MATH 4752/6752 - Mathematical Statistics II Functions of Random Variables

Xiaojing Ye
Department of Mathematics \& Statistics
Georgia State University

Let X_{1}, \ldots, X_{n} be random variables (may not be iid) and $Y=u\left(X_{1}, \ldots, X_{n}\right)$ where u is a given function.

Question: what is the probability distribution/density of Y ?

Three typical techniques:

- Probability distribution function technique.
- Transformation technique.
- Moment generating function technique.

Probability distribution function technique

If X_{1}, \ldots, X_{n} are continuous RVs , then the probability distribution function of Y is

$$
G(y)=\mathrm{P}(Y \leq y)=\mathrm{P}\left(u\left(X_{1}, \ldots, X_{n}\right) \leq y\right)
$$

and the probability density function of Y is

$$
g(y)=G^{\prime}(y)
$$

Example. If the pdf of X is

$$
f(x)= \begin{cases}6 x(1-x), & \text { if } 0<x<1 \\ 0, & \text { otherwise }\end{cases}
$$

Find the probability density function of $Y=X^{3}$.

Solution. Note that $X \in[0,1]$, so $Y \in[0,1]$. Denote $G(y)$ the distribution function of Y, then for any $y \in[0,1]$, we have

$$
\begin{aligned}
G(y) & =\mathrm{P}(Y \leq y)=\mathrm{P}\left(X^{3} \leq y\right)=\mathrm{P}\left(X \leq y^{1 / 3}\right) \\
& =\int_{0}^{y^{1 / 3}} 6 x(1-x) d x=3 y^{2 / 3}-2 y
\end{aligned}
$$

Therefore, the pdf of Y is

$$
g(y)=G^{\prime}(y)=2 y^{-1 / 3}-2
$$

for $y \in[0,1]$. If $y<0$ or $y>1$, then $g(y)=0$.

Example. Let X be a random variable with pdf $f(x)$ and $Y=|X|$. Show that the pdf of Y is

$$
g(y)= \begin{cases}f(y)+f(-y), & \text { if } y>0 \\ 0, & \text { otherwise }\end{cases}
$$

Proof. For $y>0$, we have

$$
\begin{aligned}
G(y) & =\mathrm{P}(Y \leq y)=\mathrm{P}(|X| \leq y)=\mathrm{P}(-y \leq X \leq y) \\
& =\mathrm{P}(X \leq y)-\mathrm{P}(X \leq-y) \\
& =F(y)-F(-y) .
\end{aligned}
$$

So $g(y)=G^{\prime}(y)=f(y)+f(-y)$.

Example. Use the previous result to find the pdf of $Y=|X|$ where X is the standard normal RV.

Solution. Let $n(x ; 0,1)$ denote the pdf of X, i.e.,

$$
n(x ; 0,1)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}
$$

Then

$$
g(y)=n(y ; 0,1)+n(-y ; 0,1)=2 n(y ; 0,1)=\frac{\sqrt{2}}{\sqrt{\pi}} e^{-y^{2} / 2}
$$

Example. Suppose the joint pdf of $\left(X_{1}, X_{2}\right)$ is

$$
f\left(x_{1}, x_{2}\right)= \begin{cases}6 e^{-3 x_{1}-2 x_{2}}, & \text { if } x_{1}, x_{2}>0 \\ 0, & \text { otherwise }\end{cases}
$$

Find the pdf of $Y=X_{1}+X_{2}$.

Solution. We notice that $Y \geq 0$. Furthermore,

$$
\begin{aligned}
G(y) & =\mathrm{P}(Y \leq y)=\mathrm{P}\left(X_{1}+X_{2} \leq y\right)=\int_{0}^{y} \int_{0}^{y-x_{2}} 6 e^{-3 x_{1}-2 x_{2}} d x_{1} d x_{2} \\
& =\cdots=1+2 e^{-3 y}-3 e^{-2 y}
\end{aligned}
$$

Hence

$$
g(y)=G^{\prime}(y)=-6 e^{-3 y}+6 e^{-2 y}
$$

for $y \geq 0$. If $y<0$, then $g(y)=0$.

Remark. For each $y>0$, the value of $G(y)$ is the integral of $f\left(x_{1}, x_{2}\right)$ over the triangle (intersection of the shaded area and the first quadrant).

Transformation technique: one variable case

We first consider the discrete case where u is one-to-one.

