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1 Metric Space

1.1 Contractive mapping

Definition 1.1 (Metric space). A space (X, d) is called a metric space if X is
a set and d : X ×X → R satisfies

1. d(x, y) ≥ 0; and d(x, y) = 0 iff x = y.
2. d(x, y) = d(y, x).
3. d(x, z) ≤ d(x, y) + d(y, z).

for any x, y, z ∈ X. Here d is called the metric (or distance) on X. We may
drop d and simply write X if the metric is clear from the context.

Example 1.2. Let X = Rn and d(x, y) = ((x1− y1)2 + · · ·+ (xn− yn)2)1/2 for
x, y ∈ Rn. Then (X, d) is a metric space.

Example 1.3. Let X = C([a, b]) := {x : [a, b] → R : x is continuous} and
d(x, y) = maxa≤t≤b |x(t)− y(t)|. Then (X, d) is a metric space.

With metric defined, we can consider the concept of “convergence”, as below.

Definition 1.4 (Convergence). Let {xk} be a sequence in X, then {xk} is said
to converge to x if d(xk, x) → 0 as k → ∞. Namely, for any ε > 0, there
exists K ∈ N, such that d(xk, x) < ε for all k ≥ K. We may also write this as
limk d(xk, x) = 0 or xk → x.

Example 1.5. The convergence in Example 1.3 is the “uniform convergence”
of continuous functions.

Definition 1.6 (Closed set). The subset E of X is called closed if {xk} ⊂ E
and xk → x imply that x ∈ E.

Definition 1.7 (Cauchy sequence). A sequence {xk} ⊂ X is called Cauchy if
for any ε > 0, there exists K ∈ N, such that d(xk, xj) < ε for all k, j ≥ K.

Definition 1.8 (Complete metric space). A metric space (X, d) is called com-
plete if every Cauchy sequence in X is convergent.

Remark. Let (X, d) be complete and Y ⊂ X. Then (Y, d) is complete iff Y is
closed in X.

Example 1.9. The Euclidean space (Rn, d) is complete.

Example 1.10. The space (C([a, b]), d) defined in Example 1.3 is complete.

Proof. Let {xk} be Cauchy, then for any ε > 0, there exists K ∈ N, such that

d(xk, xj) = max
a≤t≤b

|xk(t)− xj(t)| < ε

for any k, j ≥ K. Hence, for any t, {xk(t)} is a Cauchy sequence in R and thus
convergent. Let x(t) := limk xk(t). Then

|xk(t)− x(t)| = lim
j→∞

|xk(t)− xj(t)| ≤ ε

2



for any t ∈ [a, b]. This implies that xk → x uniformly. Hence x is continuous
(as [a, b] is compact and {xk} are continuous) and thus x ∈ C([a, b]).

Definition 1.11 (Continuous mapping). Let (X, d) and (Y, ρ) be two metric
spaces. A mapping T : (X, d) → (Y, ρ) is called continuous if ρ(Txk, Tx) → 0
in Y whenever d(xk, x) → 0 in X as k → ∞. The set of continuous mappings
from X to Y is denoted by C(X;Y ). If Y = R we also write it as C(X).

Theorem 1.12. Let (X, d) and (Y, ρ) be metric spaces. Then T : X → Y is
continuous iff for any ε > 0 and x ∈ X, there exists δ := δ(x, ε) > 0, such that
ρ(Ty, Tx) < ε whenever d(y, x) < δ.

Proof. (⇒) If not, then there exist x ∈ X, ε0 > 0, and a sequence {xk} in X,
such that d(xk, x) < 1/k but ρ(Txk, Tx) ≥ ε0 for all k ∈ N, which contradicts
to the continuity of T .

(⇐) Let x ∈ X be arbitrary. If the sequence {xk} is such that d(xk, x)→ 0,
then for any ε > 0, there exists K ∈ N such that d(xk, x) < δ := δ(ε, x) for
all k ≥ K. Thus ρ(Txk, Tx) < ε, for all k ≥ K. This implies that T is
continuous.

Definition 1.13 (Contractive mapping). Let (X, d) be a metric space. A map-
ping T : X → X is called contractive if there exists θ ∈ (0, 1) such that
d(Tx, Ty) ≤ θd(x, y) for all x, y ∈ X. Contractive mappings are also called
contractions.

Example 1.14. Let T : [0, 1] → [0, 1] be C1 and |T ′(x)| ≤ θ < 1 for all
x ∈ [0, 1]. Then T is a contractive mapping.

Proof. Note that X = [0, 1] and d(x, y) = |x − y| for all x, y ∈ X. Hence, for
any x, y ∈ X,

d(Tx, Ty) = |T (x)− T (y)| = |T ′(c)(x− y)| ≤ θ|x− y| = θd(x, y)

where c ∈ (x, y) due to the mean value theorem. Therefore T is contractive.

Theorem 1.15. If T : X → X is contractive, then T is continuous.

Proof. Suppose d(xk, x)→ 0, then d(Txk, Tx) ≤ θd(xk, x)→ 0 as k →∞.

Theorem 1.16 (Banach fixed point theorem). Let (X, d) be complete. If T :
X → X is contractive, then T has a unique fixed point x in X.

Proof. Pick any x0 ∈ X and generate a sequence {xk} by xk+1 := Txk for all
k ∈ N. Then

d(xk+1, xk) = d(Txk, Txk−1) ≤ θd(xk, xk−1) ≤ · · · ≤ θkd(x1, x0).

3



Hence, for any p ∈ N, we have

d(xk+p, xk) =

p∑
i=1

d(xk+i, xk+i−1) ≤
p∑
i=1

θk+i−1d(x1, x0)

≤
∞∑
i=1

θk+i−1d(x1, x0) =
θk

1− θ
d(x1, x0)→ 0

as k → ∞. Therefore {xk} is Cauchy. As X is complete, we know there exists
x ∈ X such that xk → x. Moreover, we know xk+1 = Txk → x, and hence
d(Tx, x) = limk d(Txk, xk) = 0, which implies that x = Tx, i.e., x is a fixed
point of T .

If both x and x′ are fixed points of T but are different, then d(x, x′) > 0 but

d(x, x′) = d(Tx, Tx′) ≤ θd(x, x′) < d(x, x′),

which is a contradiction. Hence the fixed point of T is unique.

Example 1.17 (Existence and uniqueness of the solution of ODE). Consider
the initial value problem of an ordinary differential equation (ODE):

(ODE)

{
x′(t) = f(t, x(t)), t ∈ R,
x(0) = ξ.

Suppose there exists δ > 0 such that f(t, x) : U → R, where U := [−h, h]× [ξ−
δ, ξ+ δ], is continuous, and f is Lipschitz in x over U , i.e., there exists an L > 0
such that |f(t, x)−f(t, y)| ≤ L|x−y| for any t ∈ [−h, h] and x, y ∈ [ξ− δ, ξ+ δ].
Denote M := max(t,x)∈U |f(t, x)|. If 0 < h < min(δ/M, 1/L), then the ODE
has a unique solution on [−h, h].

Proof. We denote B̄(ξ; δ) := {x : [−h, h] → R : |x(t) − ξ| ≤ δ, ∀ t ∈ [−h, h]},
which is a closed subset of C([−h, h]) (here B̄(ξ; δ) should be interpreted as the
closed ball in C([a, b]) with the constant function ξ as the center and δ as the
radius). We define the mapping T : C([−h, h])→ C([−h, h]) by

(Tx)(t) := ξ +

∫ t

0

f(s, x(s)) ds.

Hence x is a solution of the ODE iff x = Tx.
We first show that T maps B̄(ξ; δ) to itself. To this end, for any x ∈ B̄(ξ; δ),

we know

|(Tx)(t)− ξ| =
∣∣∣∫ t

0

f(s, x(s)) ds
∣∣∣ ≤M |t| ≤Mh < δ,

for all t ∈ [−h, h], where the first inequality above is due to x ∈ B̄(ξ; δ) (so
x(s) ∈ [ξ − δ, ξ + δ] for all s) and the definition of M , and the last inequality is
due to the condition on h. Therefore Tx ∈ B̄(ξ; δ).
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Next we show that T is contractive on B̄(ξ; δ). To this end, we first note
that Tx, Ty ∈ B̄(ξ; δ) for any x, y ∈ B̄(ξ; δ) as shown above. Then

d(Tx, Ty) = max
|t|≤h

|(Tx)(t)− (Ty)(t)| = max
|t|≤h

∣∣∣∫ t

0

(f(s, x(s))− f(s, y(s))) ds
∣∣∣

≤ max
|t|≤h

∫ t

0

|f(s, x(s))− f(s, y(s))|ds ≤ max
|t|≤h

∫ t

0

L|x(s)− y(s)|ds

≤ Lhd(x, y).

Since Lh < 1, we know T is contractive.
Finally, we see that (B̄(ξ; δ), d) is complete as B̄(ξ; d) is a closed ball in

a complete metric space (C([−h, h]), d), and hence there exists a unique fixed
point x ∈ B̄(ξ; δ) by Theorem 1.16 (Banach fixed point). This implies that x is
the unique solution of the ODE on [−h, h].

Example 1.18 (Implicit function theorem). Let f : Rn ×Rm → Rm. Suppose
there exists (x0, y0) ∈ Rn×Rm such that f and ∂yf are continuous in the open
neighborhood U × V of (x0, y0), where U ⊂ Rn and V ⊂ Rm, and

f(x0, y0) = 0, and ∂yf(x0, y0) is invertible.

Then there exist an open set U0× V0 such that (x0, y0) ∈ U0× V0 ⊂ U × V and
a unique function φ : U0 → Rm satisfying φ(x0) = y0 and f(x, φ(x)) = 0 for all
x ∈ U0.

