MATH 4752/6752 - Mathematical Statistics II Point Estimation

Xiaojing Ye
Department of Mathematics \& Statistics
Georgia State University

Point estimation is to use the value of a sample statistic to estimate the value of a population parameter.

This sample statistic is called a point estimator and its value is called a point estimate.

Example. Let X_{1}, \ldots, X_{n} be a random sample of $\operatorname{Bernoulli}(p)$, and we use the sample mean \bar{X} to estimate p. Then \bar{X} is called a point estimator, and \bar{x} is called a point estimate.

Note that a point estimator is a statistic (hence a random variable), thus it has probability distribution. We want to design "good estimators" that have highest accuracy, lowest risk, etc.

Unbiased estimator

Definition. Let $f(\cdot ; \theta)$ be a distribution with parameter θ. Then a statistic $\hat{\Theta}$ is called an unbiased estimator of θ if $\mathbb{E}[\hat{\Theta}]=\theta$ for all possible values of θ.

Example. Let X_{1}, \ldots, X_{n} be a random sample of $\operatorname{Bernoulli}(p)$. Show that \bar{X} is an unbiased estimator of p.

Solution. We notice that

$$
\mathbb{E}[\bar{X}]=\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right]=\frac{1}{n} \cdot n p=p
$$

Example. Let $X_{1}, \ldots, X_{n} \sim f(\cdot ; \theta)$ be a random sample where

$$
f(x ; \theta)= \begin{cases}e^{-(x-\theta)}, & \text { if } x \geq \theta \\ 0, & \text { elsewhere }\end{cases}
$$

Show that \bar{X} is a biased estimator of θ.

Solution. We notice that

$$
\mathbb{E}[\bar{X}]=\int_{\theta}^{\infty} x e^{-(x-\theta)} d x=1+\theta \neq \theta
$$

Hence \bar{X} is a biased estimator of θ.

Definition. Suppose $\hat{\Theta}$ is a point estimator of the parameter θ of $f(\cdot ; \theta)$ based on a random sample of size n, then

$$
b_{n}(\hat{\Theta})=\mathbb{E}[\hat{\Theta}]-\theta
$$

is called the bias of $\hat{\Theta}$. If

$$
\lim _{n \rightarrow \infty} b_{n}(\hat{\Theta})=0,
$$

then we call $\hat{\Theta}$ an asymptotically unbiased estimator of θ.

Example. Let $X_{1}, \ldots, X_{n} \sim \operatorname{Uniform}(0, \beta)$ be a random sample where β is a parameter. Show that Y_{n} (the n-th order statistic) is a biased estimator but an asymptotically unbiased estimator of β.

Solution. Notice that the pdf f of $\operatorname{Uniform}(0, \beta)$ is

$$
f(x ; \beta)= \begin{cases}\frac{1}{\beta}, & \text { if } 0<x<\beta \\ 0, & \text { elsewhere }\end{cases}
$$

Hence the order statistic Y_{n} has pdf:

$$
g_{n}\left(y_{n}\right)=n \cdot f\left(y_{n}\right) \cdot\left(\int_{-\infty}^{y_{n}} f(x) d x\right)^{n-1}=n \cdot \frac{1}{\beta} \cdot\left(\frac{y_{n}}{\beta}\right)^{n-1}=\frac{n y_{n}^{n-1}}{\beta^{n}}
$$

Solution (cont). Therefore

$$
\mathbb{E}\left[Y_{n}\right]=\int_{0}^{\beta} y_{n} g_{n}\left(y_{n}\right) d y_{n}=\frac{n}{\beta^{n}} \int_{0}^{\beta} y_{n}^{n} d y_{n}=\frac{n}{n+1} \beta \neq \beta .
$$

Hence Y_{n} is a biased estimator of β. (This result also shows that $\frac{n+1}{n} Y_{n}$ is an unbiased estimator of β.)

We further obtain

$$
b_{n}\left(Y_{n}\right)=\mathbb{E}\left[Y_{n}\right]-\beta=\frac{n}{n+1} \beta-\beta=-\frac{\beta}{n+1} \rightarrow 0
$$

as $n \rightarrow \infty$. Hence Y_{n} is an asymptotically unbiased estimator of β.

Remark.

- There may exist more than one unbiased estimator of θ. For example, $2 \bar{X}$ and $\frac{n+1}{n} Y_{n}$ are both unbiased estimators of β in Uniform $(0, \beta)$.
- Even if $\hat{\Theta}$ is an unbiased estimator of $\theta, w(\hat{\Theta})$ may not be an unbiased estimator of $w(\theta)$ in general. For example, S^{2} is an unbiased estimator of σ^{2}, but S may not be an unbiased estimator of σ.

Efficiency

Definition. We call $\hat{\Theta}$ a minimum variance unbiased estimator (MVUE) of θ if $\hat{\Theta}$ has the smallest variance among all unbiased estimators.

Cramér-Rao inequality. If $\hat{\Theta}$ is an unbiased estimator of θ of $f(\cdot ; \theta)$ for a random sample of size n, then

$$
\operatorname{var}[\hat{\Theta}] \geq \frac{1}{n I(\theta)},
$$

where $I(\theta)$ is the Fisher information defined by

$$
I(\theta)=\mathbb{E}_{X \sim f(\cdot ; \theta)}\left[\left(\frac{\partial \ln f(X ; \theta)}{\partial \theta}\right)^{2}\right]=\int_{-\infty}^{\infty}\left(\frac{\partial \ln f(x ; \theta)}{\partial \theta}\right)^{2} f(x ; \theta) d x
$$

Cramér-Rao inequality immediately implies the following result:

Theorem. If $\hat{\Theta}$ is an unbiased estimator of θ and

$$
\operatorname{var}[\hat{\Theta}]=\frac{1}{n I(\theta)},
$$

then $\hat{\Theta}$ is an MVUE of θ.

