
MATH 4752/6752 – Mathematical Statistics II

Sampling Distributions

Xiaojing Ye
Department of Mathematics & Statistics

Georgia State University

Xiaojing Ye, Math & Stat, Georgia State University 0



Let f(·; θ) be the pdf of a specific distribution with unknown parameter θ.

Question: Can we estimate θ by getting samples of the iid RVs X1, . . . , Xn

following f(·; θ)?

Definition. A set of iid RVs X1, . . . , Xn is called a random sample of their
common distribution f . Given a specific function u, the random variable Y =

u(X1, . . . , Xn) is called a statistic.
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Example. Let X1, . . . , Xn be iid RVs with pdf f(·; θ). Then we can define two
statistics:

Sample mean: X̄ =
1

n

n∑
i=1

Xi

Sample variance: S2 =
1

n− 1

n∑
i=1

(Xi − X̄)2

Remark. In practice, we also apply the term of a statistic (e.g., sample mean
and sample variance) to its actual value in an experiment.
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Sampling distribution of the mean

Theorem. If X1, . . . , Xn is a random sample of a distribution with mean µ and
variance σ2, then the sample mean X̄ satisfies

E[X̄] = µ, var[X̄] =
σ2

n
.

Proof. We can show that

E[X̄] = E
[
1

n

n∑
i=1

Xi

]
=

1

n

n∑
i=1

E[Xi] = µ,

var[X̄] = var
[
1

n

n∑
i=1

Xi

]
=

1

n2

n∑
i=1

var[Xi] =
σ2

n
.

Remark. We often denote E[X̄] by µX̄ and var[X̄] by σ2
X̄

. Also σX̄ is called
the sample error of X̄.

Xiaojing Ye, Math & Stat, Georgia State University 3



Theorem (Chebyshev’s inequality). Let X be a RV with mean µ and vari-
ance σ2, then for any c > 0, there is

P(|X − µ| ≥ c) ≤
σ2

c2
.

Proof. We have that

P(|X − µ| ≥ c) =
∫
|x−µ|≥c

f(x) dx

≤
∫
|x−µ|≥c

|x− µ|2

c2
f(x) dx

≤
∫ ∞
−∞

|x− µ|2

c2
f(x) dx

=
σ2

c2
.
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Example. By Chebyshev’s inequality, we have for any fixed c > 0 that

P(|X̄ − µ| ≤ c) ≥ 1−
σ2

n2c2
.

Note that RHS tends to 1 as n → ∞. This is informally known as the Law of
Large Numbers.
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Central Limit Theorem. Let X1, . . . , Xn be a random sample from a distribu-
tion with mean µ and variance σ2. Denote X̄n their sample mean. Define

Zn =
X̄n − µ
σ/
√
n
.

Then the limiting distribution of Zn as n→∞ is the standard normal distribu-
tion.
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To prove CLT, we first recall several properties of MGFs.

Let MX(t) be the MGF of X and a, b be constants. Then

MX+a(t) = E[e(X+a)t] = eat E[eXt] = eatMX(t),

MbX(t) = E[ebXt] = E[eX(bt)] = MX(bt),

MX+a
b

(t) = e
at
bMX

b
(t) = e

at
bMX

(t
b

)
.
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Proof of CLT. We notice that

MZn(t) = MX̄n−µ
σ/
√
n

(t) = MnX̄n−nµ√
nσ

(t) = e−
√
nµ
σ tMnX̄n

( t
√
nσ

)
.

Since nX̄n = X1 + · · ·+Xn, we have

MnX̄n

( t
√
nσ

)
=

n∏
i=1

MXi

( t
√
nσ

)
=
(
MX

( t
√
nσ

))n
.

Also note that

MX

( t
√
nσ

)
= 1 + µ′1

t
√
nσ

+
µ′2
2

( t
√
nσ

)2
+ · · ·︸ ︷︷ ︸

=:ξ(t)

where µ′i is the ith moment of X. In particular, µ′1 = µ, µ′2 = µ2 + σ2.
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Proof of CLT (cont). Recall that

ln(1 + x) = x+
x2

2
+
x3

3
+ · · · .

Hence we have

lnMZn(t) = −
√
nµ

σ
t+ n lnMX

( t
√
nσ

)
= −

√
nµ

σ
t+ n ln(1 + ξ(t))

= −
√
nµ

σ
t+ n

(
ξ(t) +

ξ(t)2

2
+ · · ·

)
=
t2

2
+
∞∑
r=3

crtr√
nr−2

for constants cr independent of t and n.

Xiaojing Ye, Math & Stat, Georgia State University 9



For any fixed t ∈ (0,1), we have
∞∑
r=3

crtr√
nr−2

= O
( 1
√
n

)
→ 0 as n→∞.

