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1 Metric Space

1.1 Contractive mapping

Definition 1.1 (Metric space). A space (X,d) is called a metric space if X is
aset and d: X x X — R satisfies

1. d(z,y) > 0; and d(z,y) =0 iff z = y.

2. d(.y) = d(y, ).

3. d(z,2z) < d(x,y) +d(y, 2).
for any x,y,2z € X. Here d is called the metric (or distance) on X. We may
drop d and simply write X if the metric is clear from the context.

Example 1.2. Let X = R” and d(z,y) = ((x1 —y1)? + - + (2, — yn)?)'/? for
x,y € R™. Then (X,d) is a metric space.

Example 1.3. Let X = C([a,b]) :== {z : [a,b] — R : z is continuous} and
d(x,y) = maxe<i<p |2(t) — y(¢)|. Then (X,d) is a metric space.

With metric defined, we can consider the concept of “convergence”, as below.

Definition 1.4 (Convergence). Let {x} be a sequence in X, then {z} is said
to converge to x if d(zp,z) — 0 as k — oo. Namely, for any € > 0, there
exists K € N, such that d(zy,x) < € for all Kk > K. We may also write this as
limg, d(xg,z) = 0 or z — .

Example 1.5. The convergence in Example is the “uniform convergence”
of continuous functions.

Definition 1.6 (Closed set). The subset E of X is called closed if {zx} C E
and xj — z imply that = € E.

Definition 1.7 (Cauchy sequence). A sequence {zr} C X is called Cauchy if
for any e > 0, there exists K € N, such that d(xy,z;) < e for all k,j > K.

Definition 1.8 (Complete metric space). A metric space (X, d) is called com-
plete if every Cauchy sequence in X is convergent.

Remark. Let (X, d) be complete and Y C X. Then (Y, d) is complete iff Y is
closed in X.

Example 1.9. The Euclidean space (R™,d) is complete.
Example 1.10. The space (C([a,b]),d) defined in Example is complete.
Proof. Let {x)} be Cauchy, then for any € > 0, there exists K € N, such that

d(wy, xj) = max |ox(t) — ()] < e

for any k,j > K. Hence, for any t, {zx(t)} is a Cauchy sequence in R and thus
convergent. Let x(t) := limy xx(¢). Then

jer(t) — a(t)] = lim |og(t) — 2;(t)] < e



for any ¢t € [a,b]. This implies that 2y — x uniformly. Hence x is continuous
(as [a, b] is compact and {zj} are continuous) and thus = € C([a, b]). O

Definition 1.11 (Continuous mapping). Let (X,d) and (Y, p) be two metric
spaces. A mapping T : (X,d) — (Y, p) is called continuous if p(Txy, Tx) — 0
in Y whenever d(zg,z) — 0 in X as k — oco. The set of continuous mappings
from X to Y is denoted by C'(X;Y). If Y = R we also write it as C(X).

Theorem 1.12. Let (X,d) and (Y, p) be metric spaces. Then T : X — Y s
continuous iff for any € > 0 and x € X, there exists § := 6(x,€) > 0, such that
p(Ty,Tx) < ¢ whenever d(y,x) < 9.

Proof. (=) If not, then there exist x € X, ¢y > 0, and a sequence {zx} in X,
such that d(zg,z) < 1/k but p(Txzy, Tx) > € for all k& € N, which contradicts
to the continuity of 7.

(<) Let © € X be arbitrary. If the sequence {xy} is such that d(xy,x) — 0,
then for any € > 0, there exists K € N such that d(zy,z) < ¢ := (¢, x) for
all kK > K. Thus p(Txg,Tz) < €, for all kK > K. This implies that T is
continuous. O

Definition 1.13 (Contractive mapping). Let (X, d) be a metric space. A map-
ping T : X — X is called contractive if there exists 8 € (0,1) such that
d(Tz,Ty) < Od(x,y) for all x,y € X. Contractive mappings are also called
contractions.

Example 1.14. Let T : [0,1] — [0,1] be C! and |T'(x)| < 6 < 1 for all
x € ]0,1]. Then T is a contractive mapping.

Proof. Note that X = [0,1] and d(z,y) = |x — y| for all z,y € X. Hence, for
any z,y € X,

d(Tz, Ty) = |T(z) = T(y)| = |T'(c)(x — y)| < O]z — y| = Od(x,y)
where ¢ € (z,y) due to the mean value theorem. Therefore T is contractive. [J
Theorem 1.15. If T : X — X is contractive, then T is continuous.
Proof. Suppose d(zy,x) — 0, then d(Txy, Tx) < 0d(xg,x) > 0as k — co. O

Theorem 1.16 (Banach fixed point theorem). Let (X,d) be complete. If T :
X — X is contractive, then T has a unique fixed point x in X.

Proof. Pick any zo € X and generate a sequence {xy} by g1 1= Ty for all
k € N. Then

d(@ps1,25) = d(Tp, Tap—1) < 0d(zp, wp—1) < -+ < 0%d(21,20).



Hence, for any p € N, we have
P P A
A(Thipwx) = Y d@rpis Trpio1) < Y0 d(wy, 20)
i=1 i=1

< ZakJﬂild(Jﬁl,l‘o) — 5
=1

d(l‘l, .ZEQ) —0

as k — oo. Therefore {x} is Cauchy. As X is complete, we know there exists
x € X such that z; — x. Moreover, we know zpy1 = Txr — z, and hence
d(Tz,z) = limy d(T'xk,z) = 0, which implies that x = Tz, i.e., z is a fixed
point of T.

If both z and 2’ are fixed points of T but are different, then d(x,z") > 0 but

d(z,2") = d(Tz,Tx") < 0d(z,2") < d(z,z),
which is a contradiction. Hence the fixed point of T is unique. O

Example 1.17 (Existence and uniqueness of the solution of ODE). Consider
the initial value problem of an ordinary differential equation (ODE):

/ — R
z(0) =&
Suppose there exists ¢ > 0 such that f(¢t,z) : U — R, where U := [—h, h] x [{ —

0, & + 9], is continuous, and f is Lipschitz in x over U, i.e., there exists an L > 0
such that |f(t,z) — f(t,y)| < Llx —y| for any ¢t € [—h,h] and z,y € [ —6,£+4].
Denote M := max v |f(t,2). If 0 < h < min(6/M,1/L), then the ODE
has a unique solution on [—h, Al.

Proof. We denote B(&;6) := {x : [~h,h] = R : |z(t) — & < 9§, YVt € [~h,h]},
which is a closed subset of C([—h, h]) (here B(¢;6) should be interpreted as the
closed ball in C([a,b]) with the constant function £ as the center and § as the
radius). We define the mapping T : C([—h, h]) — C([—h, h]) by

(Ta)(t) = € + / F(s,2(s)) ds.

Hence «x is a solution of the OQE iff o =Tx. B
We first show that T maps B(&;6) to itself. To this end, for any x € B(&;0),
we know

(20—l =| [ lssa) ] < Mo < 3en < 5

for all t € [—h, h], where the first inequality above is due to x € B(&;4) (so
z(s) € [§ — 0,6 + 0] for all s) and the definition of M, and the last inequality is
due to the condition on h. Therefore Ta € B(§;0).



Next we show that T" is contractive on B(&;6). To this end, we first note
that Ta, Ty € B(§;90) for any x,y € B(;d) as shown above. Then

ﬂT%ﬂH=ﬁ§MTw® (Ty |—ﬁgﬂ/ (5,2()) — F(s,(s))) ds

gmax/ [f(s,2(s)) — f(s,y(s ))|ds§max/ Llz(s) — y(s)|ds

[tl<h ltl<h Jo
< Lhd(z,y).

Since Lh < 1, we know T is contractive.

Finally, we see that (B(&;0),d) is complete as B(&;d) is a closed ball in
a complete metric space (C'([—h, h]),d), and hence there exists a unique fixed
point z € B(&;6) by Theorem (Banach fixed point). This implies that x is
the unique solution of the ODE on [—h, h]. O

Example 1.18 (Implicit function theorem). Let f : R™ x R™ — R™. Suppose
there exists (2o, yo) € R™ x R™ such that f and 9, f are continuous in the open
neighborhood U x V of (x9, o), where U C R® and V' C R™, and

f(zo,y0) =0, and 9y f(zo,yo) is invertible.

Then there exist an open set Uy x Vj such that (g, y0) € Uy x Vo C U x V and
a unique function ¢ : Uy — R™ satisfying ¢(zp) = yo and f(z, ¢(z)) = 0 for all
x € Uy.

Proof. For any r > 0 sufficiently small (we will specify the range of r later), we
consider the mapping T' defined by

(T9)(x) := ¢(x) — (9, f (w0, 90)) " f (@, b(x))

for any ¢ € C(B(z;7);R™). We also define the following metric in the space
C(B(zo;r); R™):
d(¢,¢) ;= max |¢(z) — ()]
z€B(zo;7)
where |y|oo 1= maxi<i<m |y;| for any y = (y1,...,ym) € R™.

Since 0y f(z, y) is continuous in U x V', we know there exists § > 0 such that
the magnitudes of all entries of I — (9, f(xo,y0)) 19, f(z,y) are upper bounded
by 1/(2m) for all € B(z¢;8) and y € B(yo;d).

Now let ((z) := ¢(x) — (). Note that by the mean value theorem, for any
x € B(xg;r) C U, there exists z(z) lying between ¢(z) and 1 (z) (in the sense
that there exists A(z) € (0,1) such that z(z) = (1 —A(z))p(x) + A(x)(z)), such
that

F(,6(@) — (@, 0(2)) = 0, (2, 2(2)) (@), Y € Blaoi).



Moreover, if r < §, then

d(T¢,Ty) = max |¢(x) = (9yf(w0,0)) " (f(2,6(2)) — (2, %(2)))]s

x€B(zo;r)
= max |[I = (9, f(z0,y0)) "y f (x, 2(2)))]¢(2)|oo
z€B(zo;r)
1 1
< e 5lC@)|ee = 5d(o,9).

Now we consider the closed subset X of C(B(zo;7); R™) as follows,
X :={¢ € C(B(zo;7); R™) : ¢(x0) = yo, ¢(x) € B(yo,6), Vo € B(wo;6)}.

We already showed that T is contractive on X if r < § above. Now we need
to show that T is a mapping from X to itself for » small enough. To this end,
we know by the continuity of f over U x V that there exists n > 0 such that

|0y f (w0, 50)) ' (f(@,y) = f(2,0))] < 6/2 for all & € B(wo;n) and y € B(yo; n).
Furthermore, consider 1 as the constant function taking value gy, we have

d(T¢a yO) S d(TQSv TyO) + d(Ty()v yO)

1
< d(é,0) + max 18y f (0, 50)) ™" f (2, 50)|so
z€B(z0;n)

= L)+ max 19, F(@o,m0) " (F (@ 0) — £, 90))

2 z€B(z0;m)
< 1d(¢> )+ 16 <4
2 » Yo D)

for € B(xo;n), where the equality is due to f(zo,yo) = 0. So d(To,yo) < 4 if
0 < r < min(d,n). Furthermore,

(To)(0) = p(x0) — (9y f(x0,50)) " f (w0, d(x0)) = o

since ¢(xg) = yo and f(zo,yo) = 0. Hence T is a mapping from X to itself.
Finally, since (X,d) is complete and T : X — X is contractive, we know
there exists a unique ¢ € X such that ¢ = T'¢, which implies that ¢(zo) = yo

and f(x,¢(x)) =0 in Uy := B(zo; 7). O

1.2 Complete metric space

Recall that completeness of (X,d) is necessary in Theorem [L.16] (Banach fixed
point), otherwise the conclusion may not hold, as in the following example.

Example 1.19. Consider T : [0,1] — [0, 1] defined by Tz = /& +1. Then T
is a contractive mapping and the unique fixed point is 29 = (v/17+1)/18. It is
easy to verify that T is a contractive mapping on X :=[0,1] \ {zo}, but then it
does not have a fixed point on X.

The completeness of a metric space also depends on the metric, as shown in
the following example.



Example 1.20. Consider (C([a,b]), p) where p is defined by

b
plz,y) = / (1) — ()| dt.

Then it is easy to verify that p is a metric. However (C([a, b]), p) is not complete.
To see this, recall that C([a,b]) is dense in L([a,b]), but not all functions in
L([a,b]) are continuous.

Definition 1.21 (Isometry). Let (X, dx) and (Y, dy) be two metric spaces. If
there exists a mapping T : X — Y such that

1. T is surjective,

2. dx(z,2") = dy (Tz,Tz') for all z,2" € X,
then we say that (X,dx) and (Y, dy) are isometric, and T is called an isometry.

Remark. Note that item 2 above implies that T is injective: if Tx = T'x’, then
dx(z,2") = dy(Tx,Tx") = 0, which implies that © = 2’. Therefore an isometry
is also a one-to-one correspondence.

If (X,dx) and (Y,dy) are isometric, then they have the same properties
regarding metrics (distances). If (X, dx) is isometric to (Y,dy), and (Y, dy)
is a subspace of (Z,dz) such that dz|y = dy (i.e., dz is identical to dy when
restricted to Y), then we say (X, dx) is isometrically embedded into (Z,dz).

Definition 1.22 (Dense subset). Let (X, d) be a metric space. Then a subset
FE of X is called dense if for any = € X and € > 0, there exists y € E such that
d(z,y) < e.

Example 1.23. Let P([a,b]) be the set of polynomials on [a, b], then P([a,b])
is dense in C([a,b]) (due to Weierstrass Theorem) under the standard norm d
in C([a,b]). Also, C([a,b]) is dense in L([a,b]) under the metric p defined in

Example

Definition 1.24 (Completion). Let (X, d) be a metric space, and F := {(Y, p) :
X CY, plx =d, Yiscomplete}. Then X := NycxY is a complete metric
space, called the completion of X. X is the smallest complete space containing
X in the sense that X C Y for all Y € F.

Theorem 1.25. If X C Y whereY € F and X is dense in Y, then Y is the
completion of X.

Proof. Let (X, d) be a metric space which is dense in (Y, p) and p|x = d. Then
we know for any y € Y, there exists a sequence (x1,...,Z,...) in X such that
T — Y, e, p(zr,y) = 0as k — oco. If (Z, ) € F, then by noting that {x;} is
Cauchy in Z, we know there exists z € Z such that o(zk,2) — 0.

Now define T' : Y — Z such that Ty = 2. We shall show that T is an
isometry. To this end, for any y" € Y, there exists a sequence (z,--- ,2},---)
in X such that p(z},,y’) — 0. Hence

py,y') = Jim plxg, ),) = lim o(ag, xy,) = o(Ty, Ty')
—00 k—oco



where the second equality is due to p|x = o|x = d and the third equality is due
to the definition of T. Hence (Y, p) is a subspace of (Z, g). Since Y is complete,
we know (Y p) is the completion of (X, d) by definition. O

Theorem 1.26. FEvery metric space has a completion.

Proof. 1. For a metric space (X, d), we consider the set
Y = {z = (&1,&2,...) which is a Cauchy sequence in X}.

Define an equivalence relation ~ in Y as follows: 2 ~ 2/ iff limy, d(ék, &) = 0.
Let Y := Y/ ~ be the quotient space and [z] € Y stands for the equivalence
class of . Then define p: Y xY — Ry by

([, ) = Jim d(e, &),
—00
It is easy to verify that p is a metric on Y: in particular,
p[z], [2]) = lim d(&, &) < lim d(&x, &) + d(&F &)
k—o0 k—o0
= p([x], [2"]) + p([2"], [=")),

for any [z], [2], [z"] € Y where z, 2, 2" are Cauchy sequences in X. This verifies
the triangle inequality. Hence (Y, p) is a metric space.

2. We now show that (X, d) is dense in (Y, p). To this end, we identify £ € X
with [2¢] € Y, where ¢ := (£,¢,...) is the constant sequence in X. We denote
this identification mapping T': X — Y by T¢ = 2¢. Then clearly T : X — T(X)
is surjective and p(T¢,Tn) = p([z°],[€"]) = d(&,n). Hence T: X - T(X) CY
is an isometry, X and T(X) are isometric, and (X,d) is embedded into (Y, p).
For any [y] € Y, where y = (1,72,...) € Y is a Cauchy sequence in X, we
know (Tn1,T1a,...) is a sequence in T(X) such that

lim p(Tn;, [y]) = lim p([z™], [y]) = lim lim d(r;,ne) = 0.
Jj—o0 j—oo Jj—00 k—00
Hence T'(X) is dense in Y.

3. Finally we need to show that (Y, dy) is complete. Suppose ([y1], [y2],-..)
is a Cauchy sequence in Y. For each k € N, there exists £, € X such that
p(Ték, [yk]) < 1/k (since T(X) is dense in Y). Then for any € > 0, there exists
K = K(e) € N such that 2/k < €/2 and p([yr+p), [yx]) < €/2 for all kK > K and
p € N. Hence

d(&k1p, §k) = P(T &k ps TEk) < p(T &kt ps Wrtpl) + P[], [k]) + p([yr], TEk)

< ot ollnl ) £ 3 S 2 5 <
_k+p P\Yk+pl> Yk L= K 2
for all k > K. So x = (&,&,...) is Cauchy in X and hence [z] € Y. It is then
easy to show that p([yx], []) — 0.

Combining the conclusions in the previous three steps yields that (Y, p) is
the completion of (z,d), by Theorem [1.25] O



Example 1.27. The completion of (P([a,b]),d) is (C([a, b)), d) where d(x,y) :
maxa<t<p [2(t) — y(t)].

Elf(ample 1.28. The completion of (C([a, b]), p) is (L([a, b]), p) where p(x,y) :=
Jo lx(®) = y(®)| dt.

1.3 Sequentially compact set

Definition 1.29 (Bounded set). Let (X,d) be a metric space, a subset E is
called bounded if there exists xo € X and r > 0 such that E C B(zo;7r).

Recall that in (R™,d) (where d is the standard Euclidean distance), if an
infinite subset E is bounded, then E has at least one limit point (also known
as accumulation point); if a sequence {zy} is bounded, then it has at least one
convergent subsequence. However, this is not true for general complete metric
spaces, as shown in the following example.

Example 1.30. Consider (C([0,1]),d) and the following sequence {zy}:

i) = [0 t>1/k,
U 1tk 0<t < 1/k,

then {zy} is bounded by 1 in C([0,1]), but {xx} does not have a convergent
subsequence (the limit is not in C([0, 1])).

Definition 1.31 (Sequentially precompact and compact). Let (X, d) be a met-
ric space, then a subset F is called sequentially precompact if every sequence in
FE has a Cauchy subsequence. If in addition all the Cauchy sequences converge
with limits in F, then E is called sequentially compact. If X is sequentially
compact, we call X a sequentially compact space.

Remark. It is obvious that a sequentially compact set is also sequentially pre-
compact. In some texts, a sequentially precompact set is also called Cauchy
precompact or relatively compact.

Theorem 1.32. The following statements hold:
o [f E is sequentially precompact and F' C E, then F is sequentially precom-
pact.
o If F is sequentially precompact, then E is sequentially compact (assuming
the metric space is complete).
e If E is sequentially compact and F is a closed subset of E, then F is
sequentially compact.

Theorem 1.33. A sequentially compact metric space is complete.

Proof. Let (X,d) be a sequentially compact metric space and {z;} a Cauchy
sequence in X. Then there exist x € X and a subsequence {xy,} such that
T, — x as j — oo. Therefore zy — x as k — oo since {zx} is Cauchy. Hence
X is complete. U



We now introduce a condition stronger than boundedness.

Definition 1.34 (e-net). Let (X, d) be a metric space, E C X, and € > 0. We
call N° C X an e-net of E if for any x € FE, there exists y € N°¢, such that
d(z,y) < e. In other words,

EcC U B(y;e).

yeEN®
If N°€ is finite, then we call N€ a finite e-net of E.

Definition 1.35 (Totally bounded). Let (X,d) be a metric space and FE a
subset of X. Then F is called totally bounded if for any ¢ > 0, E has a finite
e-net in X. Totally bounded sets are also called precompact.

Remark. In some texts, a set F is called totally bounded if for any € > 0, F
has a finite e-net in E (rather than in X as in Definition [1.35)). This alternative
definition is equivalent to Definition [1.35} it is trivial to show from this alter-
native definition to Definition Conversely, if E is totally bounded under
Deﬁnition then for any ¢ > 0, E has a finite (¢/2)-net N/2 = {x1,..., 2, }
in X, pick any y; € ENB(x;;¢/2) (WLOG it is nonempty) for each i = 1,..., n,,

then there is .
€ € Ne
E C B(Jci;7>C B(y;;€),
1:U1 5 1=U1 (yis€)

which means that {y1,...,y,.} C E is a finite e-net of E.

Remark. The following facts can be verified easily:
e If F is totally bounded, then any subset of F is totally bounded.
e If E is totally bounded, then E is also totally bounded. To see this, let
€ > 0 be arbitrary and N¢/? a finite (¢/2)-net of E, then N¢/? is a finite
e-net of E.

Theorem 1.36 (Hausdorff). Let (X,d) be a metric space and E a subset of X,
then E is sequentially precompact iff E is totally bounded.

Proof. (=) If not, then there exists ¢y > 0, such that E does not have a finite
eo-net. Pick any 21 € X. Then pick 25 € E \ B(21;€p) (this is nonempty since
E cannot be covered by B(x1;€p)). Then pick z3 € E \ (B(x1;€) U B(x2; €)),
and so on. This process will never stop since there is no finite eg-net of £. Then
we obtain {x,} which is a sequence in E but d(zy,z;) > ¢ for any k # j.
Therefore {x} does not have any Cauchy subsequence in E, which contradicts
to F being sequentially precompact.

(<) Let {z} be a sequence in E. Since E has a finite 1-net, we know
there exists y; € M such that B(y;;1) contains infinitely many terms (thus a
subsequence) of {x}, which we denote by {a:,(cl)}. Since E has a finite (1/2)-net,
there exists yo € F, such that B(ys;1/2) contains a subsequence of {x,(:)}, which

we denote by {x,(f)}. Continue doing so, we obtain {x,(j)} for j =1,2,..., which

10



is a sequence of sequences and forms an infinite matrix with (xgj ) xg] )7 ...) as

the jth row. Note that xgcj) € B(yy;1/J) for all j > J and J,k € N. Now

consider the sequence {xék)} (by extracting the diagonal terms as a sequence),
we know for any € > 0, if k > 2/e, then for any p € N, there is

1 1 2
dafsy o) < Al w) + ) < ¢+ o =T <e

Therefore, {x,(f)} is a Cauchy subsequence of {zy}. O

Remark. If in addition (X, d) is complete in Theorem then E' is sequen-
tially compact iff E is totally bounded and closed:

(=) Since F is sequentially compact, we know FE is sequentially precom-
pact and by Theorem that F is totally bounded. Moreover, every Cauchy
subsequence in F is convergent with limit in F, which implies that E is closed.

(<) Since E is totally bounded, we know by Theorem [L.36]that E is sequen-
tially precompact. As F is closed and X is complete, we know FE is complete.
Hence every Cauchy sequence in F also converges in F, from which we know E
is sequentially compact.

Definition 1.37 (Separable space). Let (X,d) be a metric space. We call X
separable if X has a countable dense subset.

Theorem 1.38 (Totally bounded spaces are separable). Let (X, d) be a totally
bounded metric space, then X is separable.

Proof. Let N, C X be a finite (1/k)-net. Then U2 | Ny is a countable dense
subset of X. 0

Definition 1.39 (Compact). Let (X, d) be a metric space, then a subset E of
X is called compact if any open cover of E has a finite subcover.

Remark. Recall that a compact set is closed and bounded. However, the con-
verse is true in Euclidean spaces but not in general metric spaces. The following
theorem states that compactness and sequential compactness are equivalent in
metric spaces.

Theorem 1.40. Let (X,d) be a metric space and E C X. Then E is compact
iff E is sequentially compact.

Proof. (=) Suppose E is compact, then E is closed. If E is not sequentially
compact, then there exists a sequence {z}} in E such that {z;} does not have
a Cauchy (convergent) subsequence. Hence S := {x}, as a set, is closed. Let
Sk == S\ {xr} (removing xj, from S), which is also closed. Then X \ S}, is open,
and thus

X\ 80 =X\ () S =X > E.
k=1 k=1

11



i.e., {X\Sk: k € N} is an open cover of E. As F is compact, there exists a finite
subcover, i.e., there exists K € N, such that E C UK (X \ Sk) = X \ n&_, Sy
However, since xx 11 ¢ X \ mlesk and xx 11 € E, we arrive at a contradiction.