Example. Let X_{1}, \ldots, X_{n} be a random sample of $N\left(\mu, \sigma^{2}\right)$ where μ is to be estimated. Then \bar{X} is an MVUE of μ.
Solution. Note that $f(x ; \mu)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}$. Hence

$$
\ln f(x ; \mu)=-\frac{1}{2} \ln \left(2 \pi \sigma^{2}\right)-\frac{1}{2 \sigma^{2}}(x-\mu)^{2} .
$$

Therefore

$$
I(\mu)=\mathbb{E}_{X \sim f(\cdot ; \mu)}\left[\left(\frac{\partial \ln f(X ; \mu)}{\partial \mu}\right)^{2}\right]=\frac{1}{\sigma^{4}} \mathbb{E}\left[(X-\mu)^{2}\right]=\frac{1}{\sigma^{2}} .
$$

On the other hand, we have

$$
\operatorname{var}[\bar{X}]=\frac{\sigma^{2}}{n}=\frac{1}{n I(\mu)} .
$$

Therefore \bar{X} is an MVUE of μ.
Remark. \bar{X} may not be an MVUE of μ for other distributions.

Definition. The efficiency of an unbiased estimator $\hat{\Theta}$ of θ based on a random sample of size n is defined by

$$
e(\hat{\Theta})=\frac{1}{n I(\theta) \operatorname{var}[\hat{\Theta}]}
$$

Obviously $e(\widehat{\Theta}) \leq 1$ due to the Cramér-Rao inequality.

Suppose $\hat{\Theta}_{1}$ and $\hat{\Theta}_{2}$ are two unbiased estimators of θ based on a random sample of size n, then

$$
\frac{e\left(\hat{\Theta}_{2}\right)}{e\left(\hat{\Theta}_{1}\right)}=\frac{\operatorname{var}\left[\hat{\Theta}_{1}\right]}{\operatorname{var}\left[\hat{\Theta}_{2}\right]}
$$

is called the efficiency of $\hat{\Theta}_{2}$ relative to $\hat{\Theta}_{1}$.

Example. Let $X_{1}, \ldots, X_{n} \sim \operatorname{Uniform}(0, \beta)$ be a random sample where β is a parameter. Show that both $2 \bar{X}$ and $\frac{n+1}{n} Y_{n}$ are unbiased estimators of β. Compare their efficiency.

Solution. We have

$$
\mathbb{E}[\bar{X}]=\mathbb{E}\left[X_{i}\right]=\frac{\beta}{2} .
$$

Hence $\mathbb{E}[2 \bar{X}]=\beta$ which implies that $2 \bar{X}$ is an unbiased estimator of β.
We have showed that $\mathbb{E}\left[Y_{n}\right]=\frac{n}{n+1} \cdot \beta$. Hence $\frac{n+1}{n} Y_{n}$ is also an unbiased estimator of β.

Solution (cont). To compare their efficiency, we first notice that

$$
\operatorname{var}[2 \bar{X}]=4 \operatorname{var}[\bar{X}]=\frac{4}{n} \operatorname{var}\left[X_{i}\right]=\frac{4}{n} \cdot \frac{\beta^{2}}{12}=\frac{\beta^{2}}{3 n} .
$$

On the other hand, we have

$$
E\left[Y_{n}^{2}\right]=\frac{n}{\beta^{n}} \cdot \int_{0}^{\beta} y_{n}^{n+1} d y_{n}=\frac{n}{n+2} \cdot \beta^{2}
$$

Therefore

$$
\operatorname{var}\left[Y_{n}\right]=\frac{n}{n+2} \cdot \beta^{2}-\left(\frac{n}{n+1} \cdot \beta\right)^{2}
$$

Thus we have

$$
\operatorname{var}\left[\frac{n+1}{n} Y_{n}\right]=\left(\frac{n+1}{n}\right)^{2} \operatorname{var}\left[Y_{n}\right]=\frac{\beta^{2}}{n(n+2)} .
$$

Hence the efficiency ratio of $2 \bar{X}$ against $\frac{n+1}{n} Y_{n}$ is

$$
\frac{e(2 \bar{X})}{e\left(\frac{n+1}{n} Y_{n}\right)}=\frac{\operatorname{var}\left[\frac{n+1}{n} \cdot Y_{n}\right]}{\operatorname{var}[2 \bar{X}]}=\frac{\frac{\beta^{2}}{n(n+2)}}{\frac{\beta^{2}}{3 n}}=\frac{3}{n+2} .
$$

Definition. Let $\hat{\Theta}$ be a point estimator (not necessarily unbiased) of θ. Then the mean square error (MSE) of $\hat{\Theta}$ is defined as

$$
\operatorname{MSE}(\hat{\Theta})=\mathbb{E}\left[(\hat{\Theta}-\theta)^{2}\right] .
$$

Notice that there is

$$
\begin{aligned}
\operatorname{MSE}(\hat{\Theta}) & =\mathbb{E}\left[(\hat{\Theta}-\theta)^{2}\right] \\
& =\mathbb{E}\left[(\hat{\Theta}-\mathbb{E}[\hat{\Theta}]+\mathbb{E}[\hat{\Theta}]-\theta)^{2}\right] \\
& =\mathbb{E}\left[(\hat{\Theta}-\mathbb{E}[\hat{\Theta}])^{2}\right]+(\mathbb{E}[\hat{\Theta}]-\theta)^{2} \\
& =\operatorname{var}[\hat{\Theta}]+b_{n}(\hat{\Theta})^{2}
\end{aligned}
$$

That is, $\operatorname{MSE}(\hat{\Theta})$ is the sum of the variance of $\hat{\Theta}$ and the square of its bias.