Therefore lnMZn(t)→ t2

2 , i.e., MZn(t)→ et
2/2. This implies that the limiting

distribution of Zn is N(0,1), which proves CLT.

Remarks.

• It is X̄n−µ
σ/
√
n

, not X̄n, that has density approaching that of the standard nor-
mal. When n ≥ 30, the approximation accuracy is usually good enough.

• If X1, . . . , Xn ∼ N(µ, σ2), then X̄n ∼ N(µ, σ
2

n ) for any n ≥ 1.
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Sample distribution with finite population and without replacement

Suppose we have a finite population {c1, . . . , cN}, and we select n of them
in order without replacement. Let X1, . . . , Xn be the RVs representing our
selections. Then the joint pmf of (X1, . . . , Xn) is

f(x1, . . . , xn) =
1

PnN
=

(N − n)!

N !

The marginal distribution fr(xr) of Xr is

fr(xr) =
∑

xs 6=xr,s 6=r

f(x1, . . . , xn) =
1

PnN
·Pn−1
N−1 =

(N − n)!

N !
·
(N − 1)!

(N − n)!
=

1

N

for any xr = c1, . . . , cN .

To see the above, notice that when xr is fixed, (X1, . . . , x̂r, . . . , Xn) can take
any permutation of the remaining N − 1 objects (all but xr).
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For any r = 1, . . . , n, from the marginal pmf fr(cr) we have

µr = E[Xr] =
N∑
i=1

cifr(ci) =
1

N

N∑
i=1

ci =: µ

σ2
r = E[(Xr − µ)2] =

N∑
i=1

(ci − µr)2fr(ci) =
1

N

N∑
i=1

(ci − µr)2 =: σ2

For any r 6= s, the joint pmf of (Xr, Xs) is

grs(xr, xs) =
1

PnN
· Pn−2

N−2 =
(N − n)!

N !
·

(N − 2)!

(N − n)!
=

1

N(N − 1)

for any xr 6= xs.
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From the joint pmf, we have

cov(Xr, Xs) = E[(Xr − µ)(Xs − µ)]

=
∑
i 6=j

(ci − µ)(cj − µ)grs(ci, cj)

=
∑
i 6=j

(ci − µ)(cj − µ)
1

N(N − 1)

=
1

N(N − 1)

N∑
i=1

(ci − µ)
∑
j 6=i

(cj − µ)

= −
1

N − 1
·

1

N

N∑
i=1

(ci − µ)2

= −
1

N − 1
σ2

where we used
∑
j 6=i(cj − µ) = −(ci − µ) in the second last equality.
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Now we can find the mean and variance of X̄n = 1
n

∑n
i=1Xi:

E[X̄n] =
1

n

n∑
i=1

E[Xi] = µ

var[X̄n] = var
[
1

n

n∑
i=1

Xi

]
=

n∑
i=1

1

n2
var[Xi] + 2

∑
r<s

1

n2
cov(Xr, Xs)

= n ·
σ2

n2
+
n(n− 1)

2
·

2

n2
·
(
−

σ2

N − 1

)
=
σ2

n
·
N − n
N − 1

Remark. We can see var[X̄n] differs from σ2

n by a factor of N−nN−1. If N = n,
then there is no variance since X̄n = 1

N

∑n
i=1 ci for sure. If N � n, then

N−n
N−1 ≈ 1 which is close to the infinite population case.
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Chi-square distribution

We have seen that if Z ∼ N(0,1), then X := Z2 ∼ Γ(1
2,2). Here X is

said to have chi-square distribution with degree of freedom (df) 1. We denote
X ∼ χ2

1.

In general, X is said to have chi-square distribution with df ν if X ∼ Γ(ν2,2),
i.e.,

f(x) =
1

2ν/2Γ(ν/2)
x(ν−2)/2e−x/2

for x > 0 and f(x) = 0 if x ≤ 0. Hence

E[X] =
ν

2
· 2 = ν, var[X] =

ν

2
· 22 = 2ν, MX(t) = (1− 2t)−ν/2.
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Remark. Recall that if Xi ∼ Γ(αi, β) for i = 1, . . . , n and are independent,
then

Y =
n∑
i=1

Xi ∼ Γ
( n∑
i=1

αi, β

)
.

Therefore, if Zi ∼ N(0,1) are independent standard normal, then Z2
i ∼

Γ(1
2,2) are independent χ2

1, and

Y =
n∑
i=1

Z2
i ∼ Γ

(n
2
,2
)

= χ2
n.
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Theorem. Let X1, . . . , Xn ∼ N(µ, σ2) be a random sample, then X̄ and S2

are independent, and

(n− 1)S2

σ2
∼ χ2

n−1.
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To prove this theorem, we need a series of lemmas.

