MATH 4752/6752 - Mathematical Statistics II Hypothesis Testing

Xiaojing Ye
Department of Mathematics \& Statistics
Georgia State University

Definitions. We have the following definitions:

- An assertion about one or multiple random variables is called a statistical hypothesis.
- If a statistical hypothesis completely specifies a distribution (type and parameters), then it is called a simple hypothesis, otherwise called composite hypothesis.
- In hypothesis testing, we also form an alternative hypothesis, denoted by H_{1} (or H_{A}). The original hypothesis is also called a null hypothesis, denoted by H_{0}.

Example. A drug company wants to test the effective of a new medication on certain disease to see if 90% patients receiving the medication recovers. Then the hypothesis test can be formed as

$$
H_{0}: \text { recovery rate }=0.9 \quad \text { v.s. } \quad H_{1}: \text { recovery rate }=0.6
$$

where 0.6 is the recovery rate without the medication. Both H_{0} and H_{1} are simple hypothesis.

Example. A tire manufacturer produces a new model of tires and wants to test if it meets the lifetime standard of 42,000 miles. Then the hypothesis test can be formed as
H_{0} : lifetime $\geq 42,000 \quad$ v.s. H_{1} : lifetime $<42,000$
Both H_{0} and H_{1} are composite hypothesis.

This is the standard procedure to test a statistical hypothesis H_{0} :

- Step 1: Determine the null hypothesis H_{0} and alternative hypothesis H_{1}.
- Step 2: Design a test statistic as a function of random samples. Partition the set of possible values of this test statistic into two subsets: acceptance region of H_{0} and rejection region of H_{0}. (The rejection region is also called the critical region of the test.)
- Step 3: Conduct an experiment and collect data of the random samples. Compute the value of the test statistic.
- Step 4: Accept (or reject) H_{0} if the computed value falls in the acceptance (or rejection) region.

The test procedure can lead to two types of errors:

- Type I error is made if H_{0} is rejected when it is true. We denote

$$
\alpha=\mathrm{P}(\text { Committing a Type I error })
$$

α is also the size of the critical region, and hence also called the level of significance of the test.

- Type II error is made if H_{0} is accepted when it is false. We denote

$$
\beta=\mathrm{P} \text { (Committing a Type II error) }
$$

	H_{0} is true	H_{0} is false
Accept H_{0}	No error	Type II error prob $=\beta$
Reject H_{0}	Type I error prob $=\alpha$	No error

Example. Suppose that the manufacturer of a new medication wants to test the null hypothesis $\theta=0.90$ against the alternative hypothesis $\theta=0.60$. His test statistic is X, the observed number of successes (recoveries) in 20 trials, and he will accept the null hypothesis if $x>14$; otherwise, he will reject it. Find α and β.

Solution. We know X follows Binomial $(20, \theta)$. The manufacturer decided that

$$
\begin{aligned}
\text { Acceptance region of } H_{0} & =\{15,16, \ldots, 20\} \\
\text { Rejection region of } H_{0} & =\{0,1, \ldots, 14\}
\end{aligned}
$$

Hence we obtain

$$
\begin{aligned}
& \alpha=\mathrm{P}(X \leq 14 ; \theta=0.90)=\sum_{x=0}^{14}\binom{20}{x} 0.90^{x}(1-0.90)^{20-x}=0.0114 \\
& \beta=\mathrm{P}(X>14 ; \theta=0.60)=\sum_{x=15}^{20}\binom{20}{x} 0.60^{x}(1-0.60)^{20-x}=0.1225
\end{aligned}
$$

Trade off between Type I error and Type II error

Ideally, we would like to have both Type I error and Type II error small, so we have a good chance to make correct decision. However, we cannot reduce both errors unless we increase the random sample size.

For fixed sample size, if α decreases, then β will increase; and vice versa.

For instance, if the manufacturer would accept H_{0} if $x>15$ instead of $x>14$ in the previous example, then

$$
\begin{aligned}
\text { Acceptance region of } H_{0} & =\{16,17, \ldots, 20\} \\
\text { Rejection region of } H_{0} & =\{0,1, \ldots, 15\}
\end{aligned}
$$

which will result in $\alpha=0.0433$ and $\beta=0.0509$. We have smaller β but larger α.

Example. Suppose that we want to test the null hypothesis that the mean of a normal population with $\sigma^{2}=1$ is μ_{0} against the alternative hypothesis that it is μ_{1} where $\mu_{1}>\mu_{0}$. Find the value of K such that $\bar{x}>K$ provides a critical region of size $\alpha=0.05$ for a random sample of size n.

Solution. If the true mean is μ_{0}, then we know $\frac{\bar{X}-\mu_{0}}{1 / \sqrt{n}} \sim N(0,1)$. Hence we find K such that

$$
\frac{K-\mu_{0}}{1 / \sqrt{n}}=z_{0.05}=1.645
$$

solving which yields that

$$
K=\mu_{0}+\frac{1.645}{\sqrt{n}}
$$

We can observe several properties from the figure (α is the area of the shaded region, and β is the area of the ruled region):

- The two curves represent the pdfs of $N\left(\mu_{0}, \frac{1}{n}\right)$ and $N\left(\mu_{1}, \frac{1}{n}\right)$.
- For fixed n, if we reduce α, then K and β will increase.
- If we increase n, then both curves become sharper and more concentrated at their means μ_{0} and μ_{1}. For the same α value, K will be closer to μ_{0}. We can also afford smaller α and β simultaneously.

Example. Suppose that we want to test the null hypothesis that the mean of a normal population with $\sigma^{2}=1$ is $\mu_{0}=10$ against the alternative hypothesis that it is $\mu_{1}=11$. For fixed $\alpha=0.05$, find the minimum sample size n such that $\beta \leq 0.06$.

Solution. Since $\alpha=0.05$, we continue to use $z_{0.05}=1.645$. By the definition of Type II error, we need

$$
\begin{aligned}
\beta & =\mathrm{P}\left(\bar{X}<10+\frac{1.645}{\sqrt{n}} ; \mu=11\right) \\
& =\mathrm{P}\left(Z<\frac{\left(10+\frac{1.645}{\sqrt{n}}\right)-11}{1 / \sqrt{n}}\right) \\
& =\mathrm{P}(Z<-\sqrt{n}+1.645) \leq 0.06 .
\end{aligned}
$$

From the normal distribution table we figure that $\mathrm{P}(Z<-1.55)=0.0606$, therefore we need $-\sqrt{n}+1.645 \leq-1.55$, or $n \geq 11$.

In practice, we want to fix α so that the probability of committing Type I error is upper bounded by α (for continuous distributions we can attain exactly α, but for discrete ones we may not, so we only require α to be an upper bound).

Consider a statistical hypothesis of form

$$
H_{0}: \theta=\theta_{0} \quad \text { vs } \quad H_{1}: \theta=\theta_{1}
$$

For a fixed α, it remains to determine a test statistic and its critical region C to set up a complete hypothesis test.