Proof. For any r > 0 sufficiently small (we will specify the range of r later), we
consider the mapping T defined by

(Tφ)(x) := φ(x)− (∂yf(x0, y0))−1f(x, φ(x))

for any φ ∈ C(B̄(x0; r);Rm). We also define the following metric in the space
C(B̄(x0; r);Rm):

d(φ, ψ) := max
x∈B̄(x0;r)

|φ(x)− ψ(x)|∞

where |y|∞ := max1≤i≤m |yi| for any y = (y1, . . . , ym) ∈ Rm.
Since ∂yf(x, y) is continuous in U ×V , we know there exists δ > 0 such that

the magnitudes of all entries of I − (∂yf(x0, y0))−1∂yf(x, y) are upper bounded
by 1/(2m) for all x ∈ B̄(x0; δ) and y ∈ B̄(y0; δ).

Now let ζ(x) := φ(x)−ψ(x). Note that by the mean value theorem, for any
x ∈ B̄(x0; r) ⊂ U , there exists z(x) lying between φ(x) and ψ(x) (in the sense
that there exists λ(x) ∈ (0, 1) such that z(x) = (1−λ(x))φ(x)+λ(x)ψ(x)), such
that

f(x, φ(x))− f(x, ψ(x)) = ∂yf(x, z(x)) ζ(x), ∀x ∈ B̄(x0; r).
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Moreover, if r < δ, then

d(Tφ, Tψ) = max
x∈B̄(x0;r)

|ζ(x)− (∂yf(x0, y0))−1(f(x, φ(x))− f(x, ψ(x)))|∞

= max
x∈B̄(x0;r)

|[I − (∂yf(x0, y0))−1∂yf(x, z(x)))]ζ(x)|∞

< max
x∈B̄(x0;r)

1

2
|ζ(x)|∞ =

1

2
d(φ, ψ).

Now we consider the closed subset X of C(B̄(x0; r);Rm) as follows,

X := {φ ∈ C(B̄(x0; r);Rm) : φ(x0) = y0, φ(x) ∈ B̄(y0, δ), ∀x ∈ B̄(x0; δ)}.

We already showed that T is contractive on X if r < δ above. Now we need
to show that T is a mapping from X to itself for r small enough. To this end,
we know by the continuity of f over U × V that there exists η > 0 such that
|(∂yf(x0, y0))−1(f(x, y)− f(x, y0))| < δ/2 for all x ∈ B̄(x0; η) and y ∈ B̄(y0; η).
Furthermore, consider y0 as the constant function taking value y0, we have

d(Tφ, y0) ≤ d(Tφ, Ty0) + d(Ty0, y0)

<
1

2
d(φ, y0) + max

x∈B̄(x0;η)
|(∂yf(x0, y0))−1f(x, y0)|∞

=
1

2
d(φ, y0) + max

x∈B̄(x0;η)
|(∂yf(x0, y0))−1(f(x, y0)− f(x0, y0))|∞

<
1

2
d(φ, y0) +

1

2
δ < δ

for x ∈ B(x0; η), where the equality is due to f(x0, y0) = 0. So d(Tφ, y0) < δ if
0 < r < min(δ, η). Furthermore,

(Tφ)(x0) = φ(x0)− (∂yf(x0, y0))−1f(x0, φ(x0)) = y0

since φ(x0) = y0 and f(x0, y0) = 0. Hence T is a mapping from X to itself.
Finally, since (X, d) is complete and T : X → X is contractive, we know

there exists a unique φ ∈ X such that φ = Tφ, which implies that φ(x0) = y0

and f(x, φ(x)) = 0 in U0 := B̄(x0; r).

1.2 Complete metric space

Recall that completeness of (X, d) is necessary in Theorem 1.16 (Banach fixed
point), otherwise the conclusion may not hold, as in the following example.

Example 1.19. Consider T : [0, 1] → [0, 1] defined by Tx =
√
x+ 1. Then T

is a contractive mapping and the unique fixed point is x0 = (
√

17 + 1)/18. It is
easy to verify that T is a contractive mapping on X := [0, 1] \ {x0}, but then it
does not have a fixed point on X.

The completeness of a metric space also depends on the metric, as shown in
the following example.
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Example 1.20. Consider (C([a, b]), ρ) where ρ is defined by

ρ(x, y) :=

∫ b

a

|x(t)− y(t)|dt.

Then it is easy to verify that ρ is a metric. However (C([a, b]), ρ) is not complete.
To see this, recall that C([a, b]) is dense in L([a, b]), but not all functions in
L([a, b]) are continuous.

Definition 1.21 (Isometry). Let (X, dX) and (Y, dY ) be two metric spaces. If
there exists a mapping T : X → Y such that

1. T is surjective,
2. dX(x, x′) = dY (Tx, Tx′) for all x, x′ ∈ X,

then we say that (X, dX) and (Y, dY ) are isometric, and T is called an isometry.

Remark. Note that item 2 above implies that T is injective: if Tx = Tx′, then
dX(x, x′) = dY (Tx, Tx′) = 0, which implies that x = x′. Therefore an isometry
is also a one-to-one correspondence.

If (X, dX) and (Y, dY ) are isometric, then they have the same properties
regarding metrics (distances). If (X, dX) is isometric to (Y, dY ), and (Y, dY )
is a subspace of (Z, dZ) such that dZ |Y = dY (i.e., dZ is identical to dY when
restricted to Y ), then we say (X, dX) is isometrically embedded into (Z, dZ).

Definition 1.22 (Dense subset). Let (X, d) be a metric space. Then a subset
E of X is called dense if for any x ∈ X and ε > 0, there exists y ∈ E such that
d(x, y) < ε.

Example 1.23. Let P ([a, b]) be the set of polynomials on [a, b], then P ([a, b])
is dense in C([a, b]) (due to Weierstrass Theorem) under the standard norm d
in C([a, b]). Also, C([a, b]) is dense in L([a, b]) under the metric ρ defined in
Example 1.20.

Definition 1.24 (Completion). Let (X, d) be a metric space, and F := {(Y, ρ) :
X ⊂ Y, ρ|X = d, Y is complete}. Then X̄ := ∩Y ∈FY is a complete metric
space, called the completion of X. X̄ is the smallest complete space containing
X in the sense that X̄ ⊂ Y for all Y ∈ F .

Theorem 1.25. If X ⊂ Y where Y ∈ F and X is dense in Y , then Y is the
completion of X.

Proof. Let (X, d) be a metric space which is dense in (Y, ρ) and ρ|X = d. Then
we know for any y ∈ Y , there exists a sequence (x1, . . . , xk, . . . ) in X such that
xk → y, i.e., ρ(xk, y)→ 0 as k →∞. If (Z, %) ∈ F , then by noting that {xk} is
Cauchy in Z, we know there exists z ∈ Z such that %(xk, z)→ 0.

Now define T : Y → Z such that Ty = z. We shall show that T is an
isometry. To this end, for any y′ ∈ Y , there exists a sequence (x′1, · · · , x′k, · · · )
in X such that ρ(x′k, y

′)→ 0. Hence

ρ(y, y′) = lim
k→∞

ρ(xk, x
′
k) = lim

k→∞
%(xk, x

′
k) = %(Ty, Ty′)
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where the second equality is due to ρ|X = %|X = d and the third equality is due
to the definition of T . Hence (Y, ρ) is a subspace of (Z, %). Since Y is complete,
we know (Y, ρ) is the completion of (X, d) by definition.

Theorem 1.26. Every metric space has a completion.

Proof. 1. For a metric space (X, d), we consider the set

Ỹ := {x = (ξ1, ξ2, . . . ) which is a Cauchy sequence in X}.

Define an equivalence relation ∼ in Ỹ as follows: x ∼ x′ iff limk d(ξk, ξ
′
k) = 0.

Let Y := Ỹ / ∼ be the quotient space and [x] ∈ Y stands for the equivalence
class of x. Then define ρ : Y × Y → R+ by

ρ([x], [x′]) = lim
k→∞

d(ξk, ξ
′
k).

It is easy to verify that ρ is a metric on Y : in particular,

ρ([x], [x′]) = lim
k→∞

d(ξk, ξ
′
k) ≤ lim

k→∞
d(ξk, ξ

′′
k ) + d(ξ′′k , ξ

′
k)

= ρ([x], [x′′]) + ρ([x′′], [x′]),

for any [x], [x′], [x′′] ∈ Y where x, x′, x′′ are Cauchy sequences in X. This verifies
the triangle inequality. Hence (Y, ρ) is a metric space.

2. We now show that (X, d) is dense in (Y, ρ). To this end, we identify ξ ∈ X
with [xξ] ∈ Y , where xξ := (ξ, ξ, . . . ) is the constant sequence in X. We denote
this identification mapping T : X → Y by Tξ = xξ. Then clearly T : X → T (X)
is surjective and ρ(Tξ, Tη) = ρ([xξ], [ξη]) = d(ξ, η). Hence T : X → T (X) ⊂ Y
is an isometry, X and T (X) are isometric, and (X, d) is embedded into (Y, ρ).
For any [y] ∈ Y , where y = (η1, η2, . . . ) ∈ Ỹ is a Cauchy sequence in X, we
know (Tη1, Tη2, . . . ) is a sequence in T (X) such that

lim
j→∞

ρ(Tηj , [y]) = lim
j→∞

ρ([xηj ], [y]) = lim
j→∞

lim
k→∞

d(ηj , ηk) = 0.

Hence T (X) is dense in Y .
3. Finally we need to show that (Y, dY ) is complete. Suppose ([y1], [y2], . . . )

is a Cauchy sequence in Y . For each k ∈ N, there exists ξk ∈ X such that
ρ(Tξk, [yk]) < 1/k (since T (X) is dense in Y ). Then for any ε > 0, there exists
K = K(ε) ∈ N such that 2/k < ε/2 and ρ([yk+p], [yk]) < ε/2 for all k ≥ K and
p ∈ N. Hence

d(ξk+p, ξk) = ρ(Tξk+p, T ξk) ≤ ρ(Tξk+p, [yk+p]) + ρ([yk+p], [yk]) + ρ([yk], T ξk)

≤ 1

k + p
+ ρ([yk+p], [yk]) +

1

k
≤ 2

K
+
ε

2
< ε

for all k ≥ K. So x = (ξ1, ξ2, . . . ) is Cauchy in X and hence [x] ∈ Y . It is then
easy to show that ρ([yk], [x])→ 0.

