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In statistical inference, we are often interested in predicting the value of a
variable based on observation of one (or multiple) other variables, which is
called bivariate regression (or multiple regression).

In bivariate regression, we want to obtain the regression equation of Y on X
defined as the conditional expectation of Y given X = x:

µY |x = E[Y |X = x] =
∫
yfY |X(y|x) dy

For discrete random variables, we replace integral with sum.

The regression equation of X on Y and regression equation of Y on multiple
variables X1, . . . , Xk can be defined similarly.
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Example. Given the two random variables X and Y that have the joint density

f(x, y) =

{
x · e−x(1+y) for x > 0 and y > 0
0 elsewhere

Find the regression equation of Y on X.

Solution. We first compute the marginal pdf of X:

g(x) =
∫ ∞
−∞

f(x, y)dy =

{
e−x for x > 0
0 elsewhere

and hence the conditional pdf of Y given X = x is

w(y | x) =
f(x, y)

g(x)
=
x · e−x(1+y)

e−x
= x · e−xy

for y > 0 andw(y|x) = 0 elsewhere. Notice that (Y |X = x) ∼Exponential(1/x).
Hence

µY |x = E[Y |X = x] =
∫ ∞

0
y · x · e−xy dy =

1

x
.
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Here is the plot of the regression equation µY |x = 1
x for x > 0:Regression and Correlation
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Figure 1. Regression curve of Example 1.

EXAMPLE 2

If X and Y have the multinomial distribution

f (x, y) =
(

n
x, y, n − x − y

)

· θx
1 θ

y
2 (1 − θ1 − θ2)

n−x−y

for x = 0, 1, 2, . . . , n, and y = 0, 1, 2, . . . , n, with x + y F n, find the regression equa-
tion of Y on X.

Solution
The marginal distribution of X is given by

g(x) =
n−x∑

y=0

(
n

x, y, n − x − y

)

· θx
1 θ

y
2 (1 − θ1 − θ2)

n−x−y

=
(

n
x

)

θx
1 (1 − θ1)

n−x

for x = 0, 1, 2, . . . , n, which we recognize as a binomial distribution with the parame-
ters n and θ1. Hence,

w(y|x) = f (x, y)

g(x)
=

(
n − x

y

)

θ
y
2 (1 − θ1 − θ2)

n−x−y

(1 − θ1)n−x

for y = 0, 1, 2, . . . , n − x, and, rewriting this formula as

w(y|x) =
(

n − x
y

)(
θ2

1 − θ1

)y (1 − θ1 − θ2

1 − θ1

)n−x−y

���
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Example. If X and Y have the multinomial distribution

f(x, y) =

(
n

x, y, n− x− y

)
· θx1θ

y
2 (1− θ1 − θ2)n−x−y

for x, y = 0,1, . . . , n with x+ y ≤ n, find the regression equation of Y on X.

Solution. The marginal pmf of X is given by

g(x) =
n−x∑
y=0

(
n

x, y, n− x− y

)
· θx1θ

y
2 (1− θ1 − θ2)n−x−y

=

(
n
x

)
θx1

n−x∑
y=0

(n− x
y

)
θ
y
2(1− θ1 − θ2)n−x−y

=

(
n
x

)
θx1 (1− θ1)n−x

for x = 0,1, . . . , n, which means that X follows Binomial (n, θ1) distribution.
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Solution (cont). Therefore we obtain the condition pmf of Y given X = x:

w(y | x) =
f(x, y)

g(x)
=

(
n− x
y

)
θ
y
2 (1− θ1 − θ2)n−x−y

(1− θ1)n−x

=

(
n− x
y

)(
θ2

1− θ1

)y (1− θ1 − θ2

1− θ1

)n−x−y
for y = 0,1, . . . , n− x.

Therefore we know (Y |X = x) ∼Binomial(n − x, θ2
1−θ1

), and hence the re-
gression equation of Y on X is

µY |x = E[Y |X = x] = (n− x) ·
θ2

1− θ1
=

(n− x)θ2

1− θ1
.
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Example. If the joint density of X1, X2, X3 is given by

f (x1, x2, x3) =

{
(x1 + x2) e−x3 for 0 < x1 < 1,0 < x2 < 1, x3 > 0
0 elsewhere

Find the regression equation of X2 on X1 and X3.