Example. Let X be the number of heads by tossing a fair coin for 4 times. Then the pmf f of X is

x	0	1	2	3	4
$f(x)$	$\frac{1}{16}$	$\frac{4}{16}$	$\frac{6}{16}$	$\frac{4}{16}$	$\frac{1}{16}$

Find the pmf g of $Y=\frac{1}{1+X}$.
Solution. Since $u(x)=\frac{1}{1+x}$ is one-to-one (because u is strictly monotone) for $x>0$, we have

y	1	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{4}$	$\frac{1}{5}$
$g(y)$	$\frac{1}{16}$	$\frac{4}{16}$	$\frac{6}{16}$	$\frac{4}{16}$	$\frac{1}{16}$

Remark. Notice that $f(x)=\frac{1}{16}\binom{4}{x}$, we have $g(y)=\frac{1}{16}\left(\frac{1}{4}-1\right)$.

Now we consider the discrete case where u is not one-to-one.
Example. Let X be the same as above and $Z=(X-2)^{2}$. Then

x	0	1	2	3	4
$z=(x-2)^{2}$	4	1	0	1	4

So we know the pmf h of Z is

$$
\begin{aligned}
& h(0)=f(2)=\frac{6}{16} \\
& h(1)=f(1)+f(3)=\frac{8}{16} \\
& h(4)=f(0)+f(4)=\frac{2}{16}
\end{aligned}
$$

We consider the continuous RV case where u is strictly monotone (increasing or decreasing) in $\operatorname{supp}(f)$.

Theorem. Let X be continuous with pdf $f(x)$ and $Y=u(X)$ where u is strictly monotone in $\operatorname{supp}(f)$, then pdf $g(y)$ of Y is

$$
g(y)=f(w(y))\left|w^{\prime}(y)\right|
$$

where w is the inverse of u (i.e., $y=u(x)$ iff $x=w(y)$).
Proof. We first consider the case where u is strictly increasing. In this case $u^{\prime}(x) \geq 0$ and $w^{\prime}(y) \geq 0$, and

$$
G(y)=\mathrm{P}(Y \leq y)=\mathrm{P}(u(X) \leq y)=\mathrm{P}(X \leq w(y))=F(w(y)) .
$$

Hence

$$
g(y)=G^{\prime}(y)=f(w(y)) w^{\prime}(y)=f(w(y))\left|w^{\prime}(y)\right| .
$$

Proof (cont). If u is strictly decreasing, then $u^{\prime}(x) \leq 0$ and $w^{\prime}(y) \leq 0$. Then

$$
\begin{aligned}
G(y) & =\mathrm{P}(Y \leq y) \\
& =\mathrm{P}(u(X) \geq y) \\
& =1-\mathrm{P}(X \leq w(y)) \\
& =1-F(w(y)) .
\end{aligned}
$$

Hence

$$
g(y)=G^{\prime}(y)=-f(w(y)) w^{\prime}(y)=f(w(y))\left|w^{\prime}(y)\right| .
$$

In summary, we have

$$
g(y)=f(w(y))\left|w^{\prime}(y)\right| .
$$

Example. Let X be the standard exponent RV. Find the pdf of $Y=\sqrt{X}$.

Solution. Since $u(x)=\sqrt{x}$ is strictly increasing when $x \geq 0$, we know its inverse w exists and $w(y)=y^{2}$.

Recall that the pdf of X is $f(x)=e^{-x}$ for $x \geq 0$, we have

$$
g(y)=f(w(y))\left|w^{\prime}(y)\right|=2 y e^{-y^{2}}
$$

for $y \geq 0$. If $y<0$, then $g(y)=0$.

Example. If $F(x)$ is the distribution function of the continuous $\mathrm{RV} X$. Find the pdf of $Y=F(X)$.

Solution. Notice that F is strictly increasing in $\operatorname{supp}(f)$. Let w be the inverse of F, then $F(w(y))=y$ for all y. Hence

$$
F^{\prime}(w(y)) w^{\prime}(y)=1 .
$$

This implies

$$
w^{\prime}(y)=\frac{1}{F^{\prime}(w(y))}=\frac{1}{f(w(y))}
$$

So we have

$$
g(y)=f(w(y))\left|w^{\prime}(y)\right|=f(w(y)) \frac{1}{f(w(y))}=1 .
$$

This means that Y is the uniform RV on $[0,1]$.

