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Point estimation is to use the value of a sample statistic to estimate the value
of a population parameter.

This sample statistic is called a point estimator and its value is called a point
estimate.

Example. Let X1,..., X, be a random sample of Bernoulli(p), and we use
the sample mean X to estimate p. Then X is called a point estimator, and z
IS called a point estimate.

Note that a point estimator is a statistic (hence a random variable), thus it has
probability distribution. We want to design “good estimators” that have highest
accuracy, lowest risk, etc.
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Unbiased estimator

Definition. Let f(-; 6) be a distribution with parameter 6. Then a statistic ©
is called an unbiased estimator of 9 if E[©] = ¢ for all possible values of 6.

Example. Let X1,..., X, be a random sample of Bernoulli(p). Show that X
IS an unbiased estimator of p.

Solution. We notice that

1 1
E[X] = > E[X]] = -np=p.
1=1
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Example. Let X4,..., X, ~ f(-;0) be a random sample where

e_(x_‘g), ifx >0
0, elsewhere.

f(x,0) ={

Show that X is a biased estimator of 6.

Solution. We notice that

E[X] = /900 e D g =140+£0.

Hence X is a biased estimator of 6.
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Definition. Suppose © is a point estimator of the parameter 8 of f(-; §) based
on a random sample of size n, then

bn(©) = E[O] — 0
is called the bias of . If
lim b,(©) =0,

then we call © an asymptotically unbiased estimator of 6.
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Example. Let Xq,..., X, ~ Uniform(0, 8) be a random sample where 3 is a
parameter. Show that Y, (the n-th order statistic) is a biased estimator but an
asymptotically unbiased estimator of £.

Solution. Notice that the pdf f of Uniform(0, 3) is

1 .
= fO0<xz<§p,
flz; 8) =<7
O, elsewhere.
Hence the order statistic Y;, has pdf:
. Yn n—1 1 /yn\n—1 . nyn—l
gn(yn)—n-f(yn)-(/_Oof(fv)dfﬂ) —”‘g'(g) = Bnn
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Solution (cont). Therefore

n
n-—+1

Hence Y5, is a biased estimator of 8. (This result also shows that “11Y, is an
unbiased estimator of j3.)

B B
E[Yn] = /O Yngn(yn) dyn = %/O yZZ: dyn = B #B.

We further obtain

n _ I} .
n+15_5_ n—+1 0

as n — oo. Hence Y, is an asymptotically unbiased estimator of 5.

bn(Yn) = E[Yy] — 8 =
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Remark.

e There may exist more than one unbiased estimator of §. For example, 2.X
and "1y, are both unbiased estimators of 3 in Uniform(0,83).

e Even if © is an unbiased estimator of 8, w(©) may not be an unbiased
estimator of w(6) in general. For example, S2 is an unbiased estimator of
o2, but S may not be an unbiased estimator of o.
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Efficiency

Definition. We call © a minimum variance unbiased estimator (MVUE) of
g if © has the smallest variance among all unbiased estimators.

Cramér-Rao inequality. If © is an unbiased estimator of 6 of f(-;0) for a
random sample of size n, then

1
nl(0)’
where 1(0) is the Fisher information defined by

Y X:0 co | x; 0
I(Q)ZEXNf(.;Q) [( nf8(9 ))2] /OO( nJ(;(G :

var[©] >

— )Qf(x;e)dx.
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Cramér-Rao inequality immediately implies the following result:

Theorem. If © is an unbiased estimator of § and
1

var[©] = n1(0)

then & is an MVUE of 6.
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Example. Let X1, ..., X, be a random sample of N(u, c2) where 1 is to be

estimated. Then X is an MVUE of p.

_ (z—pw)?
202 . Hence

Solution. Note that f(z; u) = \/21_7“76
N 2 1 2

Therefore

1) = Expn [(F 07 = Z4BICX =02 = .

On the other hand, we have
o2 1

var[X] = —= W)’

Therefore X is an MVUE of ..

Remark. X may not be an MVUE of u for other distributions.

Xiaojing Ye, Math & Stat, Georgia State University 10



Definition. The efficiency of an unbiased estimator © of § based on a ran-
dom sample of size n is defined by

1
nl(6) var[O]
Obviously e(©) < 1 due to the Cramér-Rao inequality.

e(©) =

Suppose ©7 and ©, are two unbiased estimators of § based on a random
sample of size n, then

e(©2) _ var[©]

e(©1) var[©5]
is called the efficiency of ©- relative to ©;.
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Example. Let X4,..., X, ~ Uniform(0, 8) be a random sample where 3 is
a parameter. Show that both 2X and “*1YV;, are unbiased estimators of 3.
Compare their efficiency.

