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Point estimation is to use the value of a sample statistic to estimate the value
of a population parameter.

This sample statistic is called a point estimator and its value is called a point
estimate.

Example. Let X1, . . . , Xn be a random sample of Bernoulli(p), and we use
the sample mean X̄ to estimate p. Then X̄ is called a point estimator, and x̄
is called a point estimate.

Note that a point estimator is a statistic (hence a random variable), thus it has
probability distribution. We want to design “good estimators” that have highest
accuracy, lowest risk, etc.
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Unbiased estimator

Definition. Let f(·; θ) be a distribution with parameter θ. Then a statistic Θ̂

is called an unbiased estimator of θ if E[Θ̂] = θ for all possible values of θ.

Example. Let X1, . . . , Xn be a random sample of Bernoulli(p). Show that X̄
is an unbiased estimator of p.

Solution. We notice that

E[X̄] =
1

n

n∑
i=1

E[Xi] =
1

n
· np = p.
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Example. Let X1, . . . , Xn ∼ f(·; θ) be a random sample where

f(x; θ) =

e−(x−θ), if x ≥ θ
0, elsewhere.

Show that X̄ is a biased estimator of θ.

Solution. We notice that

E[X̄] =
∫ ∞
θ

xe−(x−θ) dx = 1 + θ 6= θ.

Hence X̄ is a biased estimator of θ.
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Definition. Suppose Θ̂ is a point estimator of the parameter θ of f(·; θ) based
on a random sample of size n, then

bn(Θ̂) = E[Θ̂]− θ

is called the bias of Θ̂. If

lim
n→∞ bn(Θ̂) = 0,

then we call Θ̂ an asymptotically unbiased estimator of θ.

Xiaojing Ye, Math & Stat, Georgia State University 4



Example. Let X1, . . . , Xn ∼ Uniform(0, β) be a random sample where β is a
parameter. Show that Yn (the n-th order statistic) is a biased estimator but an
asymptotically unbiased estimator of β.

Solution. Notice that the pdf f of Uniform(0, β) is

f(x;β) =


1
β , if 0 < x < β,

0, elsewhere.

Hence the order statistic Yn has pdf:

gn(yn) = n · f(yn) ·
( ∫ yn
−∞

f(x) dx
)n−1

= n ·
1

β
·
(yn
β

)n−1
=
nyn−1

n

βn
.
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Solution (cont). Therefore

E[Yn] =
∫ β

0
yngn(yn) dyn =

n

βn

∫ β
0
ynn dyn =

n

n+ 1
β 6= β.

Hence Yn is a biased estimator of β. (This result also shows that n+1
n Yn is an

unbiased estimator of β.)

We further obtain

bn(Yn) = E[Yn]− β =
n

n+ 1
β − β = −

β

n+ 1
→ 0

as n→∞. Hence Yn is an asymptotically unbiased estimator of β.
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Remark.

• There may exist more than one unbiased estimator of θ. For example, 2X̄

and n+1
n Yn are both unbiased estimators of β in Uniform(0,β).

• Even if Θ̂ is an unbiased estimator of θ, w(Θ̂) may not be an unbiased
estimator of w(θ) in general. For example, S2 is an unbiased estimator of
σ2, but S may not be an unbiased estimator of σ.
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Efficiency

Definition. We call Θ̂ a minimum variance unbiased estimator (MVUE) of
θ if Θ̂ has the smallest variance among all unbiased estimators.

Cramér-Rao inequality. If Θ̂ is an unbiased estimator of θ of f(·; θ) for a
random sample of size n, then

var[Θ̂] ≥
1

nI(θ)
,

where I(θ) is the Fisher information defined by

I(θ) = EX∼f(·;θ)

[(∂ ln f(X; θ)

∂θ

)2]
=
∫ ∞
−∞

(∂ ln f(x; θ)

∂θ

)2
f(x; θ) dx.
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Cramér-Rao inequality immediately implies the following result:

Theorem. If Θ̂ is an unbiased estimator of θ and

var[Θ̂] =
1

nI(θ)
,

then Θ̂ is an MVUE of θ.
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Example. Let X1, . . . , Xn be a random sample of N(µ, σ2) where µ is to be
estimated. Then X̄ is an MVUE of µ.

