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Definitions. We have the following definitions:

• An assertion about one or multiple random variables is called a statistical
hypothesis.

• If a statistical hypothesis completely specifies a distribution (type and pa-
rameters), then it is called a simple hypothesis, otherwise called com-
posite hypothesis.

• In hypothesis testing, we also form an alternative hypothesis, denoted
by H1 (or HA). The original hypothesis is also called a null hypothesis,
denoted by H0.
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Example. A drug company wants to test the effective of a new medication on
certain disease to see if 90% patients receiving the medication recovers. Then
the hypothesis test can be formed as

H0 : recovery rate = 0.9 v.s. H1 : recovery rate = 0.6

where 0.6 is the recovery rate without the medication. Both H0 and H1 are
simple hypothesis.

Example. A tire manufacturer produces a new model of tires and wants to test
if it meets the lifetime standard of 42,000 miles. Then the hypothesis test can
be formed as

H0 : lifetime ≥ 42,000 v.s. H1 : lifetime < 42,000

Both H0 and H1 are composite hypothesis.
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This is the standard procedure to test a statistical hypothesis H0:

• Step 1: Determine the null hypothesis H0 and alternative hypothesis H1.

• Step 2: Design a test statistic as a function of random samples. Partition
the set of possible values of this test statistic into two subsets: accep-
tance region of H0 and rejection region of H0. (The rejection region is
also called the critical region of the test.)

• Step 3: Conduct an experiment and collect data of the random samples.
Compute the value of the test statistic.

• Step 4: Accept (or reject)H0 if the computed value falls in the acceptance
(or rejection) region.
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The test procedure can lead to two types of errors:

• Type I error is made if H0 is rejected when it is true. We denote

α = P(Committing a Type I error)

α is also the size of the critical region, and hence also called the level of
significance of the test.

• Type II error is made if H0 is accepted when it is false. We denote

β = P(Committing a Type II error)

H0 is true H0 is false

Accept H0 No error Type II error prob = β
Reject H0 Type I error prob = α No error
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Example. Suppose that the manufacturer of a new medication wants to test
the null hypothesis θ = 0.90 against the alternative hypothesis θ = 0.60. His
test statistic is X, the observed number of successes (recoveries) in 20 trials,
and he will accept the null hypothesis if x > 14; otherwise, he will reject it.
Find α and β.

Solution. We know X follows Binomial(20, θ). The manufacturer decided that

Acceptance region of H0 = {15,16, . . . ,20}
Rejection region of H0 = {0,1, . . . ,14}

Hence we obtain

α = P(X ≤ 14; θ = 0.90) =
14∑
x=0

(20

x

)
0.90x(1− 0.90)20−x = 0.0114

β = P(X > 14; θ = 0.60) =
20∑

x=15

(20

x

)
0.60x(1− 0.60)20−x = 0.1225
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Trade off between Type I error and Type II error

Ideally, we would like to have both Type I error and Type II error small, so we
have a good chance to make correct decision. However, we cannot reduce
both errors unless we increase the random sample size.

For fixed sample size, if α decreases, then β will increase; and vice versa.

For instance, if the manufacturer would accept H0 if x > 15 instead of x > 14

in the previous example, then

Acceptance region of H0 = {16,17, . . . ,20}
Rejection region of H0 = {0,1, . . . ,15}

which will result in α = 0.0433 and β = 0.0509. We have smaller β but
larger α.
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Example. Suppose that we want to test the null hypothesis that the mean of a
normal population with σ2 = 1 is µ0 against the alternative hypothesis that it
is µ1 where µ1 > µ0. Find the value of K such that x̄ > K provides a critical
region of size α = 0.05 for a random sample of size n.

Solution. If the true mean is µ0, then we know X̄−µ0
1/
√
n
∼ N(0,1). Hence we

find K such that
K − µ0

1/
√
n

= z0.05 = 1.645,

solving which yields that

K = µ0 +
1.645
√
n
.

Hypothesis Testing

EXAMPLE 2

Suppose that we want to test the null hypothesis that the mean of a normal popula-
tion with σ 2 = 1 is µ0 against the alternative hypothesis that it is µ1, where µ1 >µ0.
Find the value of K such that x > K provides a critical region of size α = 0.05 for a
random sample of size n.

Solution
Referring to Figure 1 and the Standard Normal Distribution table of “Statistical
Tables”, we find that z = 1.645 corresponds to an entry of 0.4500 and hence that

1.645 = K −µ0

1/
√

n

It follows that

K = µ0 + 1.645√
n

m0 m1K

a! 0.05b

"x

Figure 1. Diagram for Examples 2 and 3.

EXAMPLE 3

With reference to Example 2, determine the minimum sample size needed to test the
null hypothesis µ0 = 10 against the alternative hypothesis µ1 = 11 with β F 0.06.

Solution
Since β is given by the area of the ruled region of Figure 1, we get

β = P

(

X < 10 + 1.645√
n

;µ = 11

)

= P




Z <

(

10 + 1.645√
n

)

− 11

1/
√

n





= P(Z <−
√

n + 1.645)

and since z = 1.555 corresponds to an entry of 0.5000 − 0.06 = 0.4400 in the Stan-
dard Normal Distribution table of “Statistical Tables”, we set −

√
n + 1.645 equal to

−1.555. It follows that
√

n = 1.645 + 1.555 = 3.200 and n = 10.24, or 11 rounded up
to the nearest integer.

���
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We can observe several properties from the figure (α is the area of the shaded
region, and β is the area of the ruled region):

Hypothesis Testing

EXAMPLE 2

Suppose that we want to test the null hypothesis that the mean of a normal popula-
tion with σ 2 = 1 is µ0 against the alternative hypothesis that it is µ1, where µ1 >µ0.
Find the value of K such that x > K provides a critical region of size α = 0.05 for a
random sample of size n.

Solution
Referring to Figure 1 and the Standard Normal Distribution table of “Statistical
Tables”, we find that z = 1.645 corresponds to an entry of 0.4500 and hence that

1.645 = K −µ0

1/
√

n

It follows that

K = µ0 + 1.645√
n

m0 m1K

a! 0.05b

"x

Figure 1. Diagram for Examples 2 and 3.

EXAMPLE 3

With reference to Example 2, determine the minimum sample size needed to test the
null hypothesis µ0 = 10 against the alternative hypothesis µ1 = 11 with β F 0.06.