Solution. We have

E[X] = E[X;] = g.

Hence E[2X] = 5 which implies that 2X is an unbiased estimator of 3.

We have showed that E[Y;,] = nnﬁ - 3. Hence ”THYn is also an unbiased
estimator of 3.
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Solution (cont). To compare their efficiency, we first notice that

2 2
var[2X] = avar[X] = Svarx;] = *. 2= = 2~
n n

12  3n’

On the other hand, we have

Therefore

Thus we have

var [nj; 1Yn] = (n;l; 1>2var[Yn] = B

Hence the efficiency ratio of 2X against "1y, is

S 1 B2
e(2X) _var Y _nnf2) _ 3
e(nnlyn) var[2.X] g_i n+2
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Definition. Let © be a point estimator (not necessarily unbiased) of . Then
the mean square error (MSE) of © is defined as

MSE(®) = E[(& — 6)?].

Notice that there is

MSE(®) = E[(© — 6)?]
= E[(© — E[O] + E[O] — 0)]
= E[(© - E[O])?] + (E[O] — )7
= var[B] + b, (O)?

That is, MSE(®) is the sum of the variance of © and the square of its bias.
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Example. Compare the MSE of 52 and %1 52 for a normal population N (p1, 2).
Solution. First notice that E[S?] = o2 which means S2 is unbiased. We
2
recall that {"=1)5% . 42 Hence
o

(n—1)2
4

S (n—1)

- var[S?] = var [(n _05)52] n—1

This implies that MSE(S2) = var[S?] = 27

N
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Solution (cont). On the other hand, we have E["%-152] = =152 which

implies that the bias is —%2. Furthermore,

—1 —1)2 2(n — 1)o*
var [n 32] _(n - ) var[S5?] = (n 5 )7~
mn mn n
Therefore we have
n—1_» _2(n—1)04 022_(2n—1)04
MSE( n S)_ n2 +(_Z) - n2 '
Now we have that
4
MSE(S2) 227 212

— = 1
MSE(%SQ) (2n—21)04 2n2 —3n+ 1 ”

n

Therefore ”7_132 has smaller MSE than the unbiased estimator S2 does.
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Consistency

Definition. We call © a consisent estimator of § based on a random sample
of size n if for any ¢ > 0, there is

lim P(|© — 6| >c¢) =0.

n—o0
The following theorem provides a sufficient condition of consistency.

Theorem. If © is an unbiased estimator of # and var[©] — 0 as n — oo,
then © is a consistent estimator of 6.

Proof. By Chebyshev’s inequality, we have

var[©]

— 0
2

P(1© -0 >¢) <
as n — oo. This implies that © is consistent.
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Example. Suppose S? is the sample variance of the random sample from a
normal population N (u, c2), then S2 is a consistent estimator of o2.

Proof. We have E[S?] = ¢2 and var[S?] = na—_41 — 0 asn — oo. By the
previous theorem, we know S2 is consistent.

Remark. It is not difficult to show that we can replace the requirement “unbi-
ased” with “asymptotically unbiased” in the previous theorem since

P(|® — 60| >¢c) <P(© —E[®]| + |E[©] — 6] >¢c) = O

since |E[©] — 0] — 0 as n — oo.
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The previous theorem only provides a sufficient condition on consistency. The
following example shows that it is not a necessary condition.

Example. Suppose f is a pdf with mean p and variance 02 < oo. For any
n € N, let X1,..., X, be arandom sample from f, and Y;, ~ Bernoulli() be
independent of the random sample. Define ©,, = n?Y;,, + (1 — Y,») X, where
X, = %Zyzl X; is the sample mean. Show that ©,, is neither unbiased nor
asymptotically unbiased, but it is a consistent estimator of u.

Proof. Since Y}, is independent of X,,, we have that

n—1

E[©,] = n?E[Y,] + E[1 — Y,,]E[X,] = n + .