Solution. Note that f(x;µ) = 1√
2πσ

e
−(x−µ)2

2σ2 . Hence

ln f(x;µ) = −
1

2
ln(2πσ2)−

1

2σ2
(x− µ)2.

Therefore

I(µ) = EX∼f(·;µ)

[(∂ ln f(X;µ)

∂µ

)2]
=

1

σ4
E[(X − µ)2] =

1

σ2
.

On the other hand, we have

var[X̄] =
σ2

n
=

1

nI(µ)
.

Therefore X̄ is an MVUE of µ.

Remark. X̄ may not be an MVUE of µ for other distributions.
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Definition. The efficiency of an unbiased estimator Θ̂ of θ based on a ran-
dom sample of size n is defined by

e(Θ̂) =
1

nI(θ) var[Θ̂]

Obviously e(Θ̂) ≤ 1 due to the Cramér-Rao inequality.

Suppose Θ̂1 and Θ̂2 are two unbiased estimators of θ based on a random
sample of size n, then

e(Θ̂2)

e(Θ̂1)
=

var[Θ̂1]

var[Θ̂2]

is called the efficiency of Θ̂2 relative to Θ̂1.
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Example. Let X1, . . . , Xn ∼ Uniform(0, β) be a random sample where β is
a parameter. Show that both 2X̄ and n+1

n Yn are unbiased estimators of β.
Compare their efficiency.

Solution. We have

E[X̄] = E[Xi] =
β

2
.

Hence E[2X̄] = β which implies that 2X̄ is an unbiased estimator of β.

We have showed that E[Yn] = n
n+1 · β. Hence n+1

n Yn is also an unbiased
estimator of β.
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Solution (cont). To compare their efficiency, we first notice that

var[2X̄] = 4 var[X̄] =
4

n
var[Xi] =

4

n
·
β2

12
=
β2

3n
.

On the other hand, we have

E[Y 2
n ] =

n

βn
·
∫ β

0
yn+1
n dyn =

n

n+ 2
· β2

Therefore

var[Yn] =
n

n+ 2
· β2 −

(
n

n+ 1
· β
)2

Thus we have

var
[n+ 1

n
Yn
]

=
(n+ 1

n

)2
var[Yn] =

β2

n(n+ 2)
.

Hence the efficiency ratio of 2X̄ against n+1
n Yn is

e(2X̄)

e(n+1
n Yn)

=
var

[
n+1
n · Yn

]
var[2X̄]

=

β2

n(n+2)
β2

3n

=
3

n+ 2
.
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Definition. Let Θ̂ be a point estimator (not necessarily unbiased) of θ. Then
the mean square error (MSE) of Θ̂ is defined as

MSE(Θ̂) = E[(Θ̂− θ)2].

Notice that there is

MSE(Θ̂) = E[(Θ̂− θ)2]

= E[(Θ̂− E[Θ̂] + E[Θ̂]− θ)2]

= E[(Θ̂− E[Θ̂])2] + (E[Θ̂]− θ)2

= var[Θ̂] + bn(Θ̂)2

That is, MSE(Θ̂) is the sum of the variance of Θ̂ and the square of its bias.
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Example. Compare the MSE of S2 and n−1
n S2 for a normal populationN(µ, σ2).

Solution. First notice that E[S2] = σ2 which means S2 is unbiased. We
recall that (n−1)S2

σ2 ∼ χ2
n−1. Hence

(n− 1)2

σ4
var[S2] = var

[
(n− 1)S2

σ2

]
=
n− 1

2
· 22 = 2(n− 1).

This implies that MSE(S2) = var[S2] = 2σ4

n−1.
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Solution (cont). On the other hand, we have E[n−1
n S2] = n−1

n σ2 which

implies that the bias is −σ
2

n . Furthermore,

var
[
n− 1

n
S2
]

=
(n− 1)2

n2
var[S2] =

2(n− 1)σ4

n2
.