Combining the conclusions in the previous three steps yields that (Y, ρ) is
the completion of (x, d), by Theorem 1.25.
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Example 1.27. The completion of (P ([a, b]), d) is (C([a, b]), d) where d(x, y) :=
maxa≤t≤b |x(t)− y(t)|.

Example 1.28. The completion of (C([a, b]), ρ) is (L([a, b]), ρ) where ρ(x, y) :=∫ b
a
|x(t)− y(t)|dt.

1.3 Sequentially compact set

Definition 1.29 (Bounded set). Let (X, d) be a metric space, a subset E is
called bounded if there exists x0 ∈ X and r > 0 such that E ⊂ B(x0; r).

Recall that in (Rn, d) (where d is the standard Euclidean distance), if an
infinite subset E is bounded, then E has at least one limit point (also known
as accumulation point); if a sequence {xk} is bounded, then it has at least one
convergent subsequence. However, this is not true for general complete metric
spaces, as shown in the following example.

Example 1.30. Consider (C([0, 1]), d) and the following sequence {xk}:

xk(t) :=

{
0, t ≥ 1/k,

1− tk, 0 ≤ t < 1/k,

then {xk} is bounded by 1 in C([0, 1]), but {xk} does not have a convergent
subsequence (the limit is not in C([0, 1])).

Definition 1.31 (Sequentially precompact and compact). Let (X, d) be a met-
ric space, then a subset E is called sequentially precompact if every sequence in
E has a Cauchy subsequence. If in addition all the Cauchy sequences converge
with limits in E, then E is called sequentially compact. If X is sequentially
compact, we call X a sequentially compact space.

Remark. It is obvious that a sequentially compact set is also sequentially pre-
compact. In some texts, a sequentially precompact set is also called Cauchy
precompact or relatively compact.

Theorem 1.32. The following statements hold:
• If E is sequentially precompact and F ⊂ E, then F is sequentially precom-

pact.
• If E is sequentially precompact, then Ē is sequentially compact (assuming

the metric space is complete).
• If E is sequentially compact and F is a closed subset of E, then F is

sequentially compact.

Theorem 1.33. A sequentially compact metric space is complete.

Proof. Let (X, d) be a sequentially compact metric space and {xk} a Cauchy
sequence in X. Then there exist x ∈ X and a subsequence {xkj} such that
xkj → x as j → ∞. Therefore xk → x as k → ∞ since {xk} is Cauchy. Hence
X is complete.
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We now introduce a condition stronger than boundedness.

Definition 1.34 (ε-net). Let (X, d) be a metric space, E ⊂ X, and ε > 0. We
call N ε ⊂ X an ε-net of E if for any x ∈ E, there exists y ∈ N ε, such that
d(x, y) < ε. In other words,

E ⊂
⋃
y∈Nε

B(y; ε).

If N ε is finite, then we call N ε a finite ε-net of E.

Definition 1.35 (Totally bounded). Let (X, d) be a metric space and E a
subset of X. Then E is called totally bounded if for any ε > 0, E has a finite
ε-net in X. Totally bounded sets are also called precompact.

Remark. In some texts, a set E is called totally bounded if for any ε > 0, E
has a finite ε-net in E (rather than in X as in Definition 1.35). This alternative
definition is equivalent to Definition 1.35: it is trivial to show from this alter-
native definition to Definition 1.35; Conversely, if E is totally bounded under
Definition 1.35, then for any ε > 0, E has a finite (ε/2)-net N ε/2 = {x1, . . . , xnε}
in X, pick any yi ∈ E∩B(xi; ε/2) (WLOG it is nonempty) for each i = 1, . . . , nε,
then there is

E ⊂
nε⋃
i=1

B
(
xi;

ε

2

)
⊂

nε⋃
i=1

B(yi; ε),

which means that {y1, . . . , ynε} ⊂ E is a finite ε-net of E.

Remark. The following facts can be verified easily:
• If E is totally bounded, then any subset of E is totally bounded.
• If E is totally bounded, then Ē is also totally bounded. To see this, let
ε > 0 be arbitrary and N ε/2 a finite (ε/2)-net of E, then N ε/2 is a finite
ε-net of Ē.

Theorem 1.36 (Hausdorff). Let (X, d) be a metric space and E a subset of X,
then E is sequentially precompact iff E is totally bounded.

Proof. (⇒) If not, then there exists ε0 > 0, such that E does not have a finite
ε0-net. Pick any x1 ∈ X. Then pick x2 ∈ E \B(x1; ε0) (this is nonempty since
E cannot be covered by B(x1; ε0)). Then pick x3 ∈ E \ (B(x1; ε0) ∪B(x2; ε0)),
and so on. This process will never stop since there is no finite ε0-net of E. Then
we obtain {xk} which is a sequence in E but d(xk, xj) ≥ ε0 for any k 6= j.
Therefore {xk} does not have any Cauchy subsequence in E, which contradicts
to E being sequentially precompact.

(⇐) Let {xk} be a sequence in E. Since E has a finite 1-net, we know
there exists y1 ∈ M such that B(y1; 1) contains infinitely many terms (thus a

subsequence) of {xk}, which we denote by {x(1)
k }. Since E has a finite (1/2)-net,

there exists y2 ∈ E, such that B(y2; 1/2) contains a subsequence of {x(1)
k }, which

we denote by {x(2)
k }. Continue doing so, we obtain {x(j)

k } for j = 1, 2, . . . , which

10



is a sequence of sequences and forms an infinite matrix with (x
(j)
1 , x

(j)
2 , . . . ) as

the jth row. Note that x
(j)
k ∈ B(yJ ; 1/J) for all j ≥ J and J, k ∈ N. Now

consider the sequence {x(k)
k } (by extracting the diagonal terms as a sequence),

we know for any ε > 0, if k > 2/ε, then for any p ∈ N, there is

d(x
(k+p)
k+p , x

(k)
k ) ≤ d(x

(k+p)
k+p , yk) + d(x

(k)
k , yk) <

1

k
+

1

k
=

2

k
< ε.

Therefore, {x(k)
k } is a Cauchy subsequence of {xk}.

Remark. If in addition (X, d) is complete in Theorem 1.36, then E is sequen-
tially compact iff E is totally bounded and closed:

(⇒) Since E is sequentially compact, we know E is sequentially precom-
pact and by Theorem 1.36 that E is totally bounded. Moreover, every Cauchy
subsequence in E is convergent with limit in E, which implies that E is closed.

(⇐) Since E is totally bounded, we know by Theorem 1.36 that E is sequen-
tially precompact. As E is closed and X is complete, we know E is complete.
Hence every Cauchy sequence in E also converges in E, from which we know E
is sequentially compact.

Definition 1.37 (Separable space). Let (X, d) be a metric space. We call X
separable if X has a countable dense subset.

Theorem 1.38 (Totally bounded spaces are separable). Let (X, d) be a totally
bounded metric space, then X is separable.

Proof. Let Nk ⊂ X be a finite (1/k)-net. Then ∪∞k=1Nk is a countable dense
subset of X.

Definition 1.39 (Compact). Let (X, d) be a metric space, then a subset E of
X is called compact if any open cover of E has a finite subcover.

Remark. Recall that a compact set is closed and bounded. However, the con-
verse is true in Euclidean spaces but not in general metric spaces. The following
theorem states that compactness and sequential compactness are equivalent in
metric spaces.

Theorem 1.40. Let (X, d) be a metric space and E ⊂ X. Then E is compact
iff E is sequentially compact.

Proof. (⇒) Suppose E is compact, then E is closed. If E is not sequentially
compact, then there exists a sequence {xk} in E such that {xk} does not have
a Cauchy (convergent) subsequence. Hence S := {xk}, as a set, is closed. Let
Sk := S \{xk} (removing xk from S), which is also closed. Then X \Sk is open,
and thus

∞⋃
k=1

(X \ Sk) = X \
∞⋂
k=1

Sk = X ⊃ E,

11



i.e., {X \Sk : k ∈ N} is an open cover of E. As E is compact, there exists a finite
subcover, i.e., there exists K ∈ N, such that E ⊂ ∪Kk=1(X \ Sk) = X \ ∩Kk=1Sk.
However, since xK+1 /∈ X \∩Kk=1Sk and xK+1 ∈ E, we arrive at a contradiction.

(⇐) Suppose E is sequentially compact, and hence totally bounded. Assume
E is not compact, then there exists an open cover {Gα : α ∈ A} of E, but it does
not have a finite subcover for E. Since E is totally bounded, we know for any
k ∈ N, there exists a finite (1/k)-netNk, such that E ⊂ ∪y∈NkB(y; 1/k) (covered
by finitely many balls). Hence there exists yk ∈ Nk such that B(yk; 1/k) has no
finite subcover from {Gα}.

Now consider {yk}. Since E is sequentially compact, we know it contains a
convergent subsequence, denoted by {ykj}, such that ykj → y for some y ∈ E.
Then there exists α′ ∈ A and δ > 0, such that y ∈ B(y; δ) ⊂ Gα′ . Hence
there exists kj ∈ N large enough, such that B(ykj ; 1/kj) ⊂ B(y; δ) ⊂ Gα′ , which
contraditcts to the definition of ykj (that B(ykj ; 1/kj) does not have a finite
subcover from {Gα}).

Now we consider a generalization of C([a, b]). Suppose (M,d) is a complete
compact metric space. Define

C(M) := {f : M → R : T is continuous}

and ρ by ρ(u, v) := maxx∈M |u(x)− v(x)|.

Theorem 1.41. (C(M), ρ) is a metric space.

Proof. We only need to verify that ρ is well defined, i.e., the maximum in the
definition of ρ can be attained. Let {xk} be a sequence in M , such that |u(xk)−
v(xk)| → supx∈M |u(x) − v(x)|. Since M is compact, we know there exists a
subsequence xkj such that xkj → x0 for some x0 ∈ M . On the other hand, as
u and v are continuous, we know |u(xkj ) − v(xkj )| → |u(x0) − v(x0)|. Hence
|u(x0)− v(x0)| = supx∈M |u(x)− v(x)|, i.e., the maximum can be attained.

Theorem 1.42. (C(M), ρ) is complete.

Proof. Similar to the proof of completeness of C([a, b]) before.