If the test statistic and C are chosen (usually when we select a test statistic, we also determine C, and vice versa) such that they yield the largest $1-\beta$ (smallest Type II error), then C is called the best critical region or most powerful critical region.

When both null and alternative hypotheses are simple, we have explicit expressions of

$$
L_{0}(\boldsymbol{x})=f\left(\boldsymbol{x} ; \theta_{0}\right), \quad L_{1}(\boldsymbol{x})=f\left(\boldsymbol{x} ; \theta_{1}\right),
$$

where $f(x ; \theta)$ is the joint distribution of the random sample at $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ when the distribution parameter is θ.

If H_{0} holds true, we expect $L_{0}(\boldsymbol{x})$ to be much larger than $L_{1}(\boldsymbol{x})$. Therefore, we use the following way to select C : we specify a number $k \in \mathbb{R}$ such that

$$
C=\left\{x: \frac{L_{0}(x)}{L_{1}(x)} \leq k\right\}
$$

and the size of C is α, i.e.,

$$
\mathrm{P}\left(\boldsymbol{x} \in C \text { when } \theta=\theta_{0}\right)=\int_{C} f\left(\boldsymbol{x} ; \theta_{0}\right) d \boldsymbol{x}=\int_{C} L_{0}(\boldsymbol{x}) d \boldsymbol{x}=\alpha .
$$

It turns out that this way automatically yields the most powerful critical region:
Neyman-Pearson Lemma. Consider a statistical hypothesis of form

$$
H_{0}: \theta=\theta_{0} \quad \text { vs } \quad H_{1}: \theta=\theta_{1} .
$$

If k is the number such that

$$
C=\left\{x: \frac{L_{0}(\boldsymbol{x})}{L_{1}(\boldsymbol{x})} \leq k\right\}
$$

is a critical region of size α, then C is the most powerful critical region.
Proof. Let C^{\prime} denote the complement of C. Suppose D is another critical region of size α. Then

$$
\begin{aligned}
& \alpha=\int_{C} L_{0}(\boldsymbol{x}) d \boldsymbol{x}=\int_{C \cap D} L_{0}(\boldsymbol{x}) d \boldsymbol{x}+\int_{C \cap D^{\prime}} L_{0}(\boldsymbol{x}) d \boldsymbol{x} \\
& \alpha=\int_{D} L_{0}(\boldsymbol{x}) d \boldsymbol{x}=\int_{C \cap D} L_{0}(\boldsymbol{x}) d \boldsymbol{x}+\int_{C^{\prime} \cap D} L_{0}(\boldsymbol{x}) d \boldsymbol{x}
\end{aligned}
$$

Proof (cont). Equating the two yields

$$
\int_{C \cap D^{\prime}} L_{0}(\boldsymbol{x}) d \boldsymbol{x}=\int_{C^{\prime} \cap D} L_{0}(\boldsymbol{x}) d \boldsymbol{x} .
$$

On the other hand, we have

$$
\begin{array}{rlr}
\int_{C \cap D^{\prime}} L_{1}(\boldsymbol{x}) d \boldsymbol{x} & \geq \int_{C \cap D^{\prime}} \frac{L_{0}(\boldsymbol{x})}{k} d \boldsymbol{x} & \left(\frac{L_{0}(\boldsymbol{x})}{L_{1}(\boldsymbol{x})} \leq k \text { when } \boldsymbol{x} \in C\right) \\
& =\int_{C^{\prime} \cap D} \frac{L_{0}(\boldsymbol{x})}{k} d \boldsymbol{x} & \text { (use equality above) } \\
& \geq \int_{C^{\prime} \cap D}^{L_{1}(\boldsymbol{x}) d \boldsymbol{x}} & \left(\frac{L_{0}(\boldsymbol{x})}{L_{1}(\boldsymbol{x})}>k \text { when } \boldsymbol{x} \in C^{\prime}\right)
\end{array}
$$

Hence we have

$$
\begin{aligned}
\text { (Power of } C \text {) }=\int_{C} L_{1}(\boldsymbol{x}) d \boldsymbol{x} & =\int_{C \cap D} L_{1}(\boldsymbol{x}) d \boldsymbol{x}+\int_{C \cap D^{\prime}} L_{1}(\boldsymbol{x}) d \boldsymbol{x} \\
& \geq \int_{C \cap D} L_{1}(\boldsymbol{x}) d \boldsymbol{x}+\int_{C^{\prime} \cap D} L_{1}(\boldsymbol{x}) d \boldsymbol{x} \\
& =\int_{D} L_{1}(\boldsymbol{x}) d \boldsymbol{x}=(\text { Power of } D) .
\end{aligned}
$$

Example. A random sample of size n from a normal population with $\sigma^{2}=1$ is to be used to test the null hypothesis $\mu=\mu_{0}$ against the alternative hypothesis $\mu=\mu_{1}$ where $\mu_{1}>\mu_{0}$. Use the Neyman-Pearson lemma to find the most powerful critical region of size α.

Solution. We first have

$$
f(\boldsymbol{x} ; \mu)=(2 \pi)^{-n / 2} e^{-\frac{1}{2} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}} .
$$

Therefore

$$
\frac{L_{0}(\boldsymbol{x})}{L_{1}(\boldsymbol{x})}=\frac{f\left(\boldsymbol{x} ; \mu_{0}\right)}{f\left(\boldsymbol{x} ; \mu_{1}\right)}=e^{\frac{n}{2}\left(\mu_{1}^{2}-\mu_{0}^{2}\right)+\left(\mu_{0}-\mu_{1}\right) \cdot \sum_{i=1}^{n} x_{i}} \leq k
$$

if any only if

$$
\bar{x} \geq K:=\frac{\frac{n}{2}\left(\mu_{1}^{2}-\mu_{0}^{2}\right)-\ln k}{n\left(\mu_{1}-\mu_{0}\right)} .
$$

Solution (cont). Therefore we select K such that

$$
C=\left\{\boldsymbol{x}: \frac{L_{0}(\boldsymbol{x})}{L_{1}(\boldsymbol{x})} \leq k\right\}=\{\boldsymbol{x}: \bar{x} \geq K\}
$$

is a critical region of size α. In other words, we need to find K such that

$$
\alpha=\int_{C} f\left(\boldsymbol{x} ; \mu_{0}\right) d \boldsymbol{x}=\mathrm{P}\left(\bar{X} \geq K ; \mu=\mu_{0}\right)=\mathrm{P}\left(\frac{\bar{X}-\mu_{0}}{1 / \sqrt{n}} \geq \frac{K-\mu_{0}}{1 / \sqrt{n}}\right)
$$

or equivalently

$$
K=\mu_{0}+\frac{z_{\alpha}}{\sqrt{n}}
$$

where z_{α} is the value such that $\mathrm{P}\left(Z \geq z_{\alpha}\right)=\alpha$ for $Z \sim N(0,1)$.