Solution
Since β is given by the area of the ruled region of Figure 1, we get

β = P

(

X < 10 + 1.645√
n

;µ = 11

)

= P




Z <

(

10 + 1.645√
n

)

− 11

1/
√

n





= P(Z <−
√

n + 1.645)

and since z = 1.555 corresponds to an entry of 0.5000 − 0.06 = 0.4400 in the Stan-
dard Normal Distribution table of “Statistical Tables”, we set −

√
n + 1.645 equal to

−1.555. It follows that
√

n = 1.645 + 1.555 = 3.200 and n = 10.24, or 11 rounded up
to the nearest integer.

���

• The two curves represent the pdfs of N(µ0,
1
n) and N(µ1,

1
n).

• For fixed n, if we reduce α, then K and β will increase.

• If we increase n, then both curves become sharper and more concen-
trated at their means µ0 and µ1. For the same α value, K will be closer
to µ0. We can also afford smaller α and β simultaneously.
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Example. Suppose that we want to test the null hypothesis that the mean of a
normal population with σ2 = 1 is µ0 = 10 against the alternative hypothesis
that it is µ1 = 11. For fixed α = 0.05, find the minimum sample size n such
that β ≤ 0.06.

Solution. Since α = 0.05, we continue to use z0.05 = 1.645. By the
definition of Type II error, we need

β = P
(
X̄ < 10 +

1.645
√
n

;µ = 11

)

= P

Z <

(
10 + 1.645√

n

)
− 11

1/
√
n


= P(Z < −

√
n+ 1.645) ≤ 0.06.

From the normal distribution table we figure that P(Z < −1.55) = 0.0606,
therefore we need −

√
n+ 1.645 ≤ −1.55, or n ≥ 11.

Xiaojing Ye, Math & Stat, Georgia State University 9



In practice, we want to fix α so that the probability of committing Type I error is
upper bounded by α (for continuous distributions we can attain exactly α, but
for discrete ones we may not, so we only require α to be an upper bound).

Consider a statistical hypothesis of form

H0 : θ = θ0 vs H1 : θ = θ1

For a fixed α, it remains to determine a test statistic and its critical region C to
set up a complete hypothesis test.

If the test statistic and C are chosen (usually when we select a test statistic,
we also determine C, and vice versa) such that they yield the largest 1 − β
(smallest Type II error), then C is called the best critical region or most
powerful critical region.
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When both null and alternative hypotheses are simple, we have explicit ex-
pressions of

L0(x) = f(x; θ0), L1(x) = f(x; θ1),

where f(x; θ) is the joint distribution of the random sample at x = (x1, . . . , xn)

when the distribution parameter is θ.

If H0 holds true, we expect L0(x) to be much larger than L1(x). Therefore,
we use the following way to select C: we specify a number k ∈ R such that

C =
{
x :

L0(x)

L1(x)
≤ k

}
and the size of C is α, i.e.,

P(x ∈ C when θ = θ0) =
∫
C
f(x; θ0) dx =

∫
C
L0(x) dx = α.
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It turns out that this way automatically yields the most powerful critical region:

Neyman-Pearson Lemma. Consider a statistical hypothesis of form

H0 : θ = θ0 vs H1 : θ = θ1.

If k is the number such that

C =
{
x :

L0(x)

L1(x)
≤ k

}
is a critical region of size α, then C is the most powerful critical region.

Proof. Let C′ denote the complement of C. Suppose D is another critical
region of size α. Then

α =
∫
C
L0(x) dx =

∫
C∩D

L0(x) dx +
∫
C∩D′

L0(x) dx

α =
∫
D
L0(x) dx =

∫
C∩D

L0(x) dx +
∫
C′∩D

L0(x) dx
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Proof (cont). Equating the two yields∫
C∩D′

L0(x) dx =
∫
C′∩D

L0(x) dx.

On the other hand, we have∫
C∩D′

L1(x) dx ≥
∫
C∩D′

L0(x)

k
dx (L0(x)

L1(x) ≤ k when x ∈ C)

=
∫
C′∩D

L0(x)

k
dx (use equality above)

≥
∫
C′∩D

L1(x) dx (L0(x)
L1(x) > k when x ∈ C′)

Hence we have

(Power of C) =
∫
C
L1(x) dx =

∫
C∩D

L1(x) dx +
∫
C∩D′

L1(x) dx

≥
∫
C∩D

L1(x) dx +
∫
C′∩D

L1(x) dx

=
∫
D
L1(x) dx = (Power of D).
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Example. A random sample of size n from a normal population with σ2 = 1 is
to be used to test the null hypothesis µ = µ0 against the alternative hypothesis
µ = µ1 where µ1 > µ0. Use the Neyman-Pearson lemma to find the most
powerful critical region of size α.

Solution. We first have

f(x;µ) = (2π)−n/2e−
1
2

∑n
i=1(xi−µ)2

.

Therefore

L0(x)

L1(x)
=
f(x;µ0)

f(x;µ1)
= e

n
2(µ2

1−µ
2
0)+(µ0−µ1)·

∑n
i=1 xi ≤ k

if any only if

x̄ ≥ K :=
n
2(µ2

1 − µ
2
0)− ln k

n(µ1 − µ0)
.
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Solution (cont). Therefore we select K such that

C =
{
x :

L0(x)

L1(x)
≤ k

}
= {x : x̄ ≥ K}

is a critical region of size α. In other words, we need to find K such that

α =
∫
C
f(x;µ0) dx = P(X̄ ≥ K;µ = µ0) = P

(
X̄ − µ0

1/
√
n
≥
K − µ0

1/
√
n

)
or equivalently

K = µ0 +
zα√
n

where zα is the value such that P(Z ≥ zα) = α for Z ∼ N(0,1).

In summary, we choose X̄ as the test statistic and reject H0 if x̄ ≥ K =

µ0 + zα√
n

. By Neyman-Pearson Lemma, C is the most powerful critical region.
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Let R0 and R1 denote the regions of θ specified by H0 and H1. Suppose we
determined a test statistic and a critical region C, denote

α(θ) = P(Commit to Type I error when the parameter is θ)

= P(Test statistic is in C when the parameter is θ)

β(θ) = P(Commit to Type II error when the parameter is θ)

= P(Test statistic is in C′ when the parameter is θ)

Then we define the power function on R0 ∪R1 of this test as

π(θ) =
∫
C
f(x; θ) dx =

α(θ), if θ ∈ R0

1− β(θ), if θ ∈ R1
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Example. Consider a hypothesis test on medication effectiveness with

H0 : θ ≥ 0.90 vs H1 : θ < 0.90.

Suppose we conduct trials on 20 persons, use X ∼ Binomial(20, θ) as the
test statistic, and set the critical region C = {x : x ≤ 14}. Find the power
function of this test.