Lemma. We have the following identities:

(n− 1)S2 =
n∑
i=1

X2
i − nX̄

2

n∑
i=1

(Xi − µ)2 =
n∑
i=1

(Xi − X̄)2 + n(X̄ − µ)2

Lemma.

• If Z ∼ N(0,1), then Z2 ∼ χ2
1.

• If X1, . . . , Xn ∼ N(0,1) is a random sample, then Y =
∑n
i=1X

2
i ∼ χ

2
n.
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Lemma. If X1, . . . , Xn ∼ N(µ, σ2) is a random sample, then X̄ is indepen-
dent of Xi − X̄ for all i = 1, . . . , n.

Sketch proof. The joint pdf of (X1, . . . , Xn) is

f(x1, . . . , xn) =
1

(2π)n/2σn
e
− 1

2σ2

∑n
i=1(xi−µ)2

.

Consider the transformation:

Y1 = X̄

Y2 = X2 − X̄
...

Yn = Xn − X̄

⇐⇒



X1 = Y1 − Y2 − · · · − Yn
X2 = Y2 + Y1

...
Xn = Yn + Y1
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Sketch proof (cont). Then the joint pdf of Y1, . . . , Yn is

g(y1, y2, . . . , yn) = C · e−
1

2σ2((
∑n
i=1 yi)

2+
∑n
i=2 y

2
i )︸ ︷︷ ︸

fn of y2, . . . , yn

· e
n

2σ2(y1−µ)2︸ ︷︷ ︸
fn of y1

.

This implies that Y1 is independent of Y2, . . . , Yn. Hence X̄ is independent of
X2 − X̄, . . . , Xn − X̄ and thus also X1 − X̄ = −

∑n
i=2(Xi − X̄).
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With the lemma above, we can prove that X̄ and S2 are independent.

Proof of the theorem. Since S2 = 1
n−1

∑n
i=1(Xi − X̄) is a function of

X1 − X̄, . . . , Xn − X̄, we know X̄ is independent of S2.

Now recall that we have
n∑
i=1

(Xi − µ)2 =
n∑
i=1

(
Xi − X̄

)2
+ n(X̄ − µ)2

Dividing σ2 we obtain

n∑
i=1

(
Xi − µ
σ

)2

=
(n− 1)S2

σ2
+

(
X̄ − µ
σ/
√
n

)2
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Proof of the theorem (cont). Noticing that

n∑
i=1

(
Xi − µ
σ

)2

∼ χ2
n,

(
X̄ − µ
σ/
√
n

)2

∼ χ2
1,

and that (n−1)S2

σ2 and
(
X̄−µ
σ/
√
n

)2
are independent, we get that

(n− 1)S2

σ2
∼ χ2

n−1.

This completes the proof.
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Let X ∼ χ2
ν and α ∈ (0,1), then χ2

α,ν is the value such that

P(X ≥ χ2
α,ν) = αSampling Distributions

0

a

x2
a, v

x2

Figure 1. Chi-square distribution.

When ν is greater than 30, Table V of “Statistical Tables” cannot be used and prob-
abilities related to chi-square distributions are usually approximated with normal
distributions, as in Exercise 25 or 28.

EXAMPLE 2

Suppose that the thickness of a part used in a semiconductor is its critical dimension
and that the process of manufacturing these parts is considered to be under control if
the true variation among the thicknesses of the parts is given by a standard deviation
not greater than σ = 0.60 thousandth of an inch. To keep a check on the process,
random samples of size n = 20 are taken periodically, and it is regarded to be “out
of control” if the probability that S2 will take on a value greater than or equal to the
observed sample value is 0.01 or less (even though σ = 0.60). What can one conclude
about the process if the standard deviation of such a periodic random sample is
s = 0.84 thousandth of an inch?

Solution

The process will be declared “out of control” if
(n − 1)s2

σ 2 with n = 20 and σ = 0.60

exceeds χ2
0.01,19 = 36.191. Since

(n − 1)s2

σ 2 = 19(0.84)2

(0.60)2 = 37.24

exceeds 36.191, the process is declared out of control. Of course, it is assumed here
that the sample may be regarded as a random sample from a normal population.