Example. Compare the MSE of S^{2} and $\frac{n-1}{n} S^{2}$ for a normal population $N\left(\mu, \sigma^{2}\right)$.
Solution. First notice that $\mathbb{E}\left[S^{2}\right]=\sigma^{2}$ which means S^{2} is unbiased. We recall that $\frac{(n-1) S^{2}}{\sigma^{2}} \sim \chi_{n-1}^{2}$. Hence

$$
\frac{(n-1)^{2}}{\sigma^{4}} \operatorname{var}\left[S^{2}\right]=\operatorname{var}\left[\frac{(n-1) S^{2}}{\sigma^{2}}\right]=\frac{n-1}{2} \cdot 2^{2}=2(n-1) .
$$

This implies that $\operatorname{MSE}\left(S^{2}\right)=\operatorname{var}\left[S^{2}\right]=\frac{2 \sigma^{4}}{n-1}$.

Solution (cont). On the other hand, we have $\mathbb{E}\left[\frac{n-1}{n} S^{2}\right]=\frac{n-1}{n} \sigma^{2}$ which implies that the bias is $-\frac{\sigma^{2}}{n}$. Furthermore,

$$
\operatorname{var}\left[\frac{n-1}{n} S^{2}\right]=\frac{(n-1)^{2}}{n^{2}} \operatorname{var}\left[S^{2}\right]=\frac{2(n-1) \sigma^{4}}{n^{2}}
$$

Therefore we have

$$
\operatorname{MSE}\left(\frac{n-1}{n} S^{2}\right)=\frac{2(n-1) \sigma^{4}}{n^{2}}+\left(-\frac{\sigma^{2}}{n}\right)^{2}=\frac{(2 n-1) \sigma^{4}}{n^{2}}
$$

Now we have that

$$
\frac{\operatorname{MSE}\left(S^{2}\right)}{\operatorname{MSE}\left(\frac{n-1}{n} S^{2}\right)}=\frac{\frac{2 \sigma^{4}}{n-1}}{\frac{(2 n-1) \sigma^{4}}{n^{2}}}=\frac{2 n^{2}}{2 n^{2}-3 n+1}>1
$$

Therefore $\frac{n-1}{n} S^{2}$ has smaller MSE than the unbiased estimator S^{2} does.

Consistency

Definition. We call $\hat{\Theta}$ a consisent estimator of θ based on a random sample of size n if for any $c>0$, there is

$$
\lim _{n \rightarrow \infty} \mathrm{P}(|\hat{\Theta}-\theta|>c)=0
$$

The following theorem provides a sufficient condition of consistency.

Theorem. If $\hat{\Theta}$ is an unbiased estimator of θ and $\operatorname{var}[\hat{\Theta}] \rightarrow 0$ as $n \rightarrow \infty$, then $\hat{\Theta}$ is a consistent estimator of θ.

Proof. By Chebyshev's inequality, we have

$$
\mathrm{P}(|\hat{\Theta}-\theta|>c) \leq \frac{\operatorname{var}[\hat{\Theta}]}{c^{2}} \rightarrow 0
$$

as $n \rightarrow \infty$. This implies that $\hat{\Theta}$ is consistent.

Example. Suppose S^{2} is the sample variance of the random sample from a normal population $N\left(\mu, \sigma^{2}\right)$, then S^{2} is a consistent estimator of σ^{2}.

Proof. We have $\mathbb{E}\left[S^{2}\right]=\sigma^{2}$ and $\operatorname{var}\left[S^{2}\right]=\frac{\sigma^{4}}{n-1} \rightarrow 0$ as $n \rightarrow \infty$. By the previous theorem, we know S^{2} is consistent.

Remark. It is not difficult to show that we can replace the requirement "unbiased" with "asymptotically unbiased" in the previous theorem since

$$
\mathrm{P}(|\hat{\Theta}-\theta|>c) \leq \mathrm{P}(|\hat{\Theta}-\mathbb{E}[\hat{\Theta}]|+|\mathbb{E}[\hat{\Theta}]-\theta|>c) \rightarrow 0
$$

since $|\mathbb{E}[\hat{\Theta}]-\theta| \rightarrow 0$ as $n \rightarrow \infty$.

The previous theorem only provides a sufficient condition on consistency. The following example shows that it is not a necessary condition.

Example. Suppose f is a pdf with mean μ and variance $\sigma^{2}<\infty$. For any $n \in \mathbb{N}$, let X_{1}, \ldots, X_{n} be a random sample from f, and $Y_{n} \sim \operatorname{Bernoulli}\left(\frac{1}{n}\right)$ be independent of the random sample. Define $\hat{\Theta}_{n}=n^{2} Y_{n}+\left(1-Y_{n}\right) \bar{X}_{n}$ where $\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ is the sample mean. Show that $\hat{\Theta}_{n}$ is neither unbiased nor asymptotically unbiased, but it is a consistent estimator of μ.