(<) Suppose E is sequentially compact, and hence totally bounded. Assume
E is not compact, then there exists an open cover {G,, : a € A} of E, but it does
not have a finite subcover for E. Since F is totally bounded, we know for any
k € N, there exists a finite (1/k)-net N, such that E C Uyen, B(y; 1/k) (covered
by finitely many balls). Hence there exists yr € Ny, such that B(yx; 1/k) has no
finite subcover from {G,}.

Now consider {yx}. Since E is sequentially compact, we know it contains a
convergent subsequence, denoted by {yx,}, such that y., — y for some y € E.
Then there exists o’ € A and § > 0, such that y € B(y;0) C Go. Hence
there exists k; € N large enough, such that B(yy,;1/k;) C B(y;0) C Gos, which
contraditcts to the definition of yy, (that B(yk,;1/k;) does not have a finite
subcover from {G,}). O

Now we consider a generalization of C([a,b]). Suppose (M, d) is a complete
compact metric space. Define

C(M):={f: M — R:T is continuous}
and p by p(u,v) := maxgen |u(z) — v(z)|.
Theorem 1.41. (C(M), p) is a metric space.

Proof. We only need to verify that p is well defined, i.e., the maximum in the
definition of p can be attained. Let {x}} be a sequence in M, such that |u(zy)—
v(zg)| = supgeas lu(x) — v(z)|. Since M is compact, we know there exists a
subsequence zy; such that zp; — o for some xo € M. On the other hand, as
u and v are continuous, we know |u(zy;) — v(zk;)| — |u(zo) — v(zo)|. Hence
|u(xo) — v(z0)| = sup,ens |u(x) —v(z)l, i.e., the maximum can be attained. [

Theorem 1.42. (C(M),p) is complete.
Proof. Similar to the proof of completeness of C([a,b]) before. O

Definition 1.43 (Uniformly bounded). A subset F' of C(M) is called uniformly
bounded if there exists L > 0 such that |f(z)] < L forallz € M and f € F.

Definition 1.44 (Equicontinuous). A subset F' of C'(M) is called equicontinu-
ous if for any € > 0, there exists § := §(e) > 0, such that

|f(z1) — fz2)| <€
for any x1,zo € M satisfying d(z1,22) < 6 and any f € F.

Theorem 1.45 (Arzela-Ascoli). Let (M,d) be a compact metric space and
(C(M), p) be defined as above. Then a set F' C C(M) is sequentially precompact
iff F'is uniformly bounded and equicontinuous.

12



Proof. Note that (M, d) is sequentially compact and hence also complete. Since
(C(M), p) is a metric space, we know that F is sequentially precompact iff F
is totally bounded. Thus we prove the theorem with sequential compactness
replaced by total boundedness.

(=) Suppose F is totally bounded, then F' is uniformly bounded. We
also need to show that F' is equicontinuous. To this end, for any ¢ > 0,
we know F has a finite (¢/3)-net, i.e., there exist ¢1,...,¢x € F, such that
F C UK B(¢x;€/3). For every k € {1,...,K}, there exists §; := dx(€) > 0,
such that |¢r(z) — ¢r(a’)] < €/3 for all x,2" € M satisfying d(z,2’) < 0. Let
0 := min{dy,...,dx} > 0, then for any x,2’ € M satisfying d(z,z’) < §, and
any f € F, there exists k € {1,..., K}, such that f € B(¢g;€/3), and hence

€

/(@) = f@)] < [f(2) = dn(@)] + [@n(2) = du(2)| + |on(a’) = f(2') < 33

€.
Hence F' is equicontinuous.

(<) For any € > 0, we need to find a finite e-net for F. Since F is equicontinu-
ous, there exists § = d(e) > 0, such that for any z, 2’ € M satistying d(z,z’) < §
and any f € F, there is |f(z) — f(2')| < €¢/3. As (M,d) is compact, we know
M is sequentially compact and totally bounded. Let {z1,...,z,} be a finite
d-net of M, i.e., M C U, B(x;;6). Now consider the mapping T : C(M) — R
defined by T(¢) = (¥(x1),...,¢¥(xy)) for any ¢ € C(M). Tt is clear that T is
surjective.

Since F' is uniformly bounded, i.e., there exists L > 0, such that |f(z)| < L
for all x € M and f € F, we know that

IT(H)l = 1(f(@1),-.., f(za))| < V/nL.

So T'(F') is bounded in R™. Thus T'(F) is compact and thus totally bounded, and
hence T(F) is totally bounded and has a finite (¢/3)-net. Since T is surjective,
we know there exist ¢1,..., ¢, € F, such that {T(¢1),...,T(ém)} is a finite
(e/3)-net of T(F).

For any © € M, there exists ¢ € {1,...,n}, such that x € B(x;;J), and
je{1,...,m}, such that T(f) € B(T'¢;;¢/3). Hence

F(@) = 6;@)| < [£(x) = F@ol + 1f (@) = 65w + 15 (w) = ¢5(2)|
<5 HIT() =T+ 5 <«

which means {¢1,..., ¢} is a finite e-net of F. O

Remark. Under the setting of Theorem [[.45| (Arzela-Ascoli), (C(M), p) is com-
plete. Therefore, if F' is uniformly bounded and equicontinuous, then any se-
quence in F' has a Cauchy subsequence (in the sense of p), and the subsequence
converges to some f € C(M). If F is closed, then the limit f € F.

Example 1.46. Let Q2 C R™ be open and convex, and Lo, L1 > 0. Then the set
F:={fecQnC(Q) :|f(x)] < Lo, |Vf(x)] < Li,Va € Q} is sequentially
precompact in C'(Q).

13



Proof. By the definition of F', we know F' is uniformly bounded by L¢. By the
mean value theorem, for any z, 2’ € 2, there exists A € (0,1), such that

[f(2) = f@)] = [VIQz+ (1 = Na)(z —2)| < L]z — 2

Hence f is L;-Lipschitz continuous for all f € F. Hence F' is equicontinuous.
By Theorem (Arzela-Ascoli), we know F' is sequentially precompact. [

Remark. Note that F in Example[1.46]is not closed, and hence not necessarily
sequentially compact. For example, consider F' := {f; € C([-1,1]) : fp(z) =
(22 + £)'/2}. Then f; converges uniformly to f(z) := |z|, but f ¢ F since f is
not differentiable at 0.

Example 1.47. Let (X,d) be a metric space and E a sequentially compact
subset of X. Suppose f : X — E satisfies d(f(z1), f(z2)) < d(z1,x2) for all
distinct z1, 22 € X. Show that f has a unique fixed point in X.

Proof. Tt is obvious that f is continuous. Denote § = inf{d(z, f(z)) : x € E}.
Let xz € M such that § < d(zg, f(zr)) < 6 + 1/k for all k € N. Then by
sequential compactness of M, there exists a subsequence xy; — x for some x €
E. Hence d(xy;, f(zx;)) — d(z, f(x)) = § as j — oo because f is continuous. If
0 > 0, then d(f(x), f(f(x))) < d(z, f(x)) = 6 which contradicts to the definition
of §. So d(z, f(z)) =0 =0.

If z, 2’ are two fixed points of f but distinct, then

0 <d(z,2') = d(f(x), f(2')) < d(z,2),

which is a contradiction. Hence z = z’. O
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2 Banach and Hilbert Space

2.1 Normed linear space and Banach space

We have discussed metric spaces which have topological structure due to the
the metric (and thus we have the concepts of open sets, closed sets, compact
sets etc.) However, this is often insufficient, and we also need to consider the
algebraic structure of the spaces.

Definition 2.1 (Linear space). Let X be a set and K be a field (either R or C).

We call X a linear space if it has summation and scalar multiplication defined,

such that for any x,y,z € X and «, 8 € K, the following statements hold.
l.z2+y=y+u.

(z+y)+z=a+ (y+2).

There exists 0 € X such that t +0 =0+« for all z € X.

For any z € X, there exists 2’ € X, called —z, such that = + 2’ = 0.

a(fr) = (ap).

1.2 = x where 1 € K.

(a+ B)r = ax + Bx.

a(z +y) = az + By.

P NSO N

Remark. The elements in X are also called vectors, and X is also called vector
space.

Definition 2.2. We have the following definitions regarding linear spaces.
e (Isomorphism) Let X and Y be linear spaces, and 7' : X — Y be a linear
mapping, i.e.,
T(ax + f2') = T (z) + BT (x')

for all z,2’ € X and «,8 € K. Then T is called an isomorphism if T is
a one-to-one correspondence (injective and surjective, or bijective). In this
case, X and Y are called isomorphic to each other.

e (Linear subspace) If Y is a subset of X and closed under the summation and
scalar multiplication, then Y is called a linear subspace of X. Note that {0}
and X are trivial linear subspaces of X.

e (Linear manifold) Let Y be a linear subspace of X, then x +Y := {x +y :
y € Y} is called a linear manifold, i.e., a translation of Y by z.

e (Linear independency) A set of vectors {z1,...,z;,} of X are called linearly
independent if a1x1 + -+ - + amT, = 0 implies that aq = --- = a,, = 0 €
K. Otherwise they are called linearly dependent. A set E is called linearly
independent if any finite subset of F is linearly independent.

e (Linear basis) A subset F of X is called a linear basis if E is linearly inde-

pendent and any = € X can be written as linear combination of vectors in

X (check that such combination is unique). The cardinality |F| is called the

dimension of X.

(Linear span) Let E = {z, : @ € A}, then the span of E is defined by

span(E) := {a12q, + - + anZa, :a; €K, a; € A, n € N}

15



e (Sum and direct sum) Let Fp, E5 be linear subspaces of X, then the sum of
Fiand Esy is E1+ Ey = {1‘1 +x0:11 € B1,29 € EQ} If Bi1NEy = {0}, then
the sum becomes the direct sum, denoted by E; @ FE5. In the case of direct
sum, for any vector x € Fy @ FEs, there exist unique x1 € E; and xo € F,
such that x = x1 4+ x4 (check yourself).

Now we combine the algebraic structure and topological structure of (X, d)
by requiring:
1. The metric d is translation invariant: d(z + z,y + z) = d(x,y) for all
z,y,z € X.
2. Continuity in scalar multiplication:

d(zg,z) =0 = d(azg,ax) -0, Vaek
ar —0 = d(agzr,ax) -0, VzelX.

Note that by Item 1 above, d(z,y) = d(z — y,0).
Proposition 2.3. Ifd(zy,z) = 0 and d(yx,y) — 0, then d(zy +yr, x+y) — 0.
Proof. We have that
d(zg + Y,z +y) = d((zx + yx) — (2 +9),0) = d((zx — ) + (yx — v),0)
d(xg —z,y — yx) < d(zx — x,0) + d(yx — y,0)
= d(xr, x) + d(yk,y) = 0,

which completes the proof. O

Now we can introduce p : X — Ry by p(z) = d(z,0). Then it is easy to
verify that the following properties of p hold:

1. (Positive definite) p(z) > 0; and p(z) = 0 iff z = 0.

2. (Symmetric) p(z) = p(—z) for all z € X.

3. (Subadditive) p(x + y) < p(x) + p(y) for all z,y € X.

4. p(zy) — 0 implies p(axy) — p(ax) for all a € K.

5. ap — 0 implies p(arz) — p(az) for all z € X.
Items 1-3 are due to that d is a metric. Items 4-5 are due to the continuity in
scalar multiplication.

Definition 2.4 (Frechét space). We call (X,p) a Frechét space if the linear
space X is complete and p : X — R satisfies the items 1-5 above. Note that
completeness means that for any Cauchy sequence is convergent in X in the
sense of p.

Example 2.5. R” with p(z) = (22 + --- + 22)/? is a Frechét space.

Example 2.6. Consider C(M) where (M, d) is a compact metric space. Define
p:C(M)— R by

p(u) = gg;IU(w)I,

then (C(M),p) is a Frechét space (check Items 1-5 above).
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We need the following simple lemma for the next example.

Lemma 2.7. For any a,b > 0, the following inequalties hold:

1. If a <b, then % < 1ib.

a+b _a b
2' 1+a+b S 1+a+b + 1+a+b S 1+a + 1+b°
3. 1+ < max{a, 1}1+b

Proof. The first two can be verified directly. The last one is due to

ab < a-i ifa>1,6>0,
1+ab — if0<a<1,b>0.

from which the claimed inequality follows. O

Example 2.8. Consider S := {x = (21, 22,...) : z; € R} where the summation
and scalar multiplication are as usual. For any z € X, define

ilk |$k|

Then (5, p) is a Frechét space.

Proof. 1. 1t is straightforward to check that S is a linear space.
2. We need to check Items 1-5 of p. Items 1-2 are trivial. For Item 3, we
have that

o0 (o)
L |zg + yil U |og] + |yrl
plz+vy) = — _-
z:: 25 1+ [ + vl kz: R 1+ |zl + |yl

(o)
£ |y
< ( + )z T)+
,; oo P =P@) )

where the first two inequalities are due to the first two statements in the previous
lemma, respectively.
For Ttem 4, suppose p(z¥)) — 0 as j — oo, then

Mg

. 1 (4) 1 (4)
plaz) = 1 ez < max(a, 1) Z j*7]

k:2 1+ Jax@| — 7’“1—|—|x

= max(a,1) - p(z) = 0

as j — oo, where the inequality is due to the third statement in the previous
lemma.

For Item 5, suppose a; — 0 as j — oo. For any € > 0, there exists K € N
large enough, such that 1/2% < ¢/2, then choose J € N large enough, such that
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a; maxi<k<k |xr| < €/2 for all j > J. Then we have

o0

1 |ajzkl 1 |ajxkl
i Tk i Tk
plajz) = E -7 — + E J

9% 1 L lasxw|
W 2+ la x|

for all j > J. Hence p(ajz) — 0 as j — oc. O

3. Now we show that (S, p) is complete. Suppose {2(™} is Cauchy in S, i.e.,
p(z+P) — (M) 0 as n — oo for any p € N. Note that

(n+p) (n)
X — T
I . <L> 0,
L+ |z, — x|

1
p(a™m+P) — 2y = Z 3
k=1

which implies that {a:ﬁcn)} is Cauchy for every k. Suppose x,(cn) — z%. Let z* :=

(x%,2%,-++). Then for any € > 0, there exists K € N, such that 1/2% < ¢/2.
Choose N € N large enough, such that |a:§€n) —af| < €/2 for all n > N and
k=1,...,K. Then

K
p(a™ — 2%y = ZLWT;%* s

k 9k n *
s+ [EE ] I} 21+ |$§C = Ty
K [e%e)
€ 1 1 € 1 € €
<=) = — <-4 ——<-—4+-=c
2221ch > gk Sy Tk Sty =Fc

As we can see, the p function of the Frechét spaces in Examples and
are homogeneous: p(azx) = |a|p(z) for all a € R and = € X, whereas the
one in Example is not. We formalize the definition of norm by requiring
homogeneity as below.

o — af]

Definition 2.9 (Norm). The function ||| : X — R is called a norm if for any
z,y,z € X and a € K the following statements hold:

1. (Positive definite) ||z|| > 0; and ||| =0 iff z = 0.

2. (Homogeneous) ||az|| = |al||z]|.

3. (Triangle inequality) ||z + y|| < ||z]| + [ly]|-

Remark. Homogeneity of norm also implies that ||azy| — 0 whenever ||zg| —
0 and ||agz| — 0 whenever a; — 0.

Example 2.10 (Norm is continuous). Suppose z; — x, then |z — z| — 0,

which implies that |||zx| — ||z||| < ||zx — x| = 0. Hence ||zk| — ||=]|-
Definition 2.11 (Banach space). Let X be a linear space and || - || be a norm.
Then we call (X, || -|), or simply X is the norm is clear from the context, a B*

space. If X is complete, we call X a Banach space.
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Example 2.12. Let (X, M, u) be a measure space where Q C R”, and v : Q —
R be a measurable function. Define p € [1,00) by

fully = ([ luta)p dnte))

Then LP(Q, pn) == {u: Q@ = R : ||ul|, < co}. We can verify that L? is a complete
metric space, namely,
1. LP(R) is a linear space under summation and scalar multiplication.
2. |- |lp is a norm (the triangle inequality is due to Minkowski’s inequality).
3. L? is complete (Theorem 6.15 in Lecture Notes on Real Analysis).

1/p

Example 2.13. Let S := {z = (z1,29,...) : & € R}. Then define

> 1/p
ol == (3 Jeul?)
k=1
This is called the I space. Then we can verify that (IP,]|-]|) is a complete metric

space. Specifically, the triangle inequality is due to the generalized Minkowski’s
inequality, and the completeness as follows: let {2} be a Cauchy sequence in
[P, then

Sl e —a @ = i 3™ - =0
k=1

Hence for every k € N, {xlgn)} is Cauchy. Let z} := lim,_,o x,(cn). Then for any

€ > 0, there exists N = N(e) € N, such that ||z — z("*™)||p < ¢ for all n > N
and m € N. For any fixed k € N, we know
) ) (m) o () (m)
n) _ ok p_ 1 n) m)p < T n) m)p
; |z, | n}gnoo; e z, P < "}E}nookz_l |z, Ty, |

= n}gnoo [z — :C(m)Hg <e

Hence we have

oo
||x(") —at|E = Z |$§€n) —ziP <e
k=1

which means z(™ — z*. Moreover, ||J2*||, < [|z(™ —z*|, + |z(™]|, < oo, hence
x* € S. Therefore, (S,] -||p) is a Banach space.

Example 2.14. Let Q) be an open, bounded, connected subset of R™ and k € N.

For a multi-index o = (v, ..., ;) € (NU{0})", we denote |a| := Y " | a; and
olel
ao‘u(gj) = mﬂ(l’), Vr= (Z‘l, [SPN ,.I‘n) € .
We define the norm
lv]] == max max |0%u(x)|.
la|<k 2
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Then it is straightforward to verify that || - || is a norm on C*(Q). We now show
that C*(Q) is complete under this norm. To this end, let {u} be a Cauchy
sequence in C*(Q). Then for any a where |a| < k, there exists v, such that
0%uy, =3 v, (converge uniformly) as k — oo due to the definition of the norm.
It remains to show that 0%u = v, (Where u = v, . o) is the limit of uy for
short) for all |a| < k. For any z = (x1,...,2,) € Q, let (29,29,...,2,) be in
the neighborbood of x,. Then for any k, we have

z1
’U,k(l’l,lrg, e ,xn) = uk(x?,xg, . ,In) + /0 81uk(t,x2, ey :L'n) dt.
L1
As up, = u and Oyu = v(10,...,0), we know

1
w(wy, Tay ...y Tp) :u(m?,xg,...,xn)—i—/o V(1,0,..,0)(t, T2, . ., 1) dE.
xr

1

Taking partial derivative with respect to x; on both sides yields that 0ju =
v(1,0,...,0)- Lhe cases for other o can be obtained similarly by induction.

Furthermore, we have that |lu|| < ||ux —u| + [Jux| < oo. Hence (C*(Q), || )
is complete, and thus is a Banach space.

Example 2.15 (Sobolev space). Let £ be an open, bounded, and connected
subset of R™, k € N, and 1 < p < oo. Define

1/
[ullwrrq) = ( Z /QIGC“u(x)V’dx) "

|| <k

Then || - [lyyx.» is a norm, but C*(€2) is not complete under this norm. To see
this, recall that (C*(€2), p) is not complete as in Example

The completion of C*(Q) under the W*® norm is called the Sobolev space,
denoted by (W*P?(Q), || - lwkr). It can be shown that C*(Q) is dense in
(WEP(Q), || - lwre). If k=2, then (W2P(Q),] - |lw2») is called the Hilbert
space, which is denoted for short by (H?(Q), || - ||ze)-

Suppose || - ||1 and || - ||z are two norms in X. We are often interested in
the convergence properties of sequence rather than the actual value of distance.
Then we can treat the two norms equivalently if any sequence that converges in

the sense of || - |1 is also convergent in the sense of || - ||2 and vice versa.
Definition 2.16 (Equivalent norms). Let || - ||; and || - ||2 be two norms in X.
We say that || - ||2 is stronger than || - ||; if ||zg|[1 — O whenever ||zg|2 — 0. If
Il - |l1 is also stronger than || - ||2, then we say the two norms are equivalent.
Proposition 2.17. |- ||z is stronger than || - ||1 iff there exists a constant ¢ > 0
such that

[zlly < cllzlle, Ve X.
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Proof. (<) Trivial. (=) If not, then for any k € N, there exists xj, such that
[zl > Kllekll2 (obviously z) # 0). Let yp = @x/[lek|1, then 1 = [[yp[lr >
Ellyk|l2. Hence 0 < ||ykll2 < 1/k for all k € N. Therefore |lyi|]2 — 0. However
llyell1 = 1 for all k& € N, which contradicts to || - ||2 being stronger than ||-|;. O

Corollary 2.18. || |1 and ||-||2 are equivalent iff there exist constants ¢1,co > 0
such that
allzlls < llzlly < eollzlls, Ve X,

If X is finite dimensional, say dim(X) = n, then there exists a set of basis
vectors, {e1,...,e,} C X, which are linearly independent. Moreover, for any
x € X, there exist unique coefficients aq,...,a, € R, such that

r=aie;+- -+ ape,.

Recall that two finite dimensional linear spaces X and Y are isomorphic iff
dim(X) = dim(Y) = n. Now we want to exploit more connections between X
and Y if they are also normed spaces.

For the fixed basis {ej,...,e,} and any norm || - || on X, we consider the
linear isomorphism 7' : X — R™ as follows,

Tx=a:= (a1,...,a,) €ER"

for every x = aje; + -+ - + ane,. We want to establish the relation between ||z||
and |Tz| := |a|. To this end, we consider the mapping ¢ : R™ — R defined by

n
a(a) == |7l = | Y ae,
i=1

Then we can show that ¢ is Lipschitz continuous:

lq(a) — q(b)| =’|| Doaieil = 1) biedll| < 1Y (ai —biesl| <Y lai = billles]
i=1 i=1 i=1 i=1

< (S ta—6l) (S lel)” = Lia -,
=1

i=1

where L := (31| |a; — b;]?)'/? is a constant. The first equality above is by the
definition of ¢, the first two inequalities are due to the triangle inequality, and
the third inequality is due to the Cauchy-Schwarz inequality.

Furthermore, we can show that ¢ is homogeneous: for any a # 0, we have

n n
a; a
a(a) =3 ases :\a|oH§:E’|ei :'“"q(m)’
i=1 =1

which implies that g(a)/|a| = q(a/|a|) for all nonzero a € R™.
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Denote S := {a € R™ : |a| = 1} as the unit sphere in R". We know that S
is compact. Hence ¢ : S — R attains maximum and minimum on S. Namely,
there exist ¢1,co > 0 such that

c1 < qa) <co, Vaes.

We claim that ¢; > 0: if ¢; = 0, then there exists a € S such that ¢(a) =0, i.e.,
| >0, aze;|| = 0, which implies that >, a;e; = 0. As {e1,...,e,} is a basis
(and hence linearly independent), we know a; = 0 for all 4, but this contradicts
to that a € S. Hence we know for any nonzero a € R™ (not necessarily on ),

there is (@)
a a
< o ZQ<H) < ca.

This means that ¢1]a] < ¢q(a) < cz]a| for all a € R™ (we did not consider the
case a = 0 but it is obviously true as well). Therefore, by noting that a = Tz,
we have

aiTz| = cifal < g(a) = [T a|l = |T7'Ta|| = ||| < e Txl.

We denote ||z|lr := |Tx|, then || - || is another norm on X. Hence || - || and
|| - || are equivalent. Note that || - ||z depends on T" and the basis only.

Theorem 2.19 (Norms on finite dimensional linear spaces are equivalent). Let
|- 1lx and || - ||2 be norms on X, and dim(X) = n, then there exist c1,c2 > 0
such that c1||z||1 < ||z]l2 < eal|z|l1 for all z € X.

Proof. Both norms are equivalent to || - |7, and hence they are equivalent to
each other. O

Corollary 2.20. A finite dimensional B* space is a Banach space.

Proof. Let the basis {e1,...,e,} and T be defined as above. Let {z(*)} be a
Cauchy sequence in X under some norm || - ||, then it is also Cauchy under || - ||z
(since || - || is equivalent to || - ||). Note that

20 — 2®)||p = |Te™ — Te®)| = o) — o®),

where a(¥) € R™ is the coefficients to represent x(*) using the given basis.
Therefore {a®)} is Cauchy in R™ and hence converges to some a € R". Let
z=T"'a =Y, ae;, then |z — z|jr = [T2® — Tz| = |a® —a| - 0 as
k— 0. So z*) — 2 € X where z = Y, a;z;. Hence X is complete. O

Corollary 2.21. A finite dimensional linear subspace of a B* space is a Banach
space.

