MATH 4752/6752 - Mathematical Statistics II Regression and Correlation

Xiaojing Ye
Department of Mathematics \& Statistics
Georgia State University

In statistical inference, we are often interested in predicting the value of a variable based on observation of one (or multiple) other variables, which is called bivariate regression (or multiple regression).

In bivariate regression, we want to obtain the regression equation of Y on X defined as the conditional expectation of Y given $X=x$:

$$
\mu_{Y \mid x}=\mathbb{E}[Y \mid X=x]=\int y f_{Y \mid X}(y \mid x) d y
$$

For discrete random variables, we replace integral with sum.
The regression equation of X on Y and regression equation of Y on multiple variables X_{1}, \ldots, X_{k} can be defined similarly.

Example. Given the two random variables X and Y that have the joint density

$$
f(x, y)= \begin{cases}x \cdot e^{-x(1+y)} & \text { for } x>0 \text { and } y>0 \\ 0 & \text { elsewhere }\end{cases}
$$

Find the regression equation of Y on X.

Solution. We first compute the marginal pdf of X :

$$
g(x)=\int_{-\infty}^{\infty} f(x, y) d y= \begin{cases}e^{-x} & \text { for } x>0 \\ 0 & \text { elsewhere }\end{cases}
$$

and hence the conditional pdf of Y given $X=x$ is

$$
w(y \mid x)=\frac{f(x, y)}{g(x)}=\frac{x \cdot e^{-x(1+y)}}{e^{-x}}=x \cdot e^{-x y}
$$

for $y>0$ and $w(y \mid x)=0$ elsewhere. Notice that $(Y \mid X=x) \sim \operatorname{Exponential}(1 / x)$. Hence

$$
\mu_{Y \mid x}=\mathbb{E}[Y \mid X=x]=\int_{0}^{\infty} y \cdot x \cdot e^{-x y} d y=\frac{1}{x}
$$

Here is the plot of the regression equation $\mu_{Y \mid x}=\frac{1}{x}$ for $x>0$:

Example. If X and Y have the multinomial distribution

$$
f(x, y)=\binom{n}{x, y, n-x-y} \cdot \theta_{1}^{x} \theta_{2}^{y}\left(1-\theta_{1}-\theta_{2}\right)^{n-x-y}
$$

for $x, y=0,1, \ldots, n$ with $x+y \leq n$, find the regression equation of Y on X.

Solution. The marginal pmf of X is given by

$$
\begin{aligned}
g(x) & =\sum_{y=0}^{n-x}\binom{n}{x, y, n-x-y} \cdot \theta_{1}^{x} \theta_{2}^{y}\left(1-\theta_{1}-\theta_{2}\right)^{n-x-y} \\
& =\binom{n}{x} \theta_{1}^{x} \sum_{y=0}^{n-x}\binom{n-x}{y} \theta_{2}^{y}\left(1-\theta_{1}-\theta_{2}\right)^{n-x-y} \\
& =\binom{n}{x} \theta_{1}^{x}\left(1-\theta_{1}\right)^{n-x}
\end{aligned}
$$

for $x=0,1, \ldots, n$, which means that X follows Binomial $\left(n, \theta_{1}\right)$ distribution.

Solution (cont). Therefore we obtain the condition pmf of Y given $X=x$:

$$
\begin{aligned}
w(y \mid x) & =\frac{f(x, y)}{g(x)}=\frac{\binom{n-x}{y} \theta_{2}^{y}\left(1-\theta_{1}-\theta_{2}\right)^{n-x-y}}{\left(1-\theta_{1}\right)^{n-x}} \\
& =\binom{n-x}{y}\left(\frac{\theta_{2}}{1-\theta_{1}}\right)^{y}\left(\frac{1-\theta_{1}-\theta_{2}}{1-\theta_{1}}\right)^{n-x-y}
\end{aligned}
$$

for $y=0,1, \ldots, n-x$.
Therefore we know $(Y \mid X=x) \sim \operatorname{Binomial}\left(n-x, \frac{\theta_{2}}{1-\theta_{1}}\right)$, and hence the regression equation of Y on X is

$$
\mu_{Y \mid x}=\mathbb{E}[Y \mid X=x]=(n-x) \cdot \frac{\theta_{2}}{1-\theta_{1}}=\frac{(n-x) \theta_{2}}{1-\theta_{1}} .
$$

Example. If the joint density of X_{1}, X_{2}, X_{3} is given by

$$
f\left(x_{1}, x_{2}, x_{3}\right)= \begin{cases}\left(x_{1}+x_{2}\right) e^{-x_{3}} & \text { for } 0<x_{1}<1,0<x_{2}<1, x_{3}>0 \\ 0 & \text { elsewhere }\end{cases}
$$

Find the regression equation of X_{2} on X_{1} and X_{3}.
Solution. The joint density of X_{1} and X_{3} is given by

$$
m\left(x_{1}, x_{3}\right)= \begin{cases}\left(x_{1}+\frac{1}{2}\right) e^{-x_{3}} & \text { for } 0<x_{1}<1, x_{3}>0 \\ 0 & \text { elsewhere }\end{cases}
$$

Therefore

$$
\begin{aligned}
\mu_{X_{2} \mid x_{1}, x_{3}} & =\int_{-\infty}^{\infty} x_{2} \cdot \frac{f\left(x_{1}, x_{2}, x_{3}\right)}{m\left(x_{1}, x_{3}\right)} d x_{2}=\int_{0}^{1} \frac{x_{2}\left(x_{1}+x_{2}\right)}{\left(x_{1}+\frac{1}{2}\right)} d x_{2} \\
& =\frac{x_{1}+\frac{2}{3}}{2 x_{1}+1} .
\end{aligned}
$$

An important class of regression equations is linear (affine) in x :

$$
\mu_{Y \mid x}=\alpha+\beta x
$$

for some constants α and β, which are called regression coefficients.
Remarks. Linear regression equations are important because:

- They lend themselves readily to further mathematical treatment;
- They often provide good approximations to otherwise complicated regression equations;
- In the case of the bivariate normal distribution, the regression equations are, in fact, linear.