Proof. Since Y_{n} is independent of \bar{X}_{n}, we have that

$$
\mathbb{E}\left[\widehat{\Theta}_{n}\right]=n^{2} \mathbb{E}\left[Y_{n}\right]+\mathbb{E}\left[1-Y_{n}\right] \mathbb{E}\left[\bar{X}_{n}\right]=n+\frac{n-1}{n} \mu .
$$

Therefore the bias is $b\left(\widehat{\Theta}_{n}\right)=\mathbb{E}\left[\widehat{\Theta}_{n}\right]-\mu=n-\frac{\mu}{n} \neq 0$, and $\lim _{n \rightarrow \infty} b\left(\widehat{\Theta}_{n}\right)=$ $\infty \neq 0$. Hence $\hat{\Theta}_{n}$ is not unbiased nor asymptotically unbiased.

Proof (cont). For any $c>0$, we have

$$
\begin{aligned}
\mathrm{P}\left(\left|\widehat{\Theta}_{n}-\mu\right|>c\right)= & \mathrm{P}\left(\left|\hat{\Theta}_{n}-\mu\right|>c \mid Y_{n}=1\right) \mathrm{P}\left(Y_{n}=1\right) \\
& +\mathrm{P}\left(\left|\widehat{\Theta}_{n}-\mu\right|>c \mid Y_{n}=0\right) \mathrm{P}\left(Y_{n}=0\right) \\
\leq & \mathrm{P}\left(Y_{n}=1\right)+\mathrm{P}\left(\left|\widehat{\Theta}_{n}-\mu\right|>c \mid Y_{n}=0\right) \mathrm{P}\left(Y_{n}=0\right) \\
\leq & \frac{1}{n}+\frac{\sigma^{2}}{n c^{2}} \cdot \frac{n-1}{n} \rightarrow 0
\end{aligned}
$$

as $n \rightarrow \infty$. Therefore $\hat{\Theta}_{n}$ is a consistent estimator of μ.

Sufficiency

Definition. We call $\hat{\Theta}$ a sufficient estimator of θ if the conditional probability of the random sample X_{1}, \ldots, X_{n} given $\hat{\Theta}=\hat{\theta}$ is independent of θ, i.e., $f_{X_{1}, \ldots, X_{n} \mid \hat{\Theta}}\left(x_{1}, \ldots, x_{n} \mid \hat{\theta}\right)$ is independent of θ.

Remark. $\hat{\Theta}$ being a sufficient estimator of θ means that X_{1}, \ldots, X_{n} do not contain more information than $\hat{\Theta}$ alone in terms of estimating θ. Moreover, since X_{1}, \ldots, X_{n} completely determines $\hat{\Theta}$, we know from the definition that $\hat{\Theta}$ is sufficient if

$$
\begin{aligned}
f_{X_{1}, \ldots, X_{n} \mid \hat{\Theta}}\left(x_{1}, \ldots, x_{n} \mid \hat{\theta}\right) & =\frac{f_{X_{1}, \ldots, X_{n}, \hat{\Theta}}\left(x_{1}, \ldots, x_{n}, \widehat{\theta}\right)}{f_{\widehat{\Theta}}(\hat{\theta})} \\
& =\frac{f_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right)}{f_{\widehat{\Theta}}(\hat{\theta})}
\end{aligned}
$$

is independent of θ (note that both numerator and denominator depend on θ, so they need to be nicely canceled out using the relation between x_{1}, \ldots, x_{n} and $\hat{\theta}$ for $\hat{\Theta}$ to be sufficient).

Example. If X_{1}, \ldots, X_{n} is a random sample of $\operatorname{Bernoulli}(p)$, then $\hat{\Theta}=\bar{X}$ is a sufficient estimator of p.

Proof. We have

$$
f\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} p^{x_{i}}(1-p)^{1-x_{i}}=p^{\sum_{i=1}^{n} x_{i}}(1-p)^{n-\sum_{i=1}^{n} x_{i}}
$$

On the other hand, we know $n \hat{\Theta}=X_{1}+\cdots+X_{n} \sim \operatorname{Binomial}(n, p)$ and hence the pmf of $\hat{\Theta}$ is

$$
g(\hat{\theta})=\binom{n}{n \widehat{\theta}} p^{n \hat{\theta}}(1-p)^{n-n \hat{\theta}} .
$$

Since $n \theta=\sum_{i=1}^{n} x_{i}$, we have

$$
\frac{f\left(x_{1}, \ldots, x_{n}\right)}{g(\hat{\theta})}=\frac{p^{\sum_{i=1}^{n} x_{i}}(1-p)^{n-\sum_{i=1}^{n} x_{i}}}{\binom{n}{n \hat{\theta}} p^{n \hat{\theta}}(1-p)^{n-n \hat{\theta}}}=\frac{1}{\left(\sum_{i=1}^{n} x_{i}\right)}
$$

(notice that p is canceled out), which implies that $\hat{\Theta}$ is a sufficient estimator.

Example. Let X_{1}, X_{2}, X_{3} be a random sample of Bernoulli (θ), then $\hat{\Theta}=$ $\frac{1}{6}\left(X_{1}+2 X_{2}+3 X_{3}\right)$ is not a sufficient estimator of θ.

