdot u^{\frac{\nu_1}{2} - 1} v^{\frac{\nu_2}{2} - 1} e^{-\frac{\mu + v}{2}}$$

Consider the transformation $f = \frac{u/\nu_1}{v/\nu_2}$, then $u = \frac{\nu_1}{\nu_2} fv$ and hence $\frac{\partial u}{\partial f} = \frac{\nu_1}{\nu_2} v$. Thus the joint pdf of (F, V) is

$$g_{F,V}(f,v) = f_{U,V}\left(\frac{\nu_1}{\nu_2}fv,v\right) \cdot \frac{\nu_1}{\nu_2}v$$

= $\frac{\left(\frac{\nu_1}{\nu_2}\right)^{\nu_1/2}}{2^{(\nu_1+\nu_2)/2}\Gamma\left(\frac{\nu_1}{2}\right)\Gamma\left(\frac{\nu_2}{2}\right)} \cdot f^{\frac{\nu_1}{2}-1}v^{\frac{\nu_1+\nu_2}{2}-1}e^{-\frac{v}{2}\left(\frac{\nu_1f}{\nu_2}+1\right)}$

for f, v > 0.

Integrating out v, we obtain the marginal pdf of F as

$$g(f) = \frac{\Gamma\left(\frac{\nu_1 + \nu_2}{2}\right)}{\Gamma\left(\frac{\nu_1}{2}\right)\Gamma\left(\frac{\nu_2}{2}\right)} \left(\frac{\nu_1}{\nu_2}\right)^{\frac{\nu_1}{2}} \cdot f^{\frac{\nu_1}{2} - 1} \left(1 + \frac{\nu_1}{\nu_2}f\right)^{-\frac{1}{2}(\nu_1 + \nu_2)}$$

for f > 0. It is obvious that g(f) = 0 if $f \le 0$.

Let $F \sim F_{\nu_1,\nu_2}$ and $\alpha \in (0,1)$, then f_{α,ν_1,ν_2} is the value such that

$$\mathsf{P}(F \ge f_{\alpha,\nu_1,\nu_2}) = \alpha$$

For certain given $\nu_1, \nu_2 > 0$ and $\alpha \in (0, 1)$, we can look up the value of F_{α,ν_1,ν_2} in the *F*-distribution table (Table VI in textbook for $\alpha = 0.05$ and 0.01):

$v_1 = $ Degrees of freedom for numerator																				
		1	2	3	4	5	6	7	8	9	10	12	15	20	24	30	40	60	120	∞
tor	1	161	200	216	225	230	234	237	239	241	242	244	246	248	249	250	251	252	253	254
na	2	18.5	19.0	19.2	19.2	19.3	19.3	19.4	19.4	19.4	19.4	19.4	19.4	19.4	19.5	19.5	19.5	19.5	19.5	19.5
лі.	3	10.1	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.79	8.74	8.70	8.66	8.64	8.62	8.59	8.57	8.55	8.53
IOI	4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96	5.91	5.86	5.80	5.77	5.75	5.72	5.69	5.66	5.63
der	5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74	4.68	4.62	4.56	4.53	4.50	4.46	4.43	4.40	4.37
for	6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06	4.00	3.94	3.87	3.84	3.81	3.77	3.74	3.70	3.67
ш	7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64	3.57	3.51	3.44	3.41	3.38	3.34	3.30	3.27	3.23
op	8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.35	3.28	3.22	3.15	3.12	3.08	3.04	3.01	2.97	2.93
ee	9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.14	3.07	3.01	2.94	2.90	2.86	2.83	2.79	2.75	2.71
of fr	10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98	2.91	2.85	2.77	2.74	2.70	2.66	2.62	2.58	2.54
rees (11 12	4.84	3.98	3.59 3.49	3.36	3.20	3.09	3.01	2.95	2.90	2.85	2.79	2.72	2.65	2.61	2.57	2.53	2.49	2.45	2.40
e 60	12	1.75	3.81	3.41	3.18	3.03	2 02	2.91 2.83	2.05	2.00 2.71	2.75	2.07	2.02	2.54 2.46	2.51 2 12	2.47	2.43	2.50	2.54	2.50 2.21
Д	14	4.60	2.74	2.41	2.10	2.05	2.92	2.03	2.77	2.71	2.07	2.00	2.55	2.40	2.42	2.30	2.34	2.50	2.23	2.21
	14	4.00	5.74	5.54	3.11	2.90	2.83	2.70	2.70	2.03	2.60	2.33	∠.40 2.40	2.39	2.33	2.31	2.27	2.22	2.18	2.13
v_2	15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54	2.48	2.40	2.33	2.29	2.25	2.20	2.16	2.11	2.07

Table VI: Values of $f_{0.05,\nu_1,\nu_2}^{\dagger}$

Application of *F* **statistics:** compare the ratio of σ_1^2 and σ_2^2 from two independent normal populations.

Theorem. Suppose there are two independent normal populations with variances σ_1^2 and σ_2^2 , and S_1^2 and S_2^2 are the sample variances of two random samples of size n_1 and n_2 from these two populations. Then

$$F = \frac{S_1^2 / \sigma_1^2}{S_2^2 / \sigma_2^2} = \frac{\sigma_2^2 S_1^2}{\sigma_1^2 S_2^2} \sim F_{n_1 - 1, n_2 - 1}.$$

Proof. Notice that

$$\frac{(n_i - 1)S_i^2}{\sigma_i^2} \sim \chi_{n_i - 1}^2$$

for i = 1, 2 are independent.

