MATH 4752/6752 - Mathematical Statistics II Interval Estimation

Xiaojing Ye
Department of Mathematics \& Statistics
Georgia State University

Interval estimation is to find (the values of) two statistics to bound the value of the parameter with certain probability.

Definition. Let $\alpha \in(0,1)$, and $\hat{\Theta}_{1}$ and $\hat{\Theta}_{2}$ be two statistics such that

$$
\mathrm{P}\left(\hat{\Theta}_{1}<\theta<\hat{\Theta}_{2}\right)=1-\alpha .
$$

Suppose we obtain the values $\hat{\Theta}_{1}=\hat{\theta}_{1}$ and $\hat{\Theta}_{2}=\hat{\theta}_{2}$, then we call ($\hat{\theta}_{1}, \hat{\theta}_{2}$) a $(1-\alpha) \cdot 100 \%$ confidence interval (CI) of θ. Here $1-\alpha$ is called the degree of confidence, and $\hat{\theta}_{1}$ and $\hat{\theta}_{2}$ are called the lower and upper confidence limits.

Interval estimation of means

Suppose X_{1}, \ldots, X_{n} is a random sample of size n from distribution $N\left(\mu, \sigma^{2}\right)$ with unknown μ and known σ^{2}. Then $\bar{X} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right)$. In other words,

$$
Z=\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \sim N(0,1) .
$$

Hence

$$
\begin{aligned}
1-\alpha & =\mathrm{P}\left(-z_{\alpha / 2}<\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}<z_{\alpha / 2}\right) \\
& =\mathrm{P}\left(\bar{X}-z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}<\mu<\bar{X}+z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}\right)
\end{aligned}
$$

So the $(1-\alpha) \cdot 100 \%$ confidence interval of μ is

$$
\left(\bar{x}-z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}, \bar{x}+z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}\right)
$$

Another interpretation is that the error of \bar{x} to μ is bounded by $z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}$ with probability $1-\alpha$.

Example. Consider the normal population $N\left(\mu, \sigma^{2}\right)$ where $\sigma^{2}=225$. We obtain the value of a random sample of size $n=20$ with sample mean $\bar{x}=$ 64.5. Find the 95% confidence interval of μ.

Solution. We have $\sigma=\sqrt{225}=15, \alpha=0.05$ and hence $z_{\alpha / 2}=z_{0.025}=$ 1.96 from the table of normal distribution. So the 95% confidence interval of μ is

$$
\left(64.5-1.96 \cdot \frac{15}{\sqrt{20}}, 64.5+1.96 \cdot \frac{15}{\sqrt{20}}\right)=(57.7,70.9) .
$$

Remarks.

- $(1-\alpha) \cdot 100 \%$ confidence interval is not unique. For example,

$$
\left(\bar{x}-z_{2 \alpha / 3} \frac{\sigma}{\sqrt{n}}, \quad \bar{x}+z_{\alpha / 3} \frac{\sigma}{\sqrt{n}}\right)
$$

is also a $(1-\alpha) \cdot 100 \%$ confidence interval.

- We can also construct one-sided $(1-\alpha) \cdot 100 \%$ confidence interval such as

$$
\left(-\infty, \quad \bar{x}+z_{\alpha} \frac{\sigma}{\sqrt{n}}\right)
$$

What if we have general distribution, unknown variance, large sample size $n \geq 30$? In this case, we can invoke the central limit theorem to obtain approximate confidence interval.

Example. Suppose we obtain the following values of a random sample from a distribution:

17	13	18	19	17	21	29	22	16	28	21	15
26	23	24	20	8	17	17	21	32	18	25	22
16	10	20	22	19	14	30	22	12	24	28	11

Construct a 95% confidence interval of the mean.