Definition 2.22 (Sublinear functional). Let X be a linear space, and P : X —
R satisfy

1. (Subadditive) P(z 4+ y) < P(z) + P(y) for all 2,y € X.

2. (Positive homogeneous) P(Ax) = AP(x) for all A > 0 and = € X.
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Then P is called a sublinear functional.

Definition 2.23 (Semi-norm). Let X be a linear space, and P : X — R satisfy
1. (Nonnegative) P(x) > 0 for all x € X.
2. (Subadditive) P(z +y) < P(x) + P(y) for all z,y € X.
3. (Homogeneous) P(Az) = |\|[P(z) for all A € R and z € X.

Then P is called a semi-norm.

Example 2.24. The total variation norm is a semi-norm on BV ([a, b]).

Theorem 2.25. Let P be a sublinear functional on a finite dimensional Banach
space X. If P(x) > 0 for allz € X and P(x) = 0 iff x = 0, then there exist
c1,¢2 > 0 such that c1]|z|| < P(z) < eoljz|| for all x € X.

Proof. Let {eq,...,en} be abasis of X and T'v = a where x = ), a;e; as before.
Consider the || - ||z norm on z, then

|P(z) — P(y)| < Pz —y) = P(Dai ~b)er) <Y P(a

Z la; — b;| P(sign(a; — b;)e;) < Z la; — b;|(P(e;) + P(—e;))

< (X (P +P<—ei>) ja b = Ljlz - y|r

i=1

where the first two inequalities is due to the subadditivity of P, the second equal-
ity due to positive homogeneity, and the last equality due to L := (31| P(e;)+
P(—e;))"/? which is a constant. Hence P is Lipschitz continuous on X.

For S := {z € X : |z||lr = 1}, we know there exist ¢1,cy > 0 such that
¢1 < P(z) < ¢g for all z € S. Then we claim that ¢; > 0: if not, then there
exists € S such that P(x) = 0, which contradicts to that P being positive
definite. Hence for any nonzero z, we know ¢; < P(z/||z||7) = P(x)/||z|r < ¢2,
which verifies the claimed inequalities. O

Given a set of functions ¢1, ..., ¢,, how to approximate a given function f
using a linear combination of {¢;}? For example, let f : [0,27] — R be given
and ¢;(x) = cos(iz), then how to approximate f by Y | a;¢; in the sense of
L2 norm?

Specifically, given a B* space (X, |- ]|) and {ey,...,e,} (assume they are
linearly independent) and x € X, consider the problem

n
min ||z — E a;e;
a€R” —y
=
where a = (a1,...,a,) € R™. Question: does such optimal a* exist? Is it

unique?
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To answer these questions, we define F' : R™ — R by

n
F(a) = Hm - Z a;e;
i=1

Then it is straightforward to verify that F' is Lipschitz continuous:

[F(@) = F®) < | Y (0 = bed| < Lia -1,

where L := (31", |le;||?)!/2. By triangle inequality, we know

=l

n
F(a) > H > aie
i=1

Define P : R" — R by P(a) := || >_1, ase;||, then P is a norm on R" (check
yourself). Hence there exists ¢; > 0 such that P(a) > c¢i|a|. From this we
see that F'(a) — oo as a — oo (such F is called coercive), so the infimum of
F must be in a ball B(0;r) in R™ for some r > 0. Thus, the minimizer of F
must be attained in B(0;r) since B(0;r) is compact and F is continuous. This
conclusion is summarized in the following theorem.

Theorem 2.26. Let X be a B* space and {ey,...,e,} be linearly independent.
Given any x € X, there exist a € R™ such that F(a) := ||z — Y/ ;e is
manimized.

Remark. Let M := span({ei,...,e,}), then M is a linear subspace. The
approximation problem consider earlier can be rewritten as

inf ||z —yl-
inf 2~y

The theorem above implies that a minimizer y* can be obtained over a finite
dimensional subspace M of the B* space X. We call the distance between x
and the subspace M by

d(x, M) := min ||z — y||.

(2, 20) = i 2 — y]|
Now we would like to study the uniqueness of the solution in the approxi-

mation problem above.

Definition 2.27. A B* space (X, ||-]|) is called strictly convez if for any x,y € X
where z # y and ||z|| = ||ly|| = 1, there is [|[(1 — A)z + Ay|| < 1 for all A € (0,1).

Example 2.28. In R", the norm |- |5 is strictly convex, but the norms |- |; and
| - |00 are not strictly convex (check yourself).

Theorem 2.29. Let X be a strictly convex B* space, {e1,...,en} be a set of
linearly independent vectors. Then for any x € X, there exists a unique a € R
such that F(a) := ||z — Y1, aze;|| is minimized.
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Proof. We have proved the existence of a. If ¢ and b are both minimizers of

F but are different, then let y = > ; aje; and z = > b;e;, and denote

r = d(x,M). Hence ||z —y| = ||z — z|| = r. Moreover, by strict convexity of

X, we have

x — T —z
Y

T T

Y — (= Ny 290 = - | <1

That is, (1 —A)y+ Az € M but ||l — ((1 — Ny + Az)|| < r, which contradicts to
the definition of r. O

Example 2.30. LP(Q, u) is strictly convex if p € (1, 00).

Proof. Recall that the Minkowski’s inequality holds: |u + v, < ||ullp + [[v]|p;

and the equality holds only if one of u and v is zero or u = cv for some ¢ > 0.

Consider u,v € X where |ju|| = ||v]] = 1 but v # v. Then (1 — A)u and v
cannot have a ¢ > 0 such that (1 — A)u = ch\v (otherwise v = v). Hence
(1= XNu+ Av|| < (1= X)]u| + Aljv]] = 1. O
Example 2.31. Let (M,d) be a compact metric space. The space (C(M), || -
) where ||z|| := maxgeas ||u(z)| is not strictly convex. Take C([0,1]) as an
example: consider x(¢t) = 1 and y(t) = ¢t. Then ||z|| = |ly|| = 1, z # y. But
Iz +y)/2] < 1.

Example 2.32. L'(Q, ;1) is not strictly convex. Take L'([0,1]) as an example:
consider z(¢t) = 1 and y(t) = 2¢t, then ||z|| = |ly]| = 1 and = # y, but ||(z +
y)/2ll = 1.

Theorem 2.33. A B* space X is finite dimensional iff the unit sphere S =
{z € X :||z|| = 1} is sequentially compact.

Proof. (=) This is because X is homeomorphic to the unit sphere in R” and
hence is sequentially compact.

(<) Assume not, then for any z1,...,z, € S, we know that their linear
span M, := span(zy,...,Z,) is a proper subspace of X. Hence there exists
nonzero y ¢ M,, (since M, is closed). Let r := d(y, M,,) > 0. Then there exists
x € M, such that r = d(y,z) = d(y, M,,). Define x,,+1 := (y — x)/r, then for
any ¢ € {1,...,n}, we have
1

— ~ly— @+ ra)l 2 1,

y—x
r

—x;

Jons - zill = |

where the inequality is due to that z+rz; € X and the definition of r. Hence we
obtain a sequence {1, s, ..., } such that |z, —x| > 1 for all n # k. Therefore
S is not sequentially compact, which is a contradiction. O

Lemma 2.34 (Riesz). Let X be a B* space and Xy be a proper closed subspace
(Xo may be infinite dimensional). Then for any e € (0,1), there exists y € X
such that ||y|| =1 and |ly — z|| > 1 — € for all z € X,.
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Proof. Let z € X \ Xo. Then r := infycx, ||z — z|| > 0 as X; is closed. For
any € € (0,1), there exist n > 0 (we will specify n later) and zy € X such that
r<|lz—xol| <r+mn. Let y = (2 —x0)/||z — xo||, then

Zo H _ 2= @0~ flz+xolle)| o 7

.
Iy = all =|| == - >
== ol == ol e

Solving r/(r +n) = 1 — € we obtain n = re/(1 — ¢), and hence we can choose
ne (0,7¢/(1—¢€)). O

2.2 Convex sets and fixed points

Definition 2.35 (Convex set). Let X be a linear space. Then a subset F of X
is called convez if (1 — Nz + Ay € E for any A € [0,1] and z,y € E.

Remark. The interior and closure of a convex set are also convex.

Proposition 2.36. Let {E, : o € A} be a (finite, countable or uncountable)
family of convex sets, then NgcaFy s also convex.

Definition 2.37 (Convex hull). Let X be a linear space and E C X. Consider
the family of convex sets:

F:={FCX:ECF, Fis convex}.

Then NperF is called the convex hull of E, denoted by conv(E) or co(E). In
other words, conv(FE) is the smallest convex set containing F.

Proposition 2.38. Let X be a linear space, E C X. Then

conv(E) = {Zaizi : Zai =1,a4;, >0,2;, € E,n € N}
i=1 i=1

Proof. Denote the set on the right hand side by S. As S is convex, we know
E C S and hence conv(E) C S. On the other hand, for any s € S, we know
s € F for any F € F. Hence S C F and thus S C conv(E). Therefore
S = conv(E). O

Remark. Similar to Definition we define the smallest closed convex set
containing E to be the closed convex hull of E, denoted by tonv(E).

We have conv(E) = conv(E) for any E: (C) Note that E C conv(E) C
conv(E), conv(E) is closed (as a closure) and convex (as the closure of the
convex set conv(E)), we know conv(E) C conv(E) since conv(E) is the smallest
closed convex set containing E. (D) Note that conv(E) C conv(E) and conv(E)
is closed, we know conv(F) C conv(F) since the closure conv(E) is the smallest
closed set containing conv(E).

There is also conv(E) C conv(E) for any E: as E C conv(E), we know
E C conv(E). Since conv(E) is convex, we know conv(E) C conv(E) because
conv(E) is the smallest convex set containing £. Note that the converse may
not be true: consider £ = {(z;,72) € R? : z; > (1 + 23)~ !}, then conv(E) =
{(z1,22) : 2 > 0} and conv(E) = {(x1,z2) : 22 > 0}.
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Definition 2.39 (Minkowski functional). Let X be a linear space and C a
convex subset of X containing 0. Define a function P : X — [0, 00] by

P(a:):inf{/\>0:§60}, Ve X.

Then P is called the Minkowski functional (or gauge) of C.

Proposition 2.40. Let X be linear space and C' a conver subset of X containing
0. Then the Minkowski functional of C' satisfies the following properties:

1. P(x) € [0,00] and P(0) = 0.

2. P(Ax) = AP(x) for all A\ >0 and z € X.

3. P(x+vy) < P(x)+ P(y) for all z,y € X.

Proof. Ttems 1 and 2 are obvious. For Item 3, WLOG, assume P(z), P(y) < 0.
Then for any € > 0, let A1, Ao > 0 such that

P(z) <X\ < Pa)+ 5, Ply) <X < Py) + 3,
and 2/A1,y/A2 € C. Then we have

A A2 R
At+A A At A A+ A '

Hence P(z +y) < A1 + A2 < P(x) + P(y) + €. As € is arbitrary, we have
P(z +y) < P(z) + P(y). O

Definition 2.41. (Absorbing set) Let X be a linear space and C a convex
subset of X containing 0. C' is called absorbing if for any = € X there exists
A > 0 such that 2/ € C.

Definition 2.42 (Symmetric set). Let X be a linear space and C' a convex
subset of X containing 0. C is called symmetric if —x € C' whenever x € C.

Proposition 2.43. Let X be a linear space and C' a convex subset of X contain-
ing 0. Let P be the Minkowski functional. Then the following two statements
hold.

1. C is absorbing iff P(x) € [0,00) for any z € X.

2. C is symmetric iff P(azx) = |a|P(x) for any a € R and z € X.

We can obtain even stronger result if X is a B* space.

Proposition 2.44. Let X be a linear space and C a closed convexr subset of
X containing 0. Let P be the Minkowski functional. Then the following three
statements hold.

1. C={zeX:P(x) <1}.

2. If C is bounded, then P(x) =0 iff z = 0.

3. If 0 € int(C), then C is absorbing and P(x) is Lipschitz continuous.
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Proof. 1. Let S denote the set on the right hand side. If x € C, then P(z) <1
and therefore z € S. Hence C C S. If x € S, then P(x) < 1. Hence z3 =
z/(14 ) € C for all k € N. So z, — z. Since C is closed, we know z € C.
Hence S C C.

2. Tt is clear that P(0) = 0 since 0 € C. If C is bounded then there
exists r > 0 such that C C B(0;r), ie., for all x € 0 x ¢ C. Hence
0 < ||z||/r < P(z). Hence P(z) = 0 implies 2z = 0.

3. As 0 € int(C), there exists ¢ > 0 such that B(0;¢) € C. Then for any

x € X, there is §rir € B(0;¢) C C. Since P(x) < M, we know

’ HIH

|P@) ~ Py)| < max(P(z ~y), Ply — o)) < 2o — y]

which means that P is Lipschitz continuous (and hence also uniformly contin-
uous). O

Corollary 2.45. Suppose C is a compact convex set in R™. Then there exists
m < n such that C is homeomorphic to B™ := {x € R™ : |z| < 1}.

Proof. 1. Let E be the smallest linear manifold containing C, and dim(E) = m.
Then there exist ej,...,enmt1 € C such that e; — ei1,. .., 6m — €my1 are
linearly independent. Therefore

m+1

.:m_i_lZezeC

since C is convex. Then E — ey is an m-dimensional linear subspace of R™.
We claim that for any y € E, there exist unique aq,...,a,, such that y =
eo+ Y i ai(e; —ep). To see this, we only need to show that e; —eg, ..., €, — €
are linearly independent which implies that they form a basis of E — eg: let
ai,...,a, € R be such that

0= a1<€1—€0)+"'+am(m_60)
m m
a; - ay
:Zalel ZZZ 1% ,_Zzzl et
Pt = m +1 m+1
m
=3 (- B et
i=1
Since €1 — €41, - - -, €m —€m41 are linearly independent, we know all coefficients
are 0 and hence we can readily deduce that a; = 0 for all . Hence we can define
a norm |y|| = |a| for every y = eg + Y v, ai(e; — ep) € E.

2. We want to show that ey is an interior point of C relative to E, i.e., if
llyll = |a| is small enough (we will specify it later) then y € C. To see this, we
notice that

m m m m
1— oy 1-— Ay
y=ceo+ E ai(e; — emy1) = E (ai + L > L Z) e + L > L St
i=1

P m—+1 m+1
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Choose € > 0 such that (1—me)/(m+1) > ¢, i.e.,, e <1/(2m+1). Now as long
as |a;| < e for all i, we have

1—me _ 1—2;’;1%.

a;l Le<

o] = m+1 = m+1

In this case, all coefficients in the representation of y using ey, ..., e,41 above
are nonnegative and their sum is 1, which means y € conv(es,...,em+1) C C.

Thus eq is an interior point of C, namely 0 is an interior point of C' — eg.

3. Let P be the Minkowski functional of C' — ¢y, then P is nonnegative,
positive homogeneous, and subadditive (since P is the Minkowski functional),
P(z) = 0 iff x = 0 (since C — g is bounded), and Lipschitz continuous (0 is
interior point of C' — ep). By Theorem there exist c¢1,co > 0 such that
allz]] € P(x) < cof|lz| for any y = eg +a € E. For any z € B(0;1), define
f:B(0;1) = C by

”Z” 3
e+ pyz if 2 #0,
f(z) = { ()

€o, if z=0.
Since % < IH(ZJ) < % for all z # 0, we know f is continuous for all z # 0.

Moreover, there is

2]l
P(z

1
250 — H zHgH—zH—m,
) c1

which implies that f is also continuous at z = 0. The inverse of f is given by
P(x) :
F1(y) = 4 T x, ifxz#0,
0, ifx =0,
for any y = eg + x € E. Therefore f is a homeomorphism. O

Recall a well-known fixed point theorem from topology.

Theorem 2.46 (Brouwer). Let B(0;1) C R" be the closed unit ball and T :
B — B is continuous. Then there exists x € B such that Tx = x.

Corollary 2.47. Let C C R™ be compact convex and T : C — C' be continuous,
then T has a fized point in C.

Proof. There exists a homeomorphism ¢ : C — B, and therefore po T 0 ¢~ ! :
B — B is continuous. Hence there exists y € B such that ¢ o T o ¢~ (y) =y,
ie., T(z) =z for x = ¢~ (y). O

Now we consider to extend the Brouwer fixed point theorem to infinite di-
mensional case.

Theorem 2.48 (Schauder). Let X be a Banach space and C a closed con-
vex subset of X. Suppose T : C — C is continuous and T(C) is sequentially
precompact. Then T has a fized point in C.
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Proof. 1. As T(C) is sequentially precompact, we know it is totally bounded,
i.e., for any k € N there exists (1/k)-net N = {y1,...,yn, } such that

ng 1

T(C) C U B (yi; %) )

i=1

Denote Cj, := conv(Ny), which is closed and bounded, and C} C C since C is
convex.

2. Define I, : T(C) — Cy as follows. For any y € T(C) and any i €
{1,...,n}, let

0, if y ¢ B(yi; 1/k).

We know m;(y) > 0 and not all 0 (as Ny is a (1/k)-net). Then set I;(y) =
Yok Aiyi € Cr, where \; = m;(y)/ Y i_y mi(y) for i = 1,...,ny. Moreover

1) = ol =35 s = (3o ) o] < 3 Al —
i=1 i=1 =1
1

1
= > A+ Y Aillyi =yl < £ +0= 7.
{i:m;(y)>0} {#:m; (y)=0}

1—k|ly—wll, ifye By;1/k),
mi(y):{ ly —will, ify € Byi;1/k)

It is also easy to verify that I is continuous.

3. Define Ty, := I, o T : C' — C} which is continuous. We can restrict T} to
Cy. By Corollary [2.47] there exists x), € Cj, such that Tpzy = xy, Le., zy is a
fixed point of Tj. As T(C) is sequentially precompact, we know {Tx} has at
least one Cauchy subsequence, say {Txy,}. Since T(C) C C and C is closed,
we know there exists x € C' such that T'zy;, — z as j — oo. Now we observe
that

lzx — z|| = | Thzr — z|| = [|[Tezr — Tag + Txr — ||
1
< ||IkT£Ek — T:EkH + ||T1‘k — J?H < T + ||T1‘k — Z‘H
Therefore ||y, — 2| < & + [[Tor, — x| — 0 as j — oo, ie., zy, — z. By the
J

continuity of T, we know T'wy, — Tx. Combining with Txy, — x, we claim
that Tx = x. O

We now consider an application of the Schauder theorem.

Theorem 2.49 (Carathéodory existence theorem). Let f(t,x) be continuous on
U:=[t—ht+h]x[{—bE+Db], where M = max(, zyev | f(t,7)] and h <b/M.
Then the ODE

'(t) = f(t,x(t)), te€[—h,h]

z(0) =¢

has solution on [—h, h].
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Proof. Consider the closed ball B(&;b) in C([—h, h]) (¢ is the constant function
on [—h, h]) and the mapping

(Ta)(t) = € + / f(s,2(s)) ds.

We first show T : B(£;b) — B(&;b):

¢
:ﬁ\lg}}i’/o f(s,z(s))ds| < Mh <b.

a0 -6l =| [ 565006

Note that T(B(&;b)) is also continuous: by continuity of f, for any e > 0,
there exists 6 > 0, such that for any (¢,n), (¢,n') € U and |(¢t,n) — (t',n")| < 0,
there is |f(t,n) — f(¥,n')| < €/h. Therefore, for any z,y € B(&;b) satisfying
|z —y|| <6, there is

o=l = [ 760660 - 165,066 |

< \Iﬁ?,i Ot [f(s,2(s)) — f(s,y(s))]ds < h% —

sinee |(s,2(s)) — (5,4(s))| = [o(s) —y(s) <6

We now show that T(B(&;b)), the image of B(&;b) under T is sequen-
tially precompact. By Theorem (Arzela-Ascoli), we only need to show
that T(B(&;b)) is uniformly bounded and equicontinous. To this end, for any
x € B(£;b), we notice that

(T2)(t)] < €] + / (s, 2(s))]ds < |¢] + Mh,

\(Tx)(t)—(Tx)(t’N:/t f(s,x(s))ds| < M|t — '],

which show that T is uniformly bounded and equicontinuous, respectively.
~ Finally, by Theorem (Schauder), we know 7' has a fixed point z in
B(&;b), which implies that the ODE has a solution z in B(&;b). O

2.3 Inner product space and Hilbert space

B* space have norms and thus have the concept of convergence. However, they
do not have the concept of “angles” between vectors and thus no “orthogonal-
ity”. We plan to introduce such concept into linear spaces. We temporarily
allow complex values K which can be either R and C.

Definition 2.50 (Sesquilinear functional). Let X be a linear space. Then
a: X x X — K is called sesquilinear if the following identities hold for all
x,x1,T2,Y,Y1,y2 € X and ag,as € K:

1. alagzy + agwe, y) = ara(z1,y) + asa(xs, y);
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2. a(z, o1y + azyz) = Gra(z, y1) + G2a(, y2).
We call q(z) := a(x,z) the quadratic form induced by a. If a : X x X — R,
then a is called bilinear.

Proposition 2.51. Let X be a linear space and a a sesquilinear functional on
X, then a(z,x) € R for all x € X iff a(x,y) = a(z,y) for all z,y € X.

Proof. (<) a(x,x) = a(x,z) implies that a(z,z) € R for all x.

(=)For any =,y € X, we have a(z +y,z +y) = a(z+y,z +y). The left
hand side is a(z,z) + a(z,y) + a(y,x) + a(y,y), and the right hand side is
a(z,z) + a(z,y) + aly,x) + a(y,y). Hence a(y, z) + a(z,y) = a(y, z) + a(z, y).

Replacing y by ty (¢ denotes the unit imaginary number, i.e., 1> = —1), then
wa(y, z) — wa(z,y) = —a(y, z) + ta(z,y). Multiplying ¢ and combining the two
identities yield a(x,y) = a(y, ). O

Definition 2.52 (Inner product). Let X be a linear space, then a sesquilinear
functional (-,-) : X x X — Kis called an inner porduct if for all z,y € X, there

L (z,y) = (y, x);
2. (z,z) > 0; and (z,z) =0iff z = 0.
Then (X, (-,-)) is called an inner product space.

Example 2.53. (R",(-,-)) is an inner product where (z,y) := > 1 | x;y; for
all z,y € R". (C™,(,-)) is an inner product where (z,y) := Y., ;y; for all
x,y € C™.

Example 2.54. (I2,(-,-)) is an inner product where (z,y) := > 2,;%; for all
x,y €2

Example 2.55. (L?(Q2), (-, -)) is an inner product where (u, v) := [, u(x)v(x)dz
for all u,v € L?(1Q).

Example 2.56. (C*(Q),(-,-)) is an inner product where

(u,v) == Z /Qaau(x)aav(x)dm

la|<k
for all u,v € C*(Q).

Theorem 2.57 (Cauchy-Schwarz inequality). Let (X, (-,-)) be an inner product
space, and ||z| := (z,z)'/? be the norm induced by the inner product. Then
[z, )| < ||lz|lllyll for all z,y € X. Moreover, the equality holds iff t = 0 or
y=0 orx =Xy for some A £ 0 (>0 if without the absolute value on the left).

Theorem 2.58. Let X be a linear space and a be a sesequilinear functional
on X. Let q be the quadratic form induced by a. If q is positive definite, i.e.,
q(z) >0 forallz € X and q(x) = 0 iff v = 0, then |a(z,y)| < (¢(x)q(y))*/?, and
the equality holds iff x and y are linearly dependent, i.e., there exist A1, A2 € K
such that Ayx + Aoy = 0.
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Proof. WLOG, assume y # 0. For any A € K, we know
q(z + Ay) = q(@) + Aa(z,y) + Aa(y, z) + [A*q(y) > 0

Let A = —a(x,y)/q(y), then from the inequality above we obtain

q(z +\y) = q(z) — >0,

which implies that |a(z,y)|? < q(x)q(y).
If = —\y, then it is easy to check that the equality holds. On the other
hand, if the equality holds, then g(x + Ay) = 0 which implies that x = —Ay. O

Proposition 2.59. Let (X, {-,-)) be an inner product space. Define ||z| :=
(x,2)1/? for allx € X. Then (X, || -||) is a B* space.