5 The t Distribution
In Theorem 4 we showed that for random samples from a normal population with
the mean µ and the variance σ 2, the random variable X has a normal distribution

with the mean µ and the variance
σ 2

n
; in other words,

X −µ

σ/
√

n

���
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For certain given ν > 0 and α ∈ (0,1), we can look up the value of χ2
α,ν in

the χ2 table (Table V in textbook):
Statistical Tables

Table V: Values of χ2
α,ν

†

ν α = .995 α = .99 α = .975 α = .95 α = .05 α = .025 α = .01 α = .005 ν

1 .0000393 .000157 .000982 .00393 3.841 5.024 6.635 7.879 1
2 .0100 .0201 .0506 .103 5.991 7.378 9.210 10.597 2
3 .0717 .115 .216 .352 7.815 9.348 11.345 12.838 3
4 .207 .297 .484 .711 9.488 11.143 13.277 14.860 4
5 .412 .554 .831 1.145 11.070 12.832 15.086 16.750 5

6 .676 .872 1.237 1.635 12.592 14.449 16.812 18.548 6
7 .989 1.239 1.690 2.167 14.067 16.013 18.475 20.278 7
8 1.344 1.646 2.180 2.733 15.507 17.535 20.090 21.955 8
9 1.735 2.088 2.700 3.325 16.919 19.023 21.666 23.589 9

10 2.156 2.558 3.247 3.940 18.307 20.483 23.209 25.188 10

11 2.603 3.053 3.816 4.575 19.675 21.920 24.725 26.757 11
12 3.074 3.571 4.404 5.226 21.026 23.337 26.217 28.300 12
13 3.565 4.107 5.009 5.892 22.362 24.736 27.688 29.819 13
14 4.075 4.660 5.629 6.571 23.685 26.119 29.141 31.319 14
15 4.601 5.229 6.262 7.261 24.996 27.488 30.578 32.801 15

16 5.142 5.812 6.908 7.962 26.296 28.845 32.000 34.267 16
17 5.697 6.408 7.564 8.672 27.587 30.191 33.409 35.718 17
18 6.265 7.015 8.231 9.390 28.869 31.526 34.805 37.156 18
19 6.844 7.633 8.907 10.117 30.144 32.852 36.191 38.582 19
20 7.434 8.260 9.591 10.851 31.410 34.170 37.566 39.997 20

21 8.034 8.897 10.283 11.591 32.671 35.479 38.932 41.401 21
22 8.643 9.542 10.982 12.338 33.924 36.781 40.289 42.796 22
23 9.260 10.196 11.689 13.091 35.172 38.076 41.638 44.181 23
24 9.886 10.856 12.401 13.848 36.415 39.364 42.980 45.558 24
25 10.520 11.524 13.120 14.611 37.652 40.646 44.314 46.928 25

26 11.160 12.198 13.844 15.379 38.885 41.923 45.642 48.290 26
27 11.808 12.879 14.573 16.151 40.113 43.194 46.963 49.645 27
28 12.461 13.565 15.308 16.928 41.337 44.461 48.278 50.993 28
29 13.121 14.256 16.047 17.708 42.557 45.722 49.588 52.336 29
30 13.787 14.953 16.791 18.493 43.773 46.979 50.892 53.672 30

†Based on Table 8 of Biometrika Tables for Statisticians, Vol. 1, Cambridge University Press, 1954,
by permission of the Biometrika trustees.

���
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Example. Suppose a semiconductor company wants to test the thickness of
their semiconductors. They tested a sample of size 20 (assuming the thick-
nesses are from a normal distribution N(µ, σ2)). The production process is
considered “out of control” if σ > 0.60 with probability 0.01. Suppose the test
shows s = 0.84, is the process out of control?

Idea. Assuming σ = 0.60, we want to see how unlikely (i.e., with probability
< 0.01) that s = 0.84 occurs. If it is indeed unlikely, we will declare that the
assumption σ = 0.60 is inappropriate and we should have σ > 0.60.

Solution. The process is out of control if (n−1)s2

σ2 with n = 20 and σ = 0.60

exceeds χ2
0.01,19 = 36.191. Since

(n− 1)s2

σ2
=

19 · (0.84)2

(0.60)2
= 37.24 (> 36.191),

we declare that σ = 0.60 is inappropriate and the process is out of control.
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The student t distribution

Suppose we have a random sample from a normal population N(µ, σ2). Can
we test the mean µ without knowing σ2?

Theorem. Let Y ∼ χ2
ν and Z ∼ N(0,1) be independent, then

T =
Z√
Y/ν

has the probability density function given by

fT (t) =
Γ
(
ν+1

2

)
√
πνΓ

(
ν
2

) ·
1 +

t2

ν

−
ν+1

2

for −∞ < t <∞

Here T is said to have the student t distribution with df ν, i.e., T ∼ tν.
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Proof. First notice that the joint pdf of (Y, Z) is

fY,Z(y, z) =
1√
2π
e−

1
2z

2
·

1

Γ
(
ν
2

)
2
ν
2
y
ν
2−1e−

y
2.

Consider the transformation (x, t) = u(y, z) and its inverse (y, z) = w(x, t)

where

(x, t) = u(y, z) =
(
y, z√

y/ν

)
, (y, z) = w(x, t) =

(
x, t

√
x/ν

)
.