Order Statistics

We consider nonparametric statistics (in contrast to parametric statistics before where we assumed normal population). Suppose $X_1, \ldots, X_n \sim f$ is a random sample for an arbitrary f, then the **order statistics** are defined as

$$Y_1 = X_{(1)}, \quad Y_2 = X_{(2)}, \quad \dots, \quad Y_n = X_{(n)},$$

where $X_{(r)}$ is the *r*-th smallest one among X_1, \ldots, X_n .

Question: what is the pdf of Y_r for r = 1, ..., n?

Theorem. The pdf g_r of Y_r is given by

$$g_r(y_r) = \frac{n!}{(r-1)!(n-r)!} \left[\int_{-\infty}^{y_r} f(x) dx \right]^{r-1} f(y_r) \left[\int_{y_r}^{\infty} f(x) dx \right]^{n-r}$$

for $-\infty < y_r < \infty$.

Proof. For any h > 0, we partition \mathbb{R} into three intervals using y_r and $y_r + h$, then the probability that Y_1, \ldots, Y_{r-1} fall into the interval $(-\infty, y_r]$, Y_r falls into $(y_r, y_r + h]$, and Y_{r+1}, \ldots, Y_n fall into $(y_r + h, \infty)$ is

$$\frac{n!}{(r-1)!1!(n-r)!} \left[\int_{-\infty}^{y_r} f(x) dx \right]^{r-1} \left[\int_{y_r}^{y_r+h} f(x) dx \right] \left[\int_{y_r+h}^{\infty} f(x) dx \right]^{n-r}.$$

If h is close to 0, then the probability above is $\mathsf{P}(y_r < Y_r \le y_r+h)$ (since

 Y_{r+1} will be outside of this interval almost surely).

Proof (cont). On the one hand, we know

$$\frac{\mathsf{P}(y_r < Y_r \le y_r + h)}{h} = \frac{F_r(y_r + h) - F_r(y_r)}{h} \to g_r(y_r),$$

as $h \to 0$, where F_r is the cumulative distribution function of Y_r .

On the other hand, we have

$$\frac{1}{h} \int_{y_r}^{y_r+h} f(x) \, dx \to f(y_r)$$
$$\int_{y_r+h}^{\infty} f(x) \, dx \to \int_{y_r}^{\infty} f(x) \, dx$$

as $h \rightarrow 0$.

Combining the results above proves the theorem.

Several special order statistics

• Minimal statistic Y_1 has pdf

$$g_1(y_1) = n \cdot f(y_1) \left[\int_{y_1}^{\infty} f(x) dx \right]^{n-1} \quad \text{for } -\infty < y_1 < \infty$$

• Maximal statistic Y_n has pdf

$$g_n(y_n) = n \cdot f(y_n) \left[\int_{-\infty}^{y_n} f(x) dx \right]^{n-1} \quad \text{for } -\infty < y_n < \infty$$

• If n = 2m + 1 is odd, then the sample median Y_{m+1} has pdf

$$h(\tilde{x}) = \frac{(2m+1)!}{m!m!} \left[\int_{-\infty}^{\tilde{x}} f(x) dx \right]^m f(\tilde{x}) \left[\int_{\tilde{x}}^{\infty} f(x) dx \right]^m$$
for $-\infty < \tilde{x} < \infty$.

Example. Suppose X_1, \ldots, X_n is a random sample from $\text{Exp}(\theta)$, i.e., the pdf is $f(x) = \frac{1}{\theta}e^{-x/\theta}$, then the pdf of Y_1 is

$$g_1(y_1) = \begin{cases} \frac{n}{\theta} \cdot e^{-ny_1/\theta} & \text{for } y_1 > 0\\ 0 & \text{elsewhere} \end{cases}$$

The pdf of Y_n is

$$g_n(y_n) = \begin{cases} \frac{n}{\theta} \cdot e^{-y_n/\theta} \left[1 - e^{-y_n/\theta} \right]^{n-1} & \text{for } y_n > 0\\ 0 & \text{elsewhere} \end{cases}$$

If n = 2m + 1, then the pdf of the sample median Y_m is

$$h(\tilde{x}) = \begin{cases} \frac{(2m+1)!}{m!m!\theta} \cdot e^{-\tilde{x}(m+1)/\theta} \begin{bmatrix} 1 - e^{-\tilde{x}/\theta} \end{bmatrix}^m & \text{for } \tilde{x} > 0\\ 0 & \text{elsewhere} \end{cases}$$

Suppose f is continuous and nonzero at $\tilde{\mu}$ where $\tilde{\mu}$ is the **population median** such that

$$\int_{-\infty}^{\tilde{\mu}} f(x) \, dx = \frac{1}{2}.$$

Then for large n = 2m + 1, the sample median Y_m approximately follows the normal distribution:

$$N\Big(\tilde{\mu}, \frac{1}{4nf(\tilde{\mu})^2}\Big).$$

In particular, if $f(\cdot) = N(\cdot; \mu, \sigma^2)$ and sample size n = 2m + 1 is very large, then $f(\tilde{\mu}) = f(\mu) = \frac{1}{\sqrt{2\pi\sigma}}$ and there is approximately

$$Y_m \sim N\Big(\mu, \ \frac{\pi\sigma^2}{4m}\Big).$$

In contrast, the sample mean $\bar{X}_{2m+1} \sim N(\mu, \frac{\sigma^2}{2m+1})$ which has smaller variance.