Solution. The joint density of X1 and X3 is given by

m (x1, x3) =


(
x1 + 1

2

)
e−x3 for 0 < x1 < 1, x3 > 0

0 elsewhere

Therefore

µX2|x1,x3
=
∫ ∞
−∞

x2 ·
f (x1, x2, x3)

m (x1, x3)
dx2 =

∫ 1

0

x2 (x1 + x2)(
x1 + 1

2

) dx2

=
x1 + 2

3

2x1 + 1
.
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An important class of regression equations is linear (affine) in x:

µY |x = α+ βx

for some constants α and β, which are called regression coefficients.

Remarks. Linear regression equations are important because:

• They lend themselves readily to further mathematical treatment;

• They often provide good approximations to otherwise complicated regres-
sion equations;

• In the case of the bivariate normal distribution, the regression equations
are, in fact, linear.
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Theorem. If the regression of Y on X is linear, then

µY |x = µ2 + ρ
σ2

σ1
(x− µ1)

where

E[X] = µ1, E[Y ] = µ2, var[X] = σ2
1, var[Y ] = σ2

2.

and

cov(X,Y ) = σ12, ρ =
σ12

σ1σ2
.

Proof. Since µY |x = µ2 + ρσ2
σ1

(x− µ1) for some α, β, it follows that∫
y · w(y|x)dy = α+ βx (∗)
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Proof (cont). Multiplying both sides of (∗) by g(x) and integrating on x yield

µ2 =
∫∫

y ·w(y | x)g(x)dydx = α
∫
g(x)dx+ β

∫
x · g(x)dx = α+ βµ1.

Multiplying both sides of (∗) by x · g(x) and integrating on x yield

E[XY ] =
∫∫

xy · w(y | x)g(x)dydx

= α
∫
x · g(x)dx+ β

∫
x2 · g(x)dx

= αµ1 + β E[X2].

Recall that

E[XY ] = σ12 + µ1µ2, E[X2] = σ2
1 + µ2

1.

Then solving the equations above for α and β yields

α = µ2 −
σ12

σ2
1
· µ1 = µ2 − ρ

σ2

σ1
· µ1

β =
σ12

σ2
1

= ρ
σ2

σ1
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We have discussed the problem of regression only in connection with random
variables having known joint distributions.

In practice, there are many problems where a set of paired data gives the indi-
cation that the regression is linear, where we do not know the joint distribution
but want to estimate the regression coefficients α and β.

A typical method is called the method of least squares.
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Consider the following data on the number of hours that 10 persons studied
for a French test and their scores on the test:

Hours studied Test score
x y

4 31
9 58

10 65
14 73

4 37
7 44

12 60
22 91

1 21
17 84
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From the plot of the data below, we get the impression that a straight line
provides a reasonably good fit:

Regression and Correlation

coefficients α and β. Problems of this kind are usually handled by the method of
least squares, a method of curve fitting suggested early in the nineteenth century by
the French mathematician Adrien Legendre.

To illustrate this technique, let us consider the following data on the number of
hours that 10 persons studied for a French test and their scores on the test:

Hours studied Test score
x y

4 31
9 58

10 65
14 73

4 37
7 44

12 60
22 91

1 21
17 84

Plotting these data as in Figure 2, we get the impression that a straight line pro-
vides a reasonably good fit. Although the points do not all fall exactly on a straight
line, the overall pattern suggests that the average test score for a given number of
hours studied may well be related to the number of hours studied by means of an
equation of the form µY|x = α+βx.
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Figure 2. Data on hours studied and test scores.
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Although the points do not all fall exactly on a straight line, the overall pattern
suggests that the average test score for a given number of hours studied may
well be related to the number of hours studied in a linear pattern.
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Suppose we are given a set of paired data

{(xi, yi) : i = 1, . . . , n}.

Then the least squares estimates of the regression coefficients (α̂, β̂) in
bivariate linear regression are the minimizer of

q(α, β) =
n∑
i=1

(
yi − (α+ βxi)

)2
.