So det(Dw(x, t)) =
√
x/ν.

Hence the joint pdf of (X,T ) is

g(x, t) = fY,Z(w(x, t))|det(Dw(x, t))| = fY,Z(x, t
√
x/ν)

√
x/ν
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Applying the formula of fY,Z and noticing that Y = X, we have

g(y, t) =


1√

2πνΓ
(
ν
2

)
2
ν
2
y
ν−1

2 e
−y2

(
1+t2

ν

)
for y > 0 and −∞ < t <∞

0 elsewhere

For any fixed t, we notice that g(y, t) is proportional to the pdf of Γ(α, β)

where

α =
ν + 1

2
, β =

2

1 + t2
ν

.

Hence we get

fT (t) =
∫ ∞

0
g(y, t) dy =

Γ
(
ν+1

2

)
√
πνΓ

(
ν
2

) ·
1 +

t2

ν

−
ν+1

2

for −∞ < t <∞.
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Theorem. Suppose X̄ and S2 are respectively the sample mean and sample
variance of a random sample from N(µ, σ2), then

X̄ − µ
S/
√
n
∼ tn−1

Proof. We let

Y :=
(n− 1)S2

σ2
, Z :=

X̄ − µ
σ/
√
n
.

Then we know Y ∼ χ2
n−1, Z ∼ N(0,1), and Y and Z are independent.

Therefore,

T :=
Z√

Y/(n− 1)
=

X̄−µ
σ/
√
n√

S2/σ2
∼ tn−1.
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Comparison of the density functions of N(0,1), t2, and t10:

Sampling Distributions

The t distribution was introduced originally by W. S. Gosset, who published his
scientific writings under the pen name “Student,” since the company for which he
worked, a brewery, did not permit publication by employees. Thus, the t distribution
is also known as the Student t distribution, or Student’s t distribution. As shown
in Figure 2, graphs of t distributions having different numbers of degrees of free-
dom resemble that of the standard normal distribution, but have larger variances.
In fact, for large values of υ, the t distribution approaches the standard normal
distribution.

In view of its importance, the t distribution has been tabulated extensively.
Table IV of “Statistical Tables”, for example, contains values of tα,ν for α = 0.10, 0.05,
0.025, 0.01, 0.005 and ν = 1, 2, . . . , 29, where tα,ν is such that the area to its right under
the curve of the t distribution with ν degrees of freedom (see Figure 3) is equal to
α. That is, tα,ν is such that if T is a random variable having a t distribution with ν
degrees of freedom, then

P(T G tα,ν) = α

The table does not contain values of tα,ν for α> 0.50, since the density is symmetrical
about t = 0 and hence t1−α,ν = −tα,ν . When ν is 30 or more, probabilities related to
the t distribution are usually approximated with the use of normal distributions (see
Exercise 35).

Among the many applications of the t distribution, its major application (for
which it was originally developed) is based on the following theorem.

0−1−2 1 2

n (0; 1)

f (t; 10)

f (t; 2)

Figure 2. Comparison of t distributions and standard normal distribution.

a

0
t

ta, v

Figure 3. t distribution.

���

Remark. tν is approximately N(0,1) when ν ≥ 30.
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Let T ∼ tν and α ∈ (0.5,1) (we do not need α ≤ 0.5 since fT is symmetric
about t = 0), then tα,ν is the value such that

P(T ≥ tα,ν) = α

Sampling Distributions

The t distribution was introduced originally by W. S. Gosset, who published his
scientific writings under the pen name “Student,” since the company for which he
worked, a brewery, did not permit publication by employees. Thus, the t distribution
is also known as the Student t distribution, or Student’s t distribution. As shown
in Figure 2, graphs of t distributions having different numbers of degrees of free-
dom resemble that of the standard normal distribution, but have larger variances.
In fact, for large values of υ, the t distribution approaches the standard normal
distribution.

In view of its importance, the t distribution has been tabulated extensively.
Table IV of “Statistical Tables”, for example, contains values of tα,ν for α = 0.10, 0.05,
0.025, 0.01, 0.005 and ν = 1, 2, . . . , 29, where tα,ν is such that the area to its right under
the curve of the t distribution with ν degrees of freedom (see Figure 3) is equal to
α. That is, tα,ν is such that if T is a random variable having a t distribution with ν
degrees of freedom, then

P(T G tα,ν) = α

The table does not contain values of tα,ν for α> 0.50, since the density is symmetrical
about t = 0 and hence t1−α,ν = −tα,ν . When ν is 30 or more, probabilities related to
the t distribution are usually approximated with the use of normal distributions (see
Exercise 35).

Among the many applications of the t distribution, its major application (for
which it was originally developed) is based on the following theorem.