Therefore the bias is b(©y,) = E[©n]—p = n—£ % 0,and limp—00 b(On) =
oo # 0. Hence ©,, is not unbiased nor asymptotically unbiased.
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Proof (cont). For any ¢ > O, we have

P(|©n —pul>c) =P(|®n —p| >c| Y, =1)P(Y,=1)
+P(|@n—,u’ >C|Yn:O)P(Yn:O>
<P(Yn=1)4+P(6n—pu| >c|Y,=0)P(Y, =0)
§1+ 022.n—1_>0
n nc n
as n — oco. Therefore ©,, is a consistent estimator of ..
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Sufficiency

Definition. We call © a sufficient estimator of 9 if the conditional probability

of the random sample X1,..., X, given © = § is independent of 4, i.e.,
le,...,XnIC:)(‘Tl’ ..., xn|0) is independent of .
Remark. © being a sufficient estimator of 6 means that Xy,..., X, do not
contain more information than © alone in terms of estimating §. Moreover,
since X1, ..., X, completely determines ©, we know from the definition that
O is sufficient if
f ( 9 = o2 D)
A\ L1y L — PN
X1y, Xn|© n f@(@)
— le,...,Xn<m17 s 7$n)
fe(0)

Is independent of 6 (note that both numerator and denominator depend on 9,
so they need to be nicely canceled out using the relation between x1, ..., xn

and 0 for © to be sufficient).
Xiaojing Ye, Math & Stat, Georgia State University 21



Example. If X1,..., X, is a random sample of Bernoulli(p), then © = X is
a sufficient estimator of p.

Proof. We have

n
fla1, .. an) = [[ p%(1 - p)l~% = pli=1%i(1 — p)n~2i=1%i
i=1
On the other hand, we know n® = X; + --- + X,, ~ Binomial(n, p) and
hence the pmf of © is

g(OA) — (:é)pné(l . p)n—na

Since nf = > "', x;, we have

f(zy,. . mp) _ pRa=t®i(l—p)nmxi=i® 1
g(g) (gg)pné\(l _ p)n—n§ ( n )

i=1 Li

(notice that p is canceled out), which implies that © is a sufficient estimator.
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Example. Let X1, X5, X3 be a random sample of Bernoulli (), then & =
%(X1 + 2X5 4+ 3X3) is not a sufficient estimator of 6.

Solution. We just need to show that f(x;’(%’%) depends on 0 for certain value
of x1, x>, z3,0. For example, consider x; = x> =1, z3 = 0,and 0 = % we
have

£(1,1,0) =60-0-(1—0) =6%(1—9),
and
g(é) = f(1,1,0) + £(0,0,1) = 6%(1 — 6) + (1 — 0)0.

Therefore we have
f(1,1,0) 02(1 — 6) B
g(3) 21 -0+ (1 -6)20
which depends on 6.
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Theorem. © is a sufficient estimator of 9 if and only if the joint pmf/pdf of
X1,...,Xn can be factorized as

f(xla"'axn;e) :¢(é19) 'h(CE‘l,...,ZEn)

for some function A not involving 6.

Proof (informal). Necessity is obvious. To show sufficiency, suppose the “joint
pdf” of (X1, ..., X,) and © satisfies

f('rla e 7xn7§; 9) — f(xla T, Ty 9) — Qb(g, e)h(ajla s 75577/)7
then we obtain the marginal distribution of © as
9(0:0) = [ f(w1,+ 20, 0;0) dwy - dwn = CH(7; 0)
for some constant C' independent of 6. Therefore

f(x].?)xn)é\re)
9(9;6)

Is independent of 6.
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Example. Consider a normal population N (u, o2) for known 2. Show that
X is a sufficient estimator of .

Proof. Notice that
n n
S (@i — w2 = (z;—7)% +n(z —p)?
i=1 i=1
Hence we have

S ()2

f('fc].?)xn;,u’) — (27702)—n/26_ 202
YR @B G2
= £2W02)_n/2€ 202 ¢ 252
W(w1,rn) $(Z; 1)

Hence X is a sulfficient estimator of .
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Remark. If © is a sufficient estimator of , then Y = «(®) is also a sufficient
estimator of 9 for any one-to-one correspondence u. This is because that

=:¢(y;0)

where w is the inverse of w.
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Now we consider methods to construct point estimators. There are three typi-
cal methods:

e Method of moments
e Maximum likelihood estimation

e Bayesian estimation
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Method of moments

Definition. Let X be a random variable. Then the k-th moment of X is
defined by

up, =E[X*], fork=0,1,2,....

Remarks.

e Moments are functions of the distribution parameter 0, i.e.

pp = 113,(0).
In particular, for any X, there are uy = 1, py = p, pb = p? + o2 (if
mean and variance exist).

e The k-th central moment of X is defined as u; = E[(X — E[X])"].
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Definition. Let X4,..., X, be a random sample of size n from a distribution
f. Then the kth sample moment of X is defined by

. k

If we obtain values X; = «; for all ¢, then we also call the value of M;, the kth
sample moment:

1 n
- Z :c,’f
n 1=

1
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Suppose we want to estimate the parameters 64, ..., 6, of the distribution f,
then the method of moments is to solve a system of r equations:

w(01,...,0,) =m), fork=1,...r
for 61, ...,0,. This yields estimates
0, = 0.(xq,...,2n), fork=1,...,r.
The corresponding estimators obtained by the method of moments are:

©,=06,(X1,...,Xp), fork=1,...,r

Remark. We need the specific distribution type (e.g., exponential, normal
etc) to obtain the functions u}.(61,. .., 6r), unless the parameters we want to
estimate are the moments.
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Example. Given a random sample of size n from Uniform(«, 1), use the
method of moments to obtain an estimator of «.