Definition 1.43 (Uniformly bounded). A subset F of C(M) is called uniformly
bounded if there exists L > 0 such that |f(x)| ≤ L for all x ∈M and f ∈ F .

Definition 1.44 (Equicontinuous). A subset F of C(M) is called equicontinu-
ous if for any ε > 0, there exists δ := δ(ε) > 0, such that

|f(x1)− f(x2)| < ε

for any x1, x2 ∈M satisfying d(x1, x2) < δ and any f ∈ F .

Theorem 1.45 (Arzelà-Ascoli). Let (M,d) be a compact metric space and
(C(M), ρ) be defined as above. Then a set F ⊂ C(M) is sequentially precompact
iff F is uniformly bounded and equicontinuous.

12



Proof. Note that (M,d) is sequentially compact and hence also complete. Since
(C(M), ρ) is a metric space, we know that F is sequentially precompact iff F
is totally bounded. Thus we prove the theorem with sequential compactness
replaced by total boundedness.

(⇒) Suppose F is totally bounded, then F is uniformly bounded. We
also need to show that F is equicontinuous. To this end, for any ε > 0,
we know F has a finite (ε/3)-net, i.e., there exist φ1, . . . , φK ∈ F , such that
F ⊂ ∪Kk=1B(φk; ε/3). For every k ∈ {1, . . . ,K}, there exists δk := δk(ε) > 0,
such that |φk(x) − φk(x′)| < ε/3 for all x, x′ ∈ M satisfying d(x, x′) < δk. Let
δ := min{δ1, . . . , δK} > 0, then for any x, x′ ∈ M satisfying d(x, x′) < δ, and
any f ∈ F , there exists k ∈ {1, . . . ,K}, such that f ∈ B(φk; ε/3), and hence

|f(x)− f(x′)| ≤ |f(x)− φk(x)|+ |φk(x)− φk(x′)|+ |φk(x′)− f(x′)| < 3 · ε
3

= ε.

Hence F is equicontinuous.
(⇐) For any ε > 0, we need to find a finite ε-net for F . Since F is equicontinu-

ous, there exists δ = δ(ε) > 0, such that for any x, x′ ∈M satisfying d(x, x′) < δ
and any f ∈ F , there is |f(x) − f(x′)| < ε/3. As (M,d) is compact, we know
M is sequentially compact and totally bounded. Let {x1, . . . , xn} be a finite
δ-net of M , i.e., M ⊂ ∪ni=1B(xi; δ). Now consider the mapping T : C(M)→ Rn
defined by T (ψ) = (ψ(x1), . . . , ψ(xn)) for any ψ ∈ C(M). It is clear that T is
surjective.

Since F is uniformly bounded, i.e., there exists L > 0, such that |f(x)| ≤ L
for all x ∈M and f ∈ F , we know that

|T (f)| = |(f(x1), . . . , f(xn))| ≤
√
nL.

So T (F ) is bounded in Rn. Thus T (F ) is compact and thus totally bounded, and
hence T (F ) is totally bounded and has a finite (ε/3)-net. Since T is surjective,
we know there exist φ1, . . . , φm ∈ F , such that {T (φ1), . . . , T (φm)} is a finite
(ε/3)-net of T (F ).

For any x ∈ M , there exists i ∈ {1, . . . , n}, such that x ∈ B(xi; δ), and
j ∈ {1, . . . ,m}, such that T (f) ∈ B(Tφj ; ε/3). Hence

|f(x)− φj(x)| ≤ |f(x)− f(xi)|+ |f(xi)− φj(xi)|+ |φj(xi)− φj(x)|

≤ ε

3
+ |T (f)− T (φj)|+

ε

3
< ε,

which means {φ1, . . . , φm} is a finite ε-net of F .

Remark. Under the setting of Theorem 1.45 (Arzelà-Ascoli), (C(M), ρ) is com-
plete. Therefore, if F is uniformly bounded and equicontinuous, then any se-
quence in F has a Cauchy subsequence (in the sense of ρ), and the subsequence
converges to some f ∈ C(M). If F is closed, then the limit f ∈ F .

Example 1.46. Let Ω ⊂ Rn be open and convex, and L0, L1 > 0. Then the set
F := {f ∈ C(Ω̄) ∩ C1(Ω) : |f(x)| ≤ L0, |∇f(x)| ≤ L1,∀x ∈ Ω} is sequentially
precompact in C(Ω̄).
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Proof. By the definition of F , we know F is uniformly bounded by L0. By the
mean value theorem, for any x, x′ ∈ Ω̄, there exists λ ∈ (0, 1), such that

|f(x)− f(x′)| = |∇f(λx+ (1− λ)x)(x− x′)| ≤ L1|x− x′|

Hence f is L1-Lipschitz continuous for all f ∈ F . Hence F is equicontinuous.
By Theorem 1.45 (Arzelà-Ascoli), we know F is sequentially precompact.

Remark. Note that F in Example 1.46 is not closed, and hence not necessarily
sequentially compact. For example, consider F := {fk ∈ C([−1, 1]) : fk(x) =
(x2 + 1

k )1/2}. Then fk converges uniformly to f(x) := |x|, but f /∈ F since f is
not differentiable at 0.

Example 1.47. Let (X, d) be a metric space and E a sequentially compact
subset of X. Suppose f : X → E satisfies d(f(x1), f(x2)) < d(x1, x2) for all
distinct x1, x2 ∈ X. Show that f has a unique fixed point in X.

Proof. It is obvious that f is continuous. Denote δ = inf{d(x, f(x)) : x ∈ E}.
Let xk ∈ M such that δ ≤ d(xk, f(xk)) < δ + 1/k for all k ∈ N. Then by
sequential compactness of M , there exists a subsequence xkj → x for some x ∈
E. Hence d(xkj , f(xkj ))→ d(x, f(x)) = δ as j →∞ because f is continuous. If
δ > 0, then d(f(x), f(f(x))) < d(x, f(x)) = δ which contradicts to the definition
of δ. So d(x, f(x)) = δ = 0.

If x, x′ are two fixed points of f but distinct, then

0 < d(x, x′) = d(f(x), f(x′)) < d(x, x′),

which is a contradiction. Hence x = x′.
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2 Banach and Hilbert Space

2.1 Normed linear space and Banach space

We have discussed metric spaces which have topological structure due to the
the metric (and thus we have the concepts of open sets, closed sets, compact
sets etc.) However, this is often insufficient, and we also need to consider the
algebraic structure of the spaces.

Definition 2.1 (Linear space). Let X be a set and K be a field (either R or C).
We call X a linear space if it has summation and scalar multiplication defined,
such that for any x, y, z ∈ X and α, β ∈ K, the following statements hold.

1. x+ y = y + x.
2. (x+ y) + z = x+ (y + z).
3. There exists 0 ∈ X such that x+ 0 = 0 + x for all x ∈ X.
4. For any x ∈ X, there exists x′ ∈ X, called −x, such that x+ x′ = 0.
5. α(βx) = (αβ)x.
6. 1 · x = x where 1 ∈ K.
7. (α+ β)x = αx+ βx.
8. α(x+ y) = αx+ βy.

Remark. The elements in X are also called vectors, and X is also called vector
space.

Definition 2.2. We have the following definitions regarding linear spaces.
• (Isomorphism) Let X and Y be linear spaces, and T : X → Y be a linear

mapping, i.e.,
T (αx+ βx′) = αT (x) + βT (x′)

for all x, x′ ∈ X and α, β ∈ K. Then T is called an isomorphism if T is
a one-to-one correspondence (injective and surjective, or bijective). In this
case, X and Y are called isomorphic to each other.

• (Linear subspace) If Y is a subset of X and closed under the summation and
scalar multiplication, then Y is called a linear subspace of X. Note that {0}
and X are trivial linear subspaces of X.

• (Linear manifold) Let Y be a linear subspace of X, then x + Y := {x + y :
y ∈ Y } is called a linear manifold, i.e., a translation of Y by x.

• (Linear independency) A set of vectors {x1, . . . , xm} of X are called linearly
independent if a1x1 + · · · + amxm = 0 implies that a1 = · · · = am = 0 ∈
K. Otherwise they are called linearly dependent. A set E is called linearly
independent if any finite subset of E is linearly independent.

• (Linear basis) A subset E of X is called a linear basis if E is linearly inde-
pendent and any x ∈ X can be written as linear combination of vectors in
X (check that such combination is unique). The cardinality |E| is called the
dimension of X.

• (Linear span) Let E = {xα : α ∈ A}, then the span of E is defined by

span(E) := {a1xα1 + · · ·+ anxαn : ai ∈ K, αi ∈ A, n ∈ N}.
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• (Sum and direct sum) Let E1, E2 be linear subspaces of X, then the sum of
E1 and E2 is E1 +E2 := {x1 +x2 : x1 ∈ E1, x2 ∈ E2}. If E1∩E2 = {0}, then
the sum becomes the direct sum, denoted by E1 ⊕ E2. In the case of direct
sum, for any vector x ∈ E1 ⊕ E2, there exist unique x1 ∈ E1 and x2 ∈ E2,
such that x = x1 + x2 (check yourself).

Now we combine the algebraic structure and topological structure of (X, d)
by requiring:

1. The metric d is translation invariant: d(x + z, y + z) = d(x, y) for all
x, y, z ∈ X.

2. Continuity in scalar multiplication:

d(xk, x)→ 0 =⇒ d(axk, ax)→ 0, ∀ a ∈ K.
ak → 0 =⇒ d(akx, ax)→ 0, ∀x ∈ X.

Note that by Item 1 above, d(x, y) = d(x− y, 0).

Proposition 2.3. If d(xk, x)→ 0 and d(yk, y)→ 0, then d(xk+yk, x+y)→ 0.

Proof. We have that

d(xk + yk, x+ y) = d((xk + yk)− (x+ y), 0) = d((xk − x) + (yk − y), 0)

= d(xk − x, y − yk) ≤ d(xk − x, 0) + d(yk − y, 0)

= d(xk, x) + d(yk, y)→ 0,

which completes the proof.