Example. Let X be the standard normal random variable. Find the pdf of $Z=X^{2}$.

Solution. Since x^{2} is not monotone, we turn to consider $y=|x|$ and then $z=y^{2}$ is monotone since $y \geq 0$.

From a previous example, we know $g(y)=2 n(y ; 0,1)=\frac{2}{\sqrt{2 \pi}} e^{-y^{2} / 2}$ for $y \geq 0$. Let $u(y)=y^{2}$ and $w(z)=\sqrt{z}$ be the inverse of u. Then

$$
h(z)=g(w(z))\left|w^{\prime}(z)\right|=\frac{1}{\sqrt{2 \pi z}} e^{-z / 2}
$$

for $z \geq 0$.
Z is said to follow the chi-square distribution with degree of freedom 1.

Transformation technique with several random variables

Let X_{1}, \ldots, X_{n} be continuous RVs with joint pdf $f\left(x_{1}, \ldots, x_{n}\right)$. What is the pdf of $Y=u\left(X_{1}, \ldots, X_{n}\right)$ for a given function $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$?

Here is a general strategy:

- Step 1: Set $\left(Y_{1}, \ldots, Y_{n}\right)=\boldsymbol{u}\left(X_{1}, \ldots, X_{n}\right)$ where \boldsymbol{u} is one-to-one on $\operatorname{supp}(f)$, and $Y=Y_{1}$. So the first component of u is u.
- Step 2: Find the joint pdf of $\boldsymbol{Y}=\left(Y_{1}, \ldots, Y_{n}\right)$ which is

$$
g_{\boldsymbol{Y}}\left(y_{1}, \ldots, y_{n}\right)=f\left(\boldsymbol{w}\left(y_{1}, \ldots, y_{n}\right)\right)\left|J\left(y_{1}, \ldots, y_{n}\right)\right|,
$$

where \boldsymbol{w} is the inverse of \boldsymbol{u}, and $J\left(y_{1}, \ldots, y_{n}\right)$ is the Jacobian matrix of \boldsymbol{w}, i.e., $J\left(y_{1}, \ldots, y_{n}\right)=D \boldsymbol{w}\left(y_{1}, \ldots, y_{n}\right)$.

- Find $g(y)$ as the marginal pdf of $Y=Y_{1}$ by taking integral:

$$
g(y)=\int g_{\boldsymbol{Y}}\left(y, y_{2}, \ldots, y_{n}\right) d y_{2} \cdots d y_{n}
$$

Remark. This strategy is based on the change of variable in multivariable calculus: for any $E \subset \mathbb{R}^{n}$, we have

$$
\begin{aligned}
\mathrm{P}(\boldsymbol{Y} \in E) & =\mathrm{P}(\boldsymbol{u}(\boldsymbol{X}) \in E) \\
& =\mathrm{P}(\boldsymbol{X} \in \boldsymbol{w}(E)) \\
& =\int_{\boldsymbol{w}(E)} f(\boldsymbol{x}) d \boldsymbol{x} \\
& =\int_{E} f(\boldsymbol{w}(\boldsymbol{y}))|J(\boldsymbol{y})| d \boldsymbol{y}
\end{aligned}
$$

Hence we have

$$
g(\boldsymbol{y})=f(\boldsymbol{w}(\boldsymbol{y}))|J(\boldsymbol{y})| .
$$

Example. Let (X_{1}, X_{2}) have joint density

$$
f\left(x_{1}, x_{2}\right)= \begin{cases}e^{-\left(x_{1}+x_{2}\right)}, & \text { if } x_{1}, x_{2}>0 \\ 0, & \text { otherwise }\end{cases}
$$

Find the pdf of $Y=\frac{X_{1}}{X_{1}+X_{2}}$.
Solution. Let $Y_{1}=X_{1}+X_{2}$ and $Y_{2}=\frac{X_{1}}{X_{1}+X_{2}}$. (So $Y=Y_{2}$.) We define

$$
\boldsymbol{u}(\boldsymbol{x})=\binom{x_{1}+x_{2}}{\frac{x_{1}}{x_{1}+x_{2}}} .
$$