In summary, we choose \bar{X} as the test statistic and reject H_{0} if $\bar{x} \geq K=$ $\mu_{0}+\frac{z_{\alpha}}{\sqrt{n}}$. By Neyman-Pearson Lemma, C is the most powerful critical region.

Let R_{0} and R_{1} denote the regions of θ specified by H_{0} and H_{1}. Suppose we determined a test statistic and a critical region C, denote

$$
\begin{aligned}
\alpha(\theta) & =\mathrm{P}(\text { Commit to Type I error when the parameter is } \theta) \\
& =\mathrm{P}(\text { Test statistic is in } C \text { when the parameter is } \theta) \\
\beta(\theta) & =\mathrm{P}(\text { Commit to Type II error when the parameter is } \theta) \\
& =\mathrm{P}\left(\text { Test statistic is in } C^{\prime} \text { when the parameter is } \theta\right)
\end{aligned}
$$

Then we define the power function on $R_{0} \cup R_{1}$ of this test as

$$
\pi(\theta)=\int_{C} f(\boldsymbol{x} ; \theta) d \boldsymbol{x}= \begin{cases}\alpha(\theta), & \text { if } \theta \in R_{0} \\ 1-\beta(\theta), & \text { if } \theta \in R_{1}\end{cases}
$$

Example. Consider a hypothesis test on medication effectiveness with

$$
H_{0}: \theta \geq 0.90 \quad \text { vs } \quad H_{1}: \theta<0.90 .
$$

Suppose we conduct trials on 20 persons, use $X \sim \operatorname{Binomial}(20, \theta)$ as the test statistic, and set the critical region $C=\{x: x \leq 14\}$. Find the power function of this test.

Solution. For any θ, we have

$$
\alpha(\theta)=1-\beta(\theta)=\sum_{x=0}^{14}\binom{20}{x} \theta^{x}(1-\theta)^{20-x} .
$$

Hence the power function is

$$
\pi(\theta)=\sum_{x=0}^{14}\binom{20}{x} \theta^{x}(1-\theta)^{20-x}
$$

for $\theta \in R_{0}=[0.90,1]$ and $\theta \in R_{1}=[0,0.90)$.

Here is the plot of π :

- $\pi(\theta)$ is always between 0 and 1 .
- The shape of $\pi(\theta)$ depends on the choice of C. For example, if $C=\{x$: $x \leq 15\}$, then curve of $\pi(\theta)$ will be slightly higher.
- For continuous distributions and the critical region C having size α, we have $\pi\left(\theta^{*}\right)=\alpha$ where θ^{*} is the boundary of R_{0}.
- Ideally, we want $\pi(\theta)$ to be close to 0 when $\theta \in R_{0}$ and 1 when $\theta \in R_{1}$, like the dashed curve above.

Consider continuous distributions. If H_{0} is a simple hypothesis, i.e., $R_{0}=$ $\left\{\theta_{0}\right\}$ is a singleton, then any critical region of size α must have $\pi\left(\theta_{0}\right)=\alpha$. Then we want to choose C such that $\pi(\theta)$ is as large as possible for every $\theta \neq \theta_{0}$.

If C is a critical region of size α with power function π_{C}, and $\pi_{C}(\theta) \geq \pi_{D}(\theta)$ for all θ and any critical region D of size α with power function π_{D}, then C is called the uniformly most powerful critical region.

Suppose there are three choices of C_{1}, C_{2}, C_{3}, corresponding to $\pi_{C_{1}}$ (dotted), $\pi_{C_{2}}$ (dashed), $\pi_{C_{3}}$ (solid) respectively:

- C_{1} is uniformly more powerful than C_{2}.
- C_{1} is not uniformly more powerful than C_{3}, nor vice versa.
- If $R_{1}=\left\{\theta: \theta>\theta_{0}\right\}$, then C_{3} is uniformly more powerful than C_{1}.

Recall that Neyman-Pearson Lemma provides a means to construct the most powerful critical region when both H_{0} and H_{1} are simple hypotheses.

For cases where at least one of H_{0} and H_{1} is composite, we can modify the method in Neyman-Pearson Lemma to construct a critical region (which determines the test) of satisfactory power.

Let Ω denote the set of all possible values of θ, and R_{i} the subset of Ω specified by H_{i} for $i=0,1$. (For simplicity, we only consider $R_{1}=R_{0}^{\prime}$.) For any random sample of size n, define

$$
\lambda(\boldsymbol{x})=\frac{\max _{\theta \in R_{0}} f(\boldsymbol{x} ; \theta)}{\max _{\theta \in \Omega} f(\boldsymbol{x} ; \theta)}=\frac{L\left(\theta^{*} ; \boldsymbol{x}\right)}{L\left(\theta^{* *} ; \boldsymbol{x}\right)}
$$

where $f(\boldsymbol{x} ; \theta)$ is the joint pdf of the random sample at $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right), \theta^{*}$ and $\theta^{* *}$ are the maximum likelihood estimates of the likelihood function $L(\cdot ; \boldsymbol{x})$ on R_{0} and Ω respectively.

Notice that $0 \leq \lambda(x) \leq 1$ since the numerator is the maximum of $L(\theta ; \boldsymbol{x})$ on a region R_{0} smaller than Ω. Intuitively, if $\lambda(\boldsymbol{x})$ is small, then we should reject H_{0}.

We define the likelihood ratio statistic \wedge :

$$
\wedge=\lambda(\boldsymbol{X}), \quad \text { where } \boldsymbol{X}=\left(X_{1}, \ldots, X_{n}\right) .
$$

Then the critical region C specified by

$$
C=\{\lambda(x) \leq k\}
$$

for some $0<k<1$ determines a hypothesis test, called likelihood ratio test, of

$$
H_{0}: \theta \in R_{0} \quad \text { vs } \quad H_{1}: \theta \in R_{0}^{\prime} .
$$

If H_{0} is simple, then $R_{0}=\left\{\theta_{0}\right\}$ is a singleton, and k should be chosen such that the size of C is α. In other words, k is chosen such that

$$
\mathrm{P}\left(\lambda(\boldsymbol{X}) \leq k ; \theta_{0}\right)=\int_{C} f\left(\boldsymbol{x} ; \theta_{0}\right) d x=\alpha
$$

where $C=\{\lambda(x) \leq k\}$.

If H_{0} is composite, then k should be chosen such that the power function $\pi(\theta)$ of C determined by k attains maximum value α over R_{0}. In other words, k is chosen such that

$$
\max _{\theta \in R_{0}} \mathrm{P}(\lambda(\boldsymbol{X}) \leq k ; \theta)=\max _{\theta \in R_{0}} \int_{C} f(\boldsymbol{x} ; \theta) d x=\alpha
$$

where $C=\{\lambda(\boldsymbol{x}) \leq k\}$.

Example. Find the critical region of the likelihood ratio test for

$$
H_{0}: \mu=\mu_{0} \quad \text { vs } \quad H_{1}: \mu \neq \mu_{0}
$$

on basis of a random sample of size n from normal population $N\left(\mu, \sigma^{2}\right)$ with known σ^{2}.