Solution. We know that

a—+1
5

Equating the two and solving for o, we obtain estimate

/! - /I __ =
ﬂl—ﬂ— ml—az.

a=2x — 1.

Hence the method of moments yields the estimator for o as 2X — 1.
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Example. Given a random sample of size n from Gamma(«, 8), use the

method of moments to obtain estimators of o and 5.

Solution. We know that

pr=p=ap, ph=p"+0"=(af)’+aB’=ala+1)s%

Equating them to m/ and m/, respectively yields
/] =
mq — T,
1 2
solving which for estimates & and 3 yields

=2 . )2

S0 (w —7)2 - nz

The estimators can be obtained accordingly.

X®)
|

Q

a(a+1)p°
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Maximum likelihood estimation

Suppose Xq,..., Xy is a random sample from a distribution f(-;8) and we
obtain values of x1, ..., xy of this random sample. What is the value of 6 that
makes these values =1, ..., x, most probable?

Definition. For given values z1, ..., xn, we define the likelihood function

LO) = fx,.. x,(x1,-- . xn; 0) = [ f(x4;0).
i=1

The value 4 that maximizes L(0) is called a maximum likelihood estimate
(MLE) of 6.

Remark. It is equivalent to maximizing the log-likelihood function

£(0) :=InL(0) = Zn: In f(x;;0),
i=1

since In is a strictly increasing function.
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Example. Given x successes in n trials, find the MLE of 6 in the corresponding
Binomial(n, 0).

Solution. We first have the likelihood function
L(6) = f(;0) = (")6"(1—O)"
xr
The log-likelihood function is
() =n(")+zn0+ (n—x)In(1-0).
T

To find its maximizer, we first find the critical points such that ¢/(§) = O:

Xr
6/9 —_ — — =
() 6 1-—06

which yields a single solution § = Z (it is easy to check that it's a maximizer of

n
¢). Hence the MLE is § = —~, and the maximum likelihood estimator is O = %
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Example. Let X4, ..., X}, be a random sample from Exponential(f). Find the

MLE of 6.

Solution. Recall that the pdf of Exponential(9) is f (z; 6) = 5e™/%I,~ 0y (2).

Hence we have the likelihood function:

L(0) = H Flaii0) = T[ g /% = p7me Simanilt

1=1
The log-likelihood functlon IS

n :
£(6) = InL(6) = —nIn6 — 21291 i
Taking derivative of £ and equating it to O yield
n
'(6) = —= + z’b_ Y=,

solving which yields the MLE § = E=Tl — 7. Hence the maximum likeli-

hood estimatoris © = X.
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Sometimes we may need to check the boundary points if the likelihood function
IS not differentiable.

Example. Let X1,..., Xy, be a random sample of Uniform(0, 3). Find the
MLE of 5.

Solution. We know the likelihood function is

BT, it B> maxi<i<n T;
=1 0, elsewhere.

Note that this function is strictly decrease and does not have critical point for
B > maxi<;<n x;. However the maximum is attained at max; <;<, x;. Hence
B = maXj<;<n z; = yn and the maximum likelihood estimator is Y7, (the nth

order statistic).

L(8) = H Fa ) = 11 ﬁf{m}w —{
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We can also find MLE of multiple parameters simultaneously.

Example. Let X1,..., X, be a random sample of N(u, o2) where both 4
and o2 are unknown. Find the MLE of 1 and 2.

_(@—w)?
Solution. We know the pdf of N(u,02) is f(z; p,02) = @172@ 2072
o

Hence the likelihood function is

n __1 s )2
L(/% 0_2) — H f(ZBrL’;,LL, 0_2) — (27T0'2)_n/26 552 Zzzl(wz ) .
1=1
The log-likelihood function is

n n 1 2
o7 i=1

Xiaojing Ye, Math & Stat, Georgia State University 37



Solution (cont). To find the maximizer of £, we compute the partial derivatives
of ¢ with respect to 1 and o2:

2 1 &
aﬂg(uaa ) — ? Z(xz_u)a
1=1

n
252

1 n

80-26(/170-2) — + >4 Z (x?, - :UJ)Q
o =1

Equating them to 0 and solving for i and o2 jointly yield the MLE:

1 1
ﬁ:—Zng:f7 5‘2:—

n . .