Solution. For any θ, we have

α(θ) = 1− β(θ) =
14∑
x=0

(20

x

)
θx(1− θ)20−x.

Hence the power function is

π(θ) =
14∑
x=0

(20

x

)
θx(1− θ)20−x

for θ ∈ R0 = [0.90,1] and θ ∈ R1 = [0,0.90).
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Here is the plot of π:

Hypothesis Testing

probabilities α(θ) of getting at most 14 successes for θ = 0.90 and 0.95 and the prob-
abilities β(θ) of getting more than 14 successes for θ = 0.85, 0.80, . . . , 0.50. These are
shown in the following table, together with the corresponding values of the power
function, π(θ):

Probability of Probability of Probability of
type I error type II error rejecting H0

θ α(θ) β(θ) π(θ)

0.95 0.0003 0.0003
0.90 0.0114 0.0114
0.85 0.9326 0.0674
0.80 0.8042 0.1958
0.75 0.6171 0.3829
0.70 0.4163 0.5837
0.65 0.2455 0.7545
0.60 0.1255 0.8745
0.55 0.0553 0.9447
0.50 0.0207 0.9793

The graph of this power function is shown in Figure 2. Of course, it applies only to
the decision criterion of Example 1, the critical region x F 14; but it is of interest to
note how it compares with the power function of a corresponding ideal (infallible)
test criterion, given by the dashed lines of Figure 2.
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Figure 2. Diagram for Example 5.

Power functions play a very important role in the evaluation of statistical tests,
particularly in the comparison of several critical regions that might all be used to
test a given null hypothesis against a given alternative. Incidentally, if we had plot-
ted in Figure 2 the probabilities of accepting H0 (instead of those of rejecting H0),
we would have obtained the operating characteristic curve, OC-curve, of the given
critical region. In other words, the values of the operating characteristic function,
used mainly in industrial applications, are given by 1 −π(θ).

In Section 4 we indicated that in the Neyman–Pearson theory of testing hypo-
theses we hold α, the probability of a type I error, fixed, and this requires that the

���
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• π(θ) is always between 0 and 1.

• The shape of π(θ) depends on the choice of C. For example, if C = {x :

x ≤ 15}, then curve of π(θ) will be slightly higher.

• For continuous distributions and the critical region C having size α, we
have π(θ∗) = α where θ∗ is the boundary of R0.

• Ideally, we want π(θ) to be close to 0 when θ ∈ R0 and 1 when θ ∈ R1,
like the dashed curve above.
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Consider continuous distributions. If H0 is a simple hypothesis, i.e., R0 =

{θ0} is a singleton, then any critical region of size α must have π(θ0) = α.
Then we want to choose C such that π(θ) is as large as possible for every
θ 6= θ0.

If C is a critical region of size α with power function πC , and πC(θ) ≥ πD(θ)

for all θ and any critical region D of size α with power function πD, then C is
called the uniformly most powerful critical region.
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Suppose there are three choices of C1, C2, C3, corresponding to πC1
(dotted),

πC2
(dashed), πC3

(solid) respectively:

Hypothesis Testing

null hypothesis H0 be a simple hypothesis, say, θ = θ0. As a result, the power function
of any test of this null hypothesis will pass through the point (θ0,α), the only point
at which the value of a power function is the probability of making an error. This
facilitates the comparison of the power functions of several critical regions, which
are all designed to test the simple null hypothesis θ = θ0 against a composite alter-
native, say, the alternative hypothesis θ Z θ0. To illustrate, consider Figure 3, giving
the power functions of three different critical regions, or test criteria, designed for
this purpose. Since for each value of θ , except θ0, the values of power functions are
probabilities of making correct decisions, it is desirable to have them as close to 1
as possible. Thus, it can be seen by inspection that the critical region whose power
function is given by the dotted curve of Figure 3 is preferable to the critical region
whose power function is given by the curve that is dashed. The probability of not
committing a type II error with the first of these critical regions always exceeds that
of the second, and we say that the first critical region is uniformly more powerful
than the second; also, the second critical region is said to be inadmissible.

The same clear-cut distinction is not possible if we attempt to compare the
critical regions whose power functions are given by the dotted and solid curves of
Figure 3; in this case the first one is preferable for θ < θ0, while the other is prefer-
able for θ > θ0. In situations like this we need further criteria for comparing power
functions, for instance that of Exercise 27. Note that if the alternative hypothesis
had been θ > θ0, the critical region whose power function is given by the solid curve
would have been uniformly more powerful than the critical region whose power
function is given by the dotted curve.
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Figure 3. Power functions.

In general, when we test a simple hypothesis against a composite alternative, we
specify α, the probability of a type I error, and refer to one critical region of size α as
uniformly more powerful than another if the values of its power function are always
greater than or equal to those of the other, with the strict inequality holding for at
least one value of the parameter under consideration.

DEFINITION 6. UNIFORMLY MOST POWERFUL CRITICAL REGION (TEST). If, for a given
problem, a critical region of size ! is uniformly more powerful than any other
critical region of size !, it is said to be a uniformly most powerful critical region,
or a uniformly most powerful test.

���

• C1 is uniformly more powerful than C2.

• C1 is not uniformly more powerful than C3, nor vice versa.

• If R1 = {θ : θ > θ0}, then C3 is uniformly more powerful than C1.
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Recall that Neyman-Pearson Lemma provides a means to construct the most
powerful critical region when both H0 and H1 are simple hypotheses.

For cases where at least one of H0 and H1 is composite, we can modify
the method in Neyman-Pearson Lemma to construct a critical region (which
determines the test) of satisfactory power.

Let Ω denote the set of all possible values of θ, and Ri the subset of Ω spec-
ified by Hi for i = 0,1. (For simplicity, we only consider R1 = R′0.) For any
random sample of size n, define

λ(x) =
maxθ∈R0

f(x; θ)

maxθ∈Ω f(x; θ)
=

L(θ∗;x)

L(θ∗∗;x)

where f(x; θ) is the joint pdf of the random sample at x = (x1, . . . , xn), θ∗

and θ∗∗ are the maximum likelihood estimates of the likelihood function L(·;x)

on R0 and Ω respectively.
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Notice that 0 ≤ λ(x) ≤ 1 since the numerator is the maximum of L(θ;x) on
a region R0 smaller than Ω. Intuitively, if λ(x) is small, then we should reject
H0.

We define the likelihood ratio statistic Λ:

Λ = λ(X), where X = (X1, . . . , Xn).