Solution. We note that $R_{0}=\left\{\mu_{0}\right\}$ and hence the maximizer of the likelihood function on R_{0} is μ_{0}. Hence

$$
\max _{\mu \in R_{0}} f(\boldsymbol{x} ; \mu)=f\left(\boldsymbol{x} ; \mu_{0}\right)=\left(2 \pi \sigma^{2}\right)^{-n / 2} e^{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu_{0}\right)^{2}},
$$

where $f(\boldsymbol{x} ; \mu)$ is the joint pdf of the random sample $\boldsymbol{X}=\left(X_{1}, \ldots, X_{n}\right)$ when the mean is μ.

Note that $\Omega=\mathbb{R}$ and hence the maximizer of the likelihood on Ω is \bar{x}, and

$$
\max _{\mu \in \Omega} f(\boldsymbol{x} ; \mu)=f(\boldsymbol{x} ; \bar{x})=\left(2 \pi \sigma^{2}\right)^{-n / 2} e^{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} .
$$

Solution (cont). Therefore we have

$$
\lambda(\boldsymbol{x})=\frac{f\left(\boldsymbol{x} ; \mu_{0}\right)}{f(\boldsymbol{x} ; \bar{x})}=\frac{\left(2 \pi \sigma^{2}\right)^{-n / 2} e^{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu_{0}\right)^{2}}}{\left(2 \pi \sigma^{2}\right)^{-n / 2} e^{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}}=e^{-\frac{n}{2 \sigma^{2}}\left(\bar{x}-\mu_{0}\right)^{2}}
$$

Thus the likelihood ratio statistics $\Lambda=\lambda(\boldsymbol{X})$, and the critical region C of the likelihood ratio test is given by

$$
C=\{\lambda: \lambda=\lambda(\boldsymbol{x}) \leq k\}
$$

for some $k \in(0,1)$ such that the size of C is α.

Notice that $\lambda(\boldsymbol{x}) \leq k$ if any only if

$$
\left|\bar{x}-\mu_{0}\right| \geq\left(-\frac{2 \sigma^{2}}{n} \ln k\right)^{1 / 2}=: K
$$

Solution (cont). On the other hand, we know $\bar{X} \sim N\left(\mu_{0}, \frac{\sigma^{2}}{n}\right)$ when the mean is μ_{0}, which implies

$$
\mathrm{P}\left(\left|\bar{X}-\mu_{0}\right| \geq z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}\right)=\alpha
$$

Hence we have $K=z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}$.
Therefore the likelihood ratio test reduces to the test given by

$$
\left|\bar{x}-\mu_{0}\right| \geq z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}
$$

Usually it is not difficult to obtain likelihood ratio test statistics (we need to find maximizers of likelihood function over R_{0} and Ω explicitly). For instance, in the previous example, we get

$$
\Lambda=\lambda(\boldsymbol{X})=e^{-\frac{n}{2 \sigma^{2}}\left(\bar{X}-\mu_{0}\right)^{2}} .
$$

If H_{0} is simple, then no maximization is needed for the numerator.
However, it can be difficult to derive the probability distribution of \wedge. In the previous example, we have normal population and thus get

$$
-2 \ln \wedge=\frac{(\bar{X}-\mu)^{2}}{1 / n}=\left(\frac{\bar{X}-\mu}{1 / \sqrt{n}}\right)^{2} \sim \chi_{1}^{2} .
$$

It is shown that $-2 \ln \wedge$ approximately follows χ_{1}^{2} distribution for other types of populations when n is large. We can construct critical regions based on this approximation.

Now we consider several typical hypothesis tests involving means, variances, and proportions.

A statistical test is called a test of significance if it specifies a simple null hypothesis H_{0}, a composite alternative hypothesis H_{1}, and $\alpha \in(0,1)$ (α is the size of the critical region). Here α is called the level of significance.

Consider a null hypothesis $H_{0}: \theta=\theta_{0}$ where θ is a scalar parameter.
If $H_{1}: \theta \neq \theta_{0}$, then H_{1} is a two-sided alternative hypothesis, and we reject H_{0} if the estimate $\hat{\theta}$ is such that $|\hat{\theta}-\theta|$ large. This is called a two-sided test.

If $H_{1}: \theta<\theta_{0}$, then H_{1} is a one-sided alternative hypothesis, and we reject H_{0} if the estimate $\hat{\theta}$ is such that $\theta_{0}-\theta$ large. This is called a one-sided test.

Example. Consider a normal distribution $N\left(\mu, \sigma^{2}\right)$ with known σ^{2}. Suppose we have a two-sided test with level of significance α about the mean μ :

$$
H_{0}: \mu=\mu_{0} \quad \text { vs } \quad H_{1}: \mu \neq \mu_{0}
$$

Then we can use \bar{X} as the test statistic and set the critical region C as

$$
\left|\bar{x}-\mu_{0}\right| \geq z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}
$$

Example. Consider a normal distribution $N\left(\mu, \sigma^{2}\right)$ with known σ^{2}. Suppose we have a one-sided test with level of significance α about the mean μ :

$$
H_{0}: \mu=\mu_{0} \quad \text { vs } \quad H_{1}: \mu>\mu_{0} .
$$

Then we can use \bar{X} as the test statistic and set the critical region C as

$$
\bar{x} \geq \mu_{0}+z_{\alpha} \frac{\sigma}{\sqrt{n}} .
$$

Example. Consider a normal distribution $N\left(\mu, \sigma^{2}\right)$ with known σ^{2}. Suppose we have a one-sided test with level of significance α about the mean μ :

$$
H_{0}: \mu=\mu_{0} \quad \text { vs } \quad H_{1}: \mu<\mu_{0}
$$

Then we can use \bar{X} as the test statistic and set the critical region C as

$$
\bar{x} \leq \mu_{0}-z_{\alpha} \frac{\sigma}{\sqrt{n}}
$$

Traditionally, it has been the custom to outline tests of hypotheses by means of the following steps:

- Step 1: Formulate H_{0}, H_{1}, and specify α.
- Step 2: Using the sampling distribution of an appropriate test statistic, determine a critical region of size α.
- Step 3: Determine the value of the test statistic from the sample data.
- Step 4: Check whether the value of the test statistic falls into the critical region and, accordingly, reject the null hypothesis, or reserve judgment. (Note that we do not accept the null hypothesis because β, the probability of false acceptance, is not specified in a test of significance.)

With the advent of computers, we can also compute the p-value based on the observation of random sample. For example, the p-value $=\mathrm{P}(\bar{X} \geq \bar{x})$ where \bar{x} is the value of the sample mean obtained in the one-sided test

$$
H_{0}: \mu=\mu_{0} \quad \text { vs } \quad H_{1}: \mu>\mu_{0} .
$$

As we can see, the p-value is the lowest level of significance at which the null hypothesis could have been rejected.