Solution. We have $n=36, \bar{x}=19.92, s=5.73$, and $z_{0.025}=1.96$. By CLT, we know \bar{X} approximately follow $N\left(\mu, \frac{\sigma^{2}}{n}\right)$. We approximate σ using s, and construct the $95 \% \mathrm{Cl}$ as

$$
\left(19.92-1.96 \cdot \frac{5.73}{\sqrt{36}}, 19.92+1.96 \cdot \frac{5.73}{\sqrt{36}}\right)=(18.05,21.79) .
$$

What if we have normal distribution $N\left(\mu, \sigma^{2}\right)$ with unknown σ^{2} and small sample size? We can use the t-distribution:

$$
T=\frac{\bar{X}-\mu}{S / \sqrt{n}} \sim t_{n-1} .
$$

Therefore

$$
\mathrm{P}\left(\bar{X}-t_{\alpha / 2, n-1} \frac{S}{\sqrt{n}}<\mu<\bar{X}+t_{\alpha / 2, n-1} \frac{S}{\sqrt{n}}\right)=1-\alpha .
$$

Hence a $(1-\alpha) \cdot 100 \%$ confidence interval of μ is

$$
\left(\bar{x}-t_{\alpha / 2, n-1} \frac{s}{\sqrt{n}}, \quad \bar{x}+t_{\alpha / 2, n-1} \frac{s}{\sqrt{n}}\right) .
$$

Example. Suppose we have a random sample of size $n=12$ from a normal population $N\left(\mu, \sigma^{2}\right)$ where σ^{2} is unknown. We obtain the values of the random sample which yields $\bar{x}=66.3$ and $s^{2}=8.4^{2}$. Find a 95% confidence interval of μ.

Solution. We have $t_{0.025,11}=2.21$. Hence the 95% confidence interval is

$$
\left(66.3-2.21 \cdot \frac{8.4}{\sqrt{12}}, \quad 66.3+2.21 \cdot \frac{8.4}{\sqrt{12}}\right)=(61.0,71.6)
$$

Interval estimation of the difference between two means from two normal populations with known variances.

Suppose \bar{X}_{i} is the sample mean of a random sample of size n_{i} from the normal population $N\left(\mu_{i}, \sigma_{i}^{2}\right)$ where σ_{i}^{2} is known for $i=1,2$. Then

$$
\bar{X}_{1}-\bar{X}_{2} \sim N\left(\mu_{1}-\mu_{2}, \frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}\right) .
$$

Then a $(1-\alpha) \cdot 100 \%$ confidence interval of $\mu_{1}-\mu_{2}$ is

$$
\left(\left(\bar{x}_{1}-\bar{x}_{2}\right)-z_{\alpha / 2} \cdot \sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}, \quad\left(\bar{x}_{1}-\bar{x}_{2}\right)+z_{\alpha / 2} \cdot \sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}\right) .
$$

Example. Suppose we have random samples from two normal populations $N\left(\mu_{1}, \sigma_{1}^{2}\right)$ and $N\left(\mu_{2}, \sigma_{2}^{2}\right)$ with

$$
\begin{array}{lll}
\bar{x}_{1}=418, & \sigma_{1}^{2}=26^{2}, & n_{1}=40 \\
\bar{x}_{2}=406, & \sigma_{2}^{2}=22^{2}, & n_{2}=50 .
\end{array}
$$

Find a 94% confidence interval of $\mu_{1}-\mu_{2}$.
Solution. We have $\bar{x}_{1}-\bar{x}_{2}=12$ and $z_{0.03}=1.88$. Hence the 94% confidence interval of $\mu_{1}-\mu_{2}$ is

$$
\left(12-1.88 \cdot \sqrt{\frac{26^{2}}{40}+\frac{22^{2}}{50}}, 12+1.88 \cdot \sqrt{\frac{26^{2}}{40}+\frac{22^{2}}{50}}\right)=(6.3,25.7) .
$$

Remark. If we have two general distributions with unknown variances but large sample sizes ($n_{1}, n_{2} \geq 30$), then we can apply central limit theorem and approximate σ_{i} with s_{i} to obtain approximate $(1-\alpha) \cdot 100 \%$ confidence interval of $\mu_{1}-\mu_{2}$ is

$$
\left(\left(\bar{x}_{1}-\bar{x}_{2}\right)-z_{\alpha / 2} \cdot \sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}, \quad\left(\bar{x}_{1}-\bar{x}_{2}\right)+z_{\alpha / 2} \cdot \sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}\right) .
$$