Theorem. If the regression of Y on X is linear, then

$$
\mu_{Y \mid x}=\mu_{2}+\rho \frac{\sigma_{2}}{\sigma_{1}}\left(x-\mu_{1}\right)
$$

where

$$
\mathbb{E}[X]=\mu_{1}, \quad \mathbb{E}[Y]=\mu_{2}, \quad \operatorname{var}[X]=\sigma_{1}^{2}, \quad \operatorname{var}[Y]=\sigma_{2}^{2} .
$$

and

$$
\operatorname{cov}(X, Y)=\sigma_{12}, \quad \rho=\frac{\sigma_{12}}{\sigma_{1} \sigma_{2}}
$$

Proof. Since $\mu_{Y \mid x}=\mu_{2}+\rho \frac{\sigma_{2}}{\sigma_{1}}\left(x-\mu_{1}\right)$ for some α, β, it follows that

$$
\begin{equation*}
\int y \cdot w(y \mid x) d y=\alpha+\beta x \tag{*}
\end{equation*}
$$

Proof (cont). Multiplying both sides of $(*)$ by $g(x)$ and integrating on x yield $\mu_{2}=\iint y \cdot w(y \mid x) g(x) d y d x=\alpha \int g(x) d x+\beta \int x \cdot g(x) d x=\alpha+\beta \mu_{1}$.
Multiplying both sides of $(*)$ by $x \cdot g(x)$ and integrating on x yield

$$
\begin{aligned}
\mathbb{E}[X Y] & =\iint x y \cdot w(y \mid x) g(x) d y d x \\
& =\alpha \int x \cdot g(x) d x+\beta \int x^{2} \cdot g(x) d x \\
& =\alpha \mu_{1}+\beta \mathbb{E}\left[X^{2}\right]
\end{aligned}
$$

Recall that

$$
\mathbb{E}[X Y]=\sigma_{12}+\mu_{1} \mu_{2}, \quad \mathbb{E}\left[X^{2}\right]=\sigma_{1}^{2}+\mu_{1}^{2}
$$

Then solving the equations above for α and β yields

$$
\begin{aligned}
& \alpha=\mu_{2}-\frac{\sigma_{12}}{\sigma_{1}^{2}} \cdot \mu_{1}=\mu_{2}-\rho \frac{\sigma_{2}}{\sigma_{1}} \cdot \mu_{1} \\
& \beta=\frac{\sigma_{12}}{\sigma_{1}^{2}}=\rho \frac{\sigma_{2}}{\sigma_{1}}
\end{aligned}
$$

We have discussed the problem of regression only in connection with random variables having known joint distributions.

In practice, there are many problems where a set of paired data gives the indication that the regression is linear, where we do not know the joint distribution but want to estimate the regression coefficients α and β.

A typical method is called the method of least squares.

Consider the following data on the number of hours that 10 persons studied for a French test and their scores on the test:

Hours studied	Test score
x	y
4	31
9	58
10	65
14	73
4	37
7	44
12	60
22	91
1	21
17	84

From the plot of the data below, we get the impression that a straight line provides a reasonably good fit:

Although the points do not all fall exactly on a straight line, the overall pattern suggests that the average test score for a given number of hours studied may well be related to the number of hours studied in a linear pattern.

Suppose we are given a set of paired data

$$
\left\{\left(x_{i}, y_{i}\right): i=1, \ldots, n\right\} .
$$

Then the least squares estimates of the regression coefficients ($\widehat{\alpha}, \widehat{\beta}$) in bivariate linear regression are the minimizer of

$$
q(\alpha, \beta)=\sum_{i=1}^{n}\left(y_{i}-\left(\alpha+\beta x_{i}\right)\right)^{2} .
$$

In other words,

$$
(\widehat{\alpha}, \widehat{\beta})=\underset{\alpha, \beta}{\arg \min } q(\alpha, \beta) .
$$

Notice that $q(\alpha, \beta)$ is the sum of squared errors, i.e., $\sum_{i=1}^{n} e_{i}^{2}$ where e_{i} is the discrepancy between y_{i} and $\alpha+\beta x_{i}$:

So the least squares estimates ($\widehat{\alpha}, \widehat{\beta}$) are the interception and slope combination that yield smallest sum of squared errors.

To find the minimizer ($\widehat{\alpha}, \widehat{\beta}$) of $q(\alpha, \beta$), we take partial derivatives of q with respect to α and β, setting them to 0 , and solving for α and β :

$$
\begin{aligned}
& \frac{\partial q}{\partial \widehat{\alpha}}=\sum_{i=1}^{n}(-2)\left[y_{i}-\left(\widehat{\alpha}+\widehat{\beta} x_{i}\right)\right]=0 \\
& \frac{\partial q}{\partial \widehat{\beta}}=\sum_{i=1}^{n}(-2) x_{i}\left[y_{i}-\left(\widehat{\alpha}+\widehat{\beta} x_{i}\right)\right]=0
\end{aligned}
$$