We can modify the steps of hypothesis tests if we opt to use p-value as follows:

- Step 1: Formulate H_{0}, H_{1}, and specify α.
- Step 2': Specify the test statistic.
- Step 3': Determine the value of the test statistic and the corresponding p-value from the sample data.
- Step 4': Check whether the p-value is less than or equal to α, accordingly, reject the null hypothesis, or reserve judgment.

Example. Suppose that it is known from experience that the standard deviation of the weight of 8 -ounce packages of cookies made by a certain bakery is 0.16 ounce. To check whether its production is under control on a given day, that is, to check whether the true average weight of the packages is 8 ounces, employees select a random sample of 25 packages and find that their mean weight is $x=8.091$ ounces. Since the bakery stands to lose money when $\mu>8$ and the customer loses out when $\mu<8$, test the null hypothesis $\mu=8$ against the alternative hypothesis $\mu \neq 8$ at the 0.01 level of significance.

Key information: Normal population $N\left(\mu, \sigma^{2}\right)$ with $\sigma=0.16$. Want to test

$$
H_{0}: \mu=8 \quad \text { vs } \quad H_{1}: \mu \neq 8
$$

with level of significance $\alpha=0.01$. Obtained $\bar{x}=8.091$ from a random sample of size $n=25$.

Solution. We proceed with the four steps:

- Step 1. Set up the test

$$
H_{0}: \mu=8 \quad \text { vs } \quad H_{1}: \mu \neq 8
$$

with level of significance $\alpha=0.01$.

- Step 2. Decide to use test statistic $Z=\frac{\bar{X}-\mu_{0}}{\sigma / \sqrt{n}}$ and rejection region

$$
|z|=\left|\frac{\bar{x}-\mu_{0}}{\sigma / \sqrt{n}}\right| \geq z_{\alpha / 2}=z_{0.005}=2.575
$$

- Step 3. Substituting the values $\bar{x}=8.091, n=25, \sigma=0.16$, we obtain

$$
z=\frac{8.091-8}{0.16 / \sqrt{25}}=2.84
$$

- Step 4. Since $z=2.84>2.575=z_{0.005}$, we reject H_{0}.

Example. Suppose that 100 high-performance tires made by a certain manufacturer lasted on the average 21,819 miles with a standard deviation of 1,295 miles. Test the null hypothesis $\mu=22,000$ miles against the alternative hypothesis $\mu<22,000$ miles at the 0.05 level of significance.

Key information: Normal population $N\left(\mu, \sigma^{2}\right)$ with $\sigma=1$, 295. Want to test

$$
H_{0}: \mu=22,000 \quad \text { vs } \quad H_{1}: \mu<22,000
$$

with level of significance $\alpha=0.05$. Obtained $\bar{x}=21,819$ from a random sample of size $n=100$.

Solution. We proceed with the four steps:

- Step 1. Set up the test

$$
H_{0}: \mu=22,000 \quad \text { vs } \quad H_{1}: \mu<22,000
$$

with level of significance $\alpha=0.05$.

- Step 2. Decide to use test statistic $Z=\frac{\bar{X}-\mu_{0}}{\sigma / \sqrt{n}}$ and rejection region

$$
z=\frac{\bar{x}-\mu_{0}}{\sigma / \sqrt{n}} \leq-z_{\alpha}=-z_{0.05}=-1.645
$$

- Step 3. Substituting the values $\bar{x}=21,819, n=100, \sigma=1,295$, we obtain

$$
z=\frac{21819-22000}{1295 / \sqrt{100}}=-1.40
$$

- Step 4. Since $z=-1.40>-1.645=-z_{0.05}$, we do not reject H_{0}.

Example. The specifications for a certain kind of ribbon call for a mean breaking strength of 185 pounds. If five pieces randomly selected from different rolls have breaking strengths of 171.6, 191.8, 178.3, 184.9, and 189.1 pounds, test the null hypothesis $\mu=185$ pounds against the alternative hypothesis $\mu<185$ pounds at the 0.05 level of significance.

Key information: Normal population $N\left(\mu, \sigma^{2}\right)$ with unknown σ. Want to test

$$
H_{0}: \mu=185 \quad \text { vs } \quad H_{1}: \mu<185
$$

with level of significance $\alpha=0.05$. Obtained the following values of random sample of size $n=5$:

x_{1}	x_{2}	x_{3}	x_{4}	x_{5}
171.6	191.8	178.3	184.9	189.1

We need to use t distribution since $n<30$.

Solution. We proceed with the four steps:

- Step 1. Set up the test

$$
H_{0}: \mu=185 \quad \text { vs } \quad H_{1}: \mu<185
$$

with level of significance $\alpha=0.05$.

- Step 2. Decide to use test statistic $T=\frac{\bar{X}-\mu_{0}}{S / \sqrt{n}}$ and rejection region

$$
t=\frac{\bar{x}-\mu_{0}}{s / \sqrt{n}} \leq-t_{\alpha, n-1}=-t_{0.05,4}=-2.132
$$

- Step 3. Based on the data table we obtain the values $\bar{x}=183.1, n=5$, $s=8.2$, we obtain

$$
t=\frac{183.1-185}{8.2 / \sqrt{5}}=-0.51
$$

- Step 4. Since $t=-0.51>-2.132=-z_{0.05}$, we do not reject H_{0}.

Example. An experiment is performed to determine whether the average nicotine content of one kind of cigarette exceeds that of another kind by 0.20 milligram. If $n_{1}=50$ cigarettes of the first kind had an average nicotine content of $x_{1}=2.61$ milligrams with a standard deviation of $\sigma_{1}=0.12$ milligram, whereas $n_{2}=40$ cigarettes of the other kind had an average nicotine content of $\bar{x}_{2}=2.38$ milligrams with a standard deviation of $\sigma_{2}=0.14$ milligram, test the null hypothesis $\mu_{1}-\mu_{2}=0.20$ against the alternative hypothesis $\mu_{1}-\mu_{2} \neq 0.20$ at the 0.05 level of significance. Base the decision on the p-value corresponding to the value of the appropriate test statistic.

Key information: Two normal populations $N\left(\mu_{i}, \sigma_{i}^{2}\right)$ with $\sigma_{1}=0.12$ and $\sigma_{2}=0.14$. Want to test

$$
H_{0}: \mu_{1}-\mu_{2}=0.20 \quad \text { vs } \quad H_{1}: \mu_{1}-\mu_{2} \neq 0.20
$$

with level of significance $\alpha=0.05$. Obtained $\bar{x}_{1}=2.61$ with $n_{1}=50$ and $\bar{x}_{2}=2.38$ with $n_{2}=40$. Use p-value.

Remark. Since $n_{1}, n_{2} \geq 30$, we can use sample standard deviations s_{i} in place of σ_{i} when the latter are unknown.

Solution. We proceed with the four steps:

- Step 1. Set up the test

$$
H_{0}: \mu_{1}-\mu_{2}=0.20 \quad \text { vs } \quad H_{1}: \mu_{1}-\mu_{2} \neq 0.20
$$

with level of significance $\alpha=0.05$. Let $\delta=0.20$.