Then $\boldsymbol{Y}=\boldsymbol{u}(\boldsymbol{X})$. We deduce that $X_{1}=Y_{1} Y_{2}$ and $X_{2}=Y_{1}-Y_{1} Y_{2}$. Therefore the inverse of u is

$$
\boldsymbol{w}(\boldsymbol{y})=\binom{y_{1} y_{2}}{y_{1}-y_{1} y_{2}}
$$

Solution (cont). Now we compute the Jacobian matrix:

$$
D \boldsymbol{w}(\boldsymbol{y})=\left(\begin{array}{cc}
y_{2} & y_{1} \\
1-y_{2} & -y_{1}
\end{array}\right)
$$

and thus

$$
|J(\boldsymbol{y})|=|\operatorname{det}(D \boldsymbol{w}(\boldsymbol{y}))|=\left|-y_{1} y_{2}-y_{1}+y_{1} y_{2}\right|=\left|-y_{1}\right|=y_{1}
$$

So the joint pdf of $\left(Y_{1}, Y_{2}\right)$ is

$$
g\left(y_{1}, y_{2}\right)=f(\boldsymbol{w}(\boldsymbol{y}))|J(\boldsymbol{y})|=y_{1} e^{-y_{1}}, \quad\left(y_{1}, y_{2}\right) \in(0, \infty) \times(0,1)
$$

The marginal pdf h of Y_{2} is

$$
h\left(y_{2}\right)=\int_{0}^{\infty} g\left(y_{1}, y_{2}\right) d y_{1}=\int_{0}^{\infty} y_{1} e^{-y_{1}} d y_{1}=1
$$

for any $y_{2} \in(0,1)$. Hence $Y=Y_{2}$ follows the standard uniform distribution.

Example. Let $\left(X_{1}, X_{2}\right)$ be uniformly distributed in $(0,1)^{2}$. Find the pdf of $Y=X_{1}+X_{2}$.

Solution. Let $Y=X_{1}+X_{2}, Z=X_{2}$ and $\boldsymbol{u}\left(x_{1}, x_{2}\right)=\left(x_{1}+x_{2}, x_{2}\right)$. Hence

$$
\left(x_{1}, x_{2}\right)=\boldsymbol{w}(y, z)=(y-z, z)
$$

Therefore the Jacobian is

$$
D \boldsymbol{w}(y, z)=\left(\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right)
$$

Hence $|J(y, z)|=|\operatorname{det}(D \boldsymbol{w}(y, z))|=1$. The joint pdf of (Y, Z) is

$$
g(y, z)=f(\boldsymbol{w}(y, z))|J(y, z)|=1, \quad 0<z<1,0<y-z<1 .
$$

Solution (cont). Thus the marginal pdf h of Y is

$$
h(y)= \begin{cases}0, & \text { for } y \leq 0 \\ \int_{0}^{y} 1 d z=y, & \text { for } 0<y<1 \\ \int_{y-1}^{1} 1 d z=2-y, & \text { for } 1<y<2 \\ 0, & \text { for } y \geq 2\end{cases}
$$

Left figure: shaded area is the support of the joint pdf $g(y, z)$. Right figure: the marginal pdf h of Y.

Example. Let $\left(X_{1}, X_{2}, X_{3}\right)$ be RVs with joint pdf f as follows:

$$
f\left(x_{1}, x_{2}, x_{3}\right)= \begin{cases}e^{-\left(x_{1}+x_{2}+x_{3}\right),} & \text { if } x_{1}, x_{2}, x_{3}>0 \\ 0, & \text { otherwise }\end{cases}
$$

Suppose $Y_{1}=X_{1}+X_{2}+X_{3}, Y_{2}=X_{2}, Y_{3}=X_{3}$. Find the marginal pdf of Y_{1}.

Solution. We have

$$
\begin{aligned}
& \boldsymbol{y}=\boldsymbol{u}(\boldsymbol{x})=\left(x_{1}+x_{2}+x_{3}, x_{2}, x_{3}\right) \\
& \boldsymbol{x}=\boldsymbol{w}(\boldsymbol{y})=\left(y_{1}-y_{2}-y_{3}, y_{2}, y_{3}\right)
\end{aligned}
$$

Hence there is

$$
J(\boldsymbol{y})=\operatorname{det}(D \boldsymbol{w}(\boldsymbol{y}))\left|=\left|\left(\begin{array}{ccc}
1 & -1 & -1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\right|=1 .\right.
$$

Solution (cont). So $g\left(y_{1}, y_{2}, y_{3}\right)=f(\boldsymbol{w}(\boldsymbol{y}))|J(\boldsymbol{y})|=e^{-y_{1}}$ for $y_{2}, y_{2}>0$ and $y_{1}>y_{2}+y_{3}$.