These two equations can be written as a system of normal equations of $(\hat{\alpha}, \widehat{\beta})$:

$$
\begin{aligned}
\sum_{i=1}^{n} y_{i} & =\widehat{\alpha} n+\widehat{\beta} \cdot \sum_{i=1}^{n} x_{i} \\
\sum_{i=1}^{n} x_{i} y_{i} & =\hat{\alpha} \cdot \sum_{i=1}^{n} x_{i}+\widehat{\beta} \cdot \sum_{i=1}^{n} x_{i}^{2}
\end{aligned}
$$

Notice that the system above is a system of linear equations of $(\hat{\alpha}, \widehat{\beta})$. Solving this system yields the solution

$$
\begin{aligned}
& \widehat{\alpha}=\frac{\sum_{i=1}^{n} y_{i}-\widehat{\beta} \cdot \sum_{i=1}^{n} x_{i}}{n} \\
& \widehat{\beta}=\frac{n\left(\sum_{i=1}^{n} x_{i} y_{i}\right)-\left(\sum_{i=1}^{n} x_{i}\right)\left(\sum_{i=1}^{n} y_{i}\right)}{n\left(\sum_{i=1}^{n} x_{i}^{2}\right)-\left(\sum_{i=1}^{n} x_{i}\right)^{2}}
\end{aligned}
$$

It is customary to use the following notations:

$$
\begin{aligned}
& S_{x x}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}=\sum_{i=1}^{n} x_{i}^{2}-\frac{1}{n}\left(\sum_{i=1}^{n} x_{i}\right)^{2} \\
& S_{y y}=\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}=\sum_{i=1}^{n} y_{i}^{2}-\frac{1}{n}\left(\sum_{i=1}^{n} y_{i}\right)^{2} \\
& S_{x y}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)=\sum_{i=1}^{n} x_{i} y_{i}-\frac{1}{n}\left(\sum_{i=1}^{n} x_{i}\right)\left(\sum_{i=1}^{n} y_{i}\right)
\end{aligned}
$$

Then we can simplify the expressions of $\widehat{\alpha}$ and $\widehat{\beta}$ as

$$
\widehat{\alpha}=\bar{y}-\widehat{\beta} \cdot \bar{x}, \quad \widehat{\beta}=\frac{S_{x y}}{S_{x x}}
$$

Example. Consider the data in the following table.
(a) find the equation of the least squares line that approximates the regression of the test scores on the number of hours studied;
(b) predict the average test score of a person who studied 14 hours for test.

Hours studied	Test score
x	y
4	31
9	58
10	65
14	73
4	37
7	44
12	60
22	91
1	21
17	84

Solution. (a) We have $n=10$ and compute

$$
\sum_{i=1}^{n} x_{i}=100, \quad \sum_{i=1}^{n} x_{i}^{2}=1,376, \quad \sum_{i=1}^{n} y_{i}=564, \quad \sum_{i=1}^{n} x_{i} y_{i}=6,945
$$

From these we obtain
$S_{x x}=1,376-\frac{1}{10}(100)^{2}=376, \quad S_{x y}=6,945-\frac{1}{10}(100)(564)=1,305$
Therefore

$$
\widehat{\beta}=\frac{1,305}{376}=3.471, \quad \widehat{\alpha}=\frac{564}{10}-3.471 \cdot \frac{100}{10}=21.69 .
$$

So the equation of the least squares line is $\widehat{y}=21.69+3.471 x$.
(b) Substituting $x=14$ into the equation obtained in part (a), we get

$$
\hat{y}=21.69+3.471 \cdot 14=70.284 \approx 70 .
$$

Given a set of paired data $\left.\left\{x_{i}, y_{i}\right): i=1, \ldots, n\right\}$, there are two ways to interpret the data:

- Regression analysis: we analyze by treating x_{i} 's as constants and y_{i} 's as values of corresponding independent random variables Y_{i}.
- Correlation analysis: we look upon the $\left(x_{i}, y_{i}\right)$ as values of the independent random vectors $\left(X_{i}, Y_{i}\right)$.

We first consider regression analysis, in particular, normal regression analysis, where the conditional density of Y_{i} is given by:

$$
w\left(y_{i} \mid x_{i}\right)=\frac{1}{\sigma \sqrt{2 \pi}} \cdot e^{-\frac{1}{2}\left[\frac{y_{i}-\left(\alpha+\beta x_{i}\right)}{\sigma}\right]^{2}} \quad-\infty<y_{i}<\infty
$$

and α, β, and σ are the same for each i.

We will be interested in the following questions:

- Point and interval estimations $\hat{\alpha}, \widehat{\beta}, \hat{\sigma}$ of α, β, and σ.
- Hypothesis testings involving $\hat{\alpha}, \widehat{\beta}, \widehat{\sigma}$.
- Prediction using $\hat{y}=\hat{\alpha}+\widehat{\beta} x$ for new x.

Suppose we use maximum likelihood estimates of α, β, and σ, then we first form the log-likelihood function:
$\ell(\alpha, \beta, \sigma)=\ln \prod_{i=1}^{n} w\left(y_{i} \mid x_{i}\right)=-n \ln \sigma-\frac{n}{2} \ln 2 \pi-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left[\frac{y_{i}-\left(\alpha+\beta x_{i}\right)}{\sigma}\right]^{2}$
Taking partial derivatives of ℓ with respect to α, β, σ and setting them to 0 :

$$
\begin{aligned}
& \frac{\partial \ell}{\partial \alpha}=\frac{1}{\sigma^{2}} \cdot \sum_{i=1}^{n}\left[y_{i}-\left(\alpha+\beta x_{i}\right)\right]=0 \\
& \frac{\partial \ell}{\partial \beta}=\frac{1}{\sigma^{2}} \cdot \sum_{i=1}^{n} x_{i}\left[y_{i}-\left(\alpha+\beta x_{i}\right)\right]=0 \\
& \frac{\partial \ell}{\partial \sigma}=-\frac{n}{\sigma}+\frac{1}{\sigma^{3}} \cdot \sum_{i=1}^{n}\left[y_{i}-\left(\alpha+\beta x_{i}\right)\right]^{2}=0
\end{aligned}
$$