Now we can introduce p : X → R+ by p(x) = d(x, 0). Then it is easy to
verify that the following properties of p hold:

1. (Positive definite) p(x) ≥ 0; and p(x) = 0 iff x = 0.
2. (Symmetric) p(x) = p(−x) for all x ∈ X.
3. (Subadditive) p(x+ y) ≤ p(x) + p(y) for all x, y ∈ X.
4. p(xk)→ 0 implies p(axk)→ p(ax) for all a ∈ K.
5. ak → 0 implies p(akx)→ p(ax) for all x ∈ X.

Items 1–3 are due to that d is a metric. Items 4–5 are due to the continuity in
scalar multiplication.

Definition 2.4 (Frechét space). We call (X, p) a Frechét space if the linear
space X is complete and p : X → R satisfies the items 1–5 above. Note that
completeness means that for any Cauchy sequence is convergent in X in the
sense of p.

Example 2.5. Rn with p(x) = (x2
1 + · · ·+ x2

n)1/2 is a Frechét space.

Example 2.6. Consider C(M) where (M,d) is a compact metric space. Define
p : C(M)→ R by

p(u) := max
x∈M

|u(x)|,

then (C(M), p) is a Frechét space (check Items 1–5 above).
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We need the following simple lemma for the next example.

Lemma 2.7. For any a, b ≥ 0, the following inequalties hold:
1. If a ≤ b, then a

1+a ≤
b

1+b .

2. a+b
1+a+b ≤

a
1+a+b + b

1+a+b ≤
a

1+a + b
1+b .

3. ab
1+ab ≤ max{a, 1} b

1+b .

Proof. The first two can be verified directly. The last one is due to

ab

1 + ab
≤

{
a · b

1+b , if a ≥ 1, b ≥ 0,
b

1+b , if 0 ≤ a < 1, b ≥ 0.

from which the claimed inequality follows.

Example 2.8. Consider S := {x = (x1, x2, . . . ) : xi ∈ R} where the summation
and scalar multiplication are as usual. For any x ∈ X, define

p(x) =

∞∑
k=1

1

2k
|xk|

1 + |xk|
.

Then (S, p) is a Frechét space.

Proof. 1. It is straightforward to check that S is a linear space.
2. We need to check Items 1–5 of p. Items 1–2 are trivial. For Item 3, we

have that

p(x+ y) =

∞∑
k=1

1

2k
|xk + yk|

1 + |xk + yk|
≤
∞∑
k=1

1

2k
|xk|+ |yk|

1 + |xk|+ |yk|

≤
∞∑
k=1

1

2k

( |xk|
1 + |xk|

+
|yk|

1 + |yk|

)
= p(x) + p(y)

where the first two inequalities are due to the first two statements in the previous
lemma, respectively.

For Item 4, suppose p(x(j))→ 0 as j →∞, then

p(ax(j)) =

∞∑
k=1

1

2k
|ax(j)|

1 + |ax(j)|
≤ max(a, 1) ·

∞∑
k=1

1

2k
|x(j)|

1 + |x(j)|

= max(a, 1) · p(x(j))→ 0,

as j → ∞, where the inequality is due to the third statement in the previous
lemma.

For Item 5, suppose aj → 0 as j → ∞. For any ε > 0, there exists K ∈ N
large enough, such that 1/2K < ε/2, then choose J ∈ N large enough, such that
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aj max1≤k≤K |xk| < ε/2 for all j ≥ J . Then we have

p(ajx) =

K∑
k=1

1

2k
|ajxk|

1 + |ajxk|
+

∞∑
k=K+1

1

2k
|ajxk|

1 + |ajxk|

<
ε

2

K∑
k=1

1

2k
+

∞∑
k=K+1

1

2k
<
ε

2
+

1

2K
<
ε

2
+
ε

2
= ε

for all j ≥ J . Hence p(ajx)→ 0 as j →∞.

3. Now we show that (S, p) is complete. Suppose {x(n)} is Cauchy in S, i.e.,
p(x(n+p) − x(n))→ 0 as n→∞ for any p ∈ N. Note that

p(x(n+p) − x(n)) =

∞∑
k=1

1

2k
|x(n+p)
k − x(n)

k |
1 + |x(n+p)

k − x(n)
k |
→ 0,

which implies that {x(n)
k } is Cauchy for every k. Suppose x

(n)
k → x∗k. Let x∗ :=

(x∗1, x
∗
2, · · · ). Then for any ε > 0, there exists K ∈ N, such that 1/2K < ε/2.

Choose N ∈ N large enough, such that |x(n)
k − x∗k| < ε/2 for all n ≥ N and

k = 1, . . . ,K. Then

p(x(n) − x∗) =

K∑
k=1

1

2k
|x(n)
k − x∗k|

1 + |x(n)
k − x∗k|

+

∞∑
k=K+1

1

2k
|x(n)
k − x∗k|

1 + |x(n)
k − x∗k|

<
ε

2

K∑
k=1

1

2k
+

∞∑
k=K+1

1

2k
<
ε

2
+

1

2K
<
ε

2
+
ε

2
= ε.

As we can see, the p function of the Frechét spaces in Examples 2.5 and
2.6 are homogeneous: p(ax) = |a|p(x) for all a ∈ R and x ∈ X, whereas the
one in Example 2.8 is not. We formalize the definition of norm by requiring
homogeneity as below.

Definition 2.9 (Norm). The function ‖ · ‖ : X → R is called a norm if for any
x, y, z ∈ X and a ∈ K the following statements hold:

1. (Positive definite) ‖x‖ ≥ 0; and ‖x‖ = 0 iff x = 0.
2. (Homogeneous) ‖ax‖ = |a|‖x‖.
3. (Triangle inequality) ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

Remark. Homogeneity of norm also implies that ‖axk‖ → 0 whenever ‖xk‖ →
0 and ‖akx‖ → 0 whenever ak → 0.

Example 2.10 (Norm is continuous). Suppose xk → x, then ‖xk − x‖ → 0,
which implies that |‖xk‖ − ‖x‖| ≤ ‖xk − x‖ → 0. Hence ‖xk‖ → ‖x‖.

Definition 2.11 (Banach space). Let X be a linear space and ‖ · ‖ be a norm.
Then we call (X, ‖ · ‖), or simply X is the norm is clear from the context, a B*
space. If X is complete, we call X a Banach space.
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Example 2.12. Let (X,M, µ) be a measure space where Ω ⊂ Rn, and u : Ω→
R be a measurable function. Define p ∈ [1,∞) by

‖u‖p :=
(∫

X

|u(x)|p dµ(x)
)1/p

.

Then Lp(Ω, µ) := {u : Ω→ R : ‖u‖p <∞}. We can verify that Lp is a complete
metric space, namely,

1. Lp(Ω) is a linear space under summation and scalar multiplication.
2. ‖ · ‖p is a norm (the triangle inequality is due to Minkowski’s inequality).
3. Lp is complete (Theorem 6.15 in Lecture Notes on Real Analysis).

Example 2.13. Let S := {x = (x1, x2, . . . ) : xk ∈ R}. Then define

‖x‖p :=
( ∞∑
k=1

|xk|p
)1/p

.

This is called the lp space. Then we can verify that (lp, ‖·‖) is a complete metric
space. Specifically, the triangle inequality is due to the generalized Minkowski’s
inequality, and the completeness as follows: let {xn} be a Cauchy sequence in
lp, then

lim
n,m→∞

‖x(m) − x(n)‖pp = lim
n,m→∞

∞∑
k=1

|x(m)
k − x(n)

k |
p = 0.

Hence for every k ∈ N, {x(n)
k } is Cauchy. Let x∗k := limn→∞ x

(n)
k . Then for any

ε > 0, there exists N = N(ε) ∈ N, such that ‖x(n)− x(n+m)‖pp < ε for all n ≥ N
and m ∈ N. For any fixed k ∈ N, we know

K∑
k=1

|x(n)
k − x∗k|p = lim

m→∞

K∑
k=1

|x(n)
k − x(m)

k |p ≤ lim
m→∞

∞∑
k=1

|x(n)
k − x(m)

k |p

= lim
m→∞

‖x(n) − x(m)‖pp ≤ ε.

Hence we have

‖x(n) − x∗‖pp =

∞∑
k=1

|x(n)
k − x∗k|p ≤ ε.

which means x(n) → x∗. Moreover, ‖x∗‖p ≤ ‖x(n)− x∗‖p + ‖x(n)‖p <∞, hence
x∗ ∈ S. Therefore, (S, ‖ · ‖p) is a Banach space.

Example 2.14. Let Ω be an open, bounded, connected subset of Rn and k ∈ N.
For a multi-index α = (α1, . . . , αn) ∈ (N∪ {0})n, we denote |α| :=

∑n
i=1 αi and

∂αu(x) :=
∂|α|

∂xα1
1 · · · ∂x

αn
n
u(x), ∀x = (x1, . . . , xn) ∈ Ω.

We define the norm
‖u‖ := max

|α|≤k
max
x∈Ω̄
|∂αu(x)|.
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Then it is straightforward to verify that ‖ · ‖ is a norm on Ck(Ω̄). We now show
that Ck(Ω̄) is complete under this norm. To this end, let {uk} be a Cauchy
sequence in Ck(Ω̄). Then for any α where |α| ≤ k, there exists vα such that
∂αuk ⇒ vα (converge uniformly) as k → ∞ due to the definition of the norm.
It remains to show that ∂αu = vα (where u := v(0,...,0) is the limit of uk for
short) for all |α| ≤ k. For any x = (x1, . . . , xn) ∈ Ω, let (x0

1, x2, . . . , xn) be in
the neighborbood of x,. Then for any k, we have

uk(x1, x2, . . . , xn) = uk(x0
1, x2, . . . , xn) +

∫ x1

x0
1

∂1uk(t, x2, . . . , xn) dt.

As uk ⇒ u and ∂1u⇒ v(1,0,...,0), we know

u(x1, x2, . . . , xn) = u(x0
1, x2, . . . , xn) +

∫ x1

x0
1

v(1,0,...,0)(t, x2, . . . , xn) dt.

Taking partial derivative with respect to x1 on both sides yields that ∂1u =
v(1,0,...,0). The cases for other α can be obtained similarly by induction.