Proof. We just need to show that || - || defined above is a norm. The positive
definiteness and symmetry are easy to show. For triangle inequality, we have

o +yl* = (& +y,2+y) = (z,2) + (2,y) + (y,2) + (y,y)
< lll® + 2llzllllyll + lylI* = (=]l + lylD?,
where we used Cauchy-Schwarz inequality. O

Proposition 2.60. Let X be an inner product space. Then (-,-) is continous
with respect to || - ||, i-e., xx — x and yp =y in || - || then (xg,yi) — (T, y).

Proof. As x, — x and y — vy, we know the sequences and x, y are all bounded
(say by L). Then we have

@k, yk) — (2, )| = [Tk, y&) — (T, Uk) + (@8, Yx) — (2, 9)]
< @k, ye — )| + [z, y)| < Lllye — yll + lyllllzr — = — 0

as k — oo which completes the proof. O

Proposition 2.61. Let (X, (-,-)) be an inner product space. Then X is a strictly
convex B* space.

Proof. For any z,y € X, where ||z|| = |ly|| =1 and = # y, A € (0, 1), there is
Az + (1= Nyl* = A2[lz]|* +2X(1 = N)R(z, y) + (1 = 2)*[|y[|?
< A2l [* +20(1 = Nl ([l + (1 = 2)[ly||?
=N 42201 -N)+1-N)=1
which completes the proof. O

We also want to know in what case a B* space has an inner product (-, -)
such that ||z|| = (z,2)/? for all x € X.
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Proposition 2.62. Let (X,| - ||) be a B* space. Then there exists an inner
product (-,-) such that ||| = (x,2)Y/? for all v € X iff || - || satisfies

lz +yl* + o =yl = 2(12]* + lyll*), VYa,ye€ X
Proof. (=) We can check that
lz +yl* + llz = yl* = (& +y,2 +y) + (& —y, 2~ y)

= [l2* + (g, @) + (@, y) + lyl* + 2l = (g, 2) = (@, 9) + Iyl
= 2([l=l* + [lyl1*)

(<) We can define
() = 4 3l Ul = Nl = yl?), if K =R,
) b .
iz +yl? =l = yll? + ez +wl? = tllz — ewyl?), fK=C.
Then one can verify that this is an inner product. O

Definition 2.63 (Hilbert space). A complete inner product space is called
Hilbert space.

Theorem 2.64 (Poincaré inequality). Let 2 be an open bounded set in R™.
Denote -
CrQ) == {uec C*Q) : u =0 near N}

Here by u = 0 near Q2 we meant that for any x € 0 there exists 6, > 0 such
that u(y) = 0 for all y € B(x;3,). Then for any u € CY(Q), there is

> /Q|8au(x)|2dx§C’ > /Q|8au(;v)|2dx

la|<k la|=k
where C = C(, k) only depends on Q2 and k.

Proof. Since €2 is bounded, we can enclose it by a cube € := [0,a]" for some
a > 0 large enough. Then u € C*(Q;) and u = 0 on 9Q;. For any z € ;, we
know

u(zx) = / Oz, u(t, o, ..., x,)dt.
0

By Cauchy-Schwarz inequality, we know

X1 X1
2 < 2
u(z)]? < (/0 1dt> (/0 100, u(t, T2, . . ., )] dt)
< a/ |8m1u(t,x2,...7:rn)|2dt,
0

which is independent of z;1. So taking the integral on 7, we know

/|u(x)\2dx§a2/ |8w1u(x)|2dx§a2/ |Vu(x)|2dx.
Q Q Q

Applying this inductively to obtain the claimed inequality. O
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Remark. If we define

Julls = 3 jg|aau<xn2dx7

la|=k
then || - || is equivalent to the standard norm || - || defined by
= 3 [ (o) s
la]<k /¢
Moreover, the completion of C¥(Q) under || - || is H¥(2) which is a closed sub-

space of H*(Q).
Example 2.65. HF () is a Hilbert space with (-,-) defined by
(u,v) == Z / 0%u(x)0vv(x) dx.
|a|=k a2

Remark. If 0 is smooth (the outer normal 7 is a smooth function), then

9 \ k-1 .
ulon = %’asz T (%) u‘asz n

Now we can define orthogonality.
Definition 2.66 (Orthogonal). The angle between z,y € H is defined by

(x

0(z,y) := arccos ——
’ ]|

Y)
lyll
We call z and y orthogonal if (x,y) = 0. If M C X is nonempty and (z,y) =0

for all y € M, we say x is “orthogonal to M”, denoted by = 1. M. We denote
the orthogonal complement of M by M+ :={z € X :2 L M}.

Proposition 2.67. Let (X, (-,-)) be an inner product space and M C X be
nonempty. Then the following statements hold:

1. If x Ly; and © L yo, then © L (Ay1 + Aays) for all A1, A € K.

2. Ifr=y+zandy L z then ||lz|* = |jy||* + ||2*.

3. Ifx Ly forall k € N and yi, — y, then x L y.

4. If x L M, then x L span(M).

5. M~ is a closed linear subspace of X.

Proof. Ttem 1 is trivial. For item 2, we have
l2l* = lly + 201> = lyll* + {y, 2) + (= 9) + 201> = lyll* + |11

For item 3, note that 0 = (x,yx) — (z,y) and hence (x,y) = 0 since yr — y.
Item 4 is due to item 1. For item 5, for any y € M, {z3} € M+, and =, — z,
then (z,y) — (z,y) = 0, which implies that 2 € M~, which means M~ is
closed. O
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Definition 2.68. Let (X, (-,-)) be an inner product space, S := {e, : @ € A}
is called an orthogonal set if e, = eg for all o, 5 € A and « # . If in addition
lleall = 1 for all a € A, then S is called an orthonormal set. If S+ = {0}, then
S is called complete.

We now show that every inner product space as a complete orthonormal
set. The proof requires the Zorn’s lemma which is logically equivalent to the
axiom of choice. Recall that a set is X called partially ordered if an order
relation, denoted by <, is defined for some pairs a,b € X, such that the order
has transitivity, i.e., a < b and b < ¢ imply a < ¢, and reflexivity, i.e., a < a for
all a € X. A subset E of a partially ordered set X is called totally ordered if
for every pair z,y € F, either x <y or y < x. Let E C X, then we call u € X
an upper bound of F if x < u for all x € E. We call m € X a mazimal element
of X if t <mforall x € X.

Lemma 2.69 (Zorn). Let X be a partially ordered set. If every totally ordered
set has an upper bound, then X has a maximal element.

Proposition 2.70. Let (X, (-,-)) be an inner product space and X # {0}, then
X has a complete orthonormal set.

Proof. Let £ := {E C X : E is an orthonormal set}. Suppose Ey C By C -+,
then E; is upper bounded by U2, E; in £. Hence there exists S € £ which is
maximal in £.

We claim that S is complete: if not, then there exists a nonzero zg € S*.
Let Sy := {xo}US™, then Sy is also an orthonormal set and S is a proper subset
of Sy, but this contradicts to that S being maximal in £. O

Definition 2.71. Let (X, (-,-)) be an inner product space, then an orthonormal
set S = {en : v € A} is called a basis of X if for any z € X there is

T = Z(m,ea>ea,

acA
where (z,e,) is called the Fourier coefficient of x with respect to eq.

Theorem 2.72 (Bessel inequality). Let (X, (-,-)) be an inner product space. If
S ={eq: € A} is an orthonormal set of X, then for any x € X, there is

Y Haea)l® < ).

acA

Proof. For any finite subset of A, say ey, es,...,e,, we have

2 n
= l2l? = K ea .
i=1

Hence 370, (2, €:)|* < |||,
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Now consider Ay = {a € A : [(z,e4)| € (k%rl,%]} and Ay = {a €
A ¢ [{zyeq)| > 1}. Then every Ap, Ap,... is finite: otherwise we can ex-
tract n > k terms from Ay such that Y ., |(z,€;)|> > |z||>. Hence there
are at most countably many « such that (x,e,) > 0. From above we can show

Yo (@, ea)® < 2], =

Corollary 2.73. Let (X, (,-)) be a Hilbert space, {eq : o € A} be an orthonor-
mal set. Then for any x € X, there is ) 4(x,ea)ea € X and

o= 3t eadea|” =2l = 3 e

acA acA

Proof. We have shown above that A, := {a € A : (z,e,) # 0} is at most
countable. Let A, = {ej,eq,...}, then

o0
Z(m,ea)ea = Z(m,ei>ei.
acA i=1

By the Bessel inequality, we know the series Y. 4 [(z,eq)|? is convergent.
Hence

k+p k+p
>l =| D2 e =0
i=k+1 i=k+1

as k — oo and for any p € N. Let z, := Zle(sc,ei>ei, then {x} is a Cauchy
sequence in X, and

oo
Z (2, eq)eq = Z(:m e;)e; = khj& T € X
acA i=1

which verifies the first claim.
Furthermore, we know (z — Y o (z, e;)e;) L (Do (z,€5)€;), so

o0 2 o0
o= >t eea]| = llallz = 3 It en .
i=1

i=1

This completes the proof. O

Theorem 2.74. Let (X, (-,:)) be a Hilbert space, S := {eq : o € A} be an
orthonormal set. Then the following statements are equivalent:

1. S is a basis.

2. S is complete.

3. The Parseval equality holds: ||z||* =3 c 4 [(x,€a)]? for allz € X.

Proof. (1) = (2). If S is not complete, then there exists x € S\ {0}, such that
(r,eq) = 0 for all a € A. Hence, as S is a basis, we have z = ) . 4(z,eqa)€0 =
0, contradiction.
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(2) = (3). If the Parseval equality does not hold, we have

lz = > (z,ea)eal® = |z = Y e, ea)l® > 0.

acA acA

Let y := 2 — > c 4(T, €a)eq, then y # 0 and y € S*, which contradicts to that
S being complete.
(3) = (1). By the Parseval equality, we know

&= 3 @ catea|) =l = 3l ead? =0,

acA acA

Therefore x = ) . (2, €q)eq and hence S is a basis. O

Example 2.75. Consider L?([0,27]), then {ex(t) := e***/\/21 : k € Z} is a
basis. The Fourier coeflicients are

1 2 Kt
U, ep) = — u(t)e™ " dt, Vk e Z.
(w, ex) V2T /o ®)

Example 2.76. Consider [, then {e; := (0,...,0,1,0,...) : k € N} is a basis.

Now we consider orthogonalization in and homeomorphism between Hilbert
spaces. Let {z1,x9,...} be a linear independent set of H, then we can apply
Gram-Schmidt orthogonalization: start from y; = z1 and ey = y1/||y1]|, we
obtain e recursively by

k—1

Yk
Y =xKp — Y (T,e5)e;, T
; v llyll

for all k > 1. Then it is easy to show that {ey : kK € N} is an orthonormal set.

Definition 2.77 (Isometric inner product spaces). Let (X1, (-,-)1) and (X2, (-, -)2)
be two inner product spaces. If there exists an isomorphism 7" : X; — X5 such
that

(Tx, Ty)s = (z,y)1, VYax,y € Xy,

then we say X; and X, are isometric.

Theorem 2.78. Let (X, (-,-)) be a Hilbert space. Then the following statements
hold:
1. X 1is separable iff any basis S of X is at most countable.
2. Let S be a basis of a separable Hilbert space X. If |S| < oo, then X is
isomorphic to R™. If |S| = oo, then X is isomorphic to I2.

Proof. 1. (=) Let {x1} be a countable dense set of X. Then we can choose an
at most countable subset {yx} (by screening {zj} in order, and skipping zj if
it can be represented by a linear combination of the previous zy/’s for k' < k,

38



resulting in the at most countable subset {y;}. Let {ex} be the orthonormal
set obtained by applying Gram-Schmidt process to {yx}. Then

span(zy) = span(yx) = span(eg),

and hence span(ey,) = span(zy) = X. Therefore span(ek)l = {0}, which implies
that {ex} is complete, i.e., {er} is a basis.

(<) Consider the set E := {x = > =, arer : R(aw), S(ag) € Q} where
S ={ek : k € N}. Then F is countable and dense in X since S is a basis.

2. We only consider the case |S| = co. Suppose S = {ej : k € N}. Consider
the mapping T : X — [? by T'(z) = (a1,...,ax,...) where ax = (z,e;) for all
k € N. Then T is well defined (a is unique), linear, bijective. Moreover

o) = (D wen)ens D wender) = S (@, ey er) = (T(x), T(y))e

k=1 k=1 k=1

for all x,y € X. Hence T is an isomorphism. O

Remark. There exist non-separable Hilbert spaces. For example, let I2(R)
denote the set of functions that are nonzero for at most countably many points
in R. Define the inner product (f, g) := >, g f(2)g(x). Then (I*(R),(-,-)) is a
Hilbert space. Define e, € [?(R) for every x € R such that e,(y) = 1ify =z
and 0 if y # 2. Then S := {e, : € R} is an uncountable basis of I?(R).

Now we revisit the approximation problem but this time in Hilbert space X.
Given z € X and a closed convex set C of X, does there exist y € C such that
lly — || = inf.cc ||z — 2||? If such y exists, is it unique?

Theorem 2.79. Let C be a closed convex set of X, then there exists a unique
xo € C such that it is the point in C closest to 0, i.e., ||zo] = inf.ec |2

Proof. We first show that such zo exists. Let d = inf,cc ||z||, then for any
k € N, there exists x € C, such that d < ||z|| < d+ 1/k. We can show that
{zx} is Cauchy: for j > k, there is

ok = 251* = 2(llwwll® + Nl %) = Il + 25

xk+x

= 2([|e ) + g lI?) — 4 =521
1 2 1 2 2
2((d+k) +(d+j)) 4d

o

as k — 0o. As {zy} is Cauchy, there exists 2y € C such that x — x¢. Therefore
lzk|l = |lzol|, which implies that ||zg|| = d.

<4(d+%)2—4d2:%(d+

Let xg,z( be such that ||zg|| = |||l = d, then
xo + X
lzo — 2pl1> = 2ol + llzhl1?) — 4] 2220 ||" < 4 — ad? =0
Hence ¢ = x},. O
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Corollary 2.80. If C' is a closed convex subset of a Hilbert space X, then for
any y € X, there exists a unique xo € C' such that ||y — xo|| = infyec ||y — w]|.

Proof. Consider C' — {y} := {z = 2 —y : x € C} which is still convex. Apply
the theorem above yields the claim. O

Remark. If M is a linear subspace, then for any y € X, there exists a unique
xo € M such that ||y — zo|| = infyen |y — w]|.

Theorem 2.81. Let C' be a closed convex set of a Hilbert space X and y € X.
Then xg € X is such that ||y — zo|| = infyec ||y — w|| (we call zo a projection
of y onto C) iff R((y — xzo,xz0 —x)) >0 for all z € C.

Proof. For any x € C, consider ¢, : [0,1] = R by
¢u(t) = lly — (to + (1 — t)zo)|1*.

Then xq is the projection of y onto C iff ¢,(t) > ¢,(0) for any € C and
t € 0,1].

Note that ¢/,(0) = 2R((y — o,z — o)) and ¢/(t) > 0 (hence ¢, is convex).
Therefore ¢,(t) > ¢,(0) for all ¢t € [0,1] and = € C iff ¢/ (0) > 0 for all z € C
iff R((y — xo,20 —2)) > 0forall x € C. O

Corollary 2.82. Let M be a linear manifold in the Hilbert space X. For any
y € X\ M, g is the projection of y onto M iff (y — xo,z — x9) = 0 for all
re M.

Proof. Since M is closed and convex, we know by Theorem that R({(y —
xo,x0 — x)) > 0 for all x € M. Let 2’ be such that @’ — zog = —(z — x¢), then
we know R((y — zo, 2" — x0)) = —R({y — zo,x — o)) > 0. Hence R((y — o,z —
xo)) = 0. Similarly, by choosing 2’ such that =’ — zo = £u(z — z¢), we have
S((y — xo,z — xo)) = 0 for all z € M. Therefore (y — xg,z — z) = 0 for all
x e M. O

Corollary 2.83. Let M be a closed linear subspace of a Hilbert space X, then
for any x € X, there exist unique y € M and z € M+ such that x =y + 2.

Proof. Let y be the projection of z onto M, then z =z —y € M*. Soz = y+2z,
where y € M and z € M™L. If there exists 4/ € M and 2/ € M*, then
T =y+z =1y + 2 implies that y — ¢y = 2/ —2 € M n M+ = {0}. So
y=1y and z = 2’ O
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3 Linear Operator and Linear Functional

3.1 Linear operator

The concept of linear operators was motivated by a number of operations, such
as linear transformations from R™ to R"™, realized by matrices in R™*". Other
linear mappings include P(9;) : C*(2) — C*°(§2) where P is a polynomial and
integral operator I : C(Q) — C(Q) defined by

IK<u>:=:/gz(<x,y>u<y>dy.

In this section, we exploit the properties of linear operators defined as follows.

Definition 3.1 (Linear operator). Let X and Y be two linear spaces and D
a linear subspace of X. Then T : D — Y is called a linear operator if for any
z,2' € D and o, a’ € K, there is

T(ax + o'z’ = oT(x) + ' T(2).
We call D the domain of T and T(D) the range of T

Example 3.2. Let X = R" and Y = R™. Consider the mapping T = [t;;] €
R™>" Then T : x — Tz is a linear operator from X to Y.

Example 3.3. Let 2 € R" be open and bounded, and X =Y = C>(Q)NC(Q),
then T":= 3 || < 020%, where 0o € C*(() for all |o| <k, is a linear operator.

Remark. If X =Y = L%(Q), then D = C*(Q) N C(Q) is the domain of T, and
T:D —Y is a linear operator.

Example 3.4. Let X = L!(C) and T : X — X be defined by

(Tu)(C) ::/(Ce"czu(z) dz

for all w € X and ( € C. Then T is a linear operator.

Definition 3.5 (Linear functional). A linear operator T from X to K is called
a linear functional.

Example 3.6. Let X € C(2) where f : X — R is defined by
fla) = [ a()ag e®

Then f is a linear functional. Note that, however, z — [, z(£)?d¢ is not a
linear functional.

Example 3.7. Let X € C(2) N C>®(Q), a a given multi-index, and & € Q
fixed. Then f: X — R is defined by

fu) == 0%u(&), Yue ()

is a linear functional on X.
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Definition 3.8. Let X and Y be B* spaces, D C X a linear subspace, then
T:D —Y is called continuous at x € D if Tx,, — Tx whenever x;, — x.

Proposition 3.9. Let T : X — Y be a linear operator. Then T is continuous
i X iff T is continuous at 0.

Proof. We only need to show necessity. For any =, — =, we know z —x — 0
and hence
T(xg) —T(x) =T(xp, —x) — 0.

which completes the proof. O

Definition 3.10 (Bounded operator). Let X and Y be B* spaces, D C X a
linear subspace, then T': D — Y is called bounded if there exists M > 0 such
that || Tz| < M|z|| for all z € X.

Proposition 3.11. Let X andY be B* spaces, T : X — Y is a linear mapping.
Then T is continuous iff T is bounded.

Proof. (<) If T is bounded, then T is continuous at 0, and thus continuous in
X.

(=) If not, then for any k£ € N, there exists x € X, such that [|Tzx| >
El|lzg|l. Let yg := xx/(k||zk|]), then |lyx|| = 1/k — 0 but

[Tyl = 1Tl /(Ellzkl]) > 1,
which contradicts to T being continuous. O

Definition 3.12. Let X and Y be B* spaces. The set of bounded linear op-
erators is denoted by L(X,Y). For any T € L(X,Y), the norm of T is defined
by
Tz
IT|| := sup | Tz] = sup |Tz].
cex\{oy llzll je)=1
We denote L(X, X) by L(X) and L(X,K) by X* for short.

Theorem 3.13. Let X be a B* space andY a Banach space. Define summation
and scalar multiplication in L(X,Y) as follows:

(OélTl + OZQTQ)(IL’) = OélTl (x) + OZQTQ(IE)

foralxz € X, aj,as € K, and T1,Ty € L(X,Y). Then (L(X,Y),] -]) is a
Banach space.

Proof. 1. Tt is easy to show that L(X,Y) is a linear space.

2. We need to show that || - || is a norm. It is easy to show that || - | is
positive definite and homogeneous. To show the triangle inequality, we observe
that

1Ty + Toll = sup [|(Th + T2)(2)[| < sup [[Ty(2) + [|T2(2)]|

llzll=1 llzll=1
< Sup 1T ()| + Sup, [Ta(@) || = Tl + [T
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3. We need to show that (L(X,Y),| - ||) is complete. Let {T}} be a Cauchy
sequence in L(X,Y), i.e., || Tktp — Tkl| = 0 as & — 0 for all p € N. In other
words, for any € > 0, there exists K = K(¢) € N, such that

1Thtp(x) — Ti(z)|| <€llz]|, YVE>K, peN, zeX. (1)

Hence for each z € X, {T)(z)} is a Cauchy sequence in Y. As Y is complete,
there exists y € Y such that Ty (z) — y as k — oo.

Now consider the mapping T : x +— Tz := y. Then it is easy to verify that
T is linear. We also claim that T is bounded: for any =z € X, there is

1Tzl < | Tow = Tall + | Tha]| = lim [|Thz — Tpal] + |[Ti]
< ellzll + 1 Tellllzll = (Tl + e)ll]]-
Hence T € L(X,Y). Moreover, for any x € X, we also have

[Thr — Taf| = lim |[Thx — Tiqpz| < ef|z|]
p—00

which implies |7 — T'|| < e. Hence T, — T in L(X,Y). O
Example 3.14. If T : X — Y where X and Y are finite dimensional Banach

spaces, then T is continuous.

Proof. In this case X is isomorphic to R™ and Y to R™, and T can be fully
characterized by a matrix in R™*". Thus |Tz| < |T|r|z| where | - |F is the
Frobenius norm. O

Example 3.15. Let X be a Hilbert space and Y a nonzero closed linear sub-
space of X. Then for any z € X, there exists a unique y € Y such that
2z =1 —y € Y. Define the projection operator P: X — Y by P(z) =y. Then
P is linear, continuous, and || P|| = 1.

Proof. 1t is easy to verify that P is linear. Moreover,
1Pz|* = [lz — 2I* = fl=||* — [|2]* < f|]*.
Hence || P|| < 1, and thus P is continuous. For a nonzero z € Y, there is Pz = x

and hence ||P| = 1. O

3.2 Riesz theorem and its applications

Let X be a Hilbert space. For any fixed y € X, define f,(z) := (z,y) for
all z € X. Then clearly f, : X — K is linear. Moreover, | f,|| < |ly|| since
|fy(@)| < |lyll|lz| for all z € X. Taking z = y also yields f,(y) = ||y[|* and

hence || fy|| = |ly|l. The converse of the statements above are also true, as shown
by the following theorem.

Theorem 3.16 (Riesz representation theorem). Let X be a Hilbert space and
[ € X*, then there exists a unique y; € X such that f(z) = (z,ys) for all
reX.
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Proof. If f = 0 then yy = 0. If f # 0, then Z := {x € X : f(z) = 0} is a
proper closed linear subspace of X (check yourself). Let o € Z1 such that

lzol| = 1, then we can show that for any = € X, x = axg + 2 for some z € Z
and a = £(x)/f(o):
f(2) = f(z — azo) = f(z) — af(x0) =0, (2)

by the definition of a. Let ys := f(xo)zo, then

(z,y5) = (azo + 2, f(wo)zo) = f(2)||lzol* = f().
If there exist y,y’ € X such that f(z) = (z,y) = (z,y’) for all z € X, then
(x,y —y') = 0 for all x € X. Taking z = y — 3 yields ||y — ¢'[|> = 0 which
implies y = y/. O
Theorem 3.17. Let X be a Hilbert space and a(-,-) : X x X — R a sesquilinear
functional. If there exists M > 0 such that

la(z,y)| < Mllz[llyll, Vaz,yeX
then there exists a unique A € L(X) such that
alz,y) = (x,Ay), Va,yeX

and

a(z,
14l = sup A& G agay).

w0 12yl jep=jyi=1
Proof. For any fixed y € X, a(-,y) is a linear functional on X. Hence by
Theorem (Riesz representation), there exists a unique z, € X such that
a(z,y) = (z, z,) for all z € X. Define A: X — X by Ay = z, (well defined due
to the uniqueness of z;).
We first show that A is linear: for any aq,as € K and y1,y2 € X, we have

(x, Alcayr + aoyr)) = a(z, cuyr + aoye) = ara(z, y1) + dza(z, y2)
= ai(z, Ay1) + @ (r, Aya) = (z, 1 Ays + a2 Ays),

for any « € X. Therefore A(a1y1 + aoy2) = a1 Ayr + @z Ay, i.e., A is linear.
Since |a(z,y)| < M||z|||ly||, we know

[, Ay _ 1ozl
| |

< Mly||
|| a0 2]

[Ay|| = sup
#£0

x

where the second one due to the definition of A, and the inequality due to the
bound on a. Hence A € L(X). O

Example 3.18 (Weak solution of PDE). Let € be an open bounded set in R"™,
and f € L?(2) be given. The Dirichlet boundary value problem of the Poisson
equation reads

—Au = in Q

u =0, on 0f).
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A function u € H}(Q) is called a weak solution (or generalized solution) of
(PDE) if

(Weak form) / Vu-Vudz = / fodz, Yve Hi(Q).
Q Q

The weak form is obtained by multiplying v € C3(£2) on both sides of the PDE
and applying integration by parts, noting the boundary condition of u and v
and that C2(Q) is dense in H}(Q).