Solving for α, β, σ yields $\widehat{\alpha}=\bar{y}-\widehat{\beta} \cdot \bar{x}$ and $\widehat{\beta}=\frac{S_{x y}}{S_{x x}}$ as before, and

$$
\hat{\sigma}=\sqrt{\frac{1}{n} \cdot \sum_{i=1}^{n}\left[y_{i}-\left(\alpha+\beta x_{i}\right)\right]^{2}}=\sqrt{\frac{1}{n}\left(S_{y y}-\widehat{\beta} \cdot S_{x y}\right)}
$$

Let $\widehat{A}, \widehat{B}, \hat{\Sigma}$ denote the corresponding maximum likelihood estimators obtained above. Then

$$
\hat{B}=\frac{S_{x Y}}{S_{x x}}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(Y_{i}-\bar{Y}\right)}{S_{x x}}=\sum_{i=1}^{n}\left(\frac{x_{i}-\bar{x}}{S_{x x}}\right) Y_{i}
$$

which is a linear combination of Y_{i} 's. Therefore \hat{B} also follows normal distribution, and

$$
\mathbb{E}[\widehat{B}]=\sum_{i=1}^{n}\left[\frac{x_{i}-\bar{x}}{S_{x x}}\right] \cdot E\left(Y_{i} \mid x_{i}\right)=\sum_{i=1}^{n}\left[\frac{x_{i}-\bar{x}}{S_{x x}}\right]\left(\alpha+\beta x_{i}\right)=\beta
$$

and

$$
\operatorname{var}[\widehat{B}]=\sum_{i=1}^{n}\left[\frac{x_{i}-\bar{x}}{S_{x x}}\right]^{2} \cdot \operatorname{var}\left(Y_{i} \mid x_{i}\right)=\sum_{i=1}^{n}\left[\frac{x_{i}-\bar{x}}{S_{x x}}\right]^{2} \cdot \sigma^{2}=\frac{\sigma^{2}}{S_{x x}}
$$

Theorem. For normal population,

$$
\hat{B} \sim N\left(\beta, \frac{\sigma^{2}}{S_{x x}}\right) \text { and } \frac{n \hat{\Sigma}^{2}}{\sigma^{2}} \sim \chi_{n-2}^{2}
$$

and they are independent.

The theorem above implies that

$$
T=\frac{\frac{\hat{B}-\beta}{\sigma / \sqrt{S_{x x}}}}{\sqrt{\frac{n \Sigma^{2}}{\sigma^{2}} /(n-2)}}=\frac{\hat{B}-\beta}{\hat{\Sigma}} \sqrt{\frac{(n-2) S_{x x}}{n}}
$$

Example. With reference to the data in the table in Section 3 pertaining to the amount of time that 10 persons studied for a certain test and the scores that they obtained, test the null hypothesis $\beta=3$ against the alternative hypothesis $\beta>3$ at the 0.01 level of significance.

Solution. We proceed with the four steps:

- Step 1. Set up the test

$$
H_{0}: \beta=3 \text { vs } H_{1}: \beta>3
$$

with level of significance $\alpha=0.01$.

- Step 2. Decide to use test statistic $T=\frac{\hat{B}-\beta}{\Sigma} \sqrt{\frac{(n-2) S_{x x}}{n}}$ and reject if

$$
t=\frac{\widehat{\beta}-\beta}{\widehat{\sigma}} \sqrt{\frac{(n-2) S_{x x}}{n}}>t_{\alpha, n-1}=t_{0.01,8}=2.896
$$

- Step 3. Based on the data table, we obtain

$$
\begin{aligned}
\sum_{i=1}^{n} y_{i}^{2} & =36,562 \\
S_{y y} & =36,562-\frac{564^{2}}{10}=4,752.4 \\
\hat{\sigma} & =\sqrt{\frac{1}{10}(4,752.4-3.471 \cdot 1,305)}=4.720 \\
t & =\frac{3.471-3}{4.720} \sqrt{\frac{8 \cdot 376}{10}}=1.73
\end{aligned}
$$

- Step 4. Since $t=1.73<2.896$, we cannot reject H_{0}.

The derivations above also implies the interval estimation of β : we know

$$
\mathbf{P}\left(-t_{\alpha / 2, n-2}<\frac{\hat{\mathbf{B}}-\beta}{\tilde{\Sigma}} \sqrt{\frac{(n-2) S_{x x}}{n}}<t_{\alpha / 2, n-2}\right)=1-\alpha
$$

which implies that

$$
\widehat{\beta}-t_{\alpha / 2, n-2} \cdot \hat{\sigma} \sqrt{\frac{n}{(n-2) S_{x x}}}<\beta<\widehat{\beta}+t_{\alpha / 2, n-2} \cdot \hat{\sigma} \sqrt{\frac{n}{(n-2) S_{x x}}}
$$

is a $(1-\alpha) \cdot 100 \%$ confidence interval for β.

Example. With reference to the data in the table in Section 3 pertaining to the amount of time that 10 persons studied for a certain test and the scores that they obtained, construct a 95% confidence interval for β.