Furthermore, we have that ‖u‖ ≤ ‖uk−u‖+‖uk‖ <∞. Hence (Ck(Ω̄), ‖ ·‖)
is complete, and thus is a Banach space.

Example 2.15 (Sobolev space). Let Ω be an open, bounded, and connected
subset of Rn, k ∈ N, and 1 ≤ p <∞. Define

‖u‖Wk,p(Ω) :=
( ∑
|α|≤k

∫
Ω

|∂αu(x)|p dx
)1/p

.

Then ‖ · ‖Wk,p is a norm, but Ck(Ω̄) is not complete under this norm. To see
this, recall that (Ck(Ω̄), ρ) is not complete as in Example 1.20.

The completion of Ck(Ω̄) under the W k,p norm is called the Sobolev space,
denoted by (W k,p(Ω), ‖ · ‖Wk,p). It can be shown that Ck(Ω̄) is dense in
(W k,p(Ω), ‖ · ‖Wk,p). If k = 2, then (W 2,p(Ω), ‖ · ‖W 2,p) is called the Hilbert
space, which is denoted for short by (Hp(Ω), ‖ · ‖Hp).

Suppose ‖ · ‖1 and ‖ · ‖2 are two norms in X. We are often interested in
the convergence properties of sequence rather than the actual value of distance.
Then we can treat the two norms equivalently if any sequence that converges in
the sense of ‖ · ‖1 is also convergent in the sense of ‖ · ‖2 and vice versa.

Definition 2.16 (Equivalent norms). Let ‖ · ‖1 and ‖ · ‖2 be two norms in X.
We say that ‖ · ‖2 is stronger than ‖ · ‖1 if ‖xk‖1 → 0 whenever ‖xk‖2 → 0. If
‖ · ‖1 is also stronger than ‖ · ‖2, then we say the two norms are equivalent.

Proposition 2.17. ‖ · ‖2 is stronger than ‖ · ‖1 iff there exists a constant c > 0
such that

‖x‖1 ≤ c‖x‖2, ∀x ∈ X.
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Proof. (⇐) Trivial. (⇒) If not, then for any k ∈ N, there exists xk such that
‖xk‖1 > k‖xk‖2 (obviously xk 6= 0). Let yk = xk/‖xk‖1, then 1 = ‖yk‖1 >
k‖yk‖2. Hence 0 ≤ ‖yk‖2 < 1/k for all k ∈ N. Therefore ‖yk‖2 → 0. However
‖yk‖1 = 1 for all k ∈ N, which contradicts to ‖·‖2 being stronger than ‖·‖1.

Corollary 2.18. ‖·‖1 and ‖·‖2 are equivalent iff there exist constants c1, c2 > 0
such that

c1‖x‖2 ≤ ‖x‖1 ≤ c2‖x‖2, ∀x ∈ X.

If X is finite dimensional, say dim(X) = n, then there exists a set of basis
vectors, {e1, . . . , en} ⊂ X, which are linearly independent. Moreover, for any
x ∈ X, there exist unique coefficients a1, . . . , an ∈ R, such that

x = a1e1 + · · ·+ anen.

Recall that two finite dimensional linear spaces X and Y are isomorphic iff
dim(X) = dim(Y ) = n. Now we want to exploit more connections between X
and Y if they are also normed spaces.

For the fixed basis {e1, . . . , en} and any norm ‖ · ‖ on X, we consider the
linear isomorphism T : X → Rn as follows,

Tx = a := (a1, . . . , an) ∈ Rn

for every x = a1e1 + · · ·+ anen. We want to establish the relation between ‖x‖
and |Tx| := |a|. To this end, we consider the mapping q : Rn → R defined by

q(a) := ‖T−1a‖ =
∥∥∥ n∑
i=1

aiei

∥∥∥ .
Then we can show that q is Lipschitz continuous:

|q(a)− q(b)| =
∣∣∣‖ n∑

i=1

aiei‖ − ‖
n∑
i=1

biei‖
∣∣∣ ≤ ‖ n∑

i=1

(ai − bi)ei‖ ≤
n∑
i=1

|ai − bi|‖ei‖

≤
( n∑
i=1

|ai − bi|2
)1/2( n∑

i=1

‖ei‖2
)1/2

= L|a− b|,

where L := (
∑n
i=1 |ai − bi|2)1/2 is a constant. The first equality above is by the

definition of q, the first two inequalities are due to the triangle inequality, and
the third inequality is due to the Cauchy-Schwarz inequality.

Furthermore, we can show that q is homogeneous: for any a 6= 0, we have

q(a) =
∥∥∥ n∑
i=1

aiei

∥∥∥ = |a| ·
∥∥∥ n∑
i=1

ai
|a|
ei

∥∥∥ = |a| · q
( a
|a|

)
,

which implies that q(a)/|a| = q(a/|a|) for all nonzero a ∈ Rn.
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Denote S := {a ∈ Rn : |a| = 1} as the unit sphere in Rn. We know that S
is compact. Hence q : S → R attains maximum and minimum on S. Namely,
there exist c1, c2 ≥ 0 such that

c1 ≤ q(a) ≤ c2, ∀ a ∈ S.

We claim that c1 > 0: if c1 = 0, then there exists a ∈ S such that q(a) = 0, i.e.,
‖
∑n
i=1 aiei‖ = 0, which implies that

∑n
i=1 aiei = 0. As {e1, . . . , en} is a basis

(and hence linearly independent), we know ai = 0 for all i, but this contradicts
to that a ∈ S. Hence we know for any nonzero a ∈ Rn (not necessarily on S),
there is

c1 ≤
q(a)

|a|
= q
( a
|a|

)
≤ c2.

This means that c1|a| ≤ q(a) ≤ c2|a| for all a ∈ Rn (we did not consider the
case a = 0 but it is obviously true as well). Therefore, by noting that a = Tx,
we have

c1|Tx| = c1|a| ≤ q(a) = ‖T−1a‖ = ‖T−1Tx‖ = ‖x‖ ≤ c2|Tx|.

We denote ‖x‖T := |Tx|, then ‖ · ‖T is another norm on X. Hence ‖ · ‖ and
‖ · ‖T are equivalent. Note that ‖ · ‖T depends on T and the basis only.

Theorem 2.19 (Norms on finite dimensional linear spaces are equivalent). Let
‖ · ‖1 and ‖ · ‖2 be norms on X, and dim(X) = n, then there exist c1, c2 > 0
such that c1‖x‖1 ≤ ‖x‖2 ≤ c2‖x‖1 for all x ∈ X.

Proof. Both norms are equivalent to ‖ · ‖T , and hence they are equivalent to
each other.

Corollary 2.20. A finite dimensional B∗ space is a Banach space.

Proof. Let the basis {e1, . . . , en} and T be defined as above. Let {x(k)} be a
Cauchy sequence in X under some norm ‖ ·‖, then it is also Cauchy under ‖ ·‖T
(since ‖ · ‖T is equivalent to ‖ · ‖). Note that

‖x(m) − x(k)‖T = |Tx(m) − Tx(k)| = |a(m) − a(k)|,

where a(k) ∈ Rn is the coefficients to represent x(k) using the given basis.
Therefore {a(k)} is Cauchy in Rn and hence converges to some a ∈ Rn. Let
x = T−1a =

∑
i aiei, then ‖x(k) − x‖T = |Tx(k) − Tx| = |a(k) − a| → 0 as

k → 0. So x(k) → x ∈ X where x =
∑
i aixi. Hence X is complete.

Corollary 2.21. A finite dimensional linear subspace of a B∗ space is a Banach
space.

Definition 2.22 (Sublinear functional). Let X be a linear space, and P : X →
R satisfy

1. (Subadditive) P (x+ y) ≤ P (x) + P (y) for all x, y ∈ X.
2. (Positive homogeneous) P (λx) = λP (x) for all λ > 0 and x ∈ X.

22



Then P is called a sublinear functional.

Definition 2.23 (Semi-norm). Let X be a linear space, and P : X → R satisfy
1. (Nonnegative) P (x) ≥ 0 for all x ∈ X.
2. (Subadditive) P (x+ y) ≤ P (x) + P (y) for all x, y ∈ X.
3. (Homogeneous) P (λx) = |λ|P (x) for all λ ∈ R and x ∈ X.

Then P is called a semi-norm.

Example 2.24. The total variation norm is a semi-norm on BV([a, b]).

Theorem 2.25. Let P be a sublinear functional on a finite dimensional Banach
space X. If P (x) ≥ 0 for all x ∈ X and P (x) = 0 iff x = 0, then there exist
c1, c2 > 0 such that c1‖x‖ ≤ P (x) ≤ c2‖x‖ for all x ∈ X.

Proof. Let {e1, . . . , en} be a basis of X and Tx = a where x =
∑
i aiei as before.

Consider the ‖ · ‖T norm on x, then

|P (x)− P (y)| ≤ P (x− y) = P
( n∑
i=1

(ai − bi)ei
)
≤

n∑
i=1

P ((ai − bi)ei)

=

n∑
i=1

|ai − bi|P (sign(ai − bi)ei) ≤
n∑
i=1

|ai − bi|(P (ei) + P (−ei))

≤
( n∑
i=1

(P (ei) + P (−ei)
)1/2

|a− b| = L‖x− y‖T

where the first two inequalities is due to the subadditivity of P , the second equal-
ity due to positive homogeneity, and the last equality due to L := (

∑n
i=1 P (ei)+

P (−ei))1/2 which is a constant. Hence P is Lipschitz continuous on X.
For S := {x ∈ X : ‖x‖T = 1}, we know there exist c1, c2 ≥ 0 such that

c1 ≤ P (x) ≤ c2 for all x ∈ S. Then we claim that c1 > 0: if not, then there
exists x ∈ S such that P (x) = 0, which contradicts to that P being positive
definite. Hence for any nonzero x, we know c1 ≤ P (x/‖x‖T ) = P (x)/‖x‖T ≤ c2,
which verifies the claimed inequalities.