Note that a classical solution (also called strong solution) of the PDE requires
u to be twice differentiable, which may be too strong to hold for certain f.
However, if a classical solution does exist, then it must be a weak solution. Hence
weak solution is a generalization of classical solution. The typical strategy in
modern PDE theory is to first show existence and uniqueness of weak solutions
of a given PDE (this can be carried out much more easily in the Sobolev space
with proper compactness properties), and then study the regularity of the weak
solutions and potentially show that a weak solution is in fact a strong solution.

Here we show an application of Theorem (Riesz representation) to prove
the existence and uniqueness of the PDE above, giving a hint on how powerful
functional analysis is in modern PDE theory. Specifically, we show that for
any given f € L%(Q), the PDE has a unique weak solution: By Theorem m
(Poincaré inequality), we know

(u,v)1 := /QVu(x) -Vo(z)dz

for any u,v € HZ () is an inner product on Hg () (check yourself). Moreover,
H} () is complete under the norm || - ||; induced by this inner product. Define
Ty : H3(2) — R by T(v) := [, fvde, then it can be shown that T is linear
and bounded:

myl=| [ sol < ([12)" ([ 18) " < clisuatoln,

where the constant C' depends on €2 only (see Theorem [2.64). By Theorem
(Riesz representation), there exists a unique u € H}(f2), such that T (v) =
(u,v); for any v € H}(Q), i.e., u satisfies the claimed (Weak form) above and
is a weak solution of (PDE).

Remark. If the boundary condition is u = g on 9 for some g € C(91), then
we can first try to find a function ug € C(2) N C%(Q) such that ug = g on A9,
and denote fo = f — Aug and v = u — ug. Then the problem can be converted
to (PDE) above of v with fy. There are results on the condition under which
such ug exists.

Theorem 3.19. Let C be a closed convex subset of H} (). If f € L*(Q), then
the following variational inequality (VI) has a unique solution u* € C':

(VI) /QVU*-V(U—u*)de/Qf(v—u*)dx, Yo e C.
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Proof. By Theorem (Riesz representation), there exists a unique w €
HL(Q) such that

/ Vw - Vudr = / fudz, Yue H(Q).
Q Q
Therefore (VI) is equivalent to
(VD) / Vu* - V(v —u*)dx > / Vw -V —u")dz, YveC,
Q Q
which is (u* —w,v —u*); > 0 for all v € C. Hence (VI’) holds iff u* is the

projection of w onto C. From Corollary such u* exists and is unique. [

Remark. This result can be applied to more general setting. Let €2 be an open
bounded set in R", A : Q — R™" where A(x) := [a;;(x)];; is a symmetric
positive definite matrix for every x € Q. Let M := maxi<; j<n, Max,cq |a;; ()]
Moreover, there exists § > 0 such that

n

Y ai(@)&g > 0> |Gt Yo e, VE=(&,...,6) ER™,

i,j=1 i=1

Namely, A(z) = oI for every z € Q. Now consider a generalization of (PDE)
where the Poisson equation is replaced with —V - (AVu) = f in Q, i.e.,

—23% aij(1)0z,u(x)) = f(x), Yael.

Then we can also show that a weak solution of (PDE) exists and is unique.
To see this, define a mapping b : H(Q) x H}(Q) — R as follows: for any
u,v € HH(Q),

blu,v) := /Vu x)Vo(zx dx—Z/a” )0z, u()0y v () dz
1,7=1

Then it is clear that b is bilinear and symmetric. Moreover,
b(u,u) > (5/ |Vu(z)|*de, Yue HLHR),
Q

and b(u,u) = 0 iff u = 0 by Theorem [2.64] (Poincaré inequality). Hence b is an
inner product on Hg (2). We denote it by (u,v), := b(u,v) for all u,v € H}(Q).
Let [jullp := (u,u),y2 be the norm induced by this inner product. Consider
another inner product (u,v); = [, Vu- Vudz on H}() and its induced norm
Il - |l1, then it is easy to verify that

Sllullf < llullf < ndullf,
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which means that ||-||, and ||-||; are equivalent. Hence (H}(Q), (-, -)3) is complete
and thus a Hilbert space.

For any f € L?, consider Ty : Hy(Q) — R by Ty(u) := [, fudz. Then it
is easy to show that T is linear and bounded. Hence, by Theorem (Riesz
representation), there exists a unique w; € H3(Q) such that Ty (v) = (v, ws)p
for all v € H{ (), which implies that wy is the unique weak solution of (PDE).

We can also show that (VI) with the left-hand-side integral replaced with
(u*,v — u*)p has a unique solution: By Corollary we know that the
projection of wy onto C, denoted by u*, exists and is unique, and satisfies
(u* —wyp,v—u*)y >0 for all v € C. This is equivalent to

(W v —u")p > (wp,v—u*)y =Tr(v—u*), Vvel.

Therefore, u* is the unique solution of this generalized (VI).

3.3 Category and open mapping theorem

Definition 3.20 (Nowhere dense set). Let (X,d) be a metric space. A subset
E of X is called nowhere dense if int(E) = (), namely, F has no interior point.

Example 3.21. Finite set, Z, Cantor set are nowhere dense sets in R.

Proposition 3.22. Let (X,d) be a metric space. Then a subset E is nowhere
dense iff for any B(x;r) C X, there exists B(x';7") C B(x;r) such that EN
B(2';7") = 0.

Proof. (=) Since E has no interior point, £ cannot contain any ball B(z;r).
That is, for any B(z;r), there exists 2/ € B(x;r) \ E. Since x € E¢ which is
open, we know there exists ' > 0 such that B(z';7') C B(x;r) N E¢. Thus
B(a2';7") N E¢ = () (if necessary, choose 7’ = 7’ /2 to make this hold).

(<=) Assume E is not nowhere dense, then E has an interior point, and thus

there exists an open ball B(z;r) C E. Then any ball B(z';r’) contained in
B(z;r) must satisfy B(2';7)NB(x;r) C B(z';r")NE # 0, a contradiction. [

Definition 3.23 (Category). Let (X, d) be a metric space. Then E is said to
be of first category if E = U2 E) where all Ej, are nowhere dense. Otherwise,
FE is said to be of second category.

Remark. A set F is of first category (meager) if it can be written as a countable
union of nowhere dense sets; otherwise it is of second category (fat).

Example 3.24. Q is of first category in R. In fact, all countable sets are of
first category, since they are countable union of singletons which are nowhere
dense.

Theorem 3.25 (Baire). A complete metric space (X, d) is of second category.

Proof. Assume not, then there exist nowhere dense sets Fj such that X =
U Ex. For any B(zo;ro), there exists B(xi;r1) C B(zo;ro) (WLOG we
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assume 71 < 1) such that B(xy;r;) N E; = () since E; is nowhere dense. Then
there exists B(xa;72) C B(w1;71) (again assume 7o < 1/2) such that B(wa;79)N
E5 = () since E5 is nowhere dense, and so on. Thus we obtain a sequence of
balls:

B(z1;11) D B(za;7r2) D -+ D Blag;rg) D -+ -

where 7 < 1/k and B(xy;ri) N (U E;) =0 for all k € N.

Moreover, we know xy4p € B(wg;re) for all p € N, which implies that
d(Tpyp, ) < 1 < 1/k. Hence {z} is Cauchy. As X is complete, there exists
z € X such that z; — =. Note that d(zy,z) = limy o0 d(xk, Thyp) < Tk, We
know z € B(zy;ry) for all kK € N, and thus x ¢ (U, Ex) = X, which is a
contradiction. O

Example 3.26. Weierstrass constructed a class of function which are con-
tinuous everywhere but nowhere differentiable, which is quite surprising and
counter-intuitive. However, we can use Theorem (Baire) to show that such
functions are not rare. On the contrary, they dominate the space of continuous
functions.

Theorem 3.27. Let E := {f € C([0,1]) : f is nowhere differentiable}. Then
E© is of first category in (C([a,b]),d).

Proof. Note that E€ is the set of continuous functions which are differentiable
at at least one point in [0, 1]. For every k € N, we define

Ay ={f€C(0,1]) : Is € (0,1), s.t. [f(s +h) — f(s)] < kh, Vh € (0,1/k]}.

(To simplify notation, we only consider h such that h < 1/k and s+ h < 1.)
We can see that if f is differentiable at some s, then f € Ay for some k € N.
Hence E°¢ C U2, Ag. Now we show that Ay is nowhere dense in C([0,1]). To
this end, we show that Ay, is closed (hence Ay = Aj) but int(Ag) = 0.

To show that Ay is closed, it suffices to show that Af is open. Let f € Af,
then for any s € [0, 1], there exists hs € (0,1/k], such that |f(s + hs) — f(s)| >
khs. As f is continuous in [0, 1], we know there exists e; > 0 (e.g., we can
choose €5 = (|f(s + hs) — f(s)| — khs)/4 > 0) and an open neighborhood J; of
s, such that for any o € Jg, there are |f(s+ hs) — f(o + hs)|, | f(s) — f(o)| < €5
and hence

|f(o+hs) = f(o)| = |f(s+hs) = f(s)| = |f(s + hs) = flo+ hs)[ = [f(s) — f(o)]
> (khs + 4es) — €5 — €5 = khg + 2¢,

where the second inequality is due to the definition of 5. As [0, 1] is compact,

there exists a finite subcover of [0,1]: Js,,...,Js, , such that [0,1] C U, J,,.
Let € := min{es,, ..., €, } > 0. For any g € C([0,1]) such that ||g — f| <€, we
know for any ¢ =1,...,m and any o € J,, there is

9(0 + hs,) = 9(0)| = | f(o + hs,) = f(0)] = 2¢ > khs,,

which means that B(f;€) C Af. Hence A is open and Ay is closed.
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We now show int(Ax) = 0. For any f € Ay and e > 0, there exists a
polynomial p such that ||f — p|| < €/2. Since p € C*°([0,1]), we know there
exists M > 0 such that |[p'(z)| < M for all « € [0,1]. Hence, for any s € [0, 1]
and h € (0,1/k], there is |p(s + h) — p(s)| < Mh by the mean value theorem.
Now let g € C(]0, 1]) be a piecewise linear function such that ||g|| < €/2 and the
slope on each segment is larger than M +k. Then ||[p+g—f|| < |lp—fll+ 9]l < e,
but

|(p(s +h) +g(s +h)) = (p(s) + g(s))] = g(s + ) = g(s)| = [p(s + h) — p(s)]
> (M + k)h — Mh = kh.

Therefore p + g € B(f;¢) but p+ g ¢ Ay. Therefore f is not an interior point
of Ag. As f is arbitrary, we know int(Ay) = 0. O

Let X and Y be Banach spaces, T € L(X,Y). If T is bijective, we would
like to know if 7! is continuous. The answer is positive. In fact, this can be
deduced from a more general result as follows.

Theorem 3.28 (Open mapping theorem). Let X and Y be Banach spaces and
T e L(X,Y). If T is surjective, then T is an open mapping, namely, T(W) is
open in Y whenever W is open in X.

Proof. We use B(z;r) and U(y;r) to denote the open balls in X and Y respec-
tively.

1. We first show that T is an open mapping iff there exists § > 0 such that
U(0;6) C T(B(0;1)), i.e., 0 is an interior point of T'(B(0;1)).

(=) Suppose T is an open mapping, then T(B(0;1)) is open in Y and 0 €
T(B(0;1)). Hence there exists § > 0 such that U(0;6) C T(B(0;1)).

(<) Suppose there exists > 0 such that U(0;8) C T(B(0;1)). As T is
linear, we know for any r > 0 and = € X, there is U(Tx;rd) C T(B(x;r)) (by
homogeneity of norm). Now for any y € T(W), where W is open, we know
there exists © € W such that y = Tx. As W is open, there exists B(xz;r) C W
(and hence T'(B(z;r)) C T(W)), so T(W) is open.

2. We now show that there exists 6 > 0, such that U(0;39) C T(B(0;1)).
To this end, since T is surjective, we know ¥ = T(X) = U2 | T(B(0; k)). Since
Y is of second category, then there exists k € N such that T'(B(0;k)) is not
nowhere dense, i.e., T(B(0; k)) contains at least one interior point. Hence, there
exists yo € Y and r > 0, such that U(yo;r) C T(B(0;k)). Since T(B(0;k)) is
symmetric, we know U(—yo;7) C T(B(0;k)). Thus,

U(0:7) € GU0sr) + 5U(~yoir) € TBO ).

As T is homogeneous, we know by choosing § = r/(3k) there is U(0;36) C
T(B(0;1)).

3. We need to show that U(0;5) C T(B(0;1)) (without closure). For
any yo € U(0;6) C T(B(0;1/3)), there exists z; € B(0;1/3) such that |lyo —
Tz|ly < 6/3 (since yo € T(B(0;1/3)) or yq is a limit point of T(B(0;1/3))).
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For y, :=yo— Tz, € U(0;6/3) C T(B(0;1/32)), there exists zo € B(0;1/3%)
such that ||y, —Tzz| < §/32%, and inductively, for yy := yr_1—Tz € U(0;3/3%) C
T(B(0;1/3k+1)), there exists zx11 € B(0;1/351) such that |lyr, — Tzrr1] <
§/3k1 for all k € N. Hence Y oo, |lzk| < Yope,1/3% = 1/2, which means
that 7o |z, is absolutely convergent. Let zg := Y ;- | @, then 2o € B(0;1).
Denote s, = Zle x;, then we know that s — x¢ and yr = yo — T'sx — 0, i.e.,
Tsp — yo. As T is continuous, we know Tzg = yg. As yo € U(0;6) is arbitrary
and g € B(0;1), we obtain U(0;d) C T(B(0;1)). O

Theorem 3.29 (Banach). Let X and Y be Banach spaces and T € L(X,Y).
If T is bijective, then T~ is continuous.

Proof. From the proof above, we know U(0;1) C T(B(0;1/6)). As T is bijective,
T-YU(0;1)) € B(0;1/6), that is, |T"'y|| < 1/6 for all y € Y where |y|| < 1.

For any € > 0 and nonzero y € Y, we know Hﬁﬁﬂ = 1%;-5 < 1, and hence

_ 1 Y 1 1 _ 1
7 (=) = eIl < 5,
1+elyll 1+elyll o

which means ||[T7'y| < 1£¢|jy||. Letting e — 0, we have [|[T~'y| < |y||/d.
Hence T~ is bounded and therefore continuous.

Remark. In Theorem (Open mapping), it is necessary that T'(X) is of
second category (this is guaranteed by Y = T(X) being complete). If this
condition is missing, then the conclusion may not hold, as shown in the following
example.

Example 3.30. Let X =Y = C([0,1]) with the standard norm || - ||. Define
T:X — Y such that (Tw)(t) = [j@(s)ds. Then T € L(X,Y) and T(X) =
Yy := {y € C*([0,1]) : y(0) = 0} which is not of second category in Y. In this
case T~—1 = d—dt, which is not continuous in Yy. For example, let x(t) = sin(knt),
then |lzx| = 1 but || T~ tazk|| = ||k cos(knt)| = kr — oo as k — oco. Hence, by
letting yx, = 2 /k, we know ||yx|| — 0 but ||T~tyx|| = 7 for all k. Hence T! is
not continuous.

However, if we use [|z(|1 := maxo<,<i max(|z(t)], |2/ (2)]), then (Yo, [ - [[1) is
a closed subspace of (C*([0,1]), ] - ||1) and hence (Y, | - ||1) is a Banach space.
In this case T~! is continuous: for any y € Yo, || T y|| = ||’ (#)|| < ||ly|l1, which

means 1" is bounded and hence continuous.

Remark. In the proof of Theorem (Open mapping), we only needed con-
tinuity in the last step: as sy — x¢ and T'sp — yo, by the continuity of T" we
can show that T'xg = yo. But T does not need to be continuous for this to hold.
See the following definition.

Definition 3.31 (Closed operator). Let X and Y be metric spaces, then an
operator T': X — Y is called closed if ;. — x and Txp — y imply Tx = y.
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Example 3.32. Let X = C'([0,1]) and Y = C([0,1]). Let T = & (both use
Il - ||, so X is not complete). Suppose zy — = and T'zy, = x}, — y. Then

z(t) — 21(0) = /0 z)(s)ds — /0 y(s)ds.

(Note that z), — y in the sense of || - || means z converges to y uniformly.) On
the other hand, z(t) — 24(0) — z(t) — 2(0), so z(t) — z(0) = fg y(s)ds. Hence
x € C1([0,1]) and 2’ = y. Therefore T is a closed (and linear) operator, but T
is not continuous.

Remark. If we have a closed, rather than continuous, linear operator T in
Theorem (Open mapping), then we could start from D(T), the domain of
T, rather than X and consider T': D(T') — Y. Then in the last step of the proof
of Theorem (Open mapping), we also have s — ¢ and T'sp — yo. Note
that D(T') is a B* space (not necessarily Banach space, as seen in the example
above), but we still have zp € D(T) provided that T is a closed operator.

Theorem 3.33. Let X and Y be Banach spaces, T : X — Y a closed linear
operator, T(X) is of second category in Y. Then T(X) =Y, and for any € > 0,
there exists § = d(e) > 0, such that U(0;6) C T'(B(0;¢)).

Proof. Following the the proof of Theorem (Open mapping), we know that
there exists 6 > 0, such that U(0;0) C T(B(0;1)). So now we only need to show
T(X) =Y. Obviously 0 € T(B(0;1)). If y # 0, then let §; € (0, ), we have

—y € U(0;6) C T(B(0;1)).

01
lyll

Hence there exists ¢ € B(0;1) such that Tx = d1y/||yl|. Thusy = T(||y|lz/d1) €
T(X). Therefore T(X) =Y. O

We want to study the relation of continuity and closedness of operators.

Theorem 3.34 (Bounded linear transformation, or BLT). Let X be a B* space
and Y a Banach space, T : X —'Y be linear. Then T can be extended to Ty on
D(T) such that T1|piry =T and | T1|| = ||T||.

Proof. For any x € D(T), there exists a sequence x in D(T') such that z; — x.
As T is continuous on D(T), we know there exists M > 0 such that |Tz| <
Ml|z|| for all z € D(T). Hence | Txgyp — Tai|| < M||zptp — k|| = 0as k — 0o
for any p € N. So {Txy} is Cauchy in Y. As Y is complete, there exists y € Y
such that Tz, — y. Note that y only depends on z, not {z;}. Hence define
Ty : 2 — y. Obviously T1|p(ry = T. For any a,a’ € R and z,2" € X, we choose
{zr}, {z}} such that zy, — x and z}, — 2/, and Tz, — y and Tz}, — y'. Then

Ti(ax + a'z') = klim T(azy +a'zy) = ay+ o'y = oaThz + ' Th2'.
—0o0
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Hence T} is linear. Moreover,

ITaz]| = llyll = lim [|Taf] < 7] lim {lzg] = [T}
—00 k—o0
Hence Ty € L(X,Y). Moreover ||Ti|| = ||T| (we know ||T1]] > ||T'|| by the
definition of norm). O

Corollary 3.35. Let ||-||1 and || - ||2 be two norms of a linear space X. If X is
complete with respect to both norms, and || - |1 is stronger than || - ||2, then |- |1
and || - || are equivalent.

Proof. Consider the identity mapping I : (X, |- |[1) = (X, ]| - |]2). As || - |1 is
stronger than ||-||2, we know || Iz||s = ||z||2 < C||z||1. Hence I is continuous. As
I is bijective, we know by Theorem (Banach) I~ is continuous and hence
bounded. So there exists M > 0 such that ||z|; = ||[I7tz|; < M]|z|2 for all
x € X. Therefore || - ||; and || - ||2 are equivalent. O

Remark. This also proves that, in a finite dimensional B* space (which is in
fact a Banach space), all norms are equivalent.

Theorem 3.36 (Closed graph theorem). Let X and Y be Banach spaces,
T:D(T) C X — Y be closed linear operator. If D(T) is closed, then T is
continuous.

Proof. 1. Since D(T) is closed, (D(T),| - ||) is a Banach space. Now consider
T:D(T) =Y and a new norm || - ||¢ on D(T') as follows:

lzlle = llzll + ITll, V2 e D(T).

It is easy to verify that || - ||¢ is a norm.

2. We claim that (D(T), ||-||¢) is a Banach space. To this end, we only need
to show that D(T') is complete under || - ||g. Let {zx} be a Cauchy sequence in
D(T) with respect to || - ||g. Then

lox = zjlle = llex =zl + T2y = Tzl = 0

as k,j — 00. So {xy} is a Cauchy sequence in D(T') with respect to || - ||, and
{Tz\} is a Cauchy sequence in Y. As D(T') and Y are both complete (as D(T")
is closed), we know there exists z* € D(T) and y* € Y, such that z, —
in D(T) and Txp — y in Y. Since T is closed, we know Tz* = y*. Hence
Tz — Tx. Therefore

lzr — 2"l = llor — 2% + [Tz = Tz™[| = 0

as k — oo. This implies that (D(T),] - ||¢) is complete.

3. By the definition of || - ||g, we know || - || is stronger than || - | in X.
By Corollary they are equivalent, namely, there exists M > 0 such that
lz]| < ||zl < M|z| for all x € D(T). Hence T is bounded and therefore
continuous. O
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Remark. G(T) := {(z,Tx) : x € D(T)} is called the graph of T. So ||z||l¢ is
the norm of (z,Tz) in the product space X x Y. Moreover, T is closed means
that G(T) is closed under this norm on the graph.

Theorem 3.37 (Uniform boundedness theorem). Let X be a Banach space and
Y a B* space. Define F C L(X,Y) such that

sup ||Tz|| < o0, VzeX.
TeF

Then there exists M > 0 such that ||T|| < M for all T € F.

Proof. For any x € X, define

2]l 7 = llz]l + sup [[Tz].
TeF

It is easy to show that || - | # is a norm.
We now show that X is complete under ||-|| . Let {1} be a Cauchy sequence
under || - ||, then

lzx — 2|7 = |lzx — 25| + sup [|[Tzy — Ta;l| — 0
TeF

as k,j — oo. Since X is complete, we know {zj} is Cauchy in X, and thus
there exists £ € X such that x; — x. Moreover, for any € > 0, there exists
K = K(€) € N, such that suppcr || Txr, — Tz < € for all k,j > K. Therefore,
for any T' € F, we know ||Txy —Tx;|| < e. Hence || Tz —Tz|| = im0 || Tk —
Tz;|| <e. Hence supper || Tzr — Tzl <e. So

len — 2|7 = lla — 27| + sup [Tz — Ta™[| =0
TeF

as k — oo. Therefore X is complete under || - || .

Since (X, || -||) and (X, || - ||#) are both complete and || - || # is stronger than
| - ||, we know by Corollary the two norms are equivalent. Therefore there
exists M > 0 such that

sup [Tz < Mz
TeF

Hence we know ||T|| < M for all T € F. O

Remark. The conclusion of Theorem [3.37] is different and stronger than the
condition: the condition says that for any z € X, suppcz [|[T2| < oo, which
means that there exists M, > 0 dependent on z, such that ||Tz| < M,|z| for
all T € F. On the other hand, the conclusion says that ||T|| < M for all T € F
where M is independent of z. Therefore, the condition says that F is bounded
at every point x € X, whereas the conclusion says that F is uniformly bounded
on X. Note that another way of stating Theorem [3.37] is

sup ||TZL'|| = 00 — E|:EO S )(7 s.t. sup ||T$0|| = OQ.
TeF Ter
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Theorem 3.38 (Banach-Steinhaus). Let X be a Banach space and Y a B*
space, M is dense in X. Suppose T,T, € L(X,Y) for all k € N. Then
limg o0 Txx = Tx for all x € X iff the following two statements hold:

1. There exists C > 0 such that ||Ty|| < C for all k € N.

2. limg_soo Tpx =Tz for all x € M.