Solution. We just need to show that $\frac{f\left(x_{1}, x_{2}, x_{3}\right)}{g(\hat{\theta})}$ depends on θ for certain value of $x_{1}, x_{2}, x_{3}, \widehat{\theta}$. For example, consider $x_{1}=x_{2}=1, x_{3}=0$, and $\hat{\theta}=\frac{1}{2}$, we have

$$
f(1,1,0)=\theta \cdot \theta \cdot(1-\theta)=\theta^{2}(1-\theta)
$$

and

$$
g\left(\frac{1}{2}\right)=f(1,1,0)+f(0,0,1)=\theta^{2}(1-\theta)+(1-\theta)^{2} \theta .
$$

Therefore we have

$$
\frac{f(1,1,0)}{g\left(\frac{1}{2}\right)}=\frac{\theta^{2}(1-\theta)}{\theta^{2}(1-\theta)+(1-\theta)^{2} \theta}=\theta
$$

which depends on θ.

Theorem. $\hat{\Theta}$ is a sufficient estimator of θ if and only if the joint pmf/pdf of X_{1}, \ldots, X_{n} can be factorized as

$$
f\left(x_{1}, \ldots, x_{n} ; \theta\right)=\phi(\widehat{\theta} ; \theta) \cdot h\left(x_{1}, \ldots, x_{n}\right)
$$

for some function h not involving θ.
Proof (informal). Necessity is obvious. To show sufficiency, suppose the "joint pdf" of (X_{1}, \ldots, X_{n}) and $\hat{\Theta}$ satisfies

$$
f\left(x_{1}, \cdots, x_{n}, \widehat{\theta} ; \theta\right)=f\left(x_{1}, \cdots, x_{n} ; \theta\right)=\phi(\hat{\theta} ; \theta) h\left(x_{1}, \ldots, x_{n}\right),
$$

then we obtain the marginal distribution of $\hat{\Theta}$ as

$$
g(\widehat{\theta} ; \theta)=\int f\left(x_{1}, \cdots, x_{n}, \widehat{\theta} ; \theta\right) d x_{1} \cdots d x_{n}=C \phi(\widehat{\theta} ; \theta)
$$

for some constant C independent of θ. Therefore

$$
\frac{f\left(x_{1}, \ldots, x_{n}, \widehat{\theta} ; \theta\right)}{g(\widehat{\theta} ; \theta)}=C^{-1} h\left(x_{1}, \ldots, x_{n}\right)
$$

is independent of θ.

Example. Consider a normal population $N\left(\mu, \sigma^{2}\right)$ for known σ^{2}. Show that \bar{X} is a sufficient estimator of μ.

Proof. Notice that

$$
\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}+n(\bar{x}-\mu)^{2}
$$

Hence we have

$$
\begin{aligned}
f\left(x_{1}, \ldots, x_{n} ; \mu\right) & =\left(2 \pi \sigma^{2}\right)^{-n / 2} e^{-\frac{\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}} \\
& =\underbrace{\left(2 \pi \sigma^{2}\right)^{-n / 2} e^{-\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{2 \sigma^{2}}}}_{h\left(x_{1}, \ldots, x_{n}\right)} \underbrace{e^{-\frac{n(\bar{x}-\mu)^{2}}{2 \sigma^{2}}}}_{\phi(\bar{x} ; \mu)} .
\end{aligned}
$$

Hence \bar{X} is a sufficient estimator of μ.

Remark. If $\hat{\Theta}$ is a sufficient estimator of θ, then $Y=u(\hat{\Theta})$ is also a sufficient estimator of θ for any one-to-one correspondence u. This is because that

$$
f\left(x_{1}, \ldots, x_{n} ; \theta\right)=\phi(\widehat{\theta} ; \theta) h\left(x_{1}, \ldots, x_{n}\right)=\underbrace{\phi(w(y) ; \theta)}_{=: \tilde{\phi}(y ; \theta)} h\left(x_{1}, \ldots, x_{n}\right)
$$

where w is the inverse of u.

Now we consider methods to construct point estimators. There are three typical methods:

- Method of moments
- Maximum likelihood estimation
- Bayesian estimation

Method of moments

Definition. Let X be a random variable. Then the k-th moment of X is defined by

$$
\mu_{k}^{\prime}=\mathbb{E}\left[X^{k}\right], \quad \text { for } k=0,1,2, \ldots
$$

Remarks.

- Moments are functions of the distribution parameter $\boldsymbol{\theta}$, i.e.

$$
\mu_{k}^{\prime}=\mu_{k}^{\prime}(\boldsymbol{\theta})
$$

In particular, for any X, there are $\mu_{0}^{\prime}=1, \mu_{1}^{\prime}=\mu, \mu_{2}^{\prime}=\mu^{2}+\sigma^{2}$ (if mean and variance exist).

- The k-th central moment of X is defined as $\mu_{k}=\mathbb{E}\left[(X-\mathbb{E}[X])^{k}\right]$.