In other words,

(α̂, β̂) = arg min
α,β

q(α, β).
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Notice that q(α, β) is the sum of squared errors, i.e.,
∑n
i=1 e

2
i where ei is the

discrepancy between yi and α+ βxi:

Regression and Correlation

Once we have decided in a given problem that the regression is approximately
linear and the joint density of x and y is unknown, we face the problem of estimating
the coefficients α and β from the sample data. In other words, we face the problem
of obtaining estimates α̂ and β̂ such that the estimated regression line ŷ = α̂+ β̂x in
some sense provides the best possible fit to the given data.

Denoting the vertical deviation from a point to the estimated regression line by
ei, as indicated in Figure 3, the least squares criterion on which we shall base this
“goodness of fit” is defined as follows:

DEFINITION 2. LEAST SQUARES ESTIMATE. If we are given a set of paired data

{(xi, yi); i = 1, 2, . . . , n}

The least squares estimates of the regression coefficients in bivariate linear regres-
sion are those that make the quantity

q =
n∑

i=1

e2
i =

n∑

i=1

[yi − (α̂+ β̂xi)]2

a minimum with respect to !̂ and "̂.
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Figure 3. Least squares criterion.
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So the least squares estimates (α̂, β̂) are the interception and slope combi-
nation that yield smallest sum of squared errors.
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To find the minimizer (α̂, β̂) of q(α, β), we take partial derivatives of q with
respect to α and β, setting them to 0, and solving for α and β:

∂q

∂α̂
=

n∑
i=1

(−2)
[
yi −

(
α̂+ β̂xi

)]
= 0

∂q

∂β̂
=

n∑
i=1

(−2)xi

[
yi −

(
α̂+ β̂xi

)]
= 0

These two equations can be written as a system of normal equations of
(α̂, β̂):

n∑
i=1

yi = α̂n+ β̂ ·
n∑
i=1

xi

n∑
i=1

xiyi = α̂ ·
n∑
i=1

xi + β̂ ·
n∑
i=1

x2
i
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Notice that the system above is a system of linear equations of (α̂, β̂). Solving
this system yields the solution

α̂ =

∑n
i=1 yi − β̂ ·

∑n
i=1 xi

n

β̂ =
n
(∑n

i=1 xiyi
)
−
(∑n

i=1 xi
) (∑n

i=1 yi
)

n
(∑n

i=1 x
2
i

)
−
(∑n

i=1 xi
)2
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It is customary to use the following notations:

Sxx =
n∑
i=1

(xi − x̄)2 =
n∑
i=1

x2
i −

1

n

 n∑
i=1

xi

2

Syy =
n∑
i=1

(yi − ȳ)2 =
n∑
i=1

y2
i −

1

n

 n∑
i=1

yi

2

Sxy =
n∑
i=1

(xi − x̄) (yi − ȳ) =
n∑
i=1

xiyi −
1

n

 n∑
i=1

xi

 n∑
i=1

yi


Then we can simplify the expressions of α̂ and β̂ as

α̂ = ȳ − β̂ · x̄, β̂ =
Sxy

Sxx
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Example. Consider the data in the following table.
(a) find the equation of the least squares line that approximates the regression
of the test scores on the number of hours studied;
(b) predict the average test score of a person who studied 14 hours for test.

Hours studied Test score
x y

4 31
9 58

10 65
14 73

4 37
7 44

12 60
22 91

1 21
17 84

Xiaojing Ye, Math & Stat, Georgia State University 18



Solution. (a) We have n = 10 and compute
n∑
i=1

xi = 100,
n∑
i=1

x2
i = 1,376,

n∑
i=1

yi = 564,
n∑
i=1

xiyi = 6,945.

From these we obtain

Sxx = 1,376−
1

10
(100)2 = 376, Sxy = 6,945−

1

10
(100)(564) = 1,305

Therefore

β̂ =
1,305

376
= 3.471, α̂ =

564

10
− 3.471 ·

100

10
= 21.69.

So the equation of the least squares line is ŷ = 21.69 + 3.471x.