Proof. (=) We only need to show Item 1. For any « € X, {T,a} is a bounded
set and hence supy, || Tjz|| < co. By Theorem [3.37] (Uniform boundedness), there
exists C' > 0 such that ||T;| < C.

(<) Notice that M is dense in X, for any € X and € > 0, we know there
exists y € M such that ||z — y|| < ¢e/(2(]|T|| + C)). Then

[Thw — Ta|| = [|Thw — Tryll + [ Thy — Tyll + 1Ty — T
= Cllz =yl + 17wy = Tyl + [ T[lly — |

€
= £+ |Tiy = Ty

Let K = K(e) € N be such that ||Tyy — Ty|| < €/2 for all k > K. Then
Tk — Tx|| < €/2+€/2 = €. Hence limyg_,o0 Tpx = Tx. O

Now we consider a few applications of the results in above.

Theorem 3.39 (Lax-Milgram). Let X be a Hilbert space and a(-,-) : X x X —
K a sesquilinear functional which satisfies the following two conditions:

1. There exists C > 0 such that |a(z,y)| < C||lz|||ly|| for all z,y € X.

2. There exists § > 0 such that |a(x,z)| > d||z||? for all z € X.
Then there exists a unique A € L(X) such that a(z,y) = (z, Ay) forallz,y € X,
A7 exists and ||A7Y| < 1/6.

Proof. By Theorem [3.17, we know such A € L(X) exists and is unique. We now
show that A is bijective.

1. If Ay; = Ay, then a(x,y) = (x, Ay1) = (x, Ays) = a(z,y2) for all
x € X. That is, a(z,y1 —y2) = 0 for all z € X. Taking x = y; — yo yields
Sllyr — 2|1 < a(y1 — y2,y1 — y2) = 0, which implies that y; = yo. Hence A is
injective.

2. To show that A is surjective, i.e., A(X) = X, we first show that A(X)
is closed. To this end, let w € A(X), then there exists a sequence {yx} in X
such that Ay;, — w. Now we know {Ay;} is Cauchy, so || Ayk+p, — Ayk|| — 0 as
k — oo for all p € N. Hence

5||yk+p - ?/k||2 < \a(ykﬂ) — Yk Yk+p — ur)| = |<yk+p - yk,A(ykﬂo = yi))|
< Yk+p — Yl AYr+p — Ayil|-

So | Yk4p — Ukl < || AYk+p — Ayrl|/d = 0 as k — 0 and p € N.

Therefore, {y} is Cauchy in X, which implies that there exists y € X such
that yr — y. As A is continuous, we know Ay, — Ay. So Ay = w and hence
w € A(X). Therefore A(X) is closed.
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We then show that A(X)t = {0}. Let w € A(X)*, then (w, Ay) = 0 for all
y € X. Taking y = w, we have

§llw|)? < a(w,w) = (w, Aw) = 0.

So w = 0. Hence A(X)* = {0}. Combining with A(X) being closed, we know
AX)=X.

3. As A: X — X is bijective and X is complete, we know by Theorem [3.29
(Banach) that A~! is continuous. Hence A~ € L(X). For any x € X, we know

FIAal? < Ja(A ™1, A-e)| = (A~ e, A1) < A el
Hence ||[A~1z| < ||z|/§ for all z € X, and thus ||[A~Y|| < 1/6. O

Consider L(X,Y) and suppose T, Ty € L(X,Y) are all bijective. Then for
any y € Y there exist unique =,z € X such that Tx = y and Tz = y for
all k& € N. In Numerical Analysis, T} often corresponds to a discretization of
the problem with mesh grid or step size hj such that hy — 0, which is used
to approximate the original 7. Then we hope to have x; — x. We have the
following definitions regarding {7} }:

1. {T}} is said to be convergent if T}, 'y — T~y for any y € Y.

2. {T}} is said to be consistent if Tz — Tx for any x € X.

3. {T}.} is said to be stable if there exists C' > 0 such that ||T}, '|| < C for all

keN.

Theorem 3.40 (Lax equivalence theorem). Let X,Y be Banach space and
T,T, € L(X,Y) be bijective for all k € N. Suppose {T}} is consistent. Then
{Ty} is convergent iff {Ty} is stable.

Proof. (<) For any y € X, we have
1Tty = Tyl = 1Ty — ol = | T ' T = T | < C|| T — Tyl — 0

as {T}} is consistent.

(=) For any y € Y, T; 'y — T~ 'y. Therefore {7} 'y} is bounded and thus
supy, ||T} 'y|| < co. By Theorem (Uniform boundedness), we know there
exists C' > 0 such that |7, !|| < C for all k € N. O
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4 Hahn-Banach Theorem

4.1 Hahn-Banach theorem

Let X be a linear space. Suppose we have a linear functional f : Xy — R, where
X is a linear subspace of X. If we have a sublinear functional p : X — R, and fj
is upper bounded by p on Xy, can we extend fj to a linear functional f : X — R,
such that f(z) = fo(x) for all z € Xy and f(z) < p(z) for all x € X? The
answer is yes, as given by the Hahn-Banach Theorem.

Theorem 4.1 (Hahn-Banach theorem). Let X be a real linear space and p :
X — R a sublinear functional. Let Xy be a linear subspace of Xo and fo : Xog —
R a linear functional such that fo(x) < p(x) for all x € Xo. Then there exists

a linear functional f : X — R such that
1. (Controlled by p) f(x) < p(z) for all z € X.
2. (Eztending fo) f(x) = fo(z) for all z € Xy. (Also denoted by f|x, = fo).

Proof. 1. We first consider a simple extension of Xy. Let yo € X \ Xp, and
consider

X1 =Xo+{ay:a e R} ={x+ayo: x € Xp,a € R}.

Suppose a linear functional f : X; — R is a desired extension of f; on X;, then
we will have

f(x+ayo) = f(z) + af(yo) = fo(x) + af(yo).

Therefore, to determine f, it suffices to determine the value of f(yo). Next we
will show what the range of this value is.
Since f needs to be controlled by p, we know

f(z+ayo) < p(z +ayy), Ve X.
Taking a =1 and z = —z € X, we have
Fwo) = fo(2) = fyo) — f(2) = f(yo — 2) <p(yo — 2), Vze Xo.

Taking a = —1 and = y € Xy, we have

—f(o) + foly) = —f(yo) + f(y) = f(y —v0) <p(y —w0), Vy€ Xo.

Thus, combining the two inequalities above, we can see that f(yo) must satisfy

fo(y) = p(=yo +y) < f(yo) < fo(2) +plyo — 2), Vy,z € Xo.

In other words, f(yo) must satisfy

sup fo(y) —p(=yo +y) < f(yo) < inf fo(z) +p(yo — 2).
y€Xo z€Xo
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It remains to show LHS < RHS above: to this end, for any y, z € X, there is

fo(y) = fo(2) = foly — 2) < ply — 2) < p(y — yo) + p(yo — 2)

which implies that fo(y0) — p(—yo + ) < fo(2) + p(yo — 2) for all y,z € X,.
Therefore indeed LHS < RHS. However, note that < may hold in which case
the choice of f(yo) is not unique.

2. Now we consider extending fy to X. Denote

F = {(XAva) : XO C XA C X7 fA|X0 = f07 fA SP‘XA}

We also define an order “<” on F by inclusion:

(Xays fa) < (Xa,, fa,) < Xa, CXa, and fA2|XA1 = Jfa.-

Then F is a partially ordered set. Moreover, for any totally ordered subset M

M = {(XAk?fAk) : (XAk7fAk) < (XAk+17fAk+1)’ Vk e N} - ]:’

we let
Xu= | Xa fulxa=1fa, V(Xa, fa)eM
(Xa,fa)eM

Hence (X, far) is an upper bound of M. By Lemma (Zorn), we know
that there exists (X, fa) € F which is maximal in F.

We claim that X, = X: If not, then there exists yo € X \ X and we can
follow the proof in the first part to construct (Xj, fA) such that X, C X, and
falx, = fa. Hence (Xy, fa) < (Xa, fa), which contradicts to (Xy, fo) being
maximal in F. O

Corollary 4.2. Let (X, || -||) be a B* space, Xo a linear subspace of X, and
fo € X§. Then there exists f € X* such that

1. leO = fo-
2. lfll = I follo where || - ||o is the norm in X{.

Proof. Let p(z) < | follo|lx|l, then p is sublinear. By Theorem (Hahn-
Banach), there exists f € X* such that f|x, = f and f(z) < p(z) = || follol|z|l
for all z € X. Hence ||f]| < ||follo- Since f(x) = fo(x) for all x € X, we also
know that

x T T
Goloe s W@ _ (@I W@l
z€Xo\{0} ||| z€Xo\{0} ll |l zex\{0} ll|
Hence || f[| = || follo- O

Corollary 4.3. For any x1,z2 € X, x1 # T2, there exists f € X* such that
f(z1) # f(x2).
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Proof. Let xg = 21 — 29 # 0. Consider Xy := {azo : a € R} and fy : Xg = R
by fo(azo) = a|lzo|| € R. Then we can show fy, € X§: for any axg,ax) € X,
there is
folazo + azg) = fo((a+a')wo) = (a+ d')|zo = allzol| + a[|zo]
= fo(awo) + fo(a'zo).
It is easy to verify that fo(zo) = ||xo|| and || follo = 1. By Corollary [4.2] we know

there exists f € X* such that f(zo) = fo(xo) = ||zol| and || f|| = || follo = 1.
Then we know that f(zo) = f(x1 — z2) = f(z1) — f(x2) = ||zo]| # 0. O

Corollary 4.4. Let X be a B* space, then for any nonzero xq € X, there exists
f € X* such that f(zo) = |lzol| and || ]| = 1.
Remark. This corollary says that « = 0 iff f(z) =0 for all f € X*.

Let X be a B* space and f € X*, then consider M := {z € X : f(z) = 0}.
For any xy € X, the distance from xy to M is defined by

d(zo, M) := inf —z||.
(zo, M) oo |zo — 2|
Hence, there exists a sequence {xy} in M such that
1
d(zo, M) < |lzo — x| < d(2o, M) + 7
Then we have

o)l =1 (ox — zo)] < I Fllles — oll < 171 (dlwro, M) + 7)

for all k € N. Therefore f(zg) < || flld(zo, M).

Now consider the case where X is a B* space and M is a linear subspace of
X. For any given xg € X \ M, does there exist f € X* such that f|y =0 and
|f(zo)] = || flld(zo, M)? The answer is yes, as shown in the following theorem.

Theorem 4.5. Let X be a B* space and M a linear subspace of X. If xg € X
and ¢ := d(xog, M) > 0, then there exists f € X* such that f(x) = 0 for all
x €M, f(zo) =6, and || f]| = 1.

Proof. Consider the linear subspace Xg := {x = 2’ + axo : ¢’ € M,a € R}. For
any * = o’ + axg € Xp, define fo(x) := ad. Then it is easy to verify that fy is
linear. Moreover, if a # 0, then

x/
[fol@)] = lad] = [ald(zo, M) < lal| % + wo|| = 12’ + aso || = ]|

Hence || follo < 1 and fo € X§. Let z € M be such that |z — z|| — J§ as
k — oo. Then we have

6 = |fo(wo — xx)| < I follollwo — zxl| — || follod

Hence 1 < || fo||o, and therefore || oo = 1. By Corollary [£.2] there exists f € X*
such that f|x, = fo (which implies that f(z) =0 for all z € M and f(zq) = )
and |[f] = [lfollo = 1. O
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Corollary 4.6. Let (X,| - ||) be a B* space and M a subset of X. Suppose
xo € X is nonzero. Then xo € span(M) iff f(xo) = 0 whenever f € X* and
flam = 0.

Proof. (=) If zy € span(M), then there exists a sequence {zy} in M such that

xp — xo. For any f € X*, we know f(zx) — f(xo) =0 as f is continuous.
(<) If not, then d(xo, M) > 0. By Theorem there exists f € X* such

that f|ar = 0 and f(x0) = d(zo, M) > 0, which is a contradiction. O

Example 4.7. Let M = {z1,29,---} C X and zy € X. Then z( € span(M)
iff f(zg) =0 whenever f € X* and f(xy) =0 for all kK € N.

4.2 Geometric Hahn-Banach theorem
Now we consider the geometric meaning of the Hahn-Banach theorem.

Definition 4.8. Let X be a linear space. Then a proper linear subspace M of
X is called mazximal if Y = X whenever M is a proper linear subspace of Y.

Proposition 4.9. Let X be a linear space and M a proper linear subspace.
Then M is mazimal iff for any xo € X \ M there is X = {azp:a € R} ® M.

Proof. (=) If Xo := {azo : a € R} ® M # X, then there exist 1 € X \ X such
that M C Xo € {ax; : a € R} @ X which contradicts to M being maximal.
(<) Let M be a linear subspace and M C M7, then there exists xg € M1\M
and {axo : a € R} &M C M;. Therefore M; = X. By the definition of maximal
linear subspace, we know M is a maximal linear subspace. O

Definition 4.10 (Hyperplane). Let X be a linear space and M a proper linear
subspace of X. Then L = xy + M is called a mazimal linear manifold, or a
hyperplane, if M is maximal in X.

Maximal linear manifold is an extension of hyperplane in R™ to a general
linear space, as shown by the following theorem.

Theorem 4.11. Let X be a B* space. Then L is a hyperplane in X iff there
exists a nonzero linear functional f : X — R and r € R such that L = H}
Moreover, L is closed iff [ is continuous.

Proof. 1. (<) Let HJQ :={x € X: f(x) =0}. Hence H][Z is a linear subspace of
X. Then for any z; € X \ H} and any z € X, we can show

f(x)
f(x1)

Therefore X = {ax; : a € R} ® H?, which implies that H}) is maximal. For any
zo € X \ HY, set 7 := f(z0) # 0 and Hj := {x € X : f(zx) = r}, then we have

T €

xr1 + ch)

reH; & flx—z0)=f(z)—r=0 & a:—xOEH]Q & xExO—FH?.
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Hence L = Hy is a hyperplane.

(=) Suppose L is a hyperplane in X, then there exists a maximal linear
subspace M and zg € X \ M such that L = xg + M (or L = M if L coincides
with M). Then for any x € X, we know x can be written as * = axg + y for
some y € M and a € R. Define f : X — R by f(z) = f(azo +y) := a. Then
it easy to show that f is linear, H]Q = M, and f(zg) = 1. Hence L = H} (or
L=HYif L=M).

2. We notice that L is closed iff H? is closed iff f is continuous. O

Definition 4.12 (Separation of two sets by a hyperplane). Two sets F and F'
of X are said to be separated by a hyperplane H}" if there exist a linear functional
f X — Rand r € R such that f(z) < r for all x € E and f(z) > r for all
x € F. If the strict inequalities hold, then we say the separation is strict.

Theorem 4.13 (Separating a convex set and a point using hyperplane). Let
E be a proper convex subset of a B* space X, and 0 € int(E). If xg ¢ E, then
there exists a hyperplane Hy that separates o and E.

Proof. Let p: X — R be the Minkowski functional of E:
) x
p(x) ::1nf{a>0:—€E}.
a

Define X := {axg : a € R} and fy : X9 = R by fo(axg) := ap(zg) € R for all
a € R. Then it is easy to show that fy € X, and

fo(x) = folaxzo) = ap(xo) < p(azo) = p(z)

for any z = azxg € Xy since p : X — R, is positive homogeneous. By Theorem
(Hahn-Banach), there exists f € X* such that f|x, = fo and f(z) < p(x)
for all z € X. In particular, f(z9) = fo(zo) = p(zo) > 1. On the other hand,
f(z) <p(x) <1forall z € E. Hence H} separates zp and E. O

Remark. As long as E has an interior point (not necessarily the origin), we
can apply translation such that 0 € int(E). But E must have an interior point
in the case of infinite dimensional B* space.

Remark. We can show that HJC is closed. We only need to show that f is
continuous. Note that

|f(z)] < max(p(zx), —p(x)), VzeX,

which is continuous at 0 since p(z), —p(z) and max are continuous functions.
Hence f is continuous at Odisjoint, and therefore continuous in X since f is
linear.

Theorem 4.14 (Separating two disjoint convex sets by a hyperplane). Let E;
and Ey be two disjoint convex sets in B* space X, and int(E1) # (. Then there
exists s € R and f € X* such that H} separates E1 and Es. That is, f(x) <'s
for all z € Ey and f(x) > s for all x € Es.
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Proof. We first convert this to the problem of separating a convex set and a
point above. Denote

E::Elegz{xl—:Z:QEX:xleEl, IEQEEQ}.

It is easy to verify that F is convex and contains an interior point. Moreover
0 ¢ E: if not, then there exist 1 € E; and 2o € E3 such that 0 = 27 — 2,
which implies that x; = x5 € F; N Es, contradicting to E1 N Ey = (.

By Theorem we know there exist f € X* and r € R such that Hj
separates 0 and E| 1.e., f(x) <r for all x € E and f(0) > r. This implies r <0
since f(0) = 0 for f € X*. Hence f(x1 —x2) = f(z1) — f(z2) <7 < 0 for all
r1 € Eq and w2 € Eo. Hence there exists s € R in between sup,, ¢ g, f(z1) and
inf,,ep, f(z2), and hence Hj} separates Ej and Fs. O

Remark. The condition £y N Fy = () can be relaxed to int(F1) N Eq # (. Since
int(E1) is a nonempty convex set, we know there exists H} separates int(E1)
and Es, such that f(z) < s for all z € int(F;) and f(xz) > s for all z € Es.
As f is continuous, we know f(z) < s for all x € int(E;) = E;. Hence H3 still
separates F1 and Fs.

Theorem 4.15 (Ascoli). Let X be a B* space and E a closed convez set, then
for any xo € X \ E, there exists f € X* and s € R such that f(z) < s < f(zo)
forallx € E.

Proof. Since E° is open, there exists 6 > 0 such that B(xo;0) C E°. Since
B(xo;6) is open and convex, we know there exists f € X* such that sup,cp f(z) <
inszB(J;o;é) f(SC)

We claim that f(zo) > inf,ep(ag;s) f(2): Ifnot, then f(xg) = infep(ag:0) f(2).
Since f is nonzero, there exists nonzero y € X such that f(y) > 0. Then
To — ﬁy € B(zp;0) but

] 0
flwo = 5v) = f(@o) = 5= f(y) < f(=o),
( 2yl ) 2]yl
which is a contradiction. Hence we can choose s to be strictly between sup,c  f(2)
and f(xo), then f(z) <sup,cp f(x) < s < f(xo) for all z € E. O

Theorem 4.16 (Mazur). Let X be a B* space and E a convex subset such that
int(E) # 0. Let F be a linear manifold in X. If int(E) N F = 0, then there
exists a hyperplane L containing F, such that E is on one side of L only.

Proof. Suppose F' = xg + Xg where g € X and Xy is a linear subspace of X.
Hence there exists a linear functional f : X — R and r € R, such that the
hyperplane H} separates £ and F: f(z) <r for all z € E' and f(x) > r for all
x € F. Denote s := f(zg), then for any =’ € Xy, there is

r < fz) = fzo +2') = f(xo) + f(2') = s + f(a).

Hence f(z') > r — s for all 2’ € Xy. Since 0 € X{, we know 0 > r — s.

61



As X, is a linear subspace, we claim f(z') = 0 for all 2’ € X,: If not, say
f(z') > 0 for some 2’ € Xy, then f(—az’) < r — s for ¢ > 0 sufficiently large,
which results in a contradiction. Hence Xg C HJQ and F' C xg + HJQ = Hj.
Therefore s > r > f(x) for all x € E, which implies that the hyperplane H 7 is
the claimed one. O

Remark. In other words, there exists a nonzero f € X* and s € R such that
f(z) <sforallz € EFand f(z) =sforall z € F.

4.3 Applications

Example 4.17 (Convex program in linear space). Let X be a linear space and
C a convex subset. Then f : C — R is called a convex functional if for all
x,y € C and X € [0, 1], there is

fOz+ (1 =Ny) <Af(2) + (1 =) f(y).

We define the epigraph of f as follows:

epi(f) :={(z,t) € C xR : f(z) < t}.

Then f is convex iff epi(f) is convex in C' x R.
Now consider a convex program (CP) as follows,

(CP)  minf(@) st (@), ..gm(@) <0,
zeC
where f,g1,...,9m : C = R are convex functionals. The goal of (CP) is to find
xo € C that minimizes f(z) subject to the inequality constraints g;(z) < 0 for
alli=1,...,m
We want to characterize the solution zg of (CP), i.e., the necessary condition
for zy to be a solution of (CP). In particular, we want to show that there
exist 5\1, ceey Am € R, called the Lagrange multipliers, such that z( satisfies the
optimality condition

m

(0C) 2"’:5\ :gi(xo —mm{ —&-Z)\zgz }

Note that we can show 5\1, ceey 5\m exist, but do not know their values. Never-
theless, the structure of (OC) provides many useful information that may lead
us to find xg.

To show the existence of 5\1, .. .,5\m, we introduce an additional 5\0, and
rewrite (OC) as

(0C”) Xof(xo) Z;\ gi(xo) 25\ gi(z), Vzel.
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If Ao > 0, then (OC) and (OC’) are equivalent. To show the existence of
A0 -5 A in (OC?), we consider two sets in R™*1:

E = {(to,...,tm) eR™! ity < fwo), t; <0, i=1,...,m},
Fi={(to,...,tm) ER™ 32 € C, st. tg > f(z), t; > gi(x), i=1,...,m}.

It is straightforward to show that both E and F are convex sets in R™*! (check
yourself). Also note that int(E) = {(to,...,tm) € R™ : ty < f(wg), t; <
0, ¢=1,...,m} is open and has interior points. We also claim that int(E)NF =
(: if not, then there exist tg, ..., ¢, and x € C such that f(z) <ty < f(z¢) and
gi(z) < t; <0 for all 4, which contradicts to g being optimal.

Now we know, by Hahn-Banach theorem, there exists a separating hyper-
plane, determined by a nonzero (5\0, . ;\m) € R™*+1. Note that

(f(w0),91(%0), -, gm(x0)) € E
(f(x) + 50791(1') +§1a s agm(x) +€m) EF

for all z € C and & > 0. Hence

m

Xof(zo +Z/\lg’ 20) < Ao(f(x) + &) —|—Z)\ gi(x)+&), Vaeel.

=1

It is clear that 5\0, R 5\m > 0: if 5\1 < 0, then letting & — oo makes the RHS
tend to —oo, contradiction.

Note that (f(z0),0,---,0) € E and (f(z0),g1(0),-.-,9m(z0)) € F, and
therefore

Aof (o) < Aof(wo) + Zj\igi(xo)'
i=1
Hence Y., S\igi(xo) > 0. But \; > 0 and gi(xo) < 0, which implies that
Aigi(zo) = 0 for all i.
We can also show that Ao > 0 as long as there exists & € C such that
9i(Z) < 0 for all 4. To this end, assume Ay = 0, then we know

0= Aof(20) < Aof(E0) + > Xigi(E0) = Y _ Aigi(do).
i=1 i=1
Since (Ag, A1, ..., Am) is nonzero, we know (Ai,...,An,) is nonzero and hence

;\igi (z9) < 0, which is a contradiction. This proves that Mo > 0. This result is
summarized in the following theorem.

Theorem 4.18 (Kuhn-Tucker). Let X be a linear space and C' a convex subset
of X. Suppose f,g1,...,9m : C — R are convex functionals, and there exists
& € C such that g1(Z),...,9m(Z) < 0. If 2o € C solves (CP), then there exist
Alyeeoy Am > 0 such that

o) = min {7(@) + 3" M)}
i=1
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and A\;g;(zo) = 0 for all i.

Example 4.19. Let X be a Banach space and f: X — R a convex functional
(not necessarily differentiable), we can extend the definition of gradient to this
case.

Definition 4.20 (Subdifferential and subgradient). Let f: X — R be convex.
For any xp € X, the set

Of (xg) ={2* € X* : (a*, 2 —xo) + f(zg) < f(x), Vz € X}

is called the subdifferential of f at xo. Each element of Of(xo) is called a
subgradient of f at xy. Note that here z* is some bounded linear functional and
not related to x.

Theorem 4.21. Let f: X — R be convex. If f is continuous at xg € X, then
df (zo) # 0.