The marginal pdf of Y_{1} is

$$
h(y)=\int_{0}^{y_{1}} \int_{0}^{y_{1}-y_{2}} g\left(y_{1}, y_{2}, y_{3}\right) d y_{3} d y_{2}=\cdots=\frac{1}{2} y_{1}^{2} e^{-y_{1}} .
$$

Moment generating function (MGF) technique

Let X_{1}, \ldots, X_{n} be independent RVs. What is the pmf/pdf of

$$
Y=X_{1}+\cdots+X_{n}
$$

Since pmf/pdf is uniquely determined by MGF, it suffices to find the $\operatorname{mgf} M_{Y}(t)$ of Y, and then check which pmf/pdf this $M_{Y}(t)$ corresponds to.

Theorem. The mgf of $Y=X_{1}+\cdots+X_{n}$, where X_{1}, \ldots, X_{n} are independent RVs with MGFs $M_{X_{1}}(t), \ldots, M_{X_{n}}(t)$ respectively, is

$$
M_{Y}(t)=\prod_{i=1}^{n} M_{X_{i}}(t)
$$

Proof. Since X_{1}, \ldots, X_{n} are independent, we know their joint pdf is

$$
f\left(x_{1}, \ldots, x_{n}\right)=f_{1}\left(x_{1}\right) \ldots f_{n}\left(x_{n}\right)
$$

where f_{i} is the pmf/pdf of X_{i}. Therefore, we have

$$
\begin{aligned}
M_{Y}(t) & =\mathbb{E}\left[e^{Y t}\right]=\mathbb{E}\left[e^{\left(X_{1}+\cdots+X_{n}\right) t}\right] \\
& =\int e^{\left(x_{1}+\cdots+x_{n}\right) t} f\left(x_{1}, \ldots, x_{n}\right) d x_{1} \ldots d x_{n} \\
& =\int e^{x_{1} t} f_{1}\left(x_{1}\right) d x_{1} \cdots \int e^{x_{n} t} f_{n}\left(x_{n}\right) d x_{n} \\
& =\mathbb{E}\left[e^{X_{1} t}\right] \cdots \mathbb{E}\left[e^{X_{n} t}\right] \\
& =M_{X_{1}}(t) \cdots M_{X_{n}}(t) .
\end{aligned}
$$

Remark. This result can be easily extended to $Y=c_{1} X_{1}+\cdots+c_{n} X_{n}$ where X_{1}, \ldots, X_{n} are independent RVs and c_{1}, \ldots, c_{n} are constants by noting that

$$
M_{c X}(t)=\mathbb{E}\left[e^{c X t}\right]=M_{X}(c t) .
$$

Remark. The MGF technique may not work when X_{1}, \ldots, X_{n} are not independent.

Example. Suppose X_{1}, \ldots, X_{n} are independent Poisson RVs with parameters $\lambda_{1}, \ldots, \lambda_{n}$ respectively. Find the distribution of $Y=X_{1}+\cdots+X_{n}$.

Solution. Since $M_{X_{i}}(t)=e^{\lambda_{i}\left(e^{t}-1\right)}$ for each i, we have

$$
M_{Y}(t)=\prod_{i=1}^{n} M_{X_{i}}(t)=e^{\left(\sum_{i=1}^{n} \lambda_{i}\right)\left(e^{t}-1\right)}
$$

which is the mgf of the Poisson RV with parameter $\sum_{i=1}^{n} \lambda_{i}$. Hence Y is Poisson with parameter $\sum_{i=1}^{n} \lambda_{i}$.

Example. Suppose X_{1}, \ldots, X_{n} are independent exponential RVs with the same parameter θ. Find the distribution of $Y=X_{1}+\cdots+X_{n}$.

Solution. Since $M_{X_{i}}(t)=(1-\theta t)^{-1}$ for each i, we have

$$
M_{Y}(t)=\prod_{i=1}^{n} M_{X_{i}}(t)=(1-\theta t)^{-n}
$$

which is the mgf of $\Gamma(n, \theta)$. Hence Y is Gamma with parameter (n, θ).
Remark. Recall that the mgf of $Z \sim \Gamma(\alpha, \beta)$ is $M_{Z}(t)=(1-\beta t)^{-\alpha}$.