(b) Substituting x = 14 into the equation obtained in part (a), we get

ŷ = 21.69 + 3.471 · 14 = 70.284 ≈ 70.
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Given a set of paired data {xi, yi) : i = 1, . . . , n}, there are two ways to
interpret the data:

• Regression analysis: we analyze by treating xi’s as constants and yi’s
as values of corresponding independent random variables Yi.

• Correlation analysis: we look upon the (xi, yi) as values of the indepen-
dent random vectors (Xi, Yi).
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We first consider regression analysis, in particular, normal regression anal-
ysis, where the conditional density of Yi is given by:

w
(
yi | xi

)
=

1

σ
√

2π
· e
−1

2

[
yi−(α+βxi)

σ

]2

−∞ < yi <∞

and α, β, and σ are the same for each i.

We will be interested in the following questions:

• Point and interval estimations α̂, β̂, σ̂ of α, β, and σ.

• Hypothesis testings involving α̂, β̂, σ̂.

• Prediction using ŷ = α̂+ β̂x for new x.
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Suppose we use maximum likelihood estimates of α, β, and σ, then we first
form the log-likelihood function:

`(α, β, σ) = ln
n∏
i=1

w(yi|xi) = −n lnσ−
n

2
ln 2π−

1

2σ2

n∑
i=1

[
yi − (α+ βxi)

σ

]2

Taking partial derivatives of ` with respect to α, β, σ and setting them to 0:

∂`

∂α
=

1

σ2
·
n∑
i=1

[
yi − (α+ βxi)

]
= 0

∂`

∂β
=

1

σ2
·
n∑
i=1

xi
[
yi − (α+ βxi)

]
= 0

∂`

∂σ
= −

n

σ
+

1

σ3
·
n∑
i=1

[
yi − (α+ βxi)

]2 = 0

Solving for α, β, σ yields α̂ = ȳ − β̂ · x̄ and β̂ =
Sxy
Sxx

as before, and

σ̂ =

√√√√1

n
·
n∑
i=1

[
yi − (α+ βxi)

]2 =

√
1

n
(Syy − β̂ · Sxy)
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Let Â, B̂, Σ̂ denote the corresponding maximum likelihood estimators ob-
tained above. Then

B̂ =
SxY
Sxx

=

∑n
i=1 (xi − x̄)

(
Yi − Ȳ

)
Sxx

=
n∑
i=1

(
xi − x̄
Sxx

)
Yi

which is a linear combination of Yi’s. Therefore B̂ also follows normal distribu-
tion, and

E[B̂] =
n∑
i=1

[
xi − x̄
Sxx

]
· E

(
Yi | xi

)
=

n∑
i=1

[
xi − x̄
Sxx

]
(α+ βxi) = β

and

var[B̂] =
n∑
i=1

[
xi − x̄
Sxx

]2

· var
(
Yi | xi

)
=

n∑
i=1

[
xi − x̄
Sxx

]2

· σ2 =
σ2

Sxx
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Theorem. For normal population,

B̂ ∼ N(β,
σ2

Sxx
) and

nΣ̂2

σ2
∼ χ2

n−2,

and they are independent.

The theorem above implies that

T =

B̂−β
σ/
√
Sxx√

nΣ̂2

σ2 /(n− 2)
=
B̂ − β

Σ̂

√
(n− 2)Sxx

n
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Example. With reference to the data in the table in Section 3 pertaining to the
amount of time that 10 persons studied for a certain test and the scores that
they obtained, test the null hypothesis β = 3 against the alternative hypothe-
sis β > 3 at the 0.01 level of significance.

Solution. We proceed with the four steps:

• Step 1. Set up the test

H0 : β = 3 vs H1 : β > 3

with level of significance α = 0.01.

• Step 2. Decide to use test statistic T = B̂−β
Σ̂

√
(n−2)Sxx

n and reject if

t =
β̂ − β
σ̂

√
(n− 2)Sxx

n
> tα,n−1 = t0.01,8 = 2.896.
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• Step 3. Based on the data table, we obtain
n∑
i=1

y2
i = 36,562,

Syy = 36,562−
5642

10
= 4,752.4

σ̂ =

√
1

10
(4,752.4− 3.471 · 1,305) = 4.720

t =
3.471− 3

4.720

√
8 · 376

10
= 1.73.