Therefore we have

MSE
(n− 1

n
S2
)

=
2(n− 1)σ4

n2
+
(
−
σ2

n

)2
=

(2n− 1)σ4

n2
.

Now we have that

MSE(S2)

MSE(n−1
n S2)

=
2σ4

n−1
(2n−1)σ4

n2

=
2n2

2n2 − 3n+ 1
> 1.

Therefore n−1
n S2 has smaller MSE than the unbiased estimator S2 does.
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Consistency

Definition. We call Θ̂ a consisent estimator of θ based on a random sample
of size n if for any c > 0, there is

lim
n→∞P(|Θ̂− θ| > c) = 0.

The following theorem provides a sufficient condition of consistency.

Theorem. If Θ̂ is an unbiased estimator of θ and var[Θ̂] → 0 as n → ∞,
then Θ̂ is a consistent estimator of θ.

Proof. By Chebyshev’s inequality, we have

P(|Θ̂− θ| > c) ≤
var[Θ̂]

c2
→ 0

as n→∞. This implies that Θ̂ is consistent.
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Example. Suppose S2 is the sample variance of the random sample from a
normal population N(µ, σ2), then S2 is a consistent estimator of σ2.

Proof. We have E[S2] = σ2 and var[S2] = σ4

n−1 → 0 as n → ∞. By the
previous theorem, we know S2 is consistent.

Remark. It is not difficult to show that we can replace the requirement “unbi-
ased” with “asymptotically unbiased” in the previous theorem since

P(|Θ̂− θ| > c) ≤ P(|Θ̂− E[Θ̂]|+ |E[Θ̂]− θ| > c)→ 0

since |E[Θ̂]− θ| → 0 as n→∞.
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The previous theorem only provides a sufficient condition on consistency. The
following example shows that it is not a necessary condition.

Example. Suppose f is a pdf with mean µ and variance σ2 < ∞. For any
n ∈ N, let X1, . . . , Xn be a random sample from f , and Yn ∼ Bernoulli(1

n) be
independent of the random sample. Define Θ̂n = n2Yn+ (1−Yn)X̄n where
X̄n = 1

n

∑n
i=1Xi is the sample mean. Show that Θ̂n is neither unbiased nor

asymptotically unbiased, but it is a consistent estimator of µ.

Proof. Since Yn is independent of X̄n, we have that

E[Θ̂n] = n2 E[Yn] + E[1− Yn]E[X̄n] = n+
n− 1

n
µ.

Therefore the bias is b(Θ̂n) = E[Θ̂n]−µ = n−µn 6= 0, and limn→∞ b(Θ̂n) =

∞ 6= 0. Hence Θ̂n is not unbiased nor asymptotically unbiased.
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Proof (cont). For any c > 0, we have

P(|Θ̂n − µ| > c) = P(|Θ̂n − µ| > c | Yn = 1) P(Yn = 1)

+ P(|Θ̂n − µ| > c | Yn = 0) P(Yn = 0)

≤ P(Yn = 1) + P(|Θ̂n − µ| > c | Yn = 0) P(Yn = 0)

≤
1

n
+

σ2

nc2
·
n− 1

n
→ 0

as n→∞. Therefore Θ̂n is a consistent estimator of µ.
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Sufficiency

Definition. We call Θ̂ a sufficient estimator of θ if the conditional probability
of the random sample X1, . . . , Xn given Θ̂ = θ̂ is independent of θ, i.e.,
fX1,...,Xn|Θ̂(x1, . . . , xn|θ̂) is independent of θ.

Remark. Θ̂ being a sufficient estimator of θ means that X1, . . . , Xn do not
contain more information than Θ̂ alone in terms of estimating θ. Moreover,
since X1, . . . , Xn completely determines Θ̂, we know from the definition that
Θ̂ is sufficient if

fX1,...,Xn|Θ̂(x1, . . . , xn|θ̂) =
fX1,...,Xn,Θ̂

(x1, . . . , xn, θ̂)

fΘ̂(θ̂)

=
fX1,...,Xn(x1, . . . , xn)

fΘ̂(θ̂)

is independent of θ (note that both numerator and denominator depend on θ,
so they need to be nicely canceled out using the relation between x1, . . . , xn

and θ̂ for Θ̂ to be sufficient).
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Example. If X1, . . . , Xn is a random sample of Bernoulli(p), then Θ̂ = X̄ is
a sufficient estimator of p.