- Step 2'. Decide to use test statistic $Z=\frac{\left(\bar{X}_{1}-\bar{X}_{2}\right)-\delta}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}}$.
- Step 3'. Substituting the values $\bar{x}_{1}=2.61, \bar{x}_{2}=2.38, \delta=0.20$, $\sigma_{1}=0.12, \sigma_{2}=0.14, n_{1}=50$, and $n_{2}=40$ into this formula, we get

$$
z=\frac{(2.61-2.38)-0.20}{\sqrt{\frac{0.12^{2}}{50}+\frac{0.14^{2}}{40}}}=1.08
$$

Therefore the p-value is $2 \cdot(0.5000-0.3599)=0.2802$, where $\mathrm{P}(0 \leq$ $\left.Z_{0} \leq 1.08\right)=0.3599$ for $Z_{0} \sim N(0,1)$.

- Step 4'. Since the p-value $0.2802>0.05$, we do not reject H_{0}.

Example. In the comparison of two kinds of paint, a consumer testing service finds that four 1 -gallon cans of one brand cover on the average 546 square feet with a standard deviation of 31 square feet, whereas four 1-gallon cans of another brand cover on the average 492 square feet with a standard deviation of 26 square feet. Assuming that the two populations sampled are normal and have equal variances, test the null hypothesis $\mu_{1}-\mu_{2}=0$ against the alternative hypothesis $\mu_{1}-\mu_{2}>0$ at the 0.05 level of significance. This is an example of two-sample t test.

Key information: Two normal populations $N\left(\mu_{i}, \sigma_{i}^{2}\right)$ with unknown but equal σ_{1} and σ_{2}. Want to test

$$
H_{0}: \mu_{1}-\mu_{2}=0 \quad \text { vs } \quad H_{1}: \mu_{1}-\mu_{2}>0
$$

with level of significance $\alpha=0.05$. Obtained $\bar{x}_{1}=546, s_{1}=31$ with $n_{1}=4$ and $\bar{x}_{2}=492, s_{2}=26$ with $n_{2}=4$. Notice the small sample sizes. We need to use t distribution with pooled sample variance.

Solution. We proceed with the four steps:

- Step 1. Set up the test

$$
H_{0}: \mu_{1}-\mu_{2}=0 \quad \text { vs } \quad H_{1}: \mu_{1}-\mu_{2}>0
$$

with level of significance $\alpha=0.05$. Let $\delta=0$.

- Step 2. Decide to use test statistic

$$
T=\frac{\bar{X}_{1}-\bar{X}_{2}-\delta}{S_{p} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}, \quad \text { where } \quad S_{p}^{2}=\frac{\left(n_{1}-1\right) S_{1}^{2}+\left(n_{2}-1\right) S_{2}^{2}}{n_{1}+n_{2}-2}
$$

and set rejection region as $t>t_{\alpha, n_{1}+n_{2}-2}=t_{0.05,6}=1.943$.

Solution (cont).

- Step 3. Substituting the values $\bar{x}_{1}=546, \bar{x}_{2}=492, \delta=0, s_{1}=31$, $s_{2}=26, n_{1}=4$, and $n_{2}=4$ into this formula, we get

$$
\begin{aligned}
s_{p}^{2} & =\frac{(4-1) 31^{2}+(4-1) 26^{2}}{4+4-2}=28.609^{2} \\
t & =\frac{546-492-0}{28.609 \sqrt{\frac{1}{4}+\frac{1}{4}}}=2.67
\end{aligned}
$$

- Step 4. Since $t=2.67>t_{0.05,6}=1.943$, we reject H_{0}.

Example. Suppose that the uniformity of the thickness of a part used in a semiconductor is critical and that measurements of the thickness of a random sample of 18 such parts have the variance $s_{2}=0.68$, where the measurements are in thousandths of an inch. The process is considered to be under control if the variation of the thicknesses is given by a variance not greater than 0.36 . Assuming that the measurements constitute a random sample from a normal population, test the null hypothesis $\sigma^{2}=0.36$ against the alternative hypothesis $\sigma^{2}>0.36$ at the 0.05 level of significance.

Key information: Normal population $N\left(\mu, \sigma^{2}\right)$ with unknown σ. Want to test

$$
H_{0}: \sigma^{2}=0.36 \quad \text { vs } \quad H_{1}: \sigma^{2}>0.36
$$

with level of significance $\alpha=0.05$. Obtained sample variance $s^{2}=0.68$ of random sample of size $n=18$.

Solution. We proceed with the four steps:

- Step 1. Set up the test

$$
H_{0}: \sigma^{2}=0.36 \quad \text { vs } \quad H_{1}: \sigma^{2}>0.36
$$

with level of significance $\alpha=0.05$. Denote $\sigma_{0}^{2}=0.36$.

- Step 2. Decide to use test statistic $\chi^{2}=\frac{(n-1) S^{2}}{\sigma_{0}^{2}}$ and rejection region

$$
\chi^{2}>\chi_{0.05,17}^{2}=27.587
$$

- Step 3. Based on the data table we obtain the values $s^{2}=0.68, n=18$, we obtain

$$
\chi^{2}=\frac{17 \cdot 0.68}{0.36}=32.11
$$

- Step 4. Since $\chi^{2}=32.11>27.587=\chi_{0.05,17}^{2}$, we reject H_{0}.

Example. In comparing the variability of the tensile strength of two kinds of structural steel, an experiment yielded the following results: $n_{1}=13$, $s_{1}^{2}=19.2, n_{2}=16$, and $s_{2}^{2}=3.5$, where the units of measurement are 1,000 pounds per square inch. Assuming that the measurements constitute independent random samples from two normal populations, test the null hypothesis $\sigma_{1}^{2}=\sigma_{2}^{2}$ against the alternative $\sigma_{1}^{2} \neq \sigma_{2}^{2}$ at the 0.02 level of significance.

Key information: Two normal populations $N\left(\mu_{i}, \sigma_{i}^{2}\right)$ with unknown σ_{i}. Want to test

$$
H_{0}: \sigma_{1}^{2}=\sigma_{2}^{2} \quad \text { vs } \quad H_{1}: \sigma_{1}^{2} \neq \sigma_{2}^{2}
$$

with level of significance $\alpha=0.02$. Obtained data $n_{1}=13, s_{1}^{2}=19.2$, $n_{2}=16$, and $s_{2}^{2}=3.5$.

Solution. We proceed with the four steps:

- Step 1. Set up the test

$$
H_{0}: \sigma_{1}^{2}=\sigma_{2}^{2} \quad \text { vs } \quad H_{1}: \sigma_{1}^{2} \neq \sigma_{2}^{2}
$$

with level of significance $\alpha=0.02$.