Proof. Consider epi(f) and {(xo, f(z0))}. Note that (zo, f(z¢)+1) is an interior
point of epi( f) (since f is continuous at xg), and (zo, f(xo)) ¢ int(epi(f)). Hence
there exists (z*,£) € X* x R that separates epi(f) and (xo, f(z0)), i.e.,

<33*,1‘0> + gf(xo) < <I*,$> + ft, V(I,t) € epi(f).

Letting @ = 29 and t = f(xg) + s for all s > 0, we see £ > 0, otherwise s — 00
makes RHS tend to —oo.
We claim that £ > 0. If not, then £ = 0, and

(", 20 —x) <0, VzelX.

Then z* = 0 in X*, which contradicts to (z*,§) being nonzero.
Denote xf = —z* /&, then there is

(x5, — xo) + f(zo) < fz), VzelX.

Hence zj; € df(xg), and thus 9f(zg) # 0. O
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5 Weak Topologies

5.1 Dual spaces

Definition 5.1 (Dual space). Let X be a B* space and define the norm || f|| :=
SUp||y( =1 | f(2)| for every linear functional f € X*. Then (X*,||-[|) is a Banach
space, called the dual space of X.

Example 5.2 (Dual space of LP). For any p € [1,0), let g be the conjugate of
p,ie,qg=p/(p—1)if p>1and ¢ = o0 if p=1. Then LP([0,1])* = L([0, 1)).

Proof. By Holder inequality, we know that for any f € LP and g € L9, there is

‘/Olfgﬂ</01|fg|< (/01|f|p>1/1’</ gl ) 1/q

and the equality holds iff

sign(f(z)) @ if p € (1,00),

g(z) = s a.e. [0,1].
sign(f(z)), if p=1,
Hence, for any g € L9, we define F, : L? — R by F,( f fgdu. Then F,
is a linear functional on LP, and |F (N < llgllq ||f|\p Hence 1 Fgll = llgllq and
€ (L)

Now we want to show (LP)* = L9, ie., for any F' € (LP)*, there exists
g € L%, such that F(f) = fol fg for all f € LP. We proceed this in three steps
as follows.

1. For any F' € (LP)*, we define v : M — R as follows: v(E) := F(xg),
where E € M is any Lebesgue measurable set and xg is the characteristic
function of E, i.e., xg(x) =1 if x € E and 0 otherwise. Then we can show that
v is a signed measure: it is easy to show that v()) = 0 and v only takes finite
values.

We shall show that v is countably additive. Firstly, finite additivity is clear
from the definition of v. Let {Ej : k € N} be mutually disjoint sets in [0, 1].

Then
k

V(UL Ey) = w(B:) + v(Dy) ZFXE + F(xp,);

i=1 i=1
where Dy, := U2, | Ey. Then v(Dy) < oo, limy Dy, = (), and

v(Dy) = F(xp,) < [Flllxoyllp = IFI| (1(Di)'? — 0

as k — oo. Hence v is a signed measure. Moreover, following the similar
estimate for v(Dy), it is easy to verify that v(E) = 0 whenever pu(E) = 0.
Hence v < p. Thus, by Radon-Nikodym theorem, there exists a measurable
function g such that v(E) = [, gdu for all E € M. Hence

F(XE)=V(E)=/Egdu=/OIXEgdu
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for all E € M. Hence F(f) = [ fgdu for all simple functions f. We hereafter
drop du for notation simplicity.

2. We now show that |lg|l, < [[F|l. If p € (1,00), then for any ¢t > 0,
we denote E; := {x € [0,1] : |g(x)| < t} and let f := xg,|g/? %2g. Then
F(f)= fol fg (see Remark below). It is easy to verify that

/Olfg=/Et|g|q and /01f|p=/Et|g|q.

Therefore, we can show that

! 1/p
= [ so=ry <iEmst, =10 [ vr)”"

Hence ([, lg|9)1/9 < ||F||. Letting t — oo, we have F; 1 [0,1] and thus ||g||, <
7.

If p = 1, then for any € > 0, we denote A, := {z € [0,1] : |g(x)| > || F|| + €}
and let f = xg,na.sign(g), then there is

1 1
[ 151= [ o =ntEn a0,
0 0

On the other hand, we know

1 1
F(f) = / fg= / o lg] = [E lal = (1P + (BN A,

€

Hence there is
0<([[Fll +e)u(E:n A < F(f) < [1F[Ifllx = [1F]|p(Er N Ae).

Letting ¢t — oo, we have E; 1 [0,1] and hence (||F|| + ¢)u(Ae) < ||F||p(Ae).
Thus u(A.) = 0. As € > 0 is arbitrary, we know ||g|lcc < [|F]|-

3. Now we show F(f) = fol fg for any f € LP. Let f; be simple functions
such that fp — f in LP, then

1
[ = el < 15— Aylalle < IFIA = 71, = 0.

Hence F(fy) = fol frg — fol fg. As F € (L?)*, we know F(f) — F(f), and
hence F(f) = fol fg. O

Remark. In Step 2 of the proof above, we used the fact that F(f) = fol fg
where f = xg,|g|972g is not simple when p € (1,00). To see this, let fi be
a sequence of simple functions such that fi € LP and f,j[ 1 f* in LP. Then,
on the one hand, we know F(f;) — F(f) since F' € (LP)*; and on the other
hand, there is frg T x&,|g9|? = fg, which by Beppo Levi theorem we know
fol frg — fol xg,lglt = fol fg. Since F(fx) = fol frg for every simple function

fr, we know F(f) = fol fg.
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Remark. The result above can be extended from [0, 1] to any o-finite measur-
able space.

Example 5.3 (Dual space of C([0,1])). The dual space of C([0,1]) is the
bounded variation space BV([0,1]) := {f : [0,1] = R : f(0) =0,/ f|lTv < oo},
where || f||Tv is the total variation of f defined by

I fllTv = sgpz | (t:) — f(tio1)l,
=1

and A: 0=ty <t; <--- <t,=11is a partition of [0,1] and n € N is arbitrary.

Proof. 1. Tt is straightforward to show that (BV([0,1]),]|| - ||Tv) is a Banach
space: BV([0,1]) is a linear space, || - ||rv is a norm, and BV([0, 1]) is complete
under || - [[rv (check yourself).

2. For any = € C([0,1]) and f € BV(]0, 1]), consider the Stieltjes integral:

n

/0 () df(t) == lim 3 2t (F(t) — F(tir),

Al=0
1A1=05

where ¢} € [t;_1,t;] and |A| := maxi<;<y, |t; — t;—1|. We can show Fy : X — R
defined by Ff(z) = fol x(t)df(t) is a bounded linear functional on C(]0,1]):
the linearity is obvious, and the boundedness is because for any z € C([0, 1])
and [l < 1, there is [Fy(a)| = | [y 2(t) df(t) < ||f[lrv.

3. We shall show that, for any F' € C([0,1])*, there exists a unique f €
BV([0,1]), such that F(z) = [, 2(t) df(t) for all z € C([0,1]). The key is to
determine f using the linear functional F’, as shown below.

We first observe that C(]0,1]) is a closed linear subspace of (L*([0,1]), | -
o). Then by Corollary we know there exists F' € L*°(]0,1])* such that
Floa = F, |F[| = [[F[|. Define

F(X(Os])a 0<s<,
S) = ’
/() {07 s=0.
Next we show that f € BV([0,1]), ||fllrv < [|F||, and F(z) = fol x(t) df(t) for
all z € C([0,1)).

First of all, for any partition A : 0=ty <t; < --- < t, =1 of [0,1], denote
/\i = Sign(f(ti) — f(ti—l))~ Then

n n

Z |f(t:) = f(ti-a)| = Z Ai(f(t) = f(tiza)) = Z Ai(F(X(O,ti]) - F(X(o,ti,l])
i=1

i=1 i=1

= F (3 At n)) < IEI =17,
=1
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since || 3001 AiX(ts_1.t:1llc = 1. Since A is arbitrary, we have ||f|rv < [|F].
For any z € C([0,1]) and € > 0, choose a partition A such that

€
21FI°

[ atase - Y atwrte) - £ < 5

lz(t) — z(t')]| < Vi, t' € tioi, ], i=1,...,n,

where the first inequality is because of the uniform continuity of « on [0, 1], and
the second inequality is due to the definition of Stieltjes integral. We denote

za = 2y ()X (b0 +2(0)X {0y, then F(za) = S0, @(t:)(f (i) — f(ti-1)),
and

F(@) - /01 2(t) A ()| < |F (@) ~ Flaa)| +|F(es) - /01 2(t) df (1)

<Pl = aall +|Faa) - | a0 as(0)

<S4
22" ¢
As € > 0 is arbitrary, we know F(x) = fol x(t) df(t). O

5.2 Bidual and reflexive space

We showed that X* is a Banach space, hence we can consider X**, called the
bidual space of X. In particular, for any « € X, we can define J, : X* — R
by J.(f) = f(z) for any f € X*. It is clear that J, is linear, and |J,(f)| =
|7 (@)] < |lz|lIIf|l, which implies ||J.|| < ||z|| and hence J, € X**.

Now we can define T : X — X** by Tx := J,. Then T is called the canonical
mapping (also called evaluation mapping). It is easy to show that T is linear:
for any z,y € X and «, 8 € R, there is

(T(ax + 5?4)) (f) = Jaw+ﬂy(f) = f(ax + By)
= af(x) + Bf(y) = ato(f) + BT, (f)
= a(Tz)(f) + B(Ty)(f) = (aTz + BTy)(f),

for all f € X*. Moreover, we have showed that |[Tz| = [|J.|| < ||z| for all
reX,soT e L(X,X*™™).
In fact, we can show ||Tz|| = ||J|| = ||z||: for any € X, there exists f € X*

such that ||f|| =1 and ||f(x) = ||z| (e.g., f : Xo — R defined by f(az) = a|z]|
where X := {ax : a € R}, and then use Corollary to extend f from Xj to
X). Then

el = f(z) = Jo(f) = (Tx)(f) < |T|[[f]] = [ T].

Therefore ||Tz|| = ||z||, and thus T is an isometric isomorphism.
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If X is a Banach space, then we can show that X is isometrically embedded
as a closed linear subspace of X**. To see this, let {Tz)} be Cauchy in X**,
then {xy} is Cauchy in X due to the isometry between X and T'(X). Hence
there exists x € X such that x; — x, and it is easy to verify that Txy — Tz in
X**, This result is summarized in the following theorem.

Theorem 5.4. Let X be a Banach space. Then X is isometrically isomorphic
to a closed linear subspace of X**.

Remark. We often just identify Tz = J, with z € X.
Definition 5.5 (Reflexive space). A B* space X is called reflexive if X = X**.

Namely, the canonical mapping T : z — Tz is surjective.
Example 5.6. If p € (1,00), then (LP)* = L7 and (L?)™* = (L9)* = L. In
addition, (L')* = L®°, and

(L))" =ba(2) :={v: M — R : v is bounded, finitely additive, and v < u}.

We now consider adjoint operators, which are generalization of the conjugate
transpose operator of matrices.

Definition 5.7 (Adjoint operator). Let X and Y be B* spaces, T € L(X,Y).
Then T : Y* — X* is called the adjoint operator of T if for any f € Y* and
r € X, there is

(T f)(x) = f(T).

This is also written as (T™* f,z) = (f, Tx).
Remark. T* is well defined. To see this, for any T € L(X,Y) and f € Y™,
define g5 : X — R by gs(x) = f(Tx). Then gy is linear and |gs(x)| = |f(T'z)| <
I FINT|z|l. So gf € X*. Then the adjoint operator T* : Y* — X* by T* f :=
gs. It is easy to show that T is linear, and || T*f|| = ||g¢|| < || fI|||T] implies
|T*]] < ||T||, so T* € L(Y*, X*). In fact we can show the following theorem.
Theorem 5.8. Let the mapping * : L(X,Y) — L(Y™*, X™*) be defined by *(T) =
T*. Then x is an isometric isomorphism.
Proof. 1. We first show that * is linear. For any aj,as € R and Ty,T> €
L(X,Y), we know

[*(a1T1 + a2 T2)(H)](z) = [(an Ty + a2 T2)* fl(z) = flanTix + asThx)

= o f(Th) + aaf(Tox) = oan (17 ) (@) + 2 (15 f) (@)

ar[(+T1) (N))(2) + 2[(+T)(f))(x)

[(ar(+T1) + 2 (+T2)) f()

forall x € X and f € Y™.

2. We only need to show ||T'|| < |[|T*]|. To this end, for any x € X such that
Tx # 0, by Corollary there exists f € Y™* such that f(Tz) = ||Tz| and
I7ll = 1. Then

[Tz|| = f(Tx) = (T*f) (@) < [T fllllzl < 1Tl = 1T 2]
Therefore ||T|| < ||T%]|. O
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We can further consider the adjoint operator T** := (T™*)* of T*. Then
T € L(X*,Y**). Since X C X*™ and Y C Y**, we denote U and V their
canonical embedding respectively (i.e, Uz := J, = 2™ and Vy = J, = y**).
Then for any z € X and f € Y*, we have

(T"Uz, f) = Uz, T*f) = (T" f,z) = {f, Tx) = VT, [).

Hence T*Ux = VTx, namely T** is the extension of TX from X (as the em-
bedded in X**) to X**. This is given in the following theorem.

Theorem 5.9. Let X and Y be B* space and T € L(X,Y). Then T** €
L(X**,Y**) is the extension of T on X** and ||T**|| = ||T|.

Example 5.10. Let (2, ) be a measure space, and K : 2 x Q — R be a square
integrable function on Q x Q, i.e.,

150= ([P aut) duw) <.
Define the operator T : L2(Q, u) — L?(Q, 1) by
(Tw)@) = [ K(eyul)da). Yue L@, Yo e o

Q

Then it is easy to show T is a bounded linear mapping from L2(£2, i) to itself:
the linearity is clear, and

il = [ | [ Kyt du)] dute)
< [ 1@ aut) [ P duw)] dute)
=[f] 1K@ ante) aut)]

Hence || < ||
We claim that T* : L2(2, u) — L?(, i) is given by

/K v, 2)o(y) du(y), Yo € LA(Q, p).

To see this, notice that

.70 = [ o@) [ | Kewul) dnm)] dnto)

:/Qu(y) [/Q K(z,y)v(x) du(z)] du(y)

= [w@ [ Ko dut] dute)
= (T"v,u),
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where the second inequality is due to Fubini theorem, which holds here because

[ K@) duwu)

< [ 1Kl aunt)
<([[ wepra@a) ([ P ae)

(J]. o dutw du<y>) Julliol] < oo.

Lemma 5.11 (Young’s inequality). Let p € [1,00], f € LP(R) and K € L*(R),
then || K x fllp < K[| flp-

Proof. If p € (1,00), then by Holder inequality, we know for any x € R there is

[ Z Ko=)l a] < [ K@ =) K - )71 dy

— 00

< ([ we-via) ([ e lsora)”

o0 o0

11 ( [ 1K= plser )

Hence, there is

i flp= [ ][ K- nsw) dy\pdx
< ||K||P“/ / DIF@IP dy do

= IIKII’f/"IIKllleII,,,
which implies that [|K * f|, < || K|1]lfll,-

If p = oo, then for any x € R, we know

‘/Z K(zfy)f(y)dy’ < (1 lloo /oo (K (z = y)ldy = [|flloc [ K[]1-

— 00

Hence || K * flloo < [|[K||1]|f]loc-

If p=1, then
] we-niwafas [ ([ iK@-pla)wl
< (Kol f ]l
Hence || flly < [[K[h[[f]lr- =

71



Example 5.12 (Adjoint of convolution). Let K € L(R) and p € [1,00). Define
the convolution ¢k : LP(R) — LP(R) as follows:

o0
(cxha) = [ Ka=u)f@)dy
—00
ie., cxf =K« f € LP is the convolution of f using kernel K.
It is easy to show that ck is linear, and by Young’s inequality we know
llex |l < | K]1. Hence ck is continuous.

We claim that ¢j = cz where K(z) = K(—z) for all € R. To see this, we
note that

et) = o) = [ ([ K- ) an) gla)

- /_Z 1) (/_O; Kz — y)g(z) dv ) dy
| s (] k- gaz)

= [ o ay

for all f € L? and g € LY.

5.3 Weak and weak* convergence

Definition 5.13 (Weak convergence). Let X be a B* space, xp,z9 € X for
all k. Then {z} is said to weakly converge to xg, denoted xp — xq, if for any
f € X* there is limyg o0 f(zr) = f(20). In this case, x¢ is called the weak limit
of {xx}. To distinguish, the classical convergence x — xg (i.e., ||z — zo|| — 0)
is also called strong convergence.

Remark. If dim(X) < oo, then weak convergence reduces to strong conver-
gence. To see this, we let e1,...,e, be a basis (complete orthonormal set) of
the n-dimensional Banach space X. Then

T = agk)el + -4 a;k)en, Vk eN,

To = ago)el + -+ aglo)en.
Now define f; € X* such that f;(e;) = d;; for all j = 1,...,n. Then there are
fi(z) = agk) and f;(zg) = aEO) foralli=1,...,n and k € N. If z;, — x, then
fi(zr) = fi(xo), ie., agk) — ago)_ Hence ||z — xol] < D1y |al(-k) - a50)| — 0,
which means xj; — x strongly.

Proposition 5.14. Weak limit is unique if exists.
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Proof. Suppose z — x and z — y. Then for any f € X*, we know f(zy) —

f(z) and f(xg) — f(y). Hence f(z) = f(y), i-e., f(x —y) =0 for all f e X*.
Therefore x = y. O

Proposition 5.15. If xx — x¢ then xi — xg.

Proof. For any f € X*, we know

|f (k) = f(@o)| = |f (@x — wo)| < I fllzw — woll — O.
Therefore strong convergence implies weak convergence. O

Example 5.16. Consider L2([0,1]). Let zx(t) := sin(knt). By Riemann-
Lebesgue theorem, we know for any f € L?([0,1]), there is

(f,zr) = /0 f(t)sin(knt)dt — 0

as k — co. Hence x;, — 0. However, |lzg|l2 = 1/v/2 for all k € N and hence
{zx} does not converge strongly.

Although in general weak convergence does not imply strong convergence,
we can show that convex combinations of weakly convergence sequence may
strongly converge to the weak limit, as shown in the following theorem.

Theorem 5.17 (Mazur). Let X be a B* space and x, — xo. Then for any e >
0, there exist n € N, \; > 0 and Y ;| \i = 1, such that ||zg — Y iy Mizi|| < e

Proof. Let M := conv({zy}), then M is a closed convex set of M. If 9 ¢ M,
then by Theorem (Ascoli), there exists f € X* and a € R such that
f(z) <a< f(xg) for all . € M. As {xx} C M, we know f(x) < a < f(xg) for
all £ € N, which contradicts to zp — . O

Since X™* is a Banach space, we can consider weak convergence in X*: let
fie, f € X*, then fr — fif **(fx) — =™ (f) for any z** € X**. However, we
sometimes want to study convergence of { f;} without invoking X**.

Definition 5.18 (Weak* convergence). Let X be a B* space, fi, f € X. Then
{fx} is said to weak* converge to f, denoted by fp — f or w* —limg o0 fx = f,
if limg o0 fi(z) = f() for any x € X. In this case, f is called the weak* limit

of {fk}-

Remark. We know X C X**, hence weak® convergence is weaker than weak
convergence. If X is reflexive, then weak* convergence and weak convergence
are equivalent. It is also easy to show that weak™® limit is unique.

As a direct application of Theorem (Banach-Steinhaus), we have the
following result.
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Theorem 5.19. Let X be a B* space, and x,x € X. Then xp — x iff ||zk|| is
bounded and there is a dense subset M* of X* such that f(xy) — f(z) for all
feMr.

Proof. We treat {x}} as a sequence in X**, then applying Theorem (Banach-
Steinhaus) yields the claim. O

Theorem 5.20. Let X be a Banach space, fi, f € X*. Then fr — f iff || fxll
is bounded and there exists a dense set M of X such that fi(x) — f(x) for all
xeM.

Similar to linear functional, we can consider various convergences of linear
operators.

Definition 5.21 (Convergence of linear operators). Let X and Y be B* spaces,
Ty, T € L(X,Y) for all kK € N. Then
o {T}} is said to uniformly converge to T, denoted by T}, = T, if | T, —T'|| —
0.
o {T}} issaid to strongly converge to T, denoted by Ty, — T, if || Txx—Tz|| —
0 for any x € X.
e {T}} is said to weakly converge to T, denoted by Ty, — T, if f(Tyx) —
f(Tx) forall z € X and f € Y™

Remark. It is easy to verify that
Uniform convergence = Strong convergence —> Weak convergence

Moreover, all these limits are unique if exist.

Example 5.22 (Strongly convergent but not uniformly convergent). Denote
T:12—=1?by Tx = (v2,23,...) for any & = (21, 72,...) € [2. Namely, T is the
left shift operator. Let T}, := T*, i.e., Thw = (Tpi1,Thyo,...). It is clear that
Ty € L(I?) for all k € N,

We first show that Ty, — 0: for any z € I?, we have || Trz|| = (322, )2
0 as k — oo.

We then show that T} is not uniformly converging to 0: denote e, =
(0,...,0,1,0,...), then || Txex+1|| = |ler]| = 1. Hence ||Tx|| > 1 for all k € N.

Example 5.23 (Weakly convergent but not strongly convergent). Denote S :
12 = 1? by Sz = (0,21, %2,...). Namely S is the right shift operator. Define
Sy, := S*. Tt is clear that Sy € L(I?) for all k € N.

We first show that S, — 0. To see this , we know for any f € (I?)* = 2,
there exists yr = (y1,¥2,...) € [? such that

f(Skx) = (yy, Skx) = Zyi+k$i
i=1

o 1/2 o 1/2
< (D lwernl) Tzl = (X0 Iwl?) llal - 0
i=1

i=k+1
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as k — oo. Hence S, — 0.

But it is easy to show that S does not converge to 0 strongly: for any x € 12
there is ||Siz|| = ||z|| for all k£ € N.

5.4 Weak and weak* compactness

One of the main goals to have weak and weak™ convergence is to derive weak and
weak* sequential compactness from boundedness. We say E is weakly sequen-
tially precompact if any sequence in A has a weakly convergent subsequence,
and F is weak® sequentially precompact if any sequence in A has a weak* con-
vergent subsequence. If the weak or weak* limit is also in F respectively, then
precompactness improves to compactness.

Theorem 5.24. Let X be a separable B* space. Then any bounded sequence
{fx} in X* has a weak* convergent subsequence.

Proof. Since X is separable, there exists a countable dense set {z,,} of X.
Since {fx} is bounded, we know for any x,,, {fk(xm)} is a bounded sequence
in R. Therefore, for m = 1, there exists a subsequence, denoted by {f,},
such that {fg; (1)} is convergent. Similarly, for m = 2, there exists a subse-
quence of {fx,}, still denoted by { fx;}, such that {fy, (x2)} is convergent, and
so on. Continue doing so, we obtain a subsequence { fx; }, such that {fx, (z,)}
is convergent for every m € N.

For any x € X, there exists a sequence {x,,,} such that lim; o T, = @
since {z,,} is dense in X. Then we can show {fx,(z)} is convergent (to see
this7 note that |fk'j (J?) - fkj/ ($)| < |fk7j (ﬂf) - fkj (xmz)| + |fk7j (xmz) - fkj/ (xmz)| +
| i, (Tm;) — fr, (x)] and show {fy, ()} is a Cauchy sequence in R). Denote
[+ X = Rby f(z) = limj .o fr;,(x). Then it is easy to show f is linear and

|f(2)] < (suppen || fx, DIz], ie., f € X*. Hence f, = f in X*. O
If X is reflexive, we can show weak™ convergence (which is equivalent to

weak convergence now) without assuming X to be separable. The following
theorems lead us to this result.

Theorem 5.25 (Banach). Let X be a B* space. If X* is separable, then X is
separable.

Proof. 1. We first show that S} := {f € X* : ||f|| = 1} is separable. To see
this, let {fx} be a countable dense set of X*, then for any f € S}, there exists a
sequence {k;} in N such that lim; , fr, = f. Let gr := fi/||fx]| for all k € N
(WLOG, we assume fj # 0), then

”f _gkj” < ||f_ fk]” + kaj _gkj”
= 1f = fu; |+ ey = o AN s ]
=f = fe, I+ 1[I fe, =11 =0,

as j — oo, since fr, — f and ||fy,|| = [[f]| = 1. Hence {gx} is a countable
dense set of S}.