Given a set of functions φ1, . . . , φn, how to approximate a given function f
using a linear combination of {φi}? For example, let f : [0, 2π] → R be given
and φi(x) = cos(ix), then how to approximate f by

∑n
i=1 aiφi in the sense of

L2 norm?
Specifically, given a B* space (X, ‖ · ‖) and {e1, . . . , en} (assume they are

linearly independent) and x ∈ X, consider the problem

min
a∈Rn

∥∥∥x− n∑
i=1

aiei

∥∥∥
where a = (a1, . . . , an) ∈ Rn. Question: does such optimal a∗ exist? Is it
unique?
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To answer these questions, we define F : Rn → R by

F (a) =
∥∥∥x− n∑

i=1

aiei

∥∥∥.
Then it is straightforward to verify that F is Lipschitz continuous:

|F (a)− F (b)| ≤
∥∥∥ n∑
i=1

(ai − bi)ei
∥∥∥ ≤ L|a− b|,

where L := (
∑n
i=1 ‖ei‖2)1/2. By triangle inequality, we know

F (a) ≥
∥∥∥ n∑
i=1

aiei

∥∥∥− ‖x‖.
Define P : Rn → R by P (a) := ‖

∑n
i=1 aiei‖, then P is a norm on Rn (check

yourself). Hence there exists c1 > 0 such that P (a) ≥ c1|a|. From this we
see that F (a) → ∞ as a → ∞ (such F is called coercive), so the infimum of
F must be in a ball B̄(0; r) in Rn for some r > 0. Thus, the minimizer of F
must be attained in B̄(0; r) since B̄(0; r) is compact and F is continuous. This
conclusion is summarized in the following theorem.

Theorem 2.26. Let X be a B* space and {e1, . . . , en} be linearly independent.
Given any x ∈ X, there exist a ∈ Rn such that F (a) := ‖x −

∑n
i=1 aiei‖ is

minimized.

Remark. Let M := span({e1, . . . , en}), then M is a linear subspace. The
approximation problem consider earlier can be rewritten as

inf
y∈M
‖x− y‖.

The theorem above implies that a minimizer y∗ can be obtained over a finite
dimensional subspace M of the B* space X. We call the distance between x
and the subspace M by

d(x,M) := min
y∈M
‖x− y‖.

Now we would like to study the uniqueness of the solution in the approxi-
mation problem above.

Definition 2.27. A B* space (X, ‖·‖) is called strictly convex if for any x, y ∈ X
where x 6= y and ‖x‖ = ‖y‖ = 1, there is ‖(1− λ)x+ λy‖ < 1 for all λ ∈ (0, 1).

Example 2.28. In Rn, the norm | · |2 is strictly convex, but the norms | · |1 and
| · |∞ are not strictly convex (check yourself).

Theorem 2.29. Let X be a strictly convex B* space, {e1, . . . , en} be a set of
linearly independent vectors. Then for any x ∈ X, there exists a unique a ∈ Rn
such that F (a) := ‖x−

∑n
i=1 aiei‖ is minimized.
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Proof. We have proved the existence of a. If a and b are both minimizers of
F but are different, then let y =

∑n
i=1 aiei and z =

∑n
i=1 biei, and denote

r := d(x,M). Hence ‖x − y‖ = ‖x − z‖ = r. Moreover, by strict convexity of
X, we have

1

r
‖x− ((1− λ)y + λz)‖ =

∥∥∥(1− λ)
x− y
r

+ λ
x− z
r

∥∥∥ < 1.

That is, (1− λ)y+ λz ∈M but ‖x− ((1− λ)y+ λz)‖ < r, which contradicts to
the definition of r.

Example 2.30. Lp(Ω, µ) is strictly convex if p ∈ (1,∞).

Proof. Recall that the Minkowski’s inequality holds: ‖u + v‖p ≤ ‖u‖p + ‖v‖p;
and the equality holds only if one of u and v is zero or u = cv for some c > 0.
Consider u, v ∈ X where ‖u‖ = ‖v‖ = 1 but u 6= v. Then (1 − λ)u and λv
cannot have a c > 0 such that (1 − λ)u = cλv (otherwise u = v). Hence
‖(1− λ)u+ λv‖ < (1− λ)‖u‖+ λ‖v‖ = 1.

Example 2.31. Let (M,d) be a compact metric space. The space (C(M), ‖ ·
‖) where ‖x‖ := maxx∈M ‖u(x)‖ is not strictly convex. Take C([0, 1]) as an
example: consider x(t) ≡ 1 and y(t) = t. Then ‖x‖ = ‖y‖ = 1, x 6= y. But
‖(x+ y)/2‖ < 1.

Example 2.32. L1(Ω, µ) is not strictly convex. Take L1([0, 1]) as an example:
consider x(t) ≡ 1 and y(t) = 2t, then ‖x‖ = ‖y‖ = 1 and x 6= y, but ‖(x +
y)/2‖ = 1.

Theorem 2.33. A B* space X is finite dimensional iff the unit sphere S :=
{x ∈ X : ‖x‖ = 1} is sequentially compact.

Proof. (⇒) This is because X is homeomorphic to the unit sphere in Rn and
hence is sequentially compact.

(⇐) Assume not, then for any x1, . . . , xn ∈ S, we know that their linear
span Mn := span(x1, . . . , xn) is a proper subspace of X. Hence there exists
nonzero y /∈Mn (since Mn is closed). Let r := d(y,Mn) > 0. Then there exists
x ∈ Mn such that r = d(y, x) = d(y,Mn). Define xn+1 := (y − x)/r, then for
any i ∈ {1, . . . , n}, we have

‖xn+1 − xi‖ =
∥∥∥y − x

r
− xi

∥∥∥ =
1

r
‖y − (x+ rxi)‖ ≥ 1,

where the inequality is due to that x+rxi ∈ X and the definition of r. Hence we
obtain a sequence {x1, x2, . . . , } such that ‖xn−xk‖ ≥ 1 for all n 6= k. Therefore
S is not sequentially compact, which is a contradiction.

Lemma 2.34 (Riesz). Let X be a B* space and X0 be a proper closed subspace
(X0 may be infinite dimensional). Then for any ε ∈ (0, 1), there exists y ∈ X
such that ‖y‖ = 1 and ‖y − x‖ ≥ 1− ε for all x ∈ X0.
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Proof. Let z ∈ X \ X0. Then r := infx∈X0 ‖z − x‖ > 0 as X0 is closed. For
any ε ∈ (0, 1), there exist η > 0 (we will specify η later) and x0 ∈ X0 such that
r ≤ ‖z − x0‖ < r + η. Let y = (z − x0)/‖z − x0‖, then

‖y − x‖ =
∥∥∥ z − x0

‖z − x0‖
− x
∥∥∥ =

‖z − (x0 − ‖z + x0‖x)‖
‖z − x0‖

≥ r

r + η
.

Solving r/(r + η) = 1 − ε we obtain η = rε/(1 − ε), and hence we can choose
η ∈ (0, rε/(1− ε)).

2.2 Convex sets and fixed points

Definition 2.35 (Convex set). Let X be a linear space. Then a subset E of X
is called convex if (1− λ)x+ λy ∈ E for any λ ∈ [0, 1] and x, y ∈ E.

Remark. The interior and closure of a convex set are also convex.

Proposition 2.36. Let {Eα : α ∈ A} be a (finite, countable or uncountable)
family of convex sets, then ∩α∈AEα is also convex.

Definition 2.37 (Convex hull). Let X be a linear space and E ⊂ X. Consider
the family of convex sets:

F := {F ⊂ X : E ⊂ F, F is convex}.

Then ∩F∈FF is called the convex hull of E, denoted by conv(E) or co(E). In
other words, conv(E) is the smallest convex set containing E.

Proposition 2.38. Let X be a linear space, E ⊂ X. Then

conv(E) =
{ n∑
i=1

aixi :
n∑
i=1

ai = 1, ai ≥ 0, xi ∈ E,n ∈ N
}

Proof. Denote the set on the right hand side by S. As S is convex, we know
E ⊂ S and hence conv(E) ⊂ S. On the other hand, for any s ∈ S, we know
s ∈ F for any F ∈ F . Hence S ⊂ F and thus S ⊂ conv(E). Therefore
S = conv(E).

Remark. Similar to Definition 2.37, we define the smallest closed convex set
containing E to be the closed convex hull of E, denoted by conv(E).

We have conv(E) = conv(E) for any E: (⊂) Note that E ⊂ conv(E) ⊂
conv(E), conv(E) is closed (as a closure) and convex (as the closure of the
convex set conv(E)), we know conv(E) ⊂ conv(E) since conv(E) is the smallest
closed convex set containing E. (⊃) Note that conv(E) ⊂ conv(E) and conv(E)
is closed, we know conv(E) ⊂ conv(E) since the closure conv(E) is the smallest
closed set containing conv(E).

There is also conv(Ē) ⊂ conv(E) for any E: as E ⊂ conv(E), we know
Ē ⊂ conv(E). Since conv(E) is convex, we know conv(Ē) ⊂ conv(E) because
conv(Ē) is the smallest convex set containing E. Note that the converse may
not be true: consider E = {(x1, x2) ∈ R2 : x1 ≥ (1 + x2

2)−1}, then conv(Ē) =
{(x1, x2) : x2 > 0} and conv(E) = {(x1, x2) : x2 ≥ 0}.
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Definition 2.39 (Minkowski functional). Let X be a linear space and C a
convex subset of X containing 0. Define a function P : X → [0,∞] by

P (x) = inf
{
λ > 0 :

x

λ
∈ C

}
, ∀x ∈ X.

Then P is called the Minkowski functional (or gauge) of C.

Proposition 2.40. Let X be linear space and C a convex subset of X containing
0. Then the Minkowski functional of C satisfies the following properties:

1. P (x) ∈ [0,∞] and P (0) = 0.
2. P (λx) = λP (x) for all λ > 0 and x ∈ X.
3. P (x+ y) ≤ P (x) + P (y) for all x, y ∈ X.

Proof. Items 1 and 2 are obvious. For Item 3, WLOG, assume P (x), P (y) <∞.
Then for any ε > 0, let λ1, λ2 > 0 such that

P (x) ≤ λ1 < P (x) +
ε

2
, P (y) ≤ λ2 < P (y) +

ε

2
,

and x/λ1, y/λ2 ∈ C. Then we have

λ1

λ1 + λ2
· x
λ1

+
λ2

λ1 + λ2
· y
λ2

=
x+ y

λ1 + λ2
∈ C.