If we have two independent normal populations with unknown variances and small sample sizes $\left(n_{1}, n_{2}<30\right)$, then we know

$$
\begin{aligned}
Z & =\frac{\left(\bar{X}_{1}-\bar{X}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}} \sim N(0,1) \\
Y & =\frac{\left(n_{1}-1\right) S_{1}^{2}}{\sigma_{1}^{2}}+\frac{\left(n_{2}-1\right) S_{2}^{2}}{\sigma_{2}^{2}} \sim \chi_{n_{1}+n_{2}-2}^{2}
\end{aligned}
$$

are independent, and thus

$$
T=\frac{Z}{\sqrt{Y /\left(n_{1}+n_{2}-2\right)}} \sim t_{n_{1}+n_{2}-2}
$$

However, the unknown σ_{1}^{2} and σ_{2}^{2} cannot be canceled in this ratio, and therefore we cannot construct confidence intervals based on t-distribution.

If $\sigma_{1}^{2}=\sigma_{2}^{2}=\sigma^{2}$ (assuming the two normal populations have the same variance), then they can be canceled!

To see this, we notice that

$$
\begin{aligned}
Z & =\frac{\left(\bar{X}_{1}-\bar{X}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sigma \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}} \sim N(0,1), \\
Y & =\frac{\left(n_{1}-1\right) S_{1}^{2}}{\sigma_{1}^{2}}+\frac{\left(n_{2}-1\right) S_{2}^{2}}{\sigma_{2}^{2}}=\frac{\left(n_{1}+n_{2}-2\right) S_{p}^{2}}{\sigma^{2}} \sim \chi_{n_{1}+n_{2}-2}^{2},
\end{aligned}
$$

where S_{p}^{2} is called the pooled sample variance defined by

$$
S_{p}^{2}=\frac{\left(n_{1}-1\right) S_{1}^{2}+\left(n_{2}-1\right) S_{2}^{2}}{n_{1}+n_{2}-2}
$$

In this case, we have

$$
T=\frac{Z}{\sqrt{Y /\left(n_{1}+n_{2}-2\right)}}=\frac{\left(\bar{X}_{1}-\bar{X}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{S_{p} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}} \sim t_{n_{1}+n_{2}-2} .
$$

Therefore a $(1-\alpha) \cdot 100 \%$ confidence interval of $\mu_{1}-\mu_{2}$ is given by

$$
\left(\bar{x}_{1}-\bar{x}_{2}\right) \pm t_{\alpha / 2, n_{1}+n_{2}-2} \cdot s_{p} \cdot \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}
$$

Example. Suppose we have random samples from two normal populations $N\left(\mu_{1}, \sigma_{1}^{2}\right)$ and $N\left(\mu_{2}, \sigma_{2}^{2}\right)$ with unknown but equal variances $\sigma_{1}^{2}=\sigma_{2}^{2}=\sigma^{2}$, and

$$
\begin{array}{lll}
\bar{x}_{1}=3.1, & s_{1}=0.5, & n_{1}=10, \\
\bar{x}_{2}=2,7, & s_{2}=0.7, & n_{2}=8 .
\end{array}
$$

Find a 95% confidence interval of $\mu_{1}-\mu_{2}$.
Solution. We have $\bar{x}_{1}-\bar{x}_{2}=0.4, n_{1}+n_{2}-2=16, t_{0.025,16}=2.212$ and

$$
s_{p}^{2}=\frac{9 \cdot 0.5^{2}+7 \cdot 0.7^{2}}{16}=0.596^{2}, \quad \sqrt{\frac{1}{10}+\frac{1}{8}}=0.474
$$

Hence the 95% confidence interval of $\mu_{1}-\mu_{2}$ is
$(0.4-2.212 \cdot 0.596 \cdot 0.474,0.4+2.212 \cdot 0.596 \cdot 0.474)=(-0.22,1.02)$.