Solution. We have $\alpha / 2=0.025$ and find that $t_{0.025,8}=2.306$. Then the 95% confidence interval of β is
$3.471-(2.306)(4.720) \sqrt{\frac{10}{8(376)}}<\beta<3.471+(2.306)(4.720) \sqrt{\frac{10}{8(376)}}$
which is

$$
2.84<\beta<4.10
$$

Now we consider correlation analysis for normal data pairs $\left\{\left(x_{i}, y_{i}\right): i=\right.$ $1, \ldots, n\}$. Suppose they are samples from the bivariate normal distribution

$$
N\left(\left(\mu_{1}, \mu_{2}\right),\left(\begin{array}{cc}
\sigma_{1}^{2} & \rho \sigma_{1} \sigma_{2} \\
\rho \sigma_{1} \sigma_{2} & \sigma_{2}^{2}
\end{array}\right)\right)
$$

To obtain maximum likelihood estimates of $\mu_{1}, \mu_{2}, \sigma_{1}, \sigma_{2}, \rho$, we first write the likelihood function

$$
L\left(\mu_{1}, \mu_{2}, \sigma_{1}, \sigma_{2}, \rho\right)=\prod_{i=1}^{n} f\left(x_{i}, y_{i} ; \mu_{1}, \mu_{2}, \sigma_{1}, \sigma_{2}, \rho\right)
$$

or the log-likelihood function

$$
\ell\left(\mu_{1}, \mu_{2}, \sigma_{1}, \sigma_{2}, \rho\right)=\sum_{i=1}^{n} \ln f\left(x_{i}, y_{i} ; \mu_{1}, \mu_{2}, \sigma_{1}, \sigma_{2}, \rho\right)
$$

where $f\left(x, y ; \mu_{1}, \mu_{2}, \sigma_{1}, \sigma_{2}, \rho\right)$ is the pdf of the bivariate normal distribution above.

To obtain maximum likelihood estimates, we take partial derivatives of ℓ with respect to $\mu_{1}, \mu_{2}, \sigma_{1}, \sigma_{2}, \rho$, set to 0 , and solve for $\mu_{1}, \mu_{2}, \sigma_{1}, \sigma_{2}, \rho$ to obtain

$$
\begin{aligned}
\widehat{\mu}_{1} & =\bar{x} \\
\widehat{\mu}_{2} & =\bar{y} \\
\widehat{\sigma}_{1} & =\sqrt{\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n}} \\
\widehat{\sigma}_{2} & =\sqrt{\frac{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}{n}} \\
\widehat{\rho} & =\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \sqrt{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}}=\frac{S_{x y}}{\sqrt{S_{x x} \cdot S_{y y}}}
\end{aligned}
$$

The sample correlation coefficient $\hat{\rho}$, as the maximum likelihood estimate of ρ, is often denoted by r, and the corresponding maximum estimator is denoted by R.

Recall that for bivariate normal distribution, there is

$$
\sigma_{Y \mid x}^{2}=\operatorname{var}[Y \mid X=x]=\sigma_{2}^{2}\left(1-\rho^{2}\right)
$$

Notice that, if $\rho=1$, then $\sigma_{Y \mid x}^{2}=0$ and there is a perfect linear relation between X and Y (so one determines the other and vice versa).

Similarly, if $\hat{\rho}=1$, then the data pairs $\left\{\left(x_{i}, y_{i}\right): 1 \leq i \leq n\right\}$ lie on a straight line.

Example. Suppose that we want to determine on the basis of the following data whether there is a relationship between the time, in minutes, it takes a secretary to complete a certain form in the morning and in the late afternoon:

Morning x	Afternoon y
8.2	8.7
9.6	9.6
7.0	6.9
9.4	8.5
10.9	11.3
7.1	7.6
9.0	9.2
6.6	6.3
8.4	8.4
10.5	12.3

Compute and interpret the sample correlation coefficient.

Solution. From the data we get $n=10, \sum_{i=1}^{n} x=86.7, \sum_{i=1}^{n} x_{i}^{2}=$ 771.35, $\sum_{i=1}^{n} y_{i}=88.8, \sum_{i=1}^{n} y_{i}^{2}=819.34$, and $\sum_{i=1}^{n} x_{i} y_{i}=792.92$, then

$$
\begin{aligned}
S_{x x} & =771.35-\frac{1}{10}(86.7)^{2}=19.661 \\
S_{y y} & =819.34-\frac{1}{10}(88.8)^{2}=30.796 \\
S_{x y} & =792.92-\frac{1}{10}(86.7)(88.8)=23.024 \\
r & =\frac{23.024}{\sqrt{(19.661)(30.796)}}=0.936
\end{aligned}
$$

The scattergram of data and the fitted line is given by

The distribution of the maximum likelihood estimator R is complicated. However, there is approximately

$$
\frac{1}{2} \cdot \ln \frac{1+R}{1-R} \in N\left(\frac{1}{2} \cdot \frac{1+\rho}{1-\rho}, \frac{1}{n-3}\right) .
$$

Therefore, we know

$$
z=\frac{\frac{1}{2} \cdot \ln \frac{1+r}{1-r}-\frac{1}{2} \cdot \ln \frac{1+\rho}{1-\rho}}{\frac{1}{\sqrt{n-3}}}=\frac{\sqrt{n-3}}{2} \cdot \ln \frac{(1+r)(1-\rho)}{(1-r)(1+\rho)}
$$

is approximately $N(0,1)$. We conduct hypothesis test or construct confidence interval based on this approximation.