Then the critical region C specified by

C = {λ(x) ≤ k}

for some 0 < k < 1 determines a hypothesis test, called likelihood ratio
test, of

H0 : θ ∈ R0 vs H1 : θ ∈ R′0.
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If H0 is simple, then R0 = {θ0} is a singleton, and k should be chosen such
that the size of C is α. In other words, k is chosen such that

P(λ(X) ≤ k; θ0) =
∫
C
f(x; θ0) dx = α

where C = {λ(x) ≤ k}.

IfH0 is composite, then k should be chosen such that the power function π(θ)

of C determined by k attains maximum value α over R0. In other words, k is
chosen such that

max
θ∈R0

P(λ(X) ≤ k; θ) = max
θ∈R0

∫
C
f(x; θ) dx = α

where C = {λ(x) ≤ k}.
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Example. Find the critical region of the likelihood ratio test for

H0 : µ = µ0 vs H1 : µ 6= µ0

on basis of a random sample of size n from normal population N(µ, σ2) with
known σ2.

Solution. We note that R0 = {µ0} and hence the maximizer of the likelihood
function on R0 is µ0. Hence

max
µ∈R0

f(x;µ) = f(x;µ0) = (2πσ2)−n/2e
− 1

2σ2

∑n
i=1(xi−µ0)2

,

where f(x;µ) is the joint pdf of the random sample X = (X1, . . . , Xn) when
the mean is µ.

Note that Ω = R and hence the maximizer of the likelihood on Ω is x̄, and

max
µ∈Ω

f(x;µ) = f(x; x̄) = (2πσ2)−n/2e
− 1

2σ2

∑n
i=1(xi−x̄)2

.
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Solution (cont). Therefore we have

λ(x) =
f(x;µ0)

f(x; x̄)
=

(2πσ2)−n/2e
− 1

2σ2

∑n
i=1(xi−µ0)2

(2πσ2)−n/2e
− 1

2σ2

∑n
i=1(xi−x̄)2

= e
− n

2σ2(x̄−µ0)2
.

Thus the likelihood ratio statistics Λ = λ(X), and the critical region C of the
likelihood ratio test is given by

C = {λ : λ = λ(x) ≤ k}

for some k ∈ (0,1) such that the size of C is α.

Notice that λ(x) ≤ k if any only if

|x̄− µ0| ≥
(
−

2σ2

n
ln k

)1/2
=: K.
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Solution (cont). On the other hand, we know X̄ ∼ N(µ0,
σ2

n ) when the mean
is µ0, which implies

P
(
|X̄ − µ0| ≥ zα/2

σ
√
n

)
= α.

Hence we have K = zα/2
σ√
n

.

Therefore the likelihood ratio test reduces to the test given by

|x̄− µ0| ≥ zα/2
σ
√
n
.
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Usually it is not difficult to obtain likelihood ratio test statistics (we need to find
maximizers of likelihood function over R0 and Ω explicitly). For instance, in
the previous example, we get

Λ = λ(X) = e
− n

2σ2(X̄−µ0)2
.

If H0 is simple, then no maximization is needed for the numerator.

However, it can be difficult to derive the probability distribution of Λ. In the
previous example, we have normal population and thus get

−2 ln Λ =
(X̄ − µ)2

1/n
=
(X̄ − µ

1/
√
n

)2
∼ χ2

1.

It is shown that −2 ln Λ approximately follows χ2
1 distribution for other types of

populations when n is large. We can construct critical regions based on this
approximation.
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Now we consider several typical hypothesis tests involving means, variances,
and proportions.

A statistical test is called a test of significance if it specifies a simple null
hypothesis H0, a composite alternative hypothesis H1, and α ∈ (0,1) (α is
the size of the critical region). Here α is called the level of significance.

Consider a null hypothesis H0 : θ = θ0 where θ is a scalar parameter.

If H1 : θ 6= θ0, then H1 is a two-sided alternative hypothesis, and we reject
H0 if the estimate θ̂ is such that |θ̂ − θ| large. This is called a two-sided test.

If H1 : θ < θ0, then H1 is a one-sided alternative hypothesis, and we reject
H0 if the estimate θ̂ is such that θ0 − θ large. This is called a one-sided test.
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Example. Consider a normal distribution N(µ, σ2) with known σ2. Suppose
we have a two-sided test with level of significance α about the mean µ:

H0 : µ = µ0 vs H1 : µ 6= µ0.

Then we can use X̄ as the test statistic and set the critical region C as

|x̄− µ0| ≥ zα/2
σ
√
n
.

Tests of Hypothesis Involving Means, Variances, and Proportions

Reject H0 Reject H0Accept H0

m0

a/2 a/2

x
m0 za/2

s

n
m0 za/2

s

n

Figure 1. Critical region for two-tailed test.

or

x F µ0 − zα/2 · σ√
n

and x G µ0 + zα/2 · σ√
n

As pictured in Figure 1, the null hypothesis µ = µ0 is rejected if X takes on a value
falling in either tail of its sampling distribution. Symbolically, this critical region can
be written as z F −zα/2 or z G zα/2, where

z = x −µ0

σ/
√

n

Had we used the one-sided alternative µ>µ0, the likelihood ratio technique
would have led to the one-tailed test whose critical region is pictured in Figure 2, and
if we had used the one-sided alternative µ<µ0, the likelihood ratio technique would
have led to the one-tailed test whose critical region is pictured in Figure 3. It stands
to reason that in the first case we would reject the null hypothesis only for values of
X falling into the right-hand tail of its sampling distribution, and in the second case
we would reject the null hypothesis only for values of X falling into the left-hand

a

m0

Accept H0 Reject H0

x
m0 za

s

n

Figure 2. Critical region for one-tailed test (H1: µ>µ0).
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Example. Consider a normal distribution N(µ, σ2) with known σ2. Suppose
we have a one-sided test with level of significance α about the mean µ:

H0 : µ = µ0 vs H1 : µ > µ0.

Then we can use X̄ as the test statistic and set the critical region C as

x̄ ≥ µ0 + zα
σ
√
n
.