• Step 4. Since t = 1.73 < 2.896, we cannot reject H0.
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The derivations above also implies the interval estimation of β: we know

P

−tα/2,n−2 <
B̂− β

Σ̂

√
(n− 2)Sxx

n
< tα/2,n−2

 = 1− α

which implies that

β̂ − tα/2,n−2 · σ̂
√

n

(n− 2)Sxx
< β < β̂ + tα/2,n−2 · σ̂

√
n

(n− 2)Sxx

is a (1− α)·100% confidence interval for β.
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Example. With reference to the data in the table in Section 3 pertaining to the
amount of time that 10 persons studied for a certain test and the scores that
they obtained, construct a 95% confidence interval for β.

Solution. We have α/2 = 0.025 and find that t0.025,8 = 2.306. Then the
95% confidence interval of β is

3.471−(2.306)(4.720)

√
10

8(376)
< β < 3.471+(2.306)(4.720)

√
10

8(376)

which is

2.84 < β < 4.10.
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Now we consider correlation analysis for normal data pairs {(xi, yi) : i =

1, . . . , n}. Suppose they are samples from the bivariate normal distribution

N

(µ1, µ2),

(
σ2

1 ρσ1σ2
ρσ1σ2 σ2

2

)
To obtain maximum likelihood estimates of µ1, µ2, σ1, σ2, ρ, we first write the
likelihood function

L(µ1, µ2, σ1, σ2, ρ) =
n∏
i=1

f(xi, yi;µ1, µ2, σ1, σ2, ρ)

or the log-likelihood function

`(µ1, µ2, σ1, σ2, ρ) =
n∑
i=1

ln f(xi, yi;µ1, µ2, σ1, σ2, ρ),

where f(x, y;µ1, µ2, σ1, σ2, ρ) is the pdf of the bivariate normal distribution
above.
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To obtain maximum likelihood estimates, we take partial derivatives of ` with
respect to µ1, µ2, σ1, σ2, ρ, set to 0, and solve for µ1, µ2, σ1, σ2, ρ to obtain

µ̂1 = x̄,

µ̂2 = ȳ

σ̂1 =

√∑n
i=1 (xi − x̄)2

n

σ̂2 =

√∑n
i=1 (yi − ȳ)2

n

ρ̂ =

∑n
i=1 (xi − x̄) (yi − ȳ)√∑n

i=1 (xi − x̄)2
√∑n

i=1 (yi − ȳ)2
=

Sxy√
Sxx · Syy

The sample correlation coefficient ρ̂, as the maximum likelihood estimate of ρ,
is often denoted by r, and the corresponding maximum estimator is denoted
by R.
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Recall that for bivariate normal distribution, there is

σ2
Y |x = var[Y |X = x] = σ2

2(1− ρ2)

Notice that, if ρ = 1, then σ2
Y |x = 0 and there is a perfect linear relation

between X and Y (so one determines the other and vice versa).

Similarly, if ρ̂ = 1, then the data pairs {(xi, yi) : 1 ≤ i ≤ n} lie on a straight
line.
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Example. Suppose that we want to determine on the basis of the following
data whether there is a relationship between the time, in minutes, it takes a
secretary to complete a certain form in the morning and in the late afternoon:

Morning x Afternoon y

8.2 8.7
9.6 9.6
7.0 6.9
9.4 8.5

10.9 11.3
7.1 7.6
9.0 9.2
6.6 6.3
8.4 8.4

10.5 12.3

Compute and interpret the sample correlation coefficient.
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Solution. From the data we get n = 10,
∑n
i=1 x = 86.7,

∑n
i=1 x

2
i =

771.35,
∑n
i=1 yi = 88.8,

∑n
i=1 y

2
i = 819.34, and

∑n
i=1 xiyi = 792.92,

then

Sxx = 771.35−
1

10
(86.7)2 = 19.661

Syy = 819.34−
1

10
(88.8)2 = 30.796

Sxy = 792.92−
1

10
(86.7)(88.8) = 23.024

r =
23.024√

(19.661)(30.796)
= 0.936
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The scattergram of data and the fitted line is given by