Interval estimation of proportions

Suppose X follows $\operatorname{Binomial}(n, \theta)$ with known large n, then by central limit theorem we know

$$
\frac{\frac{X}{n}-\theta}{\sqrt{\frac{\theta(1-\theta)}{n}}} \sim N(0,1)
$$

Denoting $\widehat{\theta}=\frac{x}{n}$ and approximate the variance $\theta(1-\theta)$ with $\hat{\theta}(1-\hat{\theta})$, we obtain an approximate $(1-\alpha) \cdot 100 \%$ confidence interval of θ :

$$
\left(\widehat{\theta}-z_{\alpha / 2} \cdot \sqrt{\frac{\hat{\theta}(1-\hat{\theta})}{n}}, \hat{\theta}+z_{\alpha / 2} \cdot \sqrt{\frac{\widehat{\theta}(1-\hat{\theta})}{n}}\right)
$$

Remark. Let Y_{1}, \ldots, Y_{n} be a random sample of $\operatorname{Bernoulli}(\theta)$, then $X=Y_{1}+$ $\cdots+Y_{n}$ follows $\operatorname{Binomial}(n, \theta)$. Then $\hat{\Theta}:=\frac{X}{n}$ is the sample mean. Let S^{2} denote the sample variance, then

$$
S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(Y_{i}-\hat{\Theta}\right)^{2}=\frac{1}{n-1}\left(\sum_{i=1}^{n} Y_{i}^{2}-n \hat{\Theta}^{2}\right)=\frac{n}{n-1} \hat{\Theta}(1-\hat{\Theta})
$$

Example. Suppose 136 of 400 persons received flu shot experienced discomfort. Find a 95% confidence interval of the proportion of persons would experience discomfort after the flu shot.

Solution. We have $x=136, n=400$, and hence $\hat{\theta}=\frac{136}{400}=0.34$. We find $z_{0.025}=1.96$. Hence the 95% confidence interval of θ is

$$
\left(0.34-1.96 \cdot \sqrt{\frac{0.34 \cdot 0.66}{400}}, 0.34+1.96 \cdot \sqrt{\frac{0.34 \cdot 0.66}{400}}\right)=(0.294,0.386) .
$$

Interval estimation of the difference between two proportions

Suppose X_{i} follows Binomial $\left(n_{i}, \theta_{i}\right)$ with known large n_{i} for $i=1,2$. Then we have approximately

$$
\frac{\frac{X_{i}}{n_{i}}-\theta_{i}}{\sqrt{\frac{\theta_{i}\left(1-\theta_{i}\right)}{n_{i}}}} \sim N(0,1), \quad \text { for } i=1,2,
$$

which are independent. Denote $\hat{\Theta}_{i}=\frac{X_{i}}{n_{i}}$. Then there is approximately

$$
\frac{\left(\hat{\Theta}_{1}-\hat{\Theta}_{2}\right)-\left(\theta_{1}-\theta_{2}\right)}{\sqrt{\frac{\theta_{1}\left(1-\theta_{1}\right)}{n_{1}}+\frac{\theta_{2}\left(1-\theta_{2}\right)}{n_{2}}}} \sim N(0,1) .
$$

Hence we obtain an approximate $(1-\alpha) \cdot 100 \%$ confidence interval of $\theta_{1}-\theta_{2}$:

$$
\left(\hat{\theta}_{1}-\hat{\theta}_{2}\right) \pm z_{\alpha / 2} \cdot \sqrt{\frac{\hat{\theta}_{1}\left(1-\hat{\theta}_{1}\right)}{n_{1}}+\frac{\hat{\theta}_{2}\left(1-\hat{\theta}_{2}\right)}{n_{2}}}
$$

Example. Suppose 132 of 200 male voters and 90 of 150 female voters favor a candidate running for governor. Find a 99\% confidence interval of the difference between the proportions of male and female voters favor this candidate.

Solution. We have $x_{1}=132, n_{1}=200$, and hence $\hat{\theta}_{1}=\frac{132}{200}=0.66$. Similarly $x_{2}=90, n_{2}=150$, and hence $\hat{\theta}_{2}=\frac{90}{150}=0.60$. We find $z_{0.005}=2.575$. Hence the 99% confidence interval of θ is

$$
(0.66-0.60) \pm 2.575 \cdot \sqrt{\frac{0.66 \cdot 0.34}{200}+\frac{0.60 \cdot 0.40}{150}}
$$

which is $(-0.074,0.194)$.