Example. Suppose that we want to determine on the basis of the following data whether there is a relationship between the time, in minutes, it takes a secretary to complete a certain form in the morning and in the late afternoon:

Morning x	Afternoon y
8.2	8.7
9.6	9.6
7.0	6.9
9.4	8.5
10.9	11.3
7.1	7.6
9.0	9.2
6.6	6.3
8.4	8.4
10.5	12.3

Test the null hypothesis $\rho=0$ against the alternative hypothesis $\rho \neq 0$ at the 0.01 level of significance.

Solution. We proceed with the four steps:

- Step 1. Set up the test

$$
H_{0}: \rho=0 \text { vs } H_{1}: \rho \neq 0
$$

with level of significance $\alpha=0.01$.

- Step 2. Decide to use test statistic $Z=\frac{\sqrt{n-3}}{2} \cdot \ln \frac{1+R}{1-R}$ and reject if

$$
|z|=\left|\frac{\sqrt{n-3}}{2} \cdot \ln \frac{1+r}{1-r}\right|>z_{\alpha / 2}=z_{0.005}=2.575
$$

- Step 3. Based on the data table, we obtain $r=0.936$ and thus

$$
z=\frac{\sqrt{10}}{2} \cdot \ln \frac{1+0.936}{1-0.936}=4.5
$$

- Step 4. Since $z=4.5>2.575$, we reject H_{0}.

We can extend the bivariate linear regression to multiple linear regression:

$$
\mu_{Y \mid x_{1}, \ldots, x_{k}}=\beta_{0}+\beta_{1} x_{1}+\cdots+\beta_{k} x_{k}
$$

In this case, given data $\left\{\left(x_{i 1}, \ldots, x_{i k}, y_{i}: i=1, \ldots, n\right\}\right.$, we consider least squares estimates $\widehat{\beta}_{0}, \ldots, \widehat{\beta}_{k}$ to minimize the sum of squared errors:

$$
q\left(\beta_{0}, \ldots, \beta_{k}\right)=\sum_{i=1}^{n}\left(y_{i}-\left(\beta_{0}+\beta_{1} x_{1}+\cdots+\beta_{k} x_{k}\right)\right)^{2}
$$

To obtain the minimizer, we take partial derivatives of q with respect to β_{j} for $j=0,1, \ldots, k$, set to 0 :

$$
\begin{aligned}
& \frac{\partial q}{\partial \widehat{\beta}_{0}}=\sum_{i=1}^{n}(-2)\left[y_{i}-\left(\widehat{\beta}_{0}+\widehat{\beta}_{1} x_{i 1}+\widehat{\beta}_{2} x_{i 2}+\cdots+\widehat{\beta}_{k} x_{i k}\right)\right]=0 \\
& \frac{\partial q}{\partial \widehat{\beta}_{1}}=\sum_{i=1}^{n}(-2) x_{i 1}\left[y_{i}-\left(\widehat{\beta}_{0}+\widehat{\beta}_{1} x_{i 1}+\widehat{\beta}_{2} x_{i 2}+\cdots+\widehat{\beta}_{k} x_{i k}\right)\right]=0 \\
& \frac{\partial q}{\partial \widehat{\beta}_{2}}=\sum_{i=1}^{n}(-2) x_{i 2}\left[y_{i}-\left(\widehat{\beta}_{0}+\widehat{\beta}_{1} x_{i 1}+\widehat{\beta}_{2} x_{i 2}+\cdots+\widehat{\beta}_{k} x_{i k}\right)\right]=0 \\
& \quad \cdots \\
& \frac{\partial q}{\partial \widehat{\beta}_{k}}=\sum_{i=1}^{n}(-2) x_{i k}\left[y_{i}-\left(\widehat{\beta}_{0}+\widehat{\beta}_{1} x_{i 1}+\widehat{\beta}_{2} x_{i 2}+\cdots+\widehat{\beta}_{k} x_{i k}\right)\right]=0
\end{aligned}
$$

This yields the system of $k+1$ normal equations of the least squares estimates $\widehat{\beta}_{0}, \widehat{\beta}_{1}, \cdots, \widehat{\beta}_{k}$:

$$
\begin{aligned}
& \sum_{i=1}^{n} y=\widehat{\beta}_{0} \cdot n+\widehat{\beta}_{1} \cdot \sum_{i=1}^{n} x_{1}+\widehat{\beta}_{2} \cdot \sum_{i=1}^{n} x_{2}+\cdots+\widehat{\beta}_{k} \cdot \sum_{i=1}^{n} x_{k} \\
& \sum_{i=1}^{n} x_{1} y=\widehat{\beta}_{0} \cdot \sum_{i=1}^{n} x_{1}+\widehat{\beta}_{1} \cdot \sum_{i=1}^{n} x_{1}^{2}+\widehat{\beta}_{2} \cdot \sum_{i=1}^{n} x_{1} x_{2}+\cdots+\widehat{\beta}_{k} \cdot \sum_{i=1}^{n} x_{1} x_{k} \\
& \sum_{i=1}^{n} x_{2} y=\widehat{\beta}_{0} \cdot \sum_{i=1}^{n} x_{2}+\widehat{\beta}_{1} \cdot \sum_{i=1}^{n} x_{2} x_{1}+\widehat{\beta}_{2} \cdot \sum_{i=1}^{n} x_{2}^{2}+\cdots+\widehat{\beta}_{k} \cdot \sum_{i=1}^{n} x_{2} x_{k} \\
& \cdots \\
& \sum_{i=1}^{n} x_{k} y=\widehat{\beta}_{0} \cdot \sum_{i=1}^{n} x_{k}+\widehat{\beta}_{1} \cdot \sum_{i=1}^{n} x_{k} x_{1}+\widehat{\beta}_{2} \cdot \sum_{i=1}^{n} x_{k} x_{2}+\cdots+\widehat{\beta}_{k} \cdot \sum_{i=1}^{n} x_{k}^{2}
\end{aligned}
$$

Solving this system yields the least squares estimates $\widehat{\beta}_{0}, \widehat{\beta}_{1}, \cdots, \widehat{\beta}_{k}$.