()



2. Since ||gr|| = 1, there exists z, € S1 := {z € X : ||z]| < 1} such that
lgi(zx)| = 1/2 for all k € N. Let Xy = span({z}). Then X, is separable (to
see this, consider the set of all linear combinations of {z)} with coefficients in
Q and show that it is dense in Xj).

3. We now show Xy = X. If not, then there exists zo € X \ X such that
d(xo, Xo) > 0. By Theorem there exists fo € X* such that ||fol| = 1 and
fo(z) =0 for all z € X,. Note that fo € ST, but for any k& € N there is

lgr. = foll = Sop, llgr(2) = fo(@)I| = lgn(zx) = fo(zr)| = |gn(zr)] = %

which contradicts to {gi} being dense in S}. Hence X = X, and is thus
separable. O

Theorem 5.26 (Pettis). Let X be a Banach space. If X is reflexive and X is
a closed linear subspace of X, then Xq is reflexive.

Proof. We need to show for any zy € X3*, there exists g € X¢ such that
(20, fo) = (fo, o) for all fo € Xg.

For any f € X*, consider its restriction mapping 1" to Xj. Namely, T :
X* — X such that T'f = fy := f|x, € Xg. Since |Tf[| = [[foll < [If]l, we
know T' € L(X*, X§) and thus T* € L(X{*, X**). Let z := T*zy € X**. Since
X is reflexive, we know there exists © € X such that (z, f) = (f,z) for all
feX

We claim that z € Xy: If not, then ¢ := d(z, Xy) > 0. By Theorem [4.5]
there exists f € X* such that f|x, = 0 (thus Tf = 0) and (f,z) = f(x) = ¢.

However we also have

0= (20,Tf) =(T"20,f) = (2, f) = {f,x) = >0,

which is a contradiction. Hence x € Xj.

Now we show (zo, fo) = (fo, ) for all fo € X{. For any fy € X, by Corol-
lary there exists f € X* such that T'f = fy. Hence (2o, fo) = (20, Tf) =
(T*z0, ) = (2, f) and {fo,z) = (f,z) (since f extends fy). So (2o, fo) = (fo, )
for all fy € X§. O

Theorem 5.27 ijerlein-Smulian). If X is a reflexive Banach space, then the
closed unit ball B(0;1) :={x € X : ||z|| < 1} is weakly sequentially compact.

Proof. We first show that any bounded sequence {x} in X has a weakly conver-
gent subsequence. Let X := span({zx}). Since X is a closed linear subspace
of X, we know X is reflexive, i.e., X}* = X, by Theorem (Pettis). Since
X is separable, we know X3* is separable. By Theorem Banach), X is
separable.

We consider g, € X§*, such that (g, fo) = (fo,x) for all fo € X3 (i.e.,
xp — g is the canonical mapping), then we know {gx} is bounded in Xg*
since {z}} is bounded in Xy. Thus, by Theorem we know {g;} has a
weak™ convergent subsequence, i.e., there exist a subsequence {g, } and g € X§*
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such that lim;(gx,, fo) = (g, fo) for all fo € X§. Let 29 € X be such that
(9, fo) = (fo,xo) for all fo € X (i.e., g is the canonical map of z(). Thus we
have

<f07xkj> = Jll{lolo<gk]af0> = <g7f0> = <f07l'0>

im
J]—00
for all fy € X§.

We also need to show that (f,zx;) — (f,20) for all f € X*. To this end,
for any f € X*, let T : X* — X be defined by T'f = f|x;, i.e, Tf is
the restriction of f onto Xg. Then (f,zx;) = (T'f,zx;) — (T f,w0) = (f,z0)-
Therefore z; — 2. To this point, we have showed that any bounded sequence
in X has at least one weakly convergent subsequence.

Now we show that if {zx} € B(0;1) C X and ¢ is a weak accumulation
point (the limit of a weakly convergent subsequence of {z}), then z € B(0;1)
(we assume zg # 0 otherwise there is already zg € B(0;1)). To this end, we
know by Corollary that there exists f € X* such that f(z¢) = ||zo] and
7|l = 1. Hence

[zoll = f(wo) = lim f(w;) <[If] im g, || < [f]] = 1.
j—o0 j—o0

Therefore 2o € B(0;1), which completes the proof. O

Remark. Theorem (Eberlein—Smulian) implies that any bounded sequence
has a weakly convergent subsequence. The converse of the theorem also holds.

Theorem 5.28 (Alaoglu). Let X be a B* space. Then B*(0;1) := {f € X* :
IfIl <1} is weak™ sequentially compact.

Proof. First of all, note that, for any z € X and f € B} := B*(0;1), there is
[F@) < )l < ]l

Denote I, := [—||z[|, ||z|] C R, and let P := [,y I» be the product space
equipped with the topology such that p*) — pin P if p,(nk) — p, for each x € X,
where p(®) = (pgck))mex, p = (pz)zex € P. Moreover, by Tychonoff theorem, P
is compact. -

Let BT be equipped with the W_eak* topology. Define F' : B — P by
F(f) == (f(z))zex € P for any f € Bj. Then it is clear that I is injective and
continuous under the topologies specified above. Now we need to show F(B})

is compact. Since P is compact, it suffices to show that F(Bj) is closed.

Let p € F(B}) C P be arbitrary. Then let f : X — R be defined by
f(x) :=p, for every z € X and f, € B} be such that F(f;) — p in P. Now we
just need to show that f € Bj. To see this, for any x,y € X, we have fi(z+y) =
Ful) + fe(y) = Do+ Dy = £(2) + [(y) and fi(z +y) = Pary = Flz +y) as
k — oo. Hence f(x +y) = f(x) + f(y). Similarly, we can show f(cx) = cf(x)
for all ¢ € R and x € X. Therefore f is linear. Moreover, |f(z)| = |pz| < ||z
Hence f € B;. O

Remark. Theorem (Alaoglu) implies that any bounded sequence in X*
has a weak™ convergent subsequence.
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6 Spectral Theory of Linear Operators

6.1 Basics of Banach algebra

Definition 6.1 (Banach algebra). A normed algebra £ with norm ||-|| is a unital
associative algebra over C with unit I such that ||I|| =1 and [|AB| < ||A]||| Bl
for all A, B € L. If L is complete under || - ||, then £ is called a Banach algebra.

Example 6.2. Let X be a Banach space, then £ := L(X) with the operator
norm || - || is a Banach algebra.

Definition 6.3 (Inverse). An element T of a Banach algebra L is said to be
invertible if there exists S € £, often denoted by T—!, such that ST =TS = I.
We say T has left inverse (resp. right inverse) if there exists A € L (resp.
B € L) such that AT = I (resp. TB = I). Note that if 7" has both left and
right inverses, then T is invertible, and the left and right inverses are identical:

A=Al =A(TB)=(AT)B=1B =B,
which is just T-!. It is also clear that, if T and U are both invertible, then TU
is invertible and (TU)~! = U7~

Theorem 6.4. If T and S commute, i.e., TS = ST, and TS is invertible, then
T and S are invertible.

Proof. Let U be the inverse of T'S, then T(SU) = (T'S)U = I and (US)T =
U(ST) = U(TS) = I. Hence SU is the right inverse of T and US is the left
inverse of T'. Therefore T is invertible. Similar for S. O

Theorem 6.5. Suppose T' € L is invertible, then T — A is invertible for any
Ae B0;1/(|T).

Proof. 1. We first consider the case of T'= I. We claim that I — B is invertible
for any B satisfying || B|| < 1, and moreover (I — B)~! = Y7 B¥ (called the
Neumann series of B). To see this, notice that

k+p _ k+p _ S _
> B = > s > B o,

i=k+1 i=k+1 i=k+1

as k — oo for any p € N. Hence S := 37 B* converges and S € L. Therefore

o0 o0
BS=BY B'=> B'=5-1,
k=1

k=0

which implies that (I — B)S = I. Similarly, we can show S(I — B) = I. Hence
the claim holds.

2. Now we consider the general case where T is invertible. Consider T —
A =T —T71A), then |T7TA| < IT7Y||A]] < 1 for all A satisfying [|A| <
1/)|T71||. Hence we know I —T~1A is invertible from above and thus 7' — A =
T(I — T~1A) is invertible by noticing that T is invertible. O
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Remark. Theorem implies that, if T" is invertible, then so are all elements
in the open neighborhood B(T;1/||T~|) of T.

6.2 Decomposition of spectrum

Definition 6.6 (Spectrum of linear operator). Let X be a (complex) Banach
space, D C X, and T : D — X a closed linear operator. Then we define
e Point spectrum o,(T) := {X € C : A\I — T is not invertible}. We call
A € 0,(T) an eigenvalue of T.
e Resolvent set p(T) :={A € C: A\ =T : D — X is bijective}. We call
A € p(T) a regular value of T.
o Continuous spectrum o.(T) := {X € C : A\ =T is injective, (A\[—T)(D) C
X, AM[-T)(D)=X}.
o Residual spectrum o.(T) := {\ € C: A\I — T is injective, (Al —T)(D) C
X}
Then we have the disjoint union

C=p(T)Uop(T)Uo(T)Uo.(T),

=:0(T)

where o(T) is called the spectrum of T.

Remark. Note that A € 0,(T) iff (\I — T)~! does not exist iff A\l — T is not
injective iff there exists nonzero z € X such that Tz = Az.

Remark. Note that if A € p(T) then (AI-T)~! : X — D is bijective. Moreover,
we can show that (A — T)~! is closed. To see this, let y, — y and z; :=
(M — T) 'y, — x, then we have A\ry — Tz = yr — y, which thus implies
Ty, — A\r —y. Since T is closed, we know Tz = A\ — v, i.e., (AN —T)"ly = x,
which proves our claim.

From the arguments above, we can also see that D is closed and hence is
complete. Moreover, since X is closed, by Theorem (Closed graph), we
know (A — T)~! € L(X, D). By Theorem [3.29] we know \I — T € L(D, X).

Remark. If dim(X) < oo, then C = p(T) Uo,(T'). Otherwise, o.(T") and o,.(T)
may be nonempty.

Example 6.7 (Point spectrum). Let X = L?([0,1]), D = {z € C?%([0,1]) :
z(0) =x(1) =0, 2/(0) =2/(1) =0}, and T : D — X be defined by (Tz)(t) =
—2"(t) for all t € [0,1] and x € D. Then T is a closed linear operator, and
o(T)=0,(T) = A :={(2km)? : k e NU{0}}.
Proof. For any k € NN {0}, let z(t) = cos(2rkt) which is nonzero. Then
(Tz)(t) = —2"(t) = (2km)%x(t). Hence A C o,(T).

If A € C\ A, then for any f € X, the equation (T'— AI)z = f has a unique
solution:

Ck

1
t) = 2kt h _ / t —2kmte dt.
x(t) E ke ¢ ,  where ¢ ; fle

kEZ
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(To see this, apply Fourier transform to both sides and solve for z, then ¢, are
the Fourier coefficients of f under the Fourier basis {e2*™ : k € Z} of X.) Also
note that

ck
ol = 3 o < 3 el = a1

kEZ kEZ

where M) := supycy |(2km)? — A2|7? < oo. Therefore A € p(T). Hence A =
op(T) = o(T). O

Example 6.8 (Residual spectrum). Let X = C([0,1]) and T : X — X be
defined by (Tx)(¢) := ta(t) for any t € [0,1] and € X. Then o(T) = 0.(T) =
[0,1].

Proof. If X € C\ [0,1], then [(A] — T)~'a](t) = 29 and ||[(M — T) 'z|| <
(supg<i<q |A — t|71)||z||. Hence NI — T is bijective and A € p(T).

If A € [0,1], then (AI — T)z = 0 has a unique solution z = 0 and hence
M — T is injective. Moreover, for any y € (A — T)(X), there exists z € X,
such that y(t) = (A — t)z(t) for all t € [0,1]. Hence y(A\) = 0. This implies that
all nonzero functions in X must not be in (A — T)(X) (e.g., 1 ¢ (A — T)(X)).
Hence A € 0,.(T) C o(T) C [0,1]. Therefore o(T') = 0,.(T) = [0, 1]. O

Example 6.9 (Continuous spectrum). Let X = L%([0,1]) and T : X — X be
defined by (T'z)(t) := ta(t) for any ¢t € [0,1] and € X. Then o(T) = 0.(T) =
[0, 1].

Proof. Similar as in the previous example, if A € C\[0, 1], then [\ -T)"1z](t) =
x(t) ;and [|(AL —T) " || < (supgescq [A —t[71)||]]. Hence A € p(T).

If A € [0,1], then we claim that 1 ¢ (M — T)(X): if there exists z € X
such that ()J —T)z =1, then z(t) = 11 ¢ X, which is a contradiction. On
the other hand, for any y € X, let By = (A — %,A + %) N [0,1] and define
ri(t) ==y fy(t)XEz(t). Then

1 A+
102 =)@ =9l = [ lwOxe @Fa= [ woF a0

as k — oo. Hence y € (M —T)(X). Hence A € o.(T) C o(T) [0,1].
Therefore o(T) = o.(T) = [0, 1]. O

N

6.3 Gelfand theorem

Definition 6.10 (Resolvent). Let X be a Banach space and T': X — X be a
closed linear operator. Then the resolvent of T is the mapping Rr : p(T) —
L(X) defined by Rr(\) := (M —T)~! for every \ € p(T).

Lemma 6.11. Suppose T € L(X) and ||T|| < 1, then (I —T)™! € L(X) and
I =T)~ M < 1/(1 = ||T[])-
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Proof. By Theorem we know (I —T)~! € L(X). For any y € X, let
x= (I —T) 1y, then

Iyl = 11 = T)a|| > ]| = [ T]| = [l=]| = I TH2]] = (L= [TI)l]-

Hence ||(I —T) y|| = [|lz]| < Jﬁgﬂ”. Therefore ||(I —T)71| < ﬁ O

Remark. Recall that (I—T)~1 = Y77 T*, and hence ||(I-T) || < >pe, |IT|IF =

ﬁ. We can also prove the lemma above using Banach contractive mapping

theorem.

Corollary 6.12 (p(T) is open in C). Let X be a Banach space. If T : X — X
is a closed linear operator, then p(T) is open in C.

Proof. Let \g € p(T) be arbitrary. Then (A\gI — T)~! € L(X). Note also that
M—T=\=X)+ Nl —=T)= NI =T)IT+(\—=Xo) Nl —T)"1).

For any A € C such that |A — \g| < 1/|[(Mo — T) 71|, we have ||(A — Xo) (Mol —
T)7'| < 1. Hence by Lemma [6.11] we know U := I + (A — A\g)(Aol — T) ! is
invertible. Thus (Al —T)~! = U=Y(\ogl — T)~! € L(X). Therefore A € p(T).
This implies that B(Ao; 1/||(AoI —T)~Y||) € p(T). Hence p(T) is open. O

Lemma 6.13 (First resolvent identity). For any A, u € p(T), there is Rp(\) —
Rr(p) = (1 — AR (A Rr(u).

Proof. We have
(L= T)~1 = (AL = T) " (ul = T)(ul — )"
=M =T) (=N + N =T)M —-T)"!
= (=N =T)" (pI =T)" + (I =T)7,
which is the claimed identity. O

Theorem 6.14 (Analyticity of resolvent). The resolvent Ry : p(T) — L(X) is
an analytic function.

Proof. 1. We first show that Ry is continuous. Let A\g € p(T') be arbitrary. Then
by Corollary we know for any A € C satisfying |X — X\o| < (2| Rr(Xo)|) 71,
there is

[Rr (M = IRz Ao) (T + (X = Xo) Rz (X)) "I < 2[Rz (Mo) |-
Then by Lemma we know
[Rr(A) = Rr(Xo)[| = [[Rz (Ao) IR (M[I[A = Aol < 2[Rz (Xo) %A = A,

which implies that R is continuous at \g. As Ag is arbitrary, we know Rrp is
continuous in p(T).
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2. Now we show that Ry is analytic. By Lemma we have

lim Rr(\) — Rr(No)

T __ 2
A= Ao A—Xo B /\h%rr){o RT()\O)RT(A) RT(AO) ’

where the last equality is due to continuity of Ry at Ag. Hence R is an analytic
function in p(T). O

Remark. Differentiability in C implies analyticity. We can also prove the ana-
lyticity from another point of view: for any A\g € p(T') and h € (0,1/||Rr( o)),
we have
RT()\O — h) = (()\() — h)[ — T)_l
— (AT =TT =h(I =T) ) = [T = bl =T)" Y (Aol = T) "

= Z:;O[h()\l — T)*l]k()\f _ T)*l _ Z;’;O RT(Ao)kJrlhk.

That is, Ry can be expanded as a convergent power series in an open neighbor-
hood of g, which means that Ry is an analytic function.

Theorem 6.15. If T € L(X), then o(T) # 0.

Proof. If not, then p(T) = C and thus Ry : C — L(X) is analytic. Furthermore,
for any positive number Ag > ||T||, we know Rp(A) = (A\I-T)~t = A~ (I-%)~!
and therefore
1 1 1
= <
L={T/A A= 1T~ Ao — |

< In-1
1Rz ()] < A 7 <%
for any |[A| > Ag. On the other hand, Ry is bounded in B(0;|\o|) since Ry is
continuous. Therefore, Ry is bounded on C. For any f € L(X)*, we define
wy : C — C by wr(A) := f(Rr())). Then wy is analytic and bounded on C. By
Liouville theorem, w; must be a constant which depends on f but not A\. By
Corollary we know Ry is constant (if not, then Rr(\1) = Rr(\2) for some
A1 # Ao, and they can be distinguished by some f € L(X)* due to Corollary
4.3). Therefore, by Lemma we have Rp(A)Rr(p) = 0 € L(X) for any
A, 1 € C, which contradicts to Ry(\) being invertible for any A € C. O

Remark. From the proof above, we can see that, if |A| > ||T||, then Rr(X) €
L(X) and hence A € p(T'). Therefore C\ B(0; ||T||) € p(T') and hence o(T") C
B(0; ||T|l), which means that ¢(T) is bounded. Since p(T) is open, we know
o(T) is closed and thus compact in C. Next we want to obtain a tight bound
of o(T).

Definition 6.16 (Spectral radius). Let X be a Banach space and T € L(X),
then r,(T) := sup{|\| : A € o(T)} is called the spectral radius of T. Note that
ro(T) < ||T|| from the remark above.

Theorem 6.17 (Gelfand). Let X be a Banach space and T € L(X), then
o (T) = limg o0 || T%||*%.
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Proof. For notation simplicity, we denote 7 := r,(T), | := liminfj_, . | T*||*/*,
and u := limsupy_, . |T%||*/*. Then it suffices to show [ = 7 = w.

1. We first show that » < u. To this end, recall that Rpr(\) = (Al —
)t =30 % for |A| > ||T||. By Cauchy-Hadamard theorem (the radius
of convergence of the power series > oo cz* is (limsupy, [ex|'/¥)~1), we know
Rr(\) € L(X) if [A7Y < w~! or |[A] > u. In this case, A € p(T), and hence
r < u.

2. Next we show r > u. For any € > 0 and f € L(X)*, we define the mapping
wy : p(T) — C by wy(X) := f(Rr(N)). Therefore w(r+e€) =Y oo f(T%)/(r+
€)**1 < oo, which implies that

Tk k
’(r—l—ek‘*‘l’_‘f( r+ek+1)‘:’<(r+1;)k+1’f>’

where we identify T%/(r 4+ €)¥*1 with its canonical image in L(X)**. Then by
Theorem (Uniform boundedness), we know there exists M > 0 such that
T IT*]

H(r—ke)k‘HH T (r ekt <M, VkeN.

Therefore r+¢ > limsupy, [|T%||'/* = u. Since € > 0 is arbitrary, we know r > w.

3. Now we only need to show r < [. Note that, for any k € N, there is
NI —TF = (A - T)P,(\;T) = Po(\; T)YN - T),

where Py(\;T) := S2F_ M=1T*=3. Hence, if \F € p(T*), then (\FI — T*)~1

L(X). By Theorem we know (M — T)~! € L(X) and hence A\ € p(T).
Therefore, if A € o(T), then \¥ € o(T*) and hence |\¥| < ||T*||. This implies
that |A| < ||T*||*/* for all k € N, and thus |\| < liminfy, | T%||*/* = 1. Therefore
r<lI. O

Example 6.18 (Spectrum decomposition). Let X = [? and T € L(X) be
defined by Tx := (0,z1,22,...) for any z = (z1,22,...) € X. Namely, T is
the right shift operator. Then o,(T) = 0, 0.(T) = {A € C : |A\] = 1}, and
o-(T)={AeC: |\ <1}
Proof. Note that |T|| = 1, and therefore o(T) C B(0;1). Therefore, we only
need to check A satisfying |A| < 1.
1. We first check the case where |A\| < 1. Specifically, we claim that, if
IA| <1, then (A — T)(X) = span(z)* where z := (1,\,A2,...) € X.
Suppose y = (y1,¥2,.-.) € (A =T)(X), then there exists x = (z1,22,...) €
X such that y = (M =Tz, i.e., yr = Axy, —xk—1 for all k € N (we define zo = 0
for convenience). Notice that
k .
SNy =g+ Ay -+ Ay
i=1
=1+ A Az —x1)+ -+ )\k_l()\a:k — Tp_1)
= /\kl‘k — 0,
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as k — oo (because € X and hence zj, are bounded). Therefore we know

Zykzk = Z)\k_lyk = 0.

k=1

Therefore y | z. Hence (A — T)(X) C span(z)*.

Now suppose y L z. Then we need to show that y € (Al —T')(X). To this
end, let = (z1, 22,...) be such that z = — Z;io N yp4j—1 for each k € N. If
A =0, then obviously z = —Ty = (A — T)y. If A # 0, then we have

w2 = | S M| < (D) (30 APy )
j=0 j=0 j=0
where we used Cauchy-Schwarz inequality. Therefore, we obtain

> ol < (ZIAIJ) (ZZlemm) (Zw) Iyl? < s

k=1 7=0 k=175=0

where we exchanged the summations in £ and j to deduce the second inequality.
Therefore x € X. Similar as above, we know 22021 A=ly, = 0 since y € X.
Hence

oo oo ] (o)
=D Ny = =ATEY Ny = AT YT Ny,
=0

j=0 j=k+1
:_/\—k( Z)@l ) Z)\ k+j— 1y_z)\jykg+1

Therefore yi, = Az — xp—1 for all £ € N, which implies y = (A — T')z. Hence
span(z)t C (M — T)(X).

In conclusion, we have (A — T')(X) = span(z)*. Therefore (\I — T)(X) &
X. Thus, {A € C:|A| <1} Co.(T).

2. Now we check the case where |A| = 1. We first consider the case A = 1.
If y = (I — T)(X), then there exists € X such that y, = xp — x5 for all
k € N. Therefore x) = Zle yi, and thus we know

d-n = {yex: 3| Y uf

k=1 i=1
Now we shall show (I — T)(X) = X. For any £ = (£1,&2,...) € X and any
€ > 0, we know there exists K = K (&, €) € N such that > ., [&[* < €2/6.

Denote ¢ := Zle &, and choose m € N sufficiently large such that % < %.
Define y = (y1,y2,...) where

<oo}§X.

&k if 1<k<K,
Y =14 —¢/m, if K+1<k<K-+m,
0, it K+m<k.
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Then there is

o) k 2 K 2 K+m c 2
)BIPITINED SIp ST il TR
k=1 i=1 =1 =1 k=K+1

which means that y € X. Moreover,

) o0 ) K+m c 12 o) )
le-yl2=Yle-mlP= Y |Ja-<| + > lal
k=1 k=K+1 k=K+m+1
K+m c 2 o0
< > (P2 ]) :
D A B ED DY
E=K+1 k=K+m+1
2¢2 > 9 9
SHﬂLQ Z |§k| < €7,
k=K+1

where we used |a — b|? < 2|a|? + 2|b|%. Hence (I —T)(X) = X.
For general A with |A] = 1, we can convert it to the case of A = 1. To see
this, notice that

n=A -T)¢ Me = Ak — Ep—1

N = Mg — N1
Yp = T — T—1
y=UI-T)z,

1o

where zj := A\*¥¢;, and y;, := \¥~ g, for all k € N. Therefore the proof reduces
to the case with A = 1. In conclusion, we have {A € C: |A\| =1} C o (T).

3. Combining the results above and that o(T) = 0,(T) U o (T)U o, (T) C
B(0;1), we know o.(T) = {\ € C: |\ =1}, and 0,.(T) = {A € C: || < 1}, and
op(T) = 0. The spectral radius is 7, (T") = 1. Furthermore, p(T) = C\ o(T) =
{AeC: |\ >1} O
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