Definition. Let X_{1}, \ldots, X_{n} be a random sample of size n from a distribution f. Then the k th sample moment of X is defined by

$$
M_{k}^{\prime}=\frac{1}{n} \sum_{i=1}^{n} X_{i}^{k} .
$$

If we obtain values $X_{i}=x_{i}$ for all i, then we also call the value of M_{k} the k th sample moment:

$$
m_{k}^{\prime}=\frac{1}{n} \sum_{i=1}^{n} x_{i}^{k}
$$

Suppose we want to estimate the parameters $\theta_{1}, \ldots, \theta_{r}$ of the distribution f, then the method of moments is to solve a system of r equations:

$$
\mu_{k}^{\prime}\left(\theta_{1}, \ldots, \theta_{r}\right)=m_{k}^{\prime}, \quad \text { for } k=1, \ldots, r \text {. }
$$

for $\theta_{1}, \ldots, \theta_{r}$. This yields estimates

$$
\hat{\theta}_{k}=\widehat{\theta}_{k}\left(x_{1}, \ldots, x_{n}\right), \quad \text { for } k=1, \ldots, r .
$$

The corresponding estimators obtained by the method of moments are:

$$
\hat{\Theta}_{k}=\hat{\Theta}_{k}\left(X_{1}, \ldots, X_{n}\right), \quad \text { for } k=1, \ldots, r .
$$

Remark. We need the specific distribution type (e.g., exponential, normal etc) to obtain the functions $\mu_{k}^{\prime}\left(\theta_{1}, \ldots, \theta_{r}\right)$, unless the parameters we want to estimate are the moments.

Example. Given a random sample of size n from Uniform $(\alpha, 1)$, use the method of moments to obtain an estimator of α.

Solution. We know that

$$
\mu_{1}^{\prime}=\mu=\frac{\widehat{\alpha}+1}{2}, \quad m_{1}^{\prime}=\bar{x}
$$

Equating the two and solving for α, we obtain estimate

$$
\hat{\alpha}=2 \bar{x}-1 .
$$

Hence the method of moments yields the estimator for α as $2 \bar{X}-1$.

Example. Given a random sample of size n from $\operatorname{Gamma}(\alpha, \beta)$, use the method of moments to obtain estimators of α and β.

Solution. We know that

$$
\mu_{1}^{\prime}=\mu=\alpha \beta, \quad \mu_{2}^{\prime}=\mu^{2}+\sigma^{2}=(\alpha \beta)^{2}+\alpha \beta^{2}=\alpha(\alpha+1) \beta^{2} .
$$

Equating them to m_{1}^{\prime} and m_{2}^{\prime} respectively yields

$$
\begin{aligned}
& \hat{\alpha} \widehat{\beta}=m_{1}^{\prime}=\bar{x}, \\
& \widehat{\alpha}(\widehat{\alpha}+1) \widehat{\beta}^{2}=m_{2}^{\prime}=\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2},
\end{aligned}
$$

solving which for estimates $\hat{\alpha}$ and $\widehat{\beta}$ yields

$$
\widehat{\alpha}=\frac{n \bar{x}^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}, \quad \widehat{\beta}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n \bar{x}} .
$$

The estimators can be obtained accordingly.

Maximum likelihood estimation

Suppose X_{1}, \ldots, X_{n} is a random sample from a distribution $f(\cdot ; \theta)$ and we obtain values of x_{1}, \ldots, x_{n} of this random sample. What is the value of θ that makes these values x_{1}, \ldots, x_{n} most probable?

Definition. For given values x_{1}, \ldots, x_{n}, we define the likelihood function

$$
L(\theta)=f_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n} ; \theta\right)=\prod_{i=1}^{n} f\left(x_{i} ; \theta\right)
$$

The value $\hat{\theta}$ that maximizes $L(\theta)$ is called a maximum likelihood estimate (MLE) of θ.

Remark. It is equivalent to maximizing the log-likelihood function

$$
\ell(\theta):=\ln L(\theta)=\sum_{i=1}^{n} \ln f\left(x_{i} ; \theta\right)
$$

since In is a strictly increasing function.

Example. Given x successes in n trials, find the MLE of θ in the corresponding Binomial (n, θ).

Solution. We first have the likelihood function

$$
L(\theta)=f(x ; \theta)=\binom{n}{x} \theta^{x}(1-\theta)^{n-x}
$$

The log-likelihood function is

$$
\ell(\theta)=\ln \binom{n}{x}+x \ln \theta+(n-x) \ln (1-\theta) .
$$

To find its maximizer, we first find the critical points such that $\ell^{\prime}(\theta)=0$:

$$
\ell^{\prime}(\theta)=\frac{x}{\theta}-\frac{n-x}{1-\theta}=0
$$

which yields a single solution $\theta=\frac{x}{n}$ (it is easy to check that it's a maximizer of $\ell)$. Hence the MLE is $\hat{\theta}=\frac{x}{n}$, and the maximum likelihood estimator is $\hat{\Theta}=\frac{\bar{X}}{n}$.

Example. Let X_{1}, \ldots, X_{n} be a random sample from Exponential (θ). Find the MLE of θ.

Solution. Recall that the pdf of Exponential (θ) is $f(x ; \theta)=\frac{1}{\theta} e^{-x / \theta} I_{\{x \geq 0\}}(x)$. Hence we have the likelihood function:

$$
L(\theta)=\prod_{i=1}^{n} f\left(x_{i} ; \theta\right)=\prod_{i=1}^{n} \frac{1}{\theta} e^{-x_{i} / \theta}=\theta^{-n} e^{-\sum_{i=1}^{n} x_{i} / \theta} .
$$

The log-likelihood function is

$$
\ell(\theta)=\ln L(\theta)=-n \ln \theta-\frac{\sum_{i=1}^{n} x_{i}}{\theta} .
$$

Taking derivative of ℓ and equating it to 0 yield

$$
\ell^{\prime}(\theta)=-\frac{n}{\theta}+\frac{\sum_{i=1}^{n} x_{i}}{\theta^{2}}=0,
$$

solving which yields the MLE $\hat{\theta}=\frac{\sum_{i=1}^{n} x_{i}}{n}=\bar{x}$. Hence the maximum likelihood estimator is $\hat{\Theta}=\bar{X}$.