Proof. We have

f(x1, . . . , xn) =
n∏
i=1

pxi(1− p)1−xi = p
∑n
i=1 xi(1− p)n−

∑n
i=1 xi.

On the other hand, we know nΘ̂ = X1 + · · · + Xn ∼ Binomial(n, p) and
hence the pmf of Θ̂ is

g(θ̂) =
( n
nθ̂

)
pnθ̂(1− p)n−nθ̂.

Since nθ =
∑n
i=1 xi, we have

f(x1, . . . , xn)

g(θ̂)
=
p
∑n
i=1 xi(1− p)n−

∑n
i=1 xi(

n
nθ̂

)
pnθ̂(1− p)n−nθ̂

=
1(
n∑n
i=1 xi

)
(notice that p is canceled out), which implies that Θ̂ is a sufficient estimator.
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Example. Let X1, X2, X3 be a random sample of Bernoulli (θ), then Θ̂ =
1
6(X1 + 2X2 + 3X3) is not a sufficient estimator of θ.

Solution. We just need to show that f(x1,x2,x3)
g(θ̂)

depends on θ for certain value

of x1, x2, x3, θ̂. For example, consider x1 = x2 = 1, x3 = 0, and θ̂ = 1
2, we

have

f(1,1,0) = θ · θ · (1− θ) = θ2(1− θ),

and

g
(1

2

)
= f(1,1,0) + f(0,0,1) = θ2(1− θ) + (1− θ)2θ.

Therefore we have

f(1,1,0)

g(1
2)

=
θ2(1− θ)

θ2(1− θ) + (1− θ)2θ
= θ

which depends on θ.
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Theorem. Θ̂ is a sufficient estimator of θ if and only if the joint pmf/pdf of
X1, . . . , Xn can be factorized as

f(x1, . . . , xn; θ) = φ(θ̂; θ) · h(x1, . . . , xn)

for some function h not involving θ.

Proof (informal). Necessity is obvious. To show sufficiency, suppose the “joint
pdf” of (X1, . . . , Xn) and Θ̂ satisfies

f(x1, · · · , xn, θ̂; θ) = f(x1, · · · , xn; θ) = φ(θ̂; θ)h(x1, . . . , xn),

then we obtain the marginal distribution of Θ̂ as

g(θ̂; θ) =
∫
f(x1, · · · , xn, θ̂; θ) dx1 · · · dxn = Cφ(θ̂; θ)

for some constant C independent of θ. Therefore

f(x1, . . . , xn, θ̂; θ)

g(θ̂; θ)
= C−1h(x1, . . . , xn)

is independent of θ.
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Example. Consider a normal population N(µ, σ2) for known σ2. Show that
X̄ is a sufficient estimator of µ.

Proof. Notice that
n∑
i=1

(xi − µ)2 =
n∑
i=1

(xi − x̄)2 + n(x̄− µ)2

Hence we have

f(x1, . . . , xn;µ) = (2πσ2)−n/2e
−
∑n
i=1(xi−µ)2

2σ2

= (2πσ2)−n/2e
−
∑n
i=1(xi−x̄)2

2σ2︸ ︷︷ ︸
h(x1,...,xn)

e
−n(x̄−µ)2

2σ2︸ ︷︷ ︸
φ(x̄;µ)

.

Hence X̄ is a sufficient estimator of µ.
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Remark. If Θ̂ is a sufficient estimator of θ, then Y = u(Θ̂) is also a sufficient
estimator of θ for any one-to-one correspondence u. This is because that

f(x1, . . . , xn; θ) = φ(θ̂; θ)h(x1, . . . , xn) = φ(w(y); θ)︸ ︷︷ ︸
=:φ̃(y;θ)

h(x1, . . . , xn)

where w is the inverse of u.
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Now we consider methods to construct point estimators. There are three typi-
cal methods:

• Method of moments

• Maximum likelihood estimation

• Bayesian estimation
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Method of moments

Definition. Let X be a random variable. Then the k-th moment of X is
defined by

µ′k = E[Xk], for k = 0,1,2, . . . .