0−1−2 1 2

n (0; 1)

f (t; 10)

f (t; 2)

Figure 2. Comparison of t distributions and standard normal distribution.

a

0
t

ta, v

Figure 3. t distribution.
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For certain given ν > 0 and α ∈ (0.5,1), we can look up the value of tα,ν in
the t-distribution table (Table IV in textbook):

Statistical Tables

Table IV: Values of tα,ν
†

ν α = .10 α = .05 α = .025 α = .01 α = .005 ν

1 3.078 6.314 12.706 31.821 63.657 1
2 1.886 2.920 4.303 6.965 9.925 2
3 1.638 2.353 3.182 4.541 5.841 3
4 1.533 2.132 2.776 3.747 4.604 4
5 1.476 2.015 2.571 3.365 4.032 5

6 1.440 1.943 2.447 3.143 3.707 6
7 1.415 1.895 2.365 2.998 3.499 7
8 1.397 1.860 2.306 2.896 3.355 8
9 1.383 1.833 2.262 2.821 3.250 9

10 1.372 1.812 2.228 2.764 3.169 10

11 1.363 1.796 2.201 2.718 3.106 11
12 1.356 1.782 2.179 2.681 3.055 12
13 1.350 1.771 2.160 2.650 3.012 13
14 1.345 1.761 2.145 2.624 2.977 14
15 1.341 1.753 2.131 2.602 2.947 15

16 1.337 1.746 2.120 2.583 2.921 16
17 1.333 1.740 2.110 2.567 2.898 17
18 1.330 1.734 2.101 2.552 2.878 18
19 1.328 1.729 2.093 2.539 2.861 19
20 1.325 1.725 2.086 2.528 2.845 20

21 1.323 1.721 2.080 2.518 2.831 21
22 1.321 1.717 2.074 2.508 2.819 22
23 1.319 1.714 2.069 2.500 2.807 23
24 1.318 1.711 2.064 2.492 2.797 24
25 1.316 1.708 2.060 2.485 2.787 25

26 1.315 1.706 2.056 2.479 2.779 26
27 1.314 1.703 2.052 2.473 2.771 27
28 1.313 1.701 2.048 2.467 2.763 28
29 1.311 1.699 2.045 2.462 2.756 29
inf. 1.282 1.645 1.960 2.326 2.576 inf.

†Based on Richard A. Johnson and Dean W. Wichern, Applied Multivariate Statistical Analysis,
2nd ed.,  1988, Table 2, p. 592. By permission of Prentice Hall, Upper Saddle River, N.J.
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Example. Suppose we obtain a random sample of size 16 from a normal
population. Using this sample, we figure that x̄ = 16.1 and s = 2.1. Can we
declare that the true mean µ > 12.0 with confidence 0.99?

Idea. Assuming µ = 12.0, we want to see how unlikely (i.e., with probability
< 0.01) that x̄ = 16.1 occurs. If it is indeed unlikely, we will declare that the
assumption µ = 12.0 is inappropriate, and we should have µ > 12.0.

Solution. Given that n = 16, x̄ = 16.1, s = 2.1, and assuming µ = 12.0,
we have

t =
x̄− µ
s/
√
n

=
16.4− 12.0

2.1/
√

16
= 8.38.

On the other hand, we have t0.005,15 = 2.947 from the t-distribution table.
Since t ≥ t0.005,15, we declare that the true mean µ > 12.0 with confidence
0.99.
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Fisher F distribution

Question: how do we draw statistical inferences about the ratio of two sample
variances?

Theorem. Suppose U ∼ χ2
ν1

and V ∼ χ2
ν2

are independent, then

F =
U/ν1

V/ν2

has the pdf given by

g(f) =


Γ
(
ν1+ν2

2

)
Γ
(
ν1
2

)
Γ
(
ν2
2

) (ν1
ν2

)ν1
2 · f

ν1
2 −1

(
1 + ν1

ν2
f

)−1
2(ν1+ν2)

, if f > 0,

0, elsewhere.

Here F is said to have the F -distribution with degrees of freedoms ν1 and
ν2, denoted by F ∼ Fν1,ν2.
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Proof. The joint pdf of (U, V ) is

fU,V (u, v) =
1

2ν1/2Γ
(
ν1
2

) · uν1
2 −1e−

u
2 ·

1

2ν2/2Γ
(
ν2
2

) · vν2
2 −1e−

v
2

=
1

2(ν1+ν2)/2Γ
(
ν1
2

)
Γ
(
ν2
2

) · uν1
2 −1v

ν2
2 −1e−

µ+v
2

Consider the transformation f = u/ν1
v/ν2

, then u = ν1
ν2
fv and hence ∂u

∂f = ν1
ν2
v.