Sometimes we may need to check the boundary points if the likelihood function is not differentiable.

Example. Let X_{1}, \ldots, X_{n} be a random sample of Uniform($0, \beta$). Find the MLE of β.

Solution. We know the likelihood function is

$$
L(\beta)=\prod_{i=1}^{n} f\left(x_{i} ; \beta\right)=\prod_{i=1}^{n} \frac{1}{\beta} I_{\{x \leq \beta\}}\left(x_{i}\right)= \begin{cases}\beta^{-n}, & \text { if } \beta \geq \max _{1 \leq i \leq n} x_{i} \\ 0, & \text { elsewhere }\end{cases}
$$

Note that this function is strictly decrease and does not have critical point for $\beta \geq \max _{1 \leq i \leq n} x_{i}$. However the maximum is attained at $\max _{1 \leq i \leq n} x_{i}$. Hence $\widehat{\beta}=\max _{1 \leq i \leq n} x_{i}=y_{n}$ and the maximum likelihood estimator is Y_{n} (the nth order statistic).

We can also find MLE of multiple parameters simultaneously.

Example. Let X_{1}, \ldots, X_{n} be a random sample of $N\left(\mu, \sigma^{2}\right)$ where both μ and σ^{2} are unknown. Find the MLE of μ and σ^{2}.

Solution. We know the pdf of $N\left(\mu, \sigma^{2}\right)$ is $f\left(x ; \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}$. Hence the likelihood function is

$$
L\left(\mu, \sigma^{2}\right)=\prod_{i=1}^{n} f\left(x_{i} ; \mu, \sigma^{2}\right)=\left(2 \pi \sigma^{2}\right)^{-n / 2} e^{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}} .
$$

The log-likelihood function is

$$
\ell\left(\mu, \sigma^{2}\right)=\ln L\left(\mu, \sigma^{2}\right)=-\frac{n}{2} \ln (2 \pi)-\frac{n}{2} \ln \sigma^{2}-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2} .
$$

Solution (cont). To find the maximizer of ℓ, we compute the partial derivatives of ℓ with respect to μ and σ^{2} :

$$
\begin{aligned}
\partial_{\mu} \ell\left(\mu, \sigma^{2}\right) & =\frac{1}{\sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right) \\
\partial_{\sigma^{2}} \ell\left(\mu, \sigma^{2}\right) & =-\frac{n}{2 \sigma^{2}}+\frac{1}{2 \sigma^{4}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}
\end{aligned}
$$

Equating them to 0 and solving for μ and σ^{2} jointly yield the MLE:

$$
\widehat{\mu}=\frac{1}{n} \sum_{i=1}^{n} x_{i}=\bar{x}, \quad \hat{\sigma}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\widehat{\mu}\right)^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} .
$$

Remark. $\hat{\sigma}=\left(\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}\right)^{1 / 2}$ is the MLE of σ because of the invariance property of MLE (see next page).

Theorem. MLE has invariance property: if $\hat{\Theta}$ is an MLE of θ and g is a continuous function (not necessarily one-to-one), then $g(\hat{\Theta})$ is an MLE of $g(\theta)$.

Proof. Let the values x_{1}, \ldots, x_{n} of the random sample be held fixed. We first define the induced likelihood function L^{*} of $\eta=g(\theta)$ as

$$
L^{*}(\eta)=\max _{\{\theta: g(\theta)=\eta\}} L(\theta) .
$$

Suppose $\hat{\eta}$ is a maximizer of $L^{*}(\eta)$, then we have

$$
\begin{aligned}
L^{*}(\widehat{\eta}) & =\max _{\eta} L^{*}(\eta) \\
& =\max _{\eta} \max _{\{\theta: g(\theta)=\eta\}} L(\theta) \\
& =\max _{\theta} L(\theta) \\
& =L(\hat{\theta})
\end{aligned}
$$

($\hat{\eta}$ is a maximizer)
(Definition of L^{*})
(Double max is max)
($\widehat{\theta}$ is MLE)

Proof (cont). On the other hand, we have

$$
\begin{array}{rlr}
L(\widehat{\theta}) & =\max _{\{\theta: g(\theta)=g(\hat{\theta})\}} L(\theta) & (\widehat{\theta} \text { is MLE) } \\
& =L^{*}(g(\hat{\theta})) & \left(\text { Definition of } L^{*}\right)
\end{array}
$$

Combining the two equations above yields $L^{*}(g(\hat{\theta}))=L^{*}(\hat{\eta})$ which is equal to $\max _{\eta} L^{*}(\eta)$ since $\hat{\theta}$ is a maximizer of L^{*}. Therefore $g(\hat{\theta})$ is an MLE of $g(\theta)$.

Bayesian estimation

Suppose we also treat the parameter θ of $f(x ; \theta)$ as a random variable Θ following a prior distribution $p(\theta)$ based on our belief or previous experience.

We treat $f(x \mid \theta)=f(x ; \theta)$ as the conditional probability of X given Θ.