Tests of Hypothesis Involving Means, Variances, and Proportions

Reject H0 Reject H0Accept H0

m0

a/2 a/2

x
m0 za/2

s

n
m0 za/2

s

n

Figure 1. Critical region for two-tailed test.

or

x F µ0 − zα/2 · σ√
n

and x G µ0 + zα/2 · σ√
n

As pictured in Figure 1, the null hypothesis µ = µ0 is rejected if X takes on a value
falling in either tail of its sampling distribution. Symbolically, this critical region can
be written as z F −zα/2 or z G zα/2, where

z = x −µ0

σ/
√

n

Had we used the one-sided alternative µ>µ0, the likelihood ratio technique
would have led to the one-tailed test whose critical region is pictured in Figure 2, and
if we had used the one-sided alternative µ<µ0, the likelihood ratio technique would
have led to the one-tailed test whose critical region is pictured in Figure 3. It stands
to reason that in the first case we would reject the null hypothesis only for values of
X falling into the right-hand tail of its sampling distribution, and in the second case
we would reject the null hypothesis only for values of X falling into the left-hand

a

m0

Accept H0 Reject H0

x
m0 za

s

n

Figure 2. Critical region for one-tailed test (H1: µ>µ0).
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Example. Consider a normal distribution N(µ, σ2) with known σ2. Suppose
we have a one-sided test with level of significance α about the mean µ:

H0 : µ = µ0 vs H1 : µ < µ0.

Then we can use X̄ as the test statistic and set the critical region C as

x̄ ≤ µ0 − zα
σ
√
n
.

Tests of Hypothesis Involving Means, Variances, and Proportions

a

m0

Accept H0Reject H0

x
m0 za

s

n

Figure 3. Critical region for one-tailed test (H1: µ<µ0).

tail of its sampling distribution. Symbolically, the corresponding critical regions can
be written as z G zα and as z F −zα , where z is as defined before. Although there
are exceptions to this rule (see Exercise 1), two-sided alternatives usually lead to
two-tailed tests and one-sided alternatives usually lead to one-tailed tests.

Traditionally, it has been the custom to outline tests of hypotheses by means of
the following steps:

1. Formulate H0 and H1, and specify α.
2. Using the sampling distribution of an appropriate test statistic, determine a

critical region of size α.
3. Determine the value of the test statistic from the sample data.
4. Check whether the value of the test statistic falls into the critical region and,

accordingly, reject the null hypothesis, or reserve judgment. (Note that we do
not accept the null hypothesis because β, the probability of false acceptance, is
not specified in a test of significance.)

In Figures 1, 2, and 3, the dividing lines of the test criteria (that is, the boundaries
of the critical regions, or the critical values) require knowledge of zα or zα/2. These
values are readily available from Table III of “Statistical Tables” (or more detailed
tables of the standard normal distribution) for any level of significance α, but the
problem is not always this simple. For instance, if the sampling distribution of the test
statistic happens to be a t distribution, a chi-square distribution, or an F distribution,
the usual tables will provide the necessary values of tα , tα/2,χ2

α ,χ2
α/2, Fα , or Fα/2, but

only for a few values of α. Mainly for this reason, it has been the custom to base
tests of statistical hypotheses almost exclusively on the level of significance α = 0.05
or α = 0.01. This may seem very arbitrary, and of course it is, and this accounts for
the current preference for using P-values (see Definition 2). Alternatively, we could
use a decision-theory approach and thus take into account the consequences of all
possible actions. However, “there are many problems in which it is difficult, if not
impossible, to assign numerical values to the consequences of one’s actions and to
the probabilities of all eventualities.”

With the advent of computers and the general availability of statistical software,
the four steps outlined on this page may be modified to allow for more freedom in
the choice of the level of significance α. With reference to the test for which the
critical region is shown in Figure 2, we compare the shaded region of Figure 4 with

���
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Traditionally, it has been the custom to outline tests of hypotheses by means
of the following steps:

• Step 1: Formulate H0, H1, and specify α.

• Step 2: Using the sampling distribution of an appropriate test statistic,
determine a critical region of size α.

• Step 3: Determine the value of the test statistic from the sample data.

• Step 4: Check whether the value of the test statistic falls into the critical
region and, accordingly, reject the null hypothesis, or reserve judgment.
(Note that we do not accept the null hypothesis because β, the probability
of false acceptance, is not specified in a test of significance.)
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With the advent of computers, we can also compute the p-value based on the
observation of random sample. For example, the p-value = P(X̄ ≥ x̄) where
x̄ is the value of the sample mean obtained in the one-sided test

H0 : µ = µ0 vs H1 : µ > µ0.Tests of Hypothesis Involving Means, Variances, and Proportions

P-value

!x

Figure 4. Diagram for definition of P-values.

α instead of comparing the observed value of X with the boundary of the critical
region or the value of

Z = X −µ0

σ/
√

n

with zα/2. In other words, we reject the null hypothesis if the shaded region of
Figure 4 is less than or equal to α. This shaded region is referred to as the P-value,
the prob-value, the tail probability, or the observed level of significance correspond-
ing to x, the observed value of X. In fact, it is the probability P(X G x) when the null
hypothesis is true.

Correspondingly, when the alternative hypothesis is µ<µ0 and the critical region
is the one of Figure 3, the P-value is the probability P(X F x) when the null hypoth-
esis is true; and when the alternative hypothesis is µZµ0 and the critical region is
the one of Figure 1, the P-value is 2P(X G x) or 2P(X F x), depending on whether
x falls into the right-hand tail or the left-hand tail of the sampling distribution of X.
Here again we act as if the null hypothesis is true, or we withhold judgment.

More generally, we define P-values as follows.

DEFINITION 2. P-VALUE. Corresponding to an observed value of a test statistic, the
P-value is the lowest level of significance at which the null hypothesis could have
been rejected.

With regard to this alternative approach to testing hypotheses, the first of the
four steps on the previous page remains unchanged, the second step becomes

2′. Specify the test statistic.

the third step becomes

3′. Determine the value of the test statistic and the corresponding P-value from
the sample data.

and the fourth step becomes

4′. Check whether the P-value is less than or equal to α and, accordingly, reject
the null hypothesis, or reserve judgment.

As we pointed out earlier, this allows for more freedom in the choice of the
level of significance, but it is difficult to conceive of situations in which we could
justify using, say, α = 0.04 rather than α = 0.05 or α = 0.015 rather than α = 0.01. In

���

As we can see, the p-value is the lowest level of significance at which the null
hypothesis could have been rejected.
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We can modify the steps of hypothesis tests if we opt to use p-value as follows:

• Step 1: Formulate H0, H1, and specify α.

• Step 2’: Specify the test statistic.

• Step 3’: Determine the value of the test statistic and the corresponding
p-value from the sample data.

• Step 4’: Check whether the p-value is less than or equal to α, accordingly,
reject the null hypothesis, or reserve judgment.
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Example. Suppose that it is known from experience that the standard devia-
tion of the weight of 8-ounce packages of cookies made by a certain bakery is
0.16 ounce. To check whether its production is under control on a given day,
that is, to check whether the true average weight of the packages is 8 ounces,
employees select a random sample of 25 packages and find that their mean
weight is x = 8.091 ounces. Since the bakery stands to lose money when
µ > 8 and the customer loses out when µ < 8, test the null hypothesis µ = 8

against the alternative hypothesis µ 6= 8 at the 0.01 level of significance.