Regression and Correlation

Solution
From the data we get n = 10, !x = 86.7, !x2 = 771.35, !y = 88.8, !y2 = 819.34,
and !xy = 792.92, so

Sxx = 771.35 − 1
10

(86.7)2 = 19.661

Syy = 819.34 − 1
10

(88.8)2 = 30.796

Sxy = 792.92 − 1
10

(86.7)(88.8) = 23.024

and

r = 23.024√
(19.661)(30.796)

= 0.936

This is indicative of a positive association between the time it takes a secretary to
perform the given task in the morning and in the late afternoon, and this is also
apparent from the scattergram of Figure 5. Since 100r2 = 100(0.936)2 = 87.6, we
can say that almost 88 percent of the variation of the y’s is accounted for by the
implicit linear relationship with x.
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Figure 5. Scattergram of data of Example 7.

Since the sampling distribution of R for random samples from bivariate normal
populations is rather complicated, it is common practice to base confidence intervals
for ρ and tests concerning ρ on the statistic

���
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The distribution of the maximum likelihood estimator R is complicated. How-
ever, there is approximately

1

2
· ln

1 +R

1−R
∈ N

(
1

2
·

1 + ρ

1− ρ
,

1

n− 3

)
.

Therefore, we know

z =
1
2 · ln

1+r
1−r −

1
2 · ln

1+ρ
1−ρ

1√
n−3

=

√
n− 3

2
· ln

(1 + r)(1− ρ)

(1− r)(1 + ρ)

is approximatelyN(0,1). We conduct hypothesis test or construct confidence
interval based on this approximation.
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Example. Suppose that we want to determine on the basis of the following
data whether there is a relationship between the time, in minutes, it takes a
secretary to complete a certain form in the morning and in the late afternoon:

Morning x Afternoon y

8.2 8.7
9.6 9.6
7.0 6.9
9.4 8.5

10.9 11.3
7.1 7.6
9.0 9.2
6.6 6.3
8.4 8.4

10.5 12.3

Test the null hypothesis ρ = 0 against the alternative hypothesis ρ 6= 0 at the
0.01 level of significance.
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Solution. We proceed with the four steps:

• Step 1. Set up the test

H0 : ρ = 0 vs H1 : ρ 6= 0

with level of significance α = 0.01.

• Step 2. Decide to use test statistic Z =
√
n−3
2 · ln 1+R

1−R and reject if

|z| =
∣∣∣√n− 3

2
· ln

1 + r

1− r

∣∣∣ > zα/2 = z0.005 = 2.575.

• Step 3. Based on the data table, we obtain r = 0.936 and thus

z =

√
10

2
· ln

1 + 0.936

1− 0.936
= 4.5

• Step 4. Since z = 4.5 > 2.575, we reject H0.
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We can extend the bivariate linear regression to multiple linear regression:

µY |x1,...,xk
= β0 + β1x1 + · · ·+ βkxk

In this case, given data {(xi1, . . . , xik, yi : i = 1, . . . , n}, we consider least
squares estimates β̂0, . . . , β̂k to minimize the sum of squared errors:

q(β0, . . . , βk) =
n∑
i=1

(
yi − (β0 + β1x1 + · · ·+ βkxk)

)2
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To obtain the minimizer, we take partial derivatives of q with respect to βj for
j = 0,1, . . . , k, set to 0:

∂q

∂β̂0
=

n∑
i=1

(−2)
[
yi −

(
β̂0 + β̂1xi1 + β̂2xi2 + · · ·+ β̂kxik

)]
= 0

∂q

∂β̂1
=

n∑
i=1

(−2)xi1

[
yi −

(
β̂0 + β̂1xi1 + β̂2xi2 + · · ·+ β̂kxik

)]
= 0

∂q

∂β̂2
=

n∑
i=1

(−2)xi2

[
yi −

(
β̂0 + β̂1xi1 + β̂2xi2 + · · ·+ β̂kxik

)]
= 0

. . .