Example. The following data show the number of bedrooms, the number of baths, and the prices at which a random sample of eight one-family houses sold in a certain large housing development:

Number of bedrooms	Number of baths	Price (dollars)
x_{1}	x_{2}	y
3	2	292,000
2	1	264,600
4	3	317,500
2	1	265,500
3	2	302,000
2	2	275,500
5	3	333,000
4	2	307,500

Use the method of least squares to fit a linear equation of sale price on the numbers of bedrooms and baths. Predict the price of a three-bedroom with two baths house.

Solution. We compute that

$$
\begin{gathered}
\qquad \sum_{i=1}^{n} x_{i 1} y_{i}=7,558,200, \quad \sum_{i=1}^{n} x_{i 2} y_{i}=4,835,600 \\
\text { and } n=8, \sum_{i=1}^{n} x_{i 1}=25, \sum_{i=1}^{n} x_{i 2}=16 \\
\sum_{i=1}^{n} y_{i}=2,357,600, \quad \sum_{i=1}^{n} x_{i 1}^{2}=87, \quad \sum_{i=1}^{n} x_{i 1} x_{i 2}=55, \quad \sum_{i=1}^{n} x_{i 2}^{2}=36
\end{gathered}
$$

Then we obtain the normal equations:

$$
\begin{aligned}
& 2,357,600=8 \widehat{\beta}_{0}+25 \widehat{\beta}_{1}+16 \widehat{\beta}_{2} \\
& 7,558,200=25 \widehat{\beta}_{0}+87 \widehat{\beta}_{1}+55 \widehat{\beta}_{2} \\
& 4,835,600=16 \widehat{\beta}_{0}+55 \widehat{\beta}_{1}+36 \widehat{\beta}_{2}
\end{aligned}
$$

solving which yields:

$$
\widehat{\beta}_{1}=224,929, \quad \widehat{\beta}_{2}=15,314, \quad \widehat{\beta}_{3}=10,957 .
$$

Therefore the linear regression equation is $\widehat{y}=224,929+15,314 x_{1}+$ $10,957 x_{2}$. For $x_{1}=3$ and $x_{2}=2$, we obtain $\hat{y}=292,785$.

Multiple linear regression computation can be written in matrix notations. Let us denote

$$
\mathbf{X}=\left(\begin{array}{ccclc}
1 & x_{11} & x_{12} & \cdots & x_{1 k} \\
1 & x_{21} & x_{22} & \cdots & x_{2 k} \\
\cdots & \cdots & \cdots & \cdots & \\
1 & x_{n 1} & x_{n 2} & \cdots & x_{n k}
\end{array}\right), \quad \mathbf{Y}=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right), \quad \mathbf{B}=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right)
$$

Then the least squares estimate of \mathbf{B} is given by

$$
\mathbf{B}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{Y}
$$

where X^{\prime} is the transpose of \mathbf{X}.

To see this, we notice that $q(\mathbf{B})=\|\mathbf{Y}-\mathbf{X B}\|^{2}$. Set its gradient $\nabla q(\mathbf{B})$ to $\mathbf{0}$, that is

$$
\nabla q(\mathbf{B})=-2 \mathbf{X}^{\prime}(\mathbf{Y}-\mathbf{X B})=0
$$

which reduces to the normal equation of \mathbf{B}. Solving for B yields the estimate $\mathbf{B}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{Y}$.

Example. The following data show the number of bedrooms, the number of baths, and the prices at which a random sample of eight one-family houses sold in a certain large housing development:

Number of bedrooms x_{1}	Number of baths x_{2}	Price (dollars) y
3	2	292,000
2	1	264,600
4	3	317,500
2	1	265,500
3	2	302,000
2	2	275,500
5	3	333,000
4	2	307,500

Determine the least squares estimates of the multiple regression coefficients using the matrix notations.

Solution. Following the matrix notation, we can compute

$$
\mathbf{X}^{\prime} \mathbf{X}=\left(\begin{array}{rrr}
8 & 25 & 16 \\
25 & 87 & 55 \\
16 & 55 & 36
\end{array}\right)
$$

Hence we can compute its inverse:

$$
\left(\mathrm{X}^{\prime} \mathrm{X}\right)^{-1}=\frac{1}{84} \cdot\left(\begin{array}{rrr}
107 & -20 & -17 \\
-20 & 32 & -40 \\
-17 & -40 & 71
\end{array}\right)
$$

Moreover, we have

$$
\mathbf{X}^{\prime} \mathbf{Y}=\left(\begin{array}{l}
2,357,600 \\
7,558,200 \\
4,835,600
\end{array}\right)
$$

Solution (cont). Finally, we have

$$
\begin{aligned}
\widehat{\mathrm{B}} & =\left(\mathrm{X}^{\prime} \mathrm{X}\right)^{-1} \mathrm{X}^{\prime} \mathrm{Y} \\
& =\frac{1}{84} \cdot\left(\begin{array}{rrr}
07 & -20 & -17 \\
-20 & 32 & -40 \\
-17 & -40 & 71
\end{array}\right)\left(\begin{array}{r}
2,357,600 \\
7,558,200 \\
4,835,600
\end{array}\right) \\
& =\frac{1}{84} \cdot\left(\begin{array}{r}
18,894,000 \\
1,286,400 \\
920,400
\end{array}\right) \\
& =\left(\begin{array}{r}
224,929 \\
15,314 \\
10,957
\end{array}\right)
\end{aligned}
$$