(/

S -2 ="y (@ -2
1=1

=1

Remark. 5 = (+ Y7, (z; — 7)?)1/2 is the MLE of & because of the invari-
ance property of MLE (see next page).
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Theorem. MLE has invariance property: if © is an MLE of 6 and g is a con-
tinuous function (not necessarily one-to-one), then ¢g(®) is an MLE of g(0).

Proof. Let the values x1, ..., x, of the random sample be held fixed. We first
define the induced likelihood function L* of n = ¢g(0) as

L*(n) = max L(0).
{6:9(0)=n}
Suppose 7 is a maximizer of L*(n), then we have
L*(n) = max L*(n) (77 is @ maximizer)
= max max _L(6#) (Definition of L*)
T {0:9(0)=n}
= m@ax L(6) (Double max is max)
= L(0) (6 is MLE)
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Proof (cont). On the other hand, we have

L(0) = max _ L(6) (6 is MLE)
{0:9(6)=g(0)}
= L*(g(0)) (Definition of L*)

Combining the two equations above yields L*(g(8)) = L*(7) which is equal
to max, L*(n) since § is a maximizer of L*. Therefore g(0) is an MLE of

g(0).
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Bayesian estimation

Suppose we also treat the parameter 6 of f(x; 6) as a random variable ©
following a prior distribution p(6) based on our belief or previous experience.

We treat f(x|0) = f(x; 0) as the conditional probability of X given ©.

After the experiment is done and we obtain value X = x, we can update
the prior distribution to the posterior distribution ¢(x|8). By the Bayes rule,
there is

601) = "D o 0) 1 (al0)

Here 6 and X have a joint distribution, and p(8) and g(x) are their marginal
distributions. Note that g(x) does not involve 6.
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This idea can be easily extended to the case with arandom sample X4, ..., X!

_ p(O) Iy f(@ilo)
g(x1,...,Tn)

¢(0)z1, ... zn) < p(0) [ f(il0).
i=1

Then Bayesian estimation is to find 8 that maximizes this posterior distribution.
This method is also called maximum-a-posteriori (MAP).

Maximizing ¢(0|x1, ..., xn) is equivalent to maximizing

INp(Olz1,...,zn) =Inp(0) + > Inf(x|0) —Ing(xy,...,zn).

=1 y not involving 6
log-likelihood 4(0)

The prior p(0) serves as a “regularization” added to the likelihood function.
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Example. Let X follow Binomial(n, ) for unknown 6 € (0,1). Suppose the
prior distribution of 6 is Beta(«, ) for some given «, 8 > 0. Find the posterior
distribution and Bayesian estimate of 6.

Solution. The prior distribution of © is

_ Ha+5)
p(0) =
(o) +T(B)
The conditional distribution (or the likelihood function) is

fGaloy = ()" -0,

Hence the posterior distribution is

0>~ 1(1-0) L.

$(0]z) < p(0) f(x|0) = gfi;i%ig(Z)ew+a—l(1-e)n—w+ﬁ—1.

This means that © given X = z follows Beta(x + o, n — = 4 3) distribution.
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Solution (cont). To find the Bayesian estimate, we take logarithm of ¢(0|x):

ne(Olr) =(r+a—-—1)N0+(n—z+8—-1)In(L—-0)+C

where C'is a constant independent of 6.

Taking derivative of In ¢(0|x) with respect to 0, equating to O and solving for
0, we obtain the Bayesian estimate:

r+a—1

= Xati 1

Remark. When we have more data, i.e., large n and z, there is 0 ~ %
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Example. Suppose X1, ..., Xn is a random sample of N(u, c2) where o2

is known. Assume the prior distribution of 1 is N (uq, 08) for some known pg
and 08. Find the posterior distribution of ;1 and the Bayesian estimate.

Solution. We know the prior distribution is

1 _(M—MS)Q
p(p) = e °7
QWUO

The conditional distribution of X4,..., X, given © =0 is

__1_ s )2
f(iﬂl,..-,xn|,u) — (27T0'2)_n/26 552 i1 (x;—p) .
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Solution (cont). The posterior distribution is

_(M—M21)2
d(plze, .. wn) o< p(p) f(@1, ..., onlp) = i xe 71
completing squares
where
ni:a%—l—,uOJQ and 1_n+1
H1 nag + 52 0% o2 08'
This means that the posterior distribution of 1 given X1 = z1,..., Xy = xn,
IS N(:U'la O‘%)

Remark. When n — oo, we have 02 — 0 and 1 — 7.
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