∂q

∂β̂k
=

n∑
i=1

(−2)xik

[
yi −

(
β̂0 + β̂1xi1 + β̂2xi2 + · · ·+ β̂kxik

)]
= 0
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This yields the system of k+1 normal equations of the least squares estimates
β̂0, β̂1, · · · , β̂k:

n∑
i=1

y = β̂0 · n+ β̂1 ·
n∑
i=1

x1 + β̂2 ·
n∑
i=1

x2 + · · ·+ β̂k ·
n∑
i=1

xk

n∑
i=1

x1y = β̂0 ·
n∑
i=1

x1 + β̂1 ·
n∑
i=1

x2
1 + β̂2 ·

n∑
i=1

x1x2 + · · ·+ β̂k ·
n∑
i=1

x1xk

n∑
i=1

x2y = β̂0 ·
n∑
i=1

x2 + β̂1 ·
n∑
i=1

x2x1 + β̂2 ·
n∑
i=1

x2
2 + · · ·+ β̂k ·

n∑
i=1

x2xk

· · ·
n∑
i=1

xky = β̂0 ·
n∑
i=1

xk + β̂1 ·
n∑
i=1

xkx1 + β̂2 ·
n∑
i=1

xkx2 + · · ·+ β̂k ·
n∑
i=1

x2
k

Solving this system yields the least squares estimates β̂0, β̂1, · · · , β̂k.
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Example. The following data show the number of bedrooms, the number of
baths, and the prices at which a random sample of eight one-family houses
sold in a certain large housing development:

Number of Number of Price
bedrooms baths (dollars)

x1 x2 y

3 2 292,000
2 1 264,600
4 3 317,500
2 1 265,500
3 2 302,000
2 2 275,500
5 3 333,000
4 2 307,500

Use the method of least squares to fit a linear equation of sale price on the
numbers of bedrooms and baths. Predict the price of a three-bedroom with
two baths house.
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Solution. We compute that
n∑
i=1

xi1yi = 7,558,200,
n∑
i=1

xi2yi = 4,835,600

and n = 8,
∑n
i=1 xi1 = 25,

∑n
i=1 xi2 = 16,

n∑
i=1

yi = 2,357,600,
n∑
i=1

x2
i1 = 87,

n∑
i=1

xi1xi2 = 55,
n∑
i=1

x2
i2 = 36

Then we obtain the normal equations:

2,357,600 = 8β̂0 + 25β̂1 + 16β̂2

7,558,200 = 25β̂0 + 87β̂1 + 55β̂2

4,835,600 = 16β̂0 + 55β̂1 + 36β̂2

solving which yields:

β̂1 = 224,929, β̂2 = 15,314, β̂3 = 10,957.

Therefore the linear regression equation is ŷ = 224,929 + 15,314x1 +

10,957x2. For x1 = 3 and x2 = 2, we obtain ŷ = 292,785.
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Multiple linear regression computation can be written in matrix notations. Let
us denote

X =


1 x11 x12 · · · x1k
1 x21 x22 · · · x2k
· · · · · · · · · · · ·
1 xn1 xn2 · · · xnk

 , Y =


y1
y2...
yn

 , B =


y1
y2...
yn

 .
Then the least squares estimate of B is given by

B = (X′X)−1X′Y

where X′ is the transpose of X.

To see this, we notice that q(B) = ‖Y −XB‖2. Set its gradient ∇q(B) to 0,
that is

∇q(B) = −2X′(Y −XB) = 0

which reduces to the normal equation of B. Solving for B yields the estimate
B = (X′X)−1X′Y.
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Example. The following data show the number of bedrooms, the number of
baths, and the prices at which a random sample of eight one-family houses
sold in a certain large housing development:

Number of Number of Price
bedrooms baths (dollars)

x1 x2 y

3 2 292,000
2 1 264,600
4 3 317,500
2 1 265,500
3 2 302,000
2 2 275,500
5 3 333,000
4 2 307,500

Determine the least squares estimates of the multiple regression coefficients
using the matrix notations.
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Solution. Following the matrix notation, we can compute