Thus the joint pdf of (F, V ) is

gF,V (f, v) = fU,V
(ν1

ν2
fv, v

)
·
ν1

ν2
v

=

(
ν1
ν2

)ν1/2

2(ν1+ν2)/2Γ
(
ν1
2

)
Γ
(
ν2
2

) · f ν1
2 −1v

ν1+ν2
2 −1e

−v2
(
ν1f
ν2

+1
)

for f, v > 0.
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Integrating out v, we obtain the marginal pdf of F as

g(f) =
Γ
(
ν1+ν2

2

)
Γ
(
ν1
2

)
Γ
(
ν2
2

) (ν1

ν2

)ν1
2
· f

ν1
2 −1

(
1 +

ν1

ν2
f

)−1
2(ν1+ν2)

for f > 0. It is obvious that g(f) = 0 if f ≤ 0.
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Let F ∼ Fν1,ν2 and α ∈ (0,1), then fα,ν1,ν2 is the value such that

P(F ≥ fα,ν1,ν2) = αSampling Distributions

a

fa, v1, v2
0

f

Figure 4. F distribution.

In view of its importance, the F distribution has been tabulated extensively.
Table VI of “Statistical Tables”, for example, contains values of fα,ν1,ν2 for α = 0.05
and 0.01 and for various values of ν1 and ν2, where fα,ν1,ν2 is such that the area to its
right under the curve of the F distribution with ν1 and ν2 degrees of freedom (see
Figure 4) is equal to α. That is, fα,ν1,ν2 is such that

P(F G fα,ν1,ν2) = α

Applications of Theorem 14 arise in problems in which we are interested in com-
paring the variances σ 2

1 and σ 2
2 of two normal populations; for instance, in problems

in which we want to estimate the ratio
σ 2

1

σ 2
2

or perhaps to test whether σ 2
1 = σ 2

2 . We

base such inferences on independent random samples of sizes n1 and n2 from the
two populations and Theorem 11, according to which

χ2
1 =

(n1 − 1)s2
1

σ 2
1

and χ2
2 =

(n2 − 1)s2
2

σ 2
2

are values of random variables having chi-square distributions with n1 − 1 and n2 − 1
degrees of freedom. By “independent random samples,” we mean that the n1 + n2
random variables constituting the two random samples are all independent, so that
the two chi-square random variables are independent and the substitution of their
values for U and V in Theorem 14 yields the following result.

THEOREM 15. If S2
1 and S2

2 are the variances of independent random samples
of sizes n1 and n2 from normal populations with the variances σ 2

1 and
σ 2

2 , then

F =
S2

1/σ
2
1

S2
2/σ

2
2

=
σ 2

2 S2
1

σ 2
1 S2

2

is a random variable having an F distribution with n1 − 1 and n2 − 1 degrees
of freedom.

The F distribution is also known as the variance-ratio distribution.
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For certain given ν1, ν2 > 0 and α ∈ (0,1), we can look up the value of
Fα,ν1,ν2 in the F -distribution table (Table VI in textbook for α = 0.05 and
0.01):

StatisticalTables

Table VI: Values of f0.05,ν1,ν2
†

ν1 = Degrees of freedom for numerator

1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120 q
1 161 200 216 225 230 234 237 239 241 242 244 246 248 249 250 251 252 253 254
2 18.5 19.0 19.2 19.2 19.3 19.3 19.4 19.4 19.4 19.4 19.4 19.4 19.4 19.5 19.5 19.5 19.5 19.5 19.5
3 10.1 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.74 8.70 8.66 8.64 8.62 8.59 8.57 8.55 8.53
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.91 5.86 5.80 5.77 5.75 5.72 5.69 5.66 5.63
5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.68 4.62 4.56 4.53 4.50 4.46 4.43 4.40 4.37

6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 4.00 3.94 3.87 3.84 3.81 3.77 3.74 3.70 3.67
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.57 3.51 3.44 3.41 3.38 3.34 3.30 3.27 3.23
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.28 3.22 3.15 3.12 3.08 3.04 3.01 2.97 2.93

ν 2
=

D
eg

re
es

of
fr

ee
do

m
fo

r
de

no
m

in
at

or

9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 3.07 3.01 2.94 2.90 2.86 2.83 2.79 2.75 2.71
10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.91 2.85 2.77 2.74 2.70 2.66 2.62 2.58 2.54

11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85 2.79 2.72 2.65 2.61 2.57 2.53 2.49 2.45 2.40
12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75 2.69 2.62 2.54 2.51 2.47 2.43 2.38 2.34 2.30
13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67 2.60 2.53 2.46 2.42 2.38 2.34 2.30 2.25 2.21
14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60 2.53 2.46 2.39 2.35 2.31 2.27 2.22 2.18 2.13
15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54 2.48 2.40 2.33 2.29 2.25 2.20 2.16 2.11 2.07

†Reproduced from M. Merrington and C. M. Thompson, “Tables of percentage points of the inverted beta (F) distribution,” Biometrika, Vol. 33 (1943), by permission of
the Biometrika trustees.
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Application of F statistics: compare the ratio of σ2
1 and σ2

2 from two inde-
pendent normal populations.