Remarks.

• Moments are functions of the distribution parameter θ, i.e.

µ′k = µ′k(θ).

In particular, for any X, there are µ′0 = 1, µ′1 = µ, µ′2 = µ2 + σ2 (if
mean and variance exist).

• The k-th central moment of X is defined as µk = E[(X − E[X])k].
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Definition. Let X1, . . . , Xn be a random sample of size n from a distribution
f . Then the kth sample moment of X is defined by

M ′k =
1

n

n∑
i=1

Xk
i .

If we obtain values Xi = xi for all i, then we also call the value of Mk the kth
sample moment:

m′k =
1

n

n∑
i=1

xki .
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Suppose we want to estimate the parameters θ1, . . . , θr of the distribution f ,
then the method of moments is to solve a system of r equations:

µ′k(θ1, . . . , θr) = m′k, for k = 1, . . . , r.

for θ1, . . . , θr. This yields estimates

θ̂k = θ̂k(x1, . . . , xn), for k = 1, . . . , r.

The corresponding estimators obtained by the method of moments are:

Θ̂k = Θ̂k(X1, . . . , Xn), for k = 1, . . . , r.

Remark. We need the specific distribution type (e.g., exponential, normal
etc) to obtain the functions µ′k(θ1, . . . , θr), unless the parameters we want to
estimate are the moments.
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Example. Given a random sample of size n from Uniform(α,1), use the
method of moments to obtain an estimator of α.

Solution. We know that

µ′1 = µ =
α̂+ 1

2
, m′1 = x̄.

Equating the two and solving for α, we obtain estimate

α̂ = 2x̄− 1.

Hence the method of moments yields the estimator for α as 2X̄ − 1.
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Example. Given a random sample of size n from Gamma(α, β), use the
method of moments to obtain estimators of α and β.

Solution. We know that

µ′1 = µ = αβ, µ′2 = µ2 + σ2 = (αβ)2 + αβ2 = α(α+ 1)β2.

Equating them to m′1 and m′2 respectively yields

α̂β̂ = m′1 = x̄,

α̂(α̂+ 1)β̂2 = m′2 =
1

n

n∑
i=1

x2
i ,

solving which for estimates α̂ and β̂ yields

α̂ =
nx̄2∑n

i=1(xi − x̄)2
, β̂ =

∑n
i=1(xi − x̄)2

nx̄
.

The estimators can be obtained accordingly.
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Maximum likelihood estimation

Suppose X1, . . . , Xn is a random sample from a distribution f(·; θ) and we
obtain values of x1, . . . , xn of this random sample. What is the value of θ that
makes these values x1, . . . , xn most probable?

Definition. For given values x1, . . . , xn, we define the likelihood function

L(θ) = fX1,...,Xn(x1, . . . , xn; θ) =
n∏
i=1

f(xi; θ).

The value θ̂ that maximizes L(θ) is called a maximum likelihood estimate
(MLE) of θ.

Remark. It is equivalent to maximizing the log-likelihood function

`(θ) := lnL(θ) =
n∑
i=1

ln f(xi; θ),

since ln is a strictly increasing function.
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Example. Given x successes in n trials, find the MLE of θ in the corresponding
Binomial(n, θ).

Solution. We first have the likelihood function

L(θ) = f(x; θ) =
(n
x

)
θx(1− θ)n−x

The log-likelihood function is

`(θ) = ln
(n
x

)
+ x ln θ + (n− x) ln(1− θ).

To find its maximizer, we first find the critical points such that `′(θ) = 0:

`′(θ) =
x

θ
−
n− x
1− θ

= 0

which yields a single solution θ = x
n (it is easy to check that it’s a maximizer of

`). Hence the MLE is θ̂ = x
n, and the maximum likelihood estimator is Θ̂ = X̄

n .
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Example. Let X1, . . . , Xn be a random sample from Exponential(θ). Find the
MLE of θ.