Key information: Normal population N(µ, σ2) with σ = 0.16. Want to test

H0 : µ = 8 vs H1 : µ 6= 8

with level of significance α = 0.01. Obtained x̄ = 8.091 from a random
sample of size n = 25.
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Solution. We proceed with the four steps:

• Step 1. Set up the test

H0 : µ = 8 vs H1 : µ 6= 8

with level of significance α = 0.01.

• Step 2. Decide to use test statistic Z = X̄−µ0
σ/
√
n

and rejection region

|z| =
∣∣∣x̄− µ0

σ/
√
n

∣∣∣ ≥ zα/2 = z0.005 = 2.575.

• Step 3. Substituting the values x̄ = 8.091, n = 25, σ = 0.16, we obtain

z =
8.091− 8

0.16/
√

25
= 2.84

• Step 4. Since z = 2.84 > 2.575 = z0.005, we reject H0.
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Example. Suppose that 100 high-performance tires made by a certain man-
ufacturer lasted on the average 21,819 miles with a standard deviation of
1,295 miles. Test the null hypothesis µ = 22,000 miles against the alterna-
tive hypothesis µ < 22,000 miles at the 0.05 level of significance.

Key information: Normal population N(µ, σ2) with σ = 1,295. Want to test

H0 : µ = 22,000 vs H1 : µ < 22,000

with level of significance α = 0.05. Obtained x̄ = 21,819 from a random
sample of size n = 100.
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Solution. We proceed with the four steps:

• Step 1. Set up the test

H0 : µ = 22,000 vs H1 : µ < 22,000

with level of significance α = 0.05.

• Step 2. Decide to use test statistic Z = X̄−µ0
σ/
√
n

and rejection region

z =
x̄− µ0

σ/
√
n
≤ −zα = −z0.05 = −1.645.

• Step 3. Substituting the values x̄ = 21,819, n = 100, σ = 1,295, we
obtain

z =
21819− 22000

1295/
√

100
= −1.40

• Step 4. Since z = −1.40 > −1.645 = −z0.05, we do not reject H0.
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Example. The specifications for a certain kind of ribbon call for a mean break-
ing strength of 185 pounds. If five pieces randomly selected from different rolls
have breaking strengths of 171.6, 191.8, 178.3, 184.9, and 189.1 pounds,
test the null hypothesis µ = 185 pounds against the alternative hypothesis
µ < 185 pounds at the 0.05 level of significance.

Key information: Normal population N(µ, σ2) with unknown σ. Want to test

H0 : µ = 185 vs H1 : µ < 185

with level of significance α = 0.05. Obtained the following values of random
sample of size n = 5:

x1 x2 x3 x4 x5

171.6 191.8 178.3 184.9 189.1

We need to use t distribution since n < 30.
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Solution. We proceed with the four steps:

• Step 1. Set up the test

H0 : µ = 185 vs H1 : µ < 185

with level of significance α = 0.05.

• Step 2. Decide to use test statistic T = X̄−µ0
S/
√
n

and rejection region

t =
x̄− µ0

s/
√
n
≤ −tα,n−1 = −t0.05,4 = −2.132

• Step 3. Based on the data table we obtain the values x̄ = 183.1, n = 5,
s = 8.2, we obtain

t =
183.1− 185

8.2/
√

5
= −0.51

• Step 4. Since t = −0.51 > −2.132 = −z0.05, we do not reject H0.
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Example. An experiment is performed to determine whether the average nico-
tine content of one kind of cigarette exceeds that of another kind by 0.20 mil-
ligram. If n1 = 50 cigarettes of the first kind had an average nicotine content
of x1 = 2.61 milligrams with a standard deviation of σ1 = 0.12 milligram,
whereas n2 = 40 cigarettes of the other kind had an average nicotine content
of x̄2 = 2.38 milligrams with a standard deviation of σ2 = 0.14 milligram,
test the null hypothesis µ1 − µ2 = 0.20 against the alternative hypothesis
µ1 − µ2 6= 0.20 at the 0.05 level of significance. Base the decision on the
p-value corresponding to the value of the appropriate test statistic.

Key information: Two normal populations N(µi, σ
2
i ) with σ1 = 0.12 and

σ2 = 0.14. Want to test

H0 : µ1 − µ2 = 0.20 vs H1 : µ1 − µ2 6= 0.20

with level of significance α = 0.05. Obtained x̄1 = 2.61 with n1 = 50 and
x̄2 = 2.38 with n2 = 40. Use p-value.

Remark. Since n1, n2 ≥ 30, we can use sample standard deviations si in
place of σi when the latter are unknown.
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Solution. We proceed with the four steps:

• Step 1. Set up the test

H0 : µ1 − µ2 = 0.20 vs H1 : µ1 − µ2 6= 0.20

with level of significance α = 0.05. Let δ = 0.20.

• Step 2’. Decide to use test statistic Z = (X̄1−X̄2)−δ√
σ2

1
n1

+
σ2

2
n2

.

• Step 3’. Substituting the values x̄1 = 2.61, x̄2 = 2.38, δ = 0.20,
σ1 = 0.12, σ2 = 0.14, n1 = 50, and n2 = 40 into this formula, we get

z =
(2.61− 2.38)− 0.20√

0.122

50 + 0.142

40

= 1.08

Therefore the p-value is 2 · (0.5000−0.3599) = 0.2802, where P(0 ≤
Z0 ≤ 1.08) = 0.3599 for Z0 ∼ N(0,1).

• Step 4’. Since the p-value 0.2802 > 0.05, we do not reject H0.
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Example. In the comparison of two kinds of paint, a consumer testing service
finds that four 1-gallon cans of one brand cover on the average 546 square
feet with a standard deviation of 31 square feet, whereas four 1-gallon cans of
another brand cover on the average 492 square feet with a standard deviation
of 26 square feet. Assuming that the two populations sampled are normal
and have equal variances, test the null hypothesis µ1 − µ2 = 0 against the
alternative hypothesis µ1 − µ2 > 0 at the 0.05 level of significance. This is
an example of two-sample t test.

Key information: Two normal populationsN(µi, σ
2
i ) with unknown but equal

σ1 and σ2. Want to test

H0 : µ1 − µ2 = 0 vs H1 : µ1 − µ2 > 0

with level of significance α = 0.05. Obtained x̄1 = 546, s1 = 31 with
n1 = 4 and x̄2 = 492, s2 = 26 with n2 = 4. Notice the small sample
sizes. We need to use t distribution with pooled sample variance.
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Solution. We proceed with the four steps:

• Step 1. Set up the test

H0 : µ1 − µ2 = 0 vs H1 : µ1 − µ2 > 0

with level of significance α = 0.05. Let δ = 0.