Theorem. Suppose there are two independent normal populations with vari-
ances σ2

1 and σ2
2, and S2

1 and S2
2 are the sample variances of two random

samples of size n1 and n2 from these two populations. Then

F =
S2

1/σ
2
1

S2
2/σ

2
2

=
σ2

2S
2
1

σ2
1S

2
2
∼ Fn1−1,n2−1.

Proof. Notice that
(ni − 1)S2

i

σ2
i

∼ χ2
ni−1

for i = 1,2 are independent.
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Order Statistics

We consider nonparametric statistics (in contrast to parametric statistics be-
fore where we assumed normal population). Suppose X1, . . . , Xn ∼ f is a
random sample for an arbitrary f , then the order statistics are defined as

Y1 = X(1), Y2 = X(2), . . . , Yn = X(n),

where X(r) is the r-th smallest one among X1, . . . , Xn.

Question: what is the pdf of Yr for r = 1, . . . , n?
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Theorem. The pdf gr of Yr is given by

gr (yr) =
n!

(r − 1)!(n− r)!

[∫ yr
−∞

f(x)dx

]r−1

f (yr)

[∫ ∞
yr

f(x)dx

]n−r
for −∞ < yr <∞.

Proof. For any h > 0, we partition R into three intervals using yr and yr + h,
then the probability that Y1, . . . , Yr−1 fall into the interval (−∞, yr], Yr falls
into (yr, yr + h], and Yr+1, . . . , Yn fall into (yr + h,∞) is

n!

(r − 1)!1!(n− r)!

[∫ yr
−∞

f(x)dx

]r−1 [∫ yr+h

yr
f(x)dx

] [∫ ∞
yr+h

f(x)dx

]n−r
.

If h is close to 0, then the probability above is P(yr < Yr ≤ yr + h) (since
Yr+1 will be outside of this interval almost surely).
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Proof (cont). On the one hand, we know

P(yr < Yr ≤ yr + h)

h
=
Fr(yr + h)− Fr(yr)

h
→ gr(yr),

as h→ 0, where Fr is the cumulative distribution function of Yr.

On the other hand, we have

1

h

∫ yr+h

yr
f(x) dx→ f(yr)∫ ∞

yr+h
f(x) dx→

∫ ∞
yr

f(x) dx

as h→ 0.

Combining the results above proves the theorem.
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Several special order statistics

• Minimal statistic Y1 has pdf

g1 (y1) = n · f (y1)

[∫ ∞
y1

f(x)dx

]n−1

for −∞ < y1 <∞

• Maximal statistic Yn has pdf

gn (yn) = n · f (yn)

[∫ yn
−∞

f(x)dx

]n−1

for −∞ < yn <∞

• If n = 2m+ 1 is odd, then the sample median Ym+1 has pdf

h(x̃) =
(2m+ 1)!

m!m!

[∫ x̃
−∞

f(x)dx

]m
f(x̃)

[∫ ∞
x̃

f(x)dx
]m

for −∞ < x̃ <∞.
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Example. Suppose X1, . . . , Xn is a random sample from Exp(θ), i.e., the pdf
is f(x) = 1

θe
−x/θ, then the pdf of Y1 is

g1 (y1) =

nθ · e−ny1/θ for y1 > 0

0 elsewhere

The pdf of Yn is

gn (yn) =


n
θ · e

−yn/θ
[
1− e−yn/θ

]n−1
for yn > 0

0 elsewhere

If n = 2m+ 1, then the pdf of the sample median Ym is

h(x̃) =


(2m+1)!
m!m!θ · e

−x̃(m+1)/θ
[
1− e−x̃/θ

]m
for x̃ > 0

0 elsewhere
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Suppose f is continuous and nonzero at µ̃ where µ̃ is the population median
such that ∫ µ̃

−∞
f(x) dx =

1

2
.

Then for large n = 2m+ 1, the sample median Ym approximately follows the
normal distribution:

N
(
µ̃,

1

4nf(µ̃)2

)
.

In particular, if f(·) = N(·;µ, σ2) and sample size n = 2m+ 1 is very large,
then f(µ̃) = f(µ) = 1√

2πσ
and there is approximately

Ym ∼ N
(
µ,

πσ2

4m

)
.

In contrast, the sample mean X̄2m+1 ∼ N(µ, σ2

2m+1) which has smaller vari-
ance.
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