Solution. Recall that the pdf of Exponential(θ) is f(x; θ) = 1
θe
−x/θI{x≥0}(x).

Hence we have the likelihood function:

L(θ) =
n∏
i=1

f(xi; θ) =
n∏
i=1

1

θ
e−xi/θ = θ−ne−

∑n
i=1 xi/θ.

The log-likelihood function is

`(θ) = lnL(θ) = −n ln θ −
∑n
i=1 xi
θ

.

Taking derivative of ` and equating it to 0 yield

`′(θ) = −
n

θ
+

∑n
i=1 xi
θ2

= 0,

solving which yields the MLE θ̂ =
∑n
i=1 xi
n = x̄. Hence the maximum likeli-

hood estimator is Θ̂ = X̄.
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Sometimes we may need to check the boundary points if the likelihood function
is not differentiable.

Example. Let X1, . . . , Xn be a random sample of Uniform(0, β). Find the
MLE of β.

Solution. We know the likelihood function is

L(β) =
n∏
i=1

f(xi;β) =
n∏
i=1

1

β
I{x≤β}(xi) =

β−n, if β ≥ max1≤i≤n xi
0, elsewhere.

Note that this function is strictly decrease and does not have critical point for
β ≥ max1≤i≤n xi. However the maximum is attained at max1≤i≤n xi. Hence
β̂ = max1≤i≤n xi = yn and the maximum likelihood estimator is Yn (the nth
order statistic).
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We can also find MLE of multiple parameters simultaneously.

Example. Let X1, . . . , Xn be a random sample of N(µ, σ2) where both µ

and σ2 are unknown. Find the MLE of µ and σ2.

Solution. We know the pdf of N(µ, σ2) is f(x;µ, σ2) = 1√
2πσ2

e
−(x−µ)2

2σ2 .
Hence the likelihood function is

L(µ, σ2) =
n∏
i=1

f(xi;µ, σ
2) = (2πσ2)−n/2e

− 1
2σ2

∑n
i=1(xi−µ)2

.

The log-likelihood function is

`(µ, σ2) = lnL(µ, σ2) = −
n

2
ln(2π)−

n

2
lnσ2 −

1

2σ2

n∑
i=1

(xi − µ)2.
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Solution (cont). To find the maximizer of `, we compute the partial derivatives
of ` with respect to µ and σ2:

∂µ`(µ, σ
2) =

1

σ2

n∑
i=1

(xi − µ),

∂σ2`(µ, σ2) = −
n

2σ2
+

1

2σ4

n∑
i=1

(xi − µ)2.

Equating them to 0 and solving for µ and σ2 jointly yield the MLE:

µ̂ =
1

n

n∑
i=1

xi = x̄, σ̂2 =
1

n

n∑
i=1

(xi − µ̂)2 =
1

n

n∑
i=1

(xi − x̄)2.

Remark. σ̂ = (1
n

∑n
i=1(xi − x̄)2)1/2 is the MLE of σ because of the invari-

ance property of MLE (see next page).
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Theorem. MLE has invariance property: if Θ̂ is an MLE of θ and g is a con-
tinuous function (not necessarily one-to-one), then g(Θ̂) is an MLE of g(θ).

Proof. Let the values x1, . . . , xn of the random sample be held fixed. We first
define the induced likelihood function L∗ of η = g(θ) as

L∗(η) = max
{θ:g(θ)=η}

L(θ).

Suppose η̂ is a maximizer of L∗(η), then we have

L∗(η̂) = max
η

L∗(η) (η̂ is a maximizer)

= max
η

max
{θ:g(θ)=η}

L(θ) (Definition of L∗)

= max
θ

L(θ) (Double max is max)

= L(θ̂) (θ̂ is MLE)
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Proof (cont). On the other hand, we have

L(θ̂) = max{
θ:g(θ)=g(θ̂)

}L(θ) (θ̂ is MLE)

= L∗(g(θ̂)) (Definition of L∗)

Combining the two equations above yields L∗(g(θ̂)) = L∗(η̂) which is equal
to maxη L∗(η) since θ̂ is a maximizer of L∗. Therefore g(θ̂) is an MLE of
g(θ).
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Bayesian estimation

Suppose we also treat the parameter θ of f(x; θ) as a random variable Θ

following a prior distribution p(θ) based on our belief or previous experience.