After the experiment is done and we obtain value $X=x$, we can update the prior distribution to the posterior distribution $\phi(x \mid \theta)$. By the Bayes rule, there is

$$
\phi(\theta \mid x)=\frac{p(\theta) f(x \mid \theta)}{g(x)} \propto p(\theta) f(x \mid \theta)
$$

Here θ and X have a joint distribution, and $p(\theta)$ and $g(x)$ are their marginal distributions. Note that $g(x)$ does not involve θ.

This idea can be easily extended to the case with a random sample X_{1}, \ldots, X_{n} :

$$
\phi\left(\theta \mid x_{1}, \ldots, x_{n}\right)=\frac{p(\theta) \prod_{i=1}^{n} f\left(x_{i} \mid \theta\right)}{g\left(x_{1}, \ldots, x_{n}\right)} \propto p(\theta) \prod_{i=1}^{n} f\left(x_{i} \mid \theta\right) .
$$

Then Bayesian estimation is to find $\widehat{\theta}$ that maximizes this posterior distribution. This method is also called maximum-a-posteriori (MAP).

Maximizing $\phi\left(\theta \mid x_{1}, \ldots, x_{n}\right)$ is equivalent to maximizing

$$
\ln \phi\left(\theta \mid x_{1}, \ldots, x_{n}\right)=\ln p(\theta)+\underbrace{\sum_{i=1}^{n} \ln f\left(x_{i} \mid \theta\right)}_{\text {log-likelihood } \ell(\theta)}-\underbrace{\ln g\left(x_{1}, \ldots, x_{n}\right)}_{\text {not involving } \theta} .
$$

The prior $p(\theta)$ serves as a "regularization" added to the likelihood function.

Example. Let X follow $\operatorname{Binomial}(n, \theta)$ for unknown $\theta \in(0,1)$. Suppose the prior distribution of θ is $\operatorname{Beta}(\alpha, \beta)$ for some given $\alpha, \beta>0$. Find the posterior distribution and Bayesian estimate of θ.

Solution. The prior distribution of Θ is

$$
p(\theta)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)+\Gamma(\beta)} \theta^{\alpha-1}(1-\theta)^{\beta-1} .
$$

The conditional distribution (or the likelihood function) is

$$
f(x \mid \theta)=\binom{n}{x} \theta^{x}(1-\theta)^{n-x} .
$$

Hence the posterior distribution is

$$
\phi(\theta \mid x) \propto p(\theta) f(x \mid \theta)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)}\binom{n}{x} \theta^{x+\alpha-1}(1-\theta)^{n-x+\beta-1} .
$$

This means that Θ given $X=x$ follows $\operatorname{Beta}(x+\alpha, n-x+\beta)$ distribution.

Solution (cont). To find the Bayesian estimate, we take logarithm of $\phi(\theta \mid x)$:

$$
\ln \phi(\theta \mid x)=(x+\alpha-1) \ln \theta+(n-x+\beta-1) \ln (1-\theta)+C
$$

where C is a constant independent of θ.

Taking derivative of $\operatorname{In} \phi(\theta \mid x)$ with respect to θ, equating to 0 and solving for θ, we obtain the Bayesian estimate:

$$
\hat{\theta}=\frac{x+\alpha-1}{n+\alpha+\beta-1} .
$$

Remark. When we have more data, i.e., large n and x, there is $\hat{\theta} \approx \frac{x}{n}$.

Example. Suppose X_{1}, \ldots, X_{n} is a random sample of $N\left(\mu, \sigma^{2}\right)$ where σ^{2} is known. Assume the prior distribution of μ is $N\left(\mu_{0}, \sigma_{0}^{2}\right)$ for some known μ_{0} and σ_{0}^{2}. Find the posterior distribution of μ and the Bayesian estimate.

Solution. We know the prior distribution is

$$
p(\mu)=\frac{1}{\sqrt{2 \pi \sigma_{0}^{2}}} e^{-\frac{\left(\mu-\mu_{0}\right)^{2}}{2 \sigma_{0}^{2}}} .
$$

The conditional distribution of X_{1}, \ldots, X_{n} given $\Theta=\theta$ is

$$
f\left(x_{1}, \ldots, x_{n} \mid \mu\right)=\left(2 \pi \sigma^{2}\right)^{-n / 2} e^{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}} .
$$

Solution (cont). The posterior distribution is

$$
\phi\left(\mu \mid x_{1}, \ldots, x_{n}\right) \propto p(\mu) f\left(x_{1}, \ldots, x_{n} \mid \mu\right)=\underbrace{\cdots}_{\text {completing squares }} \propto e^{-\frac{\left(\mu-\mu_{1}\right)^{2}}{2 \sigma_{1}^{2}}}
$$

where

$$
\mu_{1}=\frac{n \bar{x} \sigma_{0}^{2}+\mu_{0} \sigma^{2}}{n \sigma_{0}^{2}+\sigma^{2}} \quad \text { and } \quad \frac{1}{\sigma_{1}^{2}}=\frac{n}{\sigma^{2}}+\frac{1}{\sigma_{0}^{2}}
$$

This means that the posterior distribution of μ given $X_{1}=x_{1}, \ldots, X_{n}=x_{n}$ is $N\left(\mu_{1}, \sigma_{1}^{2}\right)$.

Remark. When $n \rightarrow \infty$, we have $\sigma_{1}^{2} \rightarrow 0$ and $\mu_{1} \rightarrow \bar{x}$.