• Step 2. Decide to use test statistic

T =
X̄1 − X̄2 − δ

Sp

√
1
n1

+ 1
n2

, where S2
p =

(n1 − 1)S2
1 + (n2 − 1)S2

2

n1 + n2 − 2

and set rejection region as t > tα,n1+n2−2 = t0.05,6 = 1.943.
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Solution (cont).

• Step 3. Substituting the values x̄1 = 546, x̄2 = 492, δ = 0, s1 = 31,
s2 = 26, n1 = 4, and n2 = 4 into this formula, we get

s2
p =

(4− 1) 312 + (4− 1) 262

4 + 4− 2
= 28.6092

t =
546− 492− 0

28.609
√

1
4 + 1

4

= 2.67

• Step 4. Since t = 2.67 > t0.05,6 = 1.943, we reject H0.
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Example. Suppose that the uniformity of the thickness of a part used in a
semiconductor is critical and that measurements of the thickness of a random
sample of 18 such parts have the variance s2 = 0.68, where the measure-
ments are in thousandths of an inch. The process is considered to be under
control if the variation of the thicknesses is given by a variance not greater than
0.36. Assuming that the measurements constitute a random sample from a
normal population, test the null hypothesis σ2 = 0.36 against the alternative
hypothesis σ2 > 0.36 at the 0.05 level of significance.

Key information: Normal population N(µ, σ2) with unknown σ. Want to test

H0 : σ2 = 0.36 vs H1 : σ2 > 0.36

with level of significance α = 0.05. Obtained sample variance s2 = 0.68 of
random sample of size n = 18.
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Solution. We proceed with the four steps:

• Step 1. Set up the test

H0 : σ2 = 0.36 vs H1 : σ2 > 0.36

with level of significance α = 0.05. Denote σ2
0 = 0.36.

• Step 2. Decide to use test statistic χ2 = (n−1)S2

σ2
0

and rejection region

χ2 > χ2
0.05,17 = 27.587

• Step 3. Based on the data table we obtain the values s2 = 0.68, n = 18,
we obtain

χ2 =
17 · 0.68

0.36
= 32.11

• Step 4. Since χ2 = 32.11 > 27.587 = χ2
0.05,17, we reject H0.
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Example. In comparing the variability of the tensile strength of two kinds
of structural steel, an experiment yielded the following results: n1 = 13,
s2

1 = 19.2, n2 = 16, and s2
2 = 3.5, where the units of measurement

are 1,000 pounds per square inch. Assuming that the measurements con-
stitute independent random samples from two normal populations, test the
null hypothesis σ2

1 = σ2
2 against the alternative σ2

1 6= σ2
2 at the 0.02 level of

significance.

Key information: Two normal populations N(µi, σ
2
i ) with unknown σi. Want

to test

H0 : σ2
1 = σ2

2 vs H1 : σ2
1 6= σ2

2

with level of significance α = 0.02. Obtained data n1 = 13, s2
1 = 19.2,

n2 = 16, and s2
2 = 3.5.
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Solution. We proceed with the four steps:

• Step 1. Set up the test

H0 : σ2
1 = σ2

2 vs H1 : σ2
1 6= σ2

2

with level of significance α = 0.02.

• Step 2. Decide to use test statistic S2
1
S2

2
and rejection region

s2
1

s2
2
≥ fα/2,n1−1,n2−1 = f0.01,12,15 = 3.67

• Step 3. Based on the data table we obtain the values s2
1 = 19.2, s2

2 =
3.5, we obtain

s2
1

s2
2

=
19.2

3.5
= 5.49.

• Step 4. Since s2
1
s2

2
= 5.49 > 3.67 = f0.02,12,15, we reject H0.
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Example. If x = 4 of n = 20 patients suffered serious side effects from
a new medication, test the null hypothesis θ = 0.50 against the alternative
hypothesis θ 6= 0.50 at the 0.05 level of significance. Here θ is the true
proportion of patients suffering serious side effects from the new medication.

Key information: Binomial distribution Binomial(20, θ). Want to test

H0 : θ = 0.50 vs H1 : θ 6= 0.50

with level of significance α = 0.05. Obtained data x = 4 and n = 20. (Note
the small sample size.)
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Solution. We proceed with the four steps:

• Step 1. Set up the test

H0 : θ = 0.50 vs H1 : θ 6= 0.50

with level of significance α = 0.05.

• Step 2’. Decide to use test statistic X.

• Step 3’. Based on x = 4 we obtain

P(X ≤ x) = P(X ≤ 4) = 0.0059.

The p-value is 2 · 0.0059 = 0.0118.

• Step 4’. Since p-value 0.0118 < 0.05, we reject H0.
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Example. An oil company claims that less than 20 percent of all car owners
have not tried its gasoline. Test this claim at the 0.01 level of significance
if a random check reveals that 22 of 200 car owners have not tried the oil
company’s gasoline.

Key information: Binomial distribution Binomial(200, θ). Want to test

H0 : θ = 0.20 vs H1 : θ < 0.20

with level of significance α = 0.01. Obtained data x = 22 and n = 200.
(Note the large sample size, we can use normal distribution for approximation.)
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Solution. We proceed with the four steps:

• Step 1. Set up the test

H0 : θ = 0.20 vs H1 : θ < 0.20

with level of significance α = 0.01. Denote θ0 = 0.20.

• Step 2. Decide to use test statistic Z = X−nθ0√
nθ0(1−θ0)

and reject if z <

−z0.01 = −2.33.