Interval estimation of variances

Suppose S^{2} is the sample variance of a random sample of size n from a normal population $N\left(\mu, \sigma^{2}\right)$. Then we know

$$
\frac{(n-1) S^{2}}{\sigma^{2}} \sim \chi_{n-1}^{2}
$$

Therefore,

$$
\mathrm{P}\left(\chi_{1-\alpha / 2, n-1}^{2}<\frac{(n-1) S^{2}}{\sigma^{2}}<\chi_{\alpha / 2, n-1}^{2}\right)=1-\alpha
$$

or equivalently

$$
\mathrm{P}\left(\frac{(n-1) S^{2}}{\chi_{\alpha / 2, n-1}^{2}}<\sigma^{2}<\frac{(n-1) S^{2}}{\chi_{1-\alpha / 2, n-1}^{2}}\right)=1-\alpha
$$

Hence, given the value s^{2} of S^{2}, we can obtain a $(1-\alpha) \cdot 100 \% \mathrm{Cl}$ of σ^{2} as

$$
\left(\frac{(n-1) s^{2}}{\chi_{\alpha / 2, n-1}^{2}}, \frac{(n-1) s^{2}}{\chi_{1-\alpha / 2, n-1}^{2}}\right)
$$

Example. Suppose we obtain sample variance $s^{2}=2.2^{2}$ for a random sample of size $n=16$ from a normal population $N\left(\mu, \sigma^{2}\right)$. Find a 99% confidence interval of σ^{2}.

Solution. We have $n=16, s=2.2, \chi_{0.005,15}^{2}=32.801$ and $\chi_{0.995,15}^{2}=$ 4.601. Hence a 99% confidence interval of σ^{2} is

$$
\frac{15(2.2)^{2}}{32.801}<\sigma^{2}<\frac{15(2.2)^{2}}{4.601}
$$

which is $(2.21,15.78)$.

Interval estimation of the ratio of two variances

Suppose S_{i}^{2} is the sample variance of a random sample of size n_{i} from the normal population $N\left(\mu_{i}, \sigma_{i}^{2}\right)$ for $i=1,2$ and the two populations are independent. Then we know

$$
F=\frac{S_{1}^{2} / \sigma_{1}^{2}}{S_{2}^{2} / \sigma_{2}^{2}} \sim F_{n_{1}-1, n_{2}-1}
$$

Therefore,

$$
\mathrm{P}\left(f_{1-\alpha / 2, n_{1}-1, n_{2}-1}<\frac{\sigma_{2}^{2} S_{1}^{2}}{\sigma_{1}^{2} S_{2}^{2}}<f_{\alpha / 2, n_{1}-1, n_{2}-1}\right)=1-\alpha .
$$

Furthermore, we know that $f_{1-\alpha / 2, n_{1}-1, n_{2}-1}=\frac{1}{f_{\alpha / 2, n_{2}-1, n_{1}-1}}$. Hence, given the value s^{2} of S^{2}, we can obtain a $(1-\alpha) \cdot 100 \% \mathrm{Cl}$ of σ^{2} as

$$
\frac{s_{1}^{2}}{s_{2}^{2}} \cdot \frac{1}{f_{\alpha / 2, n_{1}-1, n_{2}-1}}<\frac{\sigma_{1}^{2}}{\sigma_{2}^{2}}<\frac{s_{1}^{2}}{s_{2}^{2}} \cdot f_{\alpha / 2, n_{2}-1, n_{1}-1}
$$

Example. Suppose we obtain sample variances $s_{1}^{2}=0.5^{2}$ and $s_{2}^{2}=0.7^{2}$ from two normal random samples where $n_{1}=10$ and $n_{2}=8$. Find a 98% confidence interval of $\frac{\sigma_{1}^{2}}{\sigma_{2}^{2}}$.

Solution. We find that $f_{0.01,9,7}=6.72$ and $f_{0.01,7,9}=5.61$. Hence a 99% confidence interval of $\frac{\sigma_{1}^{2}}{\sigma_{2}^{2}}$ is

$$
\frac{0.25}{0.49} \cdot \frac{1}{6.72}<\frac{\sigma_{1}^{2}}{\sigma_{2}^{2}}<\frac{0.25}{0.49} \cdot 5.61
$$

which is ($0.076,2.862$).