- Step 2. Decide to use test statistic $\frac{S_{1}^{2}}{S_{2}^{2}}$ and rejection region

$$
\frac{s_{1}^{2}}{s_{2}^{2}} \geq f_{\alpha / 2, n_{1}-1, n_{2}-1}=f_{0.01,12,15}=3.67
$$

- Step 3. Based on the data table we obtain the values $s_{1}^{2}=19.2, s_{2}^{2}=$ 3.5, we obtain

$$
\frac{s_{1}^{2}}{s_{2}^{2}}=\frac{19.2}{3.5}=5.49
$$

- Step 4. Since $\frac{s_{1}^{2}}{s_{2}^{2}}=5.49>3.67=f_{0.02,12,15}$, we reject H_{0}.

Example. If $x=4$ of $n=20$ patients suffered serious side effects from a new medication, test the null hypothesis $\theta=0.50$ against the alternative hypothesis $\theta \neq 0.50$ at the 0.05 level of significance. Here θ is the true proportion of patients suffering serious side effects from the new medication.

Key information: Binomial distribution Binomial $(20, \theta)$. Want to test

$$
H_{0}: \theta=0.50 \quad \text { vs } \quad H_{1}: \theta \neq 0.50
$$

with level of significance $\alpha=0.05$. Obtained data $x=4$ and $n=20$. (Note the small sample size.)

Solution. We proceed with the four steps:

- Step 1. Set up the test

$$
H_{0}: \theta=0.50 \quad \text { vs } \quad H_{1}: \theta \neq 0.50
$$

with level of significance $\alpha=0.05$.

- Step 2'. Decide to use test statistic X.
- Step 3'. Based on $x=4$ we obtain

$$
\mathrm{P}(X \leq x)=\mathrm{P}(X \leq 4)=0.0059
$$

The p-value is $2 \cdot 0.0059=0.0118$.

- Step 4'. Since p-value $0.0118<0.05$, we reject H_{0}.

Example. An oil company claims that less than 20 percent of all car owners have not tried its gasoline. Test this claim at the 0.01 level of significance if a random check reveals that 22 of 200 car owners have not tried the oil company's gasoline.

Key information: Binomial distribution Binomial(200, θ). Want to test

$$
H_{0}: \theta=0.20 \quad \text { vs } \quad H_{1}: \theta<0.20
$$

with level of significance $\alpha=0.01$. Obtained data $x=22$ and $n=200$. (Note the large sample size, we can use normal distribution for approximation.)

Solution. We proceed with the four steps:

- Step 1. Set up the test

$$
H_{0}: \theta=0.20 \quad \text { vs } \quad H_{1}: \theta<0.20
$$

with level of significance $\alpha=0.01$. Denote $\theta_{0}=0.20$.

- Step 2. Decide to use test statistic $Z=\frac{X-n \theta_{0}}{\sqrt{n \theta_{0}\left(1-\theta_{0}\right)}}$ and reject if $z<$ $-z_{0.01}=-2.33$.
- Step 3. Based on $x=22, n=200$, we obtain

$$
z=\frac{22-200 \cdot 0.20}{\sqrt{200 \cdot 0.20 \cdot(1-0.20)}}=-3.18
$$

- Step 4. Since $z=-3.18<-2.33$, we reject H_{0}.

Consider the scenario with k proportions $\theta_{1}, \ldots, \theta_{k}$:

	\# Success	\# Failure
Sample 1	x_{1}	$n_{1}-x_{1}$
Sample 2	x_{2}	$n_{2}-x_{2}$
\vdots	\vdots	\vdots
Sample k	x_{k}	$n_{k}-x_{k}$

Suppose we are interested in the following test:

$$
H_{0}: \theta_{1}=\cdots=\theta_{k}=\theta_{0} \quad \text { vs } \quad H_{1}: \text { not every } \theta_{k} \text { equals } \theta_{0}
$$

with level of significance α. Recall that for independent $X_{i} \sim \operatorname{Binomial}\left(n_{i}, \theta_{i}\right)$ with large n_{i} there is

$$
\sum_{i=1}^{k} \frac{\left(X_{i}-n_{i} \theta_{i}\right)^{2}}{n_{i} \theta_{i}\left(1-\theta_{i}\right)} \sim \chi_{k}^{2}
$$

So we can use $\chi^{2}=\sum_{i=1}^{k} \frac{\left(x_{i}-n_{i} \theta_{0}\right)^{2}}{n_{i} \theta_{0}\left(1-\theta_{0}\right)}$ and reject H_{0} if $\chi^{2}>\chi_{\alpha, k}^{2}$.

Usually θ_{0} is unknown, so we instead consider the test

$$
H_{0}: \theta_{1}=\cdots=\theta_{k} \quad \text { vs } H_{1}: \theta_{k} \text { 's are not all equal }
$$

with level of significance α. In this case, we substitute θ with the pooled estimate:

$$
\hat{\theta}=\frac{x_{1}+\cdots+x_{k}}{n_{1}+\cdots+n_{k}}
$$

and reject H_{0} if

$$
\sum_{i=1}^{k} \frac{\left(x_{i}-n_{i} \widehat{\theta}\right)^{2}}{n_{i} \widehat{\theta}(1-\widehat{\theta})}>\chi_{\alpha, k-1}^{2}
$$

Note that we lose one degree of freedom since $\hat{\theta}$ is estimated from data!

	\# Success	\# Failure
Sample 1	x_{1}	$n_{1}-x_{1}$
Sample 2	x_{2}	$n_{2}-x_{2}$
\vdots	\vdots	\vdots
Sample k	x_{k}	$n_{k}-x_{k}$

It is customary to consider this data table as a $k \times 2$ matrix with

$$
\begin{aligned}
f_{i j} & =\text { the }(i, j) \text { th entry } \\
\widehat{\theta} & =\frac{x_{1}+\cdots+x_{k}}{n_{1}+\cdots+n_{k}} \\
e_{i 1} & =n_{i} \hat{\theta} \\
e_{i 2} & =n_{i}(1-\widehat{\theta})
\end{aligned}
$$

Then we can show that

$$
\sum_{i=1}^{k} \frac{\left(x_{i}-n_{i} \widehat{\theta}\right)^{2}}{n_{i} \widehat{\theta}(1-\widehat{\theta})}=\sum_{j=1}^{2} \sum_{i=1}^{k} \frac{\left(f_{i j}-e_{i j}\right)^{2}}{e_{i j}}
$$

Example. Determine, on the basis of the sample data shown in the following table, whether the true proportion of shoppers favoring detergent A over detergent B is the same in all three cities:

	\# favoring A	\# favoring B
Los Angels	232	168
San Diego	260	240
Fresno	197	263

Notice that the row sums are $400,500,400$. Use the 0.05 level of significance.

Solution. We proceed with the four steps:

- Step 1. Set up the test

$$
H_{0}: \theta_{1}=\theta_{2}=\theta_{3} \quad \text { vs } \quad H_{1}: \theta_{1}, \theta_{2}, \theta_{3} \text { are not all equal }
$$

with level of significance $\alpha=0.05$.