• Step 3. Based on x = 22, n = 200, we obtain

z =
22− 200 · 0.20√

200 · 0.20 · (1− 0.20)
= −3.18

• Step 4. Since z = −3.18 < −2.33, we reject H0.
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Consider the scenario with k proportions θ1, . . . , θk:

# Success # Failure

Sample 1 x1 n1 − x1
Sample 2 x2 n2 − x2... ... ...
Sample k xk nk − xk

Suppose we are interested in the following test:

H0 : θ1 = · · · = θk = θ0 vs H1 : not every θk equals θ0

with level of significance α. Recall that for independent Xi ∼Binomial(ni, θi)
with large ni there is

k∑
i=1

(Xi − niθi)2

niθi (1− θi)
∼ χ2

k

So we can use χ2 =
∑k
i=1

(xi−niθ0)2

niθ0(1−θ0) and reject H0 if χ2 > χ2
α,k.
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Usually θ0 is unknown, so we instead consider the test

H0 : θ1 = · · · = θk vs H1 : θk’s are not all equal

with level of significance α. In this case, we substitute θ with the pooled esti-
mate:

θ̂ =
x1 + · · ·+ xk
n1 + · · ·+ nk

and reject H0 if
k∑
i=1

(xi − niθ̂)2

niθ̂(1− θ̂)
> χ2

α,k−1

Note that we lose one degree of freedom since θ̂ is estimated from data!
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# Success # Failure

Sample 1 x1 n1 − x1
Sample 2 x2 n2 − x2... ... ...
Sample k xk nk − xk

It is customary to consider this data table as a k × 2 matrix with

fij = the (i, j)th entry

θ̂ =
x1 + · · ·+ xk
n1 + · · ·+ nk

ei1 = niθ̂

ei2 = ni(1− θ̂)

Then we can show that
k∑
i=1

(xi − niθ̂)2

niθ̂(1− θ̂)
=

2∑
j=1

k∑
i=1

(fij − eij)2

eij
.
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Example. Determine, on the basis of the sample data shown in the follow-
ing table, whether the true proportion of shoppers favoring detergent A over
detergent B is the same in all three cities:

# favoring A # favoring B

Los Angels 232 168
San Diego 260 240

Fresno 197 263

Notice that the row sums are 400, 500, 400. Use the 0.05 level of significance.
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Solution. We proceed with the four steps:

• Step 1. Set up the test

H0 : θ1 = θ2 = θ3 vs H1 : θ1, θ2, θ3 are not all equal

with level of significance α = 0.05.

• Step 2. Decide to use test statistic
∑2
j=1

∑k
i=1

(fij−eij)2

eij
and reject H0 if

2∑
j=1

k∑
i=1

(fij − eij)2

eij
> χ2

α,k−1 = χ2
0.05,2 = 5.991.

• Step 3. Based on the data table, we obtain

θ̂ =
232 + 260 + 197

400 + 500 + 400
= 0.53.
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and

e11 = 400 · 0.53 = 212, e12 = 400 · 0.47 = 188

e21 = 500 · 0.53 = 265, e22 = 500 · 0.47 = 235

e31 = 400 · 0.53 = 212, e32 = 400 · 0.47 = 188

and then

χ2 =
(232− 212)2

212
+

(260− 265)2

265
+

(197− 212)2

212

+
(168− 188)2

188
+

(240− 235)2

235
+

(203− 188)2

188
=6.48

• Step 4. Since χ2 = 6.48 > 5.991 = χ2
0.05,2, we reject H0.
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The method above can be easily extended to r × c table:

# in Class 1 # in Class 2 · · · # in Class c

Sample 1 f11 f12 · · · f1c
Sample 2 f21 f22 · · · f2c... ... ... . . . ...
Sample r fr1 fr2 · · · frc
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Then we denote

f =
r∑

i=1

c∑
j=1

fij, fi· =
c∑

j=1

fij, f·j =
r∑

i=1

fij

θ̂i· =
fi·
f
, θ̂·i =

f·j
f
, eij = θ̂i·θ̂·jf

Then we reject H0 if

r∑
j=1

c∑
i=1

(fij − eij)2

eij
> χ2

α,(r−1)(c−1).

Remark. The degrees of freedom (r−1)(c−1) is the number of free param-
eters: we only need (r − 1)(c − 1) terms to fill the whole r × c matrix since
row/column sums and total sum are fixed.
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Example. Use the data shown in the following table to test at the 0.01 level of
significance whether a person’s ability in mathematics is independent of his or
her interest in statistics.

Low in Math Average in Math High in Math

Low in Statistics 63 42 15
Average in Statistics 58 61 31

High in Statistics 14 47 29
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Solution. We proceed with the four steps:

• Step 1. Set up the test

H0 : ability and interests are independent vs H1 : not independent

with level of significance α = 0.01.

• Step 2. Decide to use test statistic
∑c
j=1

∑r
i=1

(fij−eij)2

eij
and reject if

c∑
j=1

r∑
i=1

(fij − eij)2

eij
> χ2

α,(r−1)(c−1) = χ2
0.01,4 = 13.277.

• Step 3. Based on the data table, we obtain θ̂, θ̂i·, θ̂·j, fi·, f·j, eij etc, and

χ2 =
(63− 45.0)2

45.0
+

(42− 50.0)2

50.0
+ · · ·+

(29− 18.75)2

18.75
= 32.14

• Step 4. Since χ2 = 32.14 > 13.277, we reject H0.
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The method developed above can be used to test Goodness of Fit.

Example. Suppose that we want to decide on the basis of the data (observed
frequencies fi’s) shown in the following table whether the number of errors a
compositor makes in setting a galley of type is a random variable having a
Poisson distribution. Use level of significance 0.05.

We combine the last two rows into one row. To determine a corresponding
set of expected frequencies for a random sample from a Poisson population,
we first use the mean of the observed distribution to estimate the Poisson
parameter λ, getting

λ̂ =

∑9
i=0 ifi∑9
i=0 fi

=
1,341

440
= 3.05

or approximately λ̂ = 3.
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So we obtain expected frequency ei = 400 × P(X = i), as shown in the
following table.

Number of Observed P(X = i) where Expected
errors frequency fi X ∼Poisson(3) frequency ei

0 18 0.0498 21.9
1 53 0.1494 65.7
2 103 0.224 98.6
3 107 0.224 98.6
4 82 0.168 73.9
5 46 0.1008 44.4
6 18 0.0504 22.2
7 10 0.0216 9.5
8 2 0.0081 3.6
9 1 0.0038 1.7

Recall that we combine the last two rows into one row. Then we extract the fi
and ei columns to form a 9× 2 matrix.
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Solution. We proceed with the four steps:

• Step 1. Set up the test

H0 : # errors is a Poisson random variable vs H1 : is not Poisson

with level of significance α = 0.05.

• Step 2. Decide to use test statistic
∑8
i=0

(fi−ei)2

ei
and reject if

8∑
i=0

(fi − ei)2

ei
> χ2

α,m−t−1 = χ2
0.05,7 = 14.067,

wherem = 9 is the total number of terms in the sum, t = 1 is the number
of independent parameters (only λ̂ in this example).

• Step 3. Based on the data table, we obtain

χ2 =
(18− 21.9)2

21.9
+

(53− 65.7)2

65.7
+ · · ·+

(3− 5.3)2

5.3
= 6.83.

• Step 4. Since χ2 = 6.83 < 14.067, we cannot reject H0.
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