X′X =

 8 25 16
25 87 55
16 55 36


Hence we can compute its inverse:

(
X′X

)−1
=

1

84
·

 107 −20 −17
−20 32 −40
−17 −40 71


Moreover, we have

X′Y =

2,357,600
7,558,200
4,835,600
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Solution (cont). Finally, we have

B̂ =
(
X′X

)−1
X′Y

=
1

84
·

 07 −20 −17
−20 32 −40
−17 −40 71


 2,357,600

7,558,200
4,835,600


=

1

84
·

 18,894,000
1,286,400

920,400


=

 224,929
15,314
10,957
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Recall that the maximum likelihood estimate of the standard deviation is given
by

σ̂ =

√√√√1

n
·
n∑
i=1

[yi − (β̂0 + β̂1xi1 + · · ·+ β̂kxik]2

This maximum likelihood estimator can also be written in matrix notation:

σ̂ =

√
Y′Y −B′X′Y

n
.
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Example. The following data show the number of bedrooms, the number of
baths, and the prices at which a random sample of eight one-family houses
sold in a certain large housing development:

Number of Number of Price
bedrooms baths (dollars)

x1 x2 y

3 2 292,000
2 1 264,600
4 3 317,500
2 1 265,500
3 2 302,000
2 2 275,500
5 3 333,000
4 2 307,500

Use this data to determine the value of σ̂.
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Solution. We first compute that

Y′Y = (292,000)2 + (264,600)2 + . . .+ (307,500)2

= 699,123,160,0001

Then we can compute

B′X′Y =
1

84
· (18,894,000 286,400 920,400)

 637,000
7,558,200
4,835,600


= 699,024,394,285

Using the formula of σ̂ =
√

Y′Y−B′X′Y
n , we obtain

σ̂ =

√
699,123,160,000− 699,024,394,285

8
= 3,514
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Remark. Note that the maximum likelihood estimator corresponding to σ̂ is
not unbiased. The unbiased estimator of σ2 is given by

S2
e =

Y′Y −B′X′Y

n− k − 1

Therefore, we would get

se =

√
699,123,160,000− 699,024,394,285

8− 2− 1
= 4,444

for this estimator, which is different from σ̂ = 3,514 above.
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Theorem. For multivariate normal distributions, there are

B̂i ∼ N
(
βi, ciiσ

2
)
, and

nΣ̂2

σ2
∼ χ2

n−k−1

where cij is the (i, j)th entry of (X′X)−1. Moreover, B̂i and nΣ̂2

σ2 are inde-
pendent.

The theorem above provides a means for hypothesis testing and interval esti-
mation involving β̂i’s. Specifically,

T =
B̂i − βi

Σ̂ ·
√

n|cii|
n−k−1

∼ tn−k−1

for i = 0,1, . . . , k.
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Example. The following data show the number of bedrooms, the number of
baths, and the prices at which a random sample of eight one-family houses
sold in a certain large housing development:

Number of Number of Price
bedrooms baths (dollars)

x1 x2 y

3 2 292,000
2 1 264,600
4 3 317,500
2 1 265,500
3 2 302,000
2 2 275,500
5 3 333,000
4 2 307,500

Test the null hypothesis β1 = 9,500 against the alter- native hypothesis β1 >

9,500 at the 0.05 level of significance.
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Solution. We proceed with the four steps:

• Step 1. Set up the test

H0 : β1 = 9,500 vs H1 : β1 > 9,500.

with level of significance α = 0.05.

• Step 2. Decide to use test statistic T = B̂1−βi

Σ̂·
√

n|c11|
n−k−1

and reject if

t =
β̂1 − βi

σ̂ ·
√

n|c11|
n−k−1

> tα,n−k−1 = t0.05,5.
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• Step 3. Based on the data table, we obtain n = 8, k = 2, β̂1 = 15,314,
c11 = 32

84, and σ̂ = 3,546 and thus

t =
15,314− 9,500

3,514

√
8·
∣∣∣32
84

∣∣∣
5

=
5,814

2,743
= 2.12

• Step 4. Since t = 2.12 > 2.015, we reject H0.
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