- Step 2. Decide to use test statistic $\sum_{j=1}^{2} \sum_{i=1}^{k} \frac{\left(f_{i j}-e_{i j}\right)^{2}}{e_{i j}}$ and reject H_{0} if

$$
\sum_{j=1}^{2} \sum_{i=1}^{k} \frac{\left(f_{i j}-e_{i j}\right)^{2}}{e_{i j}}>\chi_{\alpha, k-1}^{2}=\chi_{0.05,2}^{2}=5.991
$$

- Step 3. Based on the data table, we obtain

$$
\widehat{\theta}=\frac{232+260+197}{400+500+400}=0.53
$$

and

$$
\begin{array}{ll}
e_{11}=400 \cdot 0.53=212, & \\
e_{12}=400 \cdot 0.47=188 \\
e_{21}=500 \cdot 0.53=265, & \\
e_{22}=500 \cdot 0.47=235 \\
e_{31}=400 \cdot 0.53=212, & \\
e_{32}=400 \cdot 0.47=188
\end{array}
$$

and then

$$
\begin{aligned}
\chi^{2}= & \frac{(232-212)^{2}}{212}+\frac{(260-265)^{2}}{265}+\frac{(197-212)^{2}}{212} \\
& +\frac{(168-188)^{2}}{188}+\frac{(240-235)^{2}}{235}+\frac{(203-188)^{2}}{188} \\
= & 6.48
\end{aligned}
$$

- Step 4. Since $\chi^{2}=6.48>5.991=\chi_{0.05,2}^{2}$, we reject H_{0}.

The method above can be easily extended to $r \times c$ table:

	\# in Class 1	\# in Class 2	\cdots	\# in Class c
Sample 1	f_{11}	f_{12}	\cdots	$f_{1 c}$
Sample 2	f_{21}	f_{22}	\cdots	$f_{2 c}$
\vdots	\vdots	\vdots	\cdots	\vdots
Sample r	$f_{r 1}$	$f_{r 2}$	\cdots	$f_{r c}$

Then we denote

$$
\begin{gathered}
f=\sum_{i=1}^{r} \sum_{j=1}^{c} f_{i j}, \quad f_{i}=\sum_{j=1}^{c} f_{i j}, \quad f_{\cdot j}=\sum_{i=1}^{r} f_{i j} \\
\hat{\theta}_{i} \cdot=\frac{f_{i} \cdot}{f}, \quad \hat{\theta}_{\cdot i}=\frac{f_{\cdot j}}{f}, \quad e_{i j}=\hat{\theta}_{i} \cdot \widehat{\theta}_{\cdot j} f
\end{gathered}
$$

Then we reject H_{0} if

$$
\sum_{j=1}^{r} \sum_{i=1}^{c} \frac{\left(f_{i j}-e_{i j}\right)^{2}}{e_{i j}}>\chi_{\alpha,(r-1)(c-1)}^{2} .
$$

Remark. The degrees of freedom $(r-1)(c-1)$ is the number of free parameters: we only need $(r-1)(c-1)$ terms to fill the whole $r \times c$ matrix since row/column sums and total sum are fixed.

Example. Use the data shown in the following table to test at the 0.01 level of significance whether a person's ability in mathematics is independent of his or her interest in statistics.

	Low in Math	Average in Math	High in Math
Low in Statistics	63	42	15
Average in Statistics	58	61	31
High in Statistics	14	47	29

Solution. We proceed with the four steps:

- Step 1. Set up the test
H_{0} : ability and interests are independent vs H_{1} : not independent with level of significance $\alpha=0.01$.
- Step 2. Decide to use test statistic $\sum_{j=1}^{c} \sum_{i=1}^{r} \frac{\left(f_{i j}-e_{i j}\right)^{2}}{e_{i j}}$ and reject if

$$
\sum_{j=1}^{c} \sum_{i=1}^{r} \frac{\left(f_{i j}-e_{i j}\right)^{2}}{e_{i j}}>\chi_{\alpha,(r-1)(c-1)}^{2}=\chi_{0.01,4}^{2}=13.277
$$

- Step 3. Based on the data table, we obtain $\hat{\theta}, \hat{\theta}_{i \cdot}, \hat{\theta}_{\cdot j}, f_{i .}, f_{\cdot j}, e_{i j}$ etc, and

$$
\chi^{2}=\frac{(63-45.0)^{2}}{45.0}+\frac{(42-50.0)^{2}}{50.0}+\cdots+\frac{(29-18.75)^{2}}{18.75}=32.14
$$

- Step 4. Since $\chi^{2}=32.14>13.277$, we reject H_{0}.

The method developed above can be used to test Goodness of Fit.

Example. Suppose that we want to decide on the basis of the data (observed frequencies f_{i} 's) shown in the following table whether the number of errors a compositor makes in setting a galley of type is a random variable having a Poisson distribution. Use level of significance 0.05 .

We combine the last two rows into one row. To determine a corresponding set of expected frequencies for a random sample from a Poisson population, we first use the mean of the observed distribution to estimate the Poisson parameter λ, getting

$$
\hat{\lambda}=\frac{\sum_{i=0}^{9} i f_{i}}{\sum_{i=0}^{9} f_{i}}=\frac{1,341}{440}=3.05
$$

or approximately $\widehat{\lambda}=3$.

So we obtain expected frequency $e_{i}=400 \times \mathrm{P}(X=i)$, as shown in the following table.

Number of errors	Observed frequency f_{i}	$\mathrm{P}(X=i)$ where $X \sim$ Poisson(3)	Expected frequency e_{i}
0	18	0.0498	21.9
1	53	0.1494	65.7
2	103	0.224	98.6
3	107	0.224	98.6
4	82	0.168	73.9
5	46	0.1008	44.4
6	18	0.0504	22.2
7	10	0.0216	9.5
8	2	0.0081	3.6
9	1	0.0038	1.7

Recall that we combine the last two rows into one row. Then we extract the f_{i} and e_{i} columns to form a 9×2 matrix.

Solution. We proceed with the four steps:

- Step 1. Set up the test
H_{0} : \# errors is a Poisson random variable vs H_{1} : is not Poisson with level of significance $\alpha=0.05$.
- Step 2. Decide to use test statistic $\sum_{i=0}^{8} \frac{\left(f_{i}-e_{i}\right)^{2}}{e_{i}}$ and reject if

$$
\sum_{i=0}^{8} \frac{\left(f_{i}-e_{i}\right)^{2}}{e_{i}}>\chi_{\alpha, m-t-1}^{2}=\chi_{0.05,7}^{2}=14.067
$$

where $m=9$ is the total number of terms in the sum, $t=1$ is the number of independent parameters (only $\widehat{\lambda}$ in this example).

- Step 3. Based on the data table, we obtain

$$
\chi^{2}=\frac{(18-21.9)^{2}}{21.9}+\frac{(53-65.7)^{2}}{65.7}+\cdots+\frac{(3-5.3)^{2}}{5.3}=6.83 .
$$

- Step 4. Since $\chi^{2}=6.83<14.067$, we cannot reject H_{0}.