Recall that the maximum likelihood estimate of the standard deviation is given by

$$
\widehat{\sigma}=\sqrt{\frac{1}{n} \cdot \sum_{i=1}^{n}\left[y_{i}-\left(\widehat{\beta}_{0}+\widehat{\beta}_{1} x_{i 1}+\cdots+\widehat{\beta}_{k} x_{i k}\right]^{2}\right.}
$$

This maximum likelihood estimator can also be written in matrix notation:

$$
\hat{\sigma}=\sqrt{\frac{\mathrm{Y}^{\prime} \mathbf{Y}-\mathrm{B}^{\prime} \mathrm{X}^{\prime} \mathbf{Y}}{n}} .
$$

Example. The following data show the number of bedrooms, the number of baths, and the prices at which a random sample of eight one-family houses sold in a certain large housing development:

Number of bedrooms	Number of baths	Price (dollars)
x_{1}	x_{2}	y
3	2	292,000
2	1	264,600
4	3	317,500
2	1	265,500
3	2	302,000
2	2	275,500
5	3	333,000
4	2	307,500

Use this data to determine the value of $\hat{\sigma}$.

Solution. We first compute that

$$
\begin{aligned}
\mathbf{Y}^{\prime} \mathbf{Y} & =(292,000)^{2}+(264,600)^{2}+\ldots+(307,500)^{2} \\
& =699,123,160,0001
\end{aligned}
$$

Then we can compute

$$
\begin{aligned}
\mathbf{B}^{\prime} \mathbf{X}^{\prime} \mathrm{Y} & =\frac{1}{84} \cdot(18,894,000 \quad 286,400 \quad 920,400)\left(\begin{array}{r}
637,000 \\
7,558,200 \\
4,835,600
\end{array}\right) \\
& =699,024,394,285
\end{aligned}
$$

Using the formula of $\hat{\sigma}=\sqrt{\frac{\mathbf{Y}^{\prime} \mathbf{Y}-B^{\prime} \mathbf{X}^{\prime} \mathbf{Y}}{n}}$, we obtain

$$
\hat{\sigma}=\sqrt{\frac{699,123,160,000-699,024,394,285}{8}}=3,514
$$

Remark. Note that the maximum likelihood estimator corresponding to $\hat{\sigma}$ is not unbiased. The unbiased estimator of σ^{2} is given by

$$
S_{e}^{2}=\frac{\mathbf{Y}^{\prime} \mathbf{Y}-\mathbf{B}^{\prime} \mathbf{X}^{\prime} \mathbf{Y}}{n-k-1}
$$

Therefore, we would get

$$
s_{e}=\sqrt{\frac{699,123,160,000-699,024,394,285}{8-2-1}}=4,444
$$

for this estimator, which is different from $\hat{\sigma}=3,514$ above.

Theorem. For multivariate normal distributions, there are

$$
\hat{B}_{i} \sim N\left(\beta_{i}, c_{i i} \sigma^{2}\right), \quad \text { and } \quad \frac{n \hat{\Sigma}^{2}}{\sigma^{2}} \sim \chi_{n-k-1}^{2}
$$

where $c_{i j}$ is the (i, j) th entry of $\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$. Moreover, \widehat{B}_{i} and $\frac{n \tilde{\Sigma}^{2}}{\sigma^{2}}$ are independent.

The theorem above provides a means for hypothesis testing and interval estimation involving $\widehat{\beta}$'s. Specifically,

$$
T=\frac{\widehat{B}_{i}-\beta_{i}}{\hat{\Sigma} \cdot \sqrt{\frac{n \mid c_{i} i}{n-k-1}}} \sim t_{n-k-1}
$$

for $i=0,1, \ldots, k$.

Example. The following data show the number of bedrooms, the number of baths, and the prices at which a random sample of eight one-family houses sold in a certain large housing development:

Number of bedrooms	Number of baths	Price (dollars)
x_{1}	x_{2}	y
3	2	292,000
2	1	264,600
4	3	317,500
2	1	265,500
3	2	302,000
2	2	275,500
5	3	333,000
4	2	307,500

Test the null hypothesis $\beta_{1}=9,500$ against the alter- native hypothesis $\beta_{1}>$ 9,500 at the 0.05 level of significance.

Solution. We proceed with the four steps:

- Step 1. Set up the test

$$
H_{0}: \beta_{1}=9,500 \text { vs } H_{1}: \beta_{1}>9,500 .
$$

with level of significance $\alpha=0.05$.

- Step 2. Decide to use test statistic $T=\frac{\hat{B}_{1}-\beta_{i}}{\Sigma \cdot \sqrt{\frac{n\left|c_{11}\right|}{n-k-1}}}$ and reject if

$$
t=\frac{\widehat{\beta}_{1}-\beta_{i}}{\widehat{\sigma} \cdot \sqrt{\frac{n\left|c_{11}\right|}{n-k-1}}}>t_{\alpha, n-k-1}=t_{0.05,5} .
$$

- Step 3. Based on the data table, we obtain $n=8, k=2, \widehat{\beta}_{1}=15,314$, $c_{11}=\frac{32}{84}$, and $\hat{\sigma}=3,546$ and thus

$$
t=\frac{15,314-9,500}{3,514 \sqrt{\frac{8 \cdot\left|\frac{32}{84}\right|}{5}}}=\frac{5,814}{2,743}=2.12
$$

- Step 4. Since $t=2.12>2.015$, we reject H_{0}.