We treat f(x|θ) = f(x; θ) as the conditional probability of X given Θ.

After the experiment is done and we obtain value X = x, we can update
the prior distribution to the posterior distribution φ(x|θ). By the Bayes rule,
there is

φ(θ|x) =
p(θ)f(x|θ)

g(x)
∝ p(θ)f(x|θ).

Here θ and X have a joint distribution, and p(θ) and g(x) are their marginal
distributions. Note that g(x) does not involve θ.
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This idea can be easily extended to the case with a random sampleX1, . . . , Xn:

φ(θ|x1, . . . , xn) =
p(θ)

∏n
i=1 f(xi|θ)

g(x1, . . . , xn)
∝ p(θ)

n∏
i=1

f(xi|θ).

Then Bayesian estimation is to find θ̂ that maximizes this posterior distribution.
This method is also called maximum-a-posteriori (MAP).

Maximizing φ(θ|x1, . . . , xn) is equivalent to maximizing

lnφ(θ|x1, . . . , xn) = ln p(θ) +
n∑
i=1

ln f(xi|θ)︸ ︷︷ ︸
log-likelihood `(θ)

− ln g(x1, . . . , xn)︸ ︷︷ ︸
not involving θ

.

The prior p(θ) serves as a “regularization” added to the likelihood function.
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Example. Let X follow Binomial(n, θ) for unknown θ ∈ (0,1). Suppose the
prior distribution of θ is Beta(α, β) for some given α, β > 0. Find the posterior
distribution and Bayesian estimate of θ.

Solution. The prior distribution of Θ is

p(θ) =
Γ(α+ β)

Γ(α) + Γ(β)
θα−1(1− θ)β−1.

The conditional distribution (or the likelihood function) is

f(x|θ) =
(n
x

)
θx(1− θ)n−x.

Hence the posterior distribution is

φ(θ|x) ∝ p(θ)f(x|θ) =
Γ(α+ β)

Γ(α)Γ(β)

(n
x

)
θx+α−1(1− θ)n−x+β−1.

This means that Θ given X = x follows Beta(x+ α, n− x+ β) distribution.
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Solution (cont). To find the Bayesian estimate, we take logarithm of φ(θ|x):

lnφ(θ|x) = (x+ α− 1) ln θ + (n− x+ β − 1) ln(1− θ) + C

where C is a constant independent of θ.

Taking derivative of lnφ(θ|x) with respect to θ, equating to 0 and solving for
θ, we obtain the Bayesian estimate:

θ̂ =
x+ α− 1

n+ α+ β − 1
.

Remark. When we have more data, i.e., large n and x, there is θ̂ ≈ x
n.
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Example. Suppose X1, . . . , Xn is a random sample of N(µ, σ2) where σ2

is known. Assume the prior distribution of µ is N(µ0, σ
2
0) for some known µ0

and σ2
0. Find the posterior distribution of µ and the Bayesian estimate.

Solution. We know the prior distribution is

p(µ) =
1√

2πσ2
0

e
−(µ−µ0)2

2σ2
0 .

The conditional distribution of X1, . . . , Xn given Θ = θ is

f(x1, . . . , xn|µ) = (2πσ2)−n/2e
− 1

2σ2

∑n
i=1(xi−µ)2

.
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Solution (cont). The posterior distribution is

φ(µ|x1, . . . , xn) ∝ p(µ)f(x1, . . . , xn|µ) = · · ·︸︷︷︸
completing squares

∝ e
−(µ−µ1)2

2σ2
1

where

µ1 =
nx̄σ2

0 + µ0σ
2

nσ2
0 + σ2

and
1

σ2
1

=
n

σ2
+

1

σ2
0
.

This means that the posterior distribution of µ given X1 = x1, . . . , Xn = xn

is N(µ1, σ
2
1).

Remark. When n→∞, we have σ2
1 → 0 and µ1 → x̄.
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