Hence P (x + y) ≤ λ1 + λ2 ≤ P (x) + P (y) + ε. As ε is arbitrary, we have
P (x+ y) ≤ P (x) + P (y).

Definition 2.41. (Absorbing set) Let X be a linear space and C a convex
subset of X containing 0. C is called absorbing if for any x ∈ X there exists
λ > 0 such that x/λ ∈ C.

Definition 2.42 (Symmetric set). Let X be a linear space and C a convex
subset of X containing 0. C is called symmetric if −x ∈ C whenever x ∈ C.

Proposition 2.43. Let X be a linear space and C a convex subset of X contain-
ing 0. Let P be the Minkowski functional. Then the following two statements
hold.

1. C is absorbing iff P (x) ∈ [0,∞) for any x ∈ X.
2. C is symmetric iff P (ax) = |a|P (x) for any a ∈ R and x ∈ X.

We can obtain even stronger result if X is a B* space.

Proposition 2.44. Let X be a linear space and C a closed convex subset of
X containing 0. Let P be the Minkowski functional. Then the following three
statements hold.

1. C = {x ∈ X : P (x) ≤ 1}.
2. If C is bounded, then P (x) = 0 iff x = 0.
3. If 0 ∈ int(C), then C is absorbing and P (x) is Lipschitz continuous.
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Proof. 1. Let S denote the set on the right hand side. If x ∈ C, then P (x) ≤ 1,
and therefore x ∈ S. Hence C ⊂ S. If x ∈ S, then P (x) ≤ 1. Hence xk =
x/(1 + 1

k ) ∈ C for all k ∈ N. So xk → x. Since C is closed, we know x ∈ C.
Hence S ⊂ C.

2. It is clear that P (0) = 0 since 0 ∈ C. If C is bounded, then there
exists r > 0 such that C ⊂ B(0; r), i.e., for all x ∈ 0, r

‖x‖x /∈ C. Hence

0 < ‖x‖/r ≤ P (x). Hence P (x) = 0 implies x = 0.
3. As 0 ∈ int(C), there exists ε > 0 such that B(0; ε) ∈ C. Then for any

x ∈ X, there is ε
2
x
‖x‖ ∈ B(0; ε) ⊂ C. Since P (x) ≤ 2‖x‖

ε , we know

|P (x)− P (y)| ≤ max(P (x− y), P (y − x)) ≤ 2

ε
‖x− y‖

which means that P is Lipschitz continuous (and hence also uniformly contin-
uous).

Corollary 2.45. Suppose C is a compact convex set in Rn. Then there exists
m ≤ n such that C is homeomorphic to Bm := {x ∈ Rm : |x| ≤ 1}.

Proof. 1. Let E be the smallest linear manifold containing C, and dim(E) = m.
Then there exist e1, . . . , em+1 ∈ C such that e1 − em+1, . . . , em − em+1 are
linearly independent. Therefore

e0 :=
1

m+ 1

m+1∑
i=1

ei ∈ C,

since C is convex. Then E − e0 is an m-dimensional linear subspace of Rn.
We claim that for any y ∈ E, there exist unique a1, . . . , am such that y =
e0 +

∑m
i=1 ai(ei−e0). To see this, we only need to show that e1−e0, . . . , em−e0

are linearly independent which implies that they form a basis of E − e0: let
a1, . . . , am ∈ R be such that

0 = a1(e1 − e0) + · · ·+ am(em − e0)

=
m∑
i=1

aiei −
m∑
i=1

∑m
i=1 ai
m+ 1

ei −
∑m
i=1 ai
m+ 1

em+1

=

m∑
i=1

(
ai −

∑m
i=1 ai
m+ 1

)
(ei − em+1).

Since e1−em+1, . . . , em−em+1 are linearly independent, we know all coefficients
are 0 and hence we can readily deduce that ai = 0 for all i. Hence we can define
a norm ‖y‖ = |a| for every y = e0 +

∑m
i=1 ai(ei − e0) ∈ E.

2. We want to show that e0 is an interior point of C relative to E, i.e., if
‖y‖ = |a| is small enough (we will specify it later) then y ∈ C. To see this, we
notice that

y = e0 +

m∑
i=1

ai(ei − em+1) =

m∑
i=1

(
ai +

1−
∑m
i=1 ai

m+ 1

)
ei +

1−
∑m
i=1 ai

m+ 1
em+1.
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Choose ε > 0 such that (1−mε)/(m+ 1) > ε, i.e., ε < 1/(2m+ 1). Now as long
as |ai| ≤ ε for all i, we have

|ai| ≤ ε <
1−mε
m+ 1

≤
1−

∑m
i=1 ai

m+ 1
.

In this case, all coefficients in the representation of y using e1, . . . , em+1 above
are nonnegative and their sum is 1, which means y ∈ conv(e1, . . . , em+1) ⊂ C.
Thus e0 is an interior point of C, namely 0 is an interior point of C − e0.

3. Let P be the Minkowski functional of C − e0, then P is nonnegative,
positive homogeneous, and subadditive (since P is the Minkowski functional),
P (x) = 0 iff x = 0 (since C − e0 is bounded), and Lipschitz continuous (0 is
interior point of C − e0). By Theorem 2.25, there exist c1, c2 > 0 such that
c1‖x‖ ≤ P (x) ≤ c2‖x‖ for any y = e0 + x ∈ E. For any z ∈ B(0; 1), define
f : B(0; 1)→ C by

f(z) =

{
e0 + ‖z‖

P (z)z, if z 6= 0,

e0, if z = 0.

Since 1
c2
≤ ‖z‖

P (z) ≤
1
c1

for all z 6= 0, we know f is continuous for all z 6= 0.

Moreover, there is

z → 0 =⇒
∥∥∥ ‖z‖
P (z)

z
∥∥∥ ≤∥∥∥ 1

c1
z
∥∥∥→ 0,

which implies that f is also continuous at z = 0. The inverse of f is given by

f−1(y) =

{
P (x)
‖x‖ x, if x 6= 0,

0, if x = 0,

for any y = e0 + x ∈ E. Therefore f is a homeomorphism.

Recall a well-known fixed point theorem from topology.

Theorem 2.46 (Brouwer). Let B̄(0; 1) ⊂ Rn be the closed unit ball and T :
B → B is continuous. Then there exists x ∈ B such that Tx = x.

Corollary 2.47. Let C ⊂ Rn be compact convex and T : C → C be continuous,
then T has a fixed point in C.

Proof. There exists a homeomorphism φ : C → B, and therefore φ ◦ T ◦ φ−1 :
B → B is continuous. Hence there exists y ∈ B such that φ ◦ T ◦ φ−1(y) = y,
i.e., T (x) = x for x = φ−1(y).

Now we consider to extend the Brouwer fixed point theorem to infinite di-
mensional case.

Theorem 2.48 (Schauder). Let X be a Banach space and C a closed con-
vex subset of X. Suppose T : C → C is continuous and T (C) is sequentially
precompact. Then T has a fixed point in C.
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Proof. 1. As T (C) is sequentially precompact, we know it is totally bounded,
i.e., for any k ∈ N there exists (1/k)-net Nk = {y1, . . . , ynk} such that

T (C) ⊂
nk⋃
i=1

B
(
yi;

1

k

)
.

Denote Ck := conv(Nk), which is closed and bounded, and Ck ⊂ C since C is
convex.

2. Define Ik : T (C) → Ck as follows. For any y ∈ T (C) and any i ∈
{1, . . . , nk}, let

mi(y) =

{
1− k‖y − yi‖, if y ∈ B(yi; 1/k),

0, if y /∈ B(yi; 1/k).

We know mi(y) ≥ 0 and not all 0 (as Nk is a (1/k)-net). Then set Ik(y) =∑nk
i=1 λiyi ∈ Ck where λi = mi(y)/

∑n
i=1mi(y) for i = 1, . . . , nk. Moreover

‖Ik(y)− y‖ =
∥∥∥ nk∑
i=1

λiyi −
( nk∑
i=1

λi

)
y
∥∥∥ ≤ nk∑

i=1

λi‖yi − y‖

=
∑

{i:mi(y)>0}

λi‖yi − y‖+
∑

{i:mi(y)=0}

λi‖yi − y‖ <
1

k
+ 0 =

1

k
.

It is also easy to verify that Ik is continuous.
3. Define Tk := Ik ◦ T : C → Ck which is continuous. We can restrict Tk to

Ck. By Corollary 2.47, there exists xk ∈ Ck such that Tkxk = xk, i.e., xk is a
fixed point of Tk. As T (C) is sequentially precompact, we know {Txk} has at
least one Cauchy subsequence, say {Txkj}. Since T (C) ⊂ C and C is closed,
we know there exists x ∈ C such that Txkj → x as j → ∞. Now we observe
that

‖xk − x‖ = ‖Tkxk − x‖ = ‖Tkxk − Txk + Txk − x‖

≤ ‖IkTxk − Txk‖+ ‖Txk − x‖ ≤
1

k
+ ‖Txk − x‖.

Therefore ‖xkj − x‖ ≤ 1
kj

+ ‖Txkj − x‖ → 0 as j → ∞, i.e., xkj → x. By the

continuity of T , we know Txkj → Tx. Combining with Txkj → x, we claim
that Tx = x.

We now consider an application of the Schauder theorem.

Theorem 2.49 (Carathéodory existence theorem). Let f(t, x) be continuous on
U := [t− h, t+ h]× [ξ − b, ξ + b], where M = max(t,x)∈U |f(t, x)| and h ≤ b/M .
Then the ODE {

x′(t) = f(t, x(t)), t ∈ [−h, h]

x(0) = ξ

has solution on [−h, h].
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Proof. Consider the closed ball B̄(ξ; b) in C([−h, h]) (ξ is the constant function
on [−h, h]) and the mapping

(Tx)(t) = ξ +

∫ t

0

f(s, x(s)) ds.

We first show T : B̄(ξ; b)→ B̄(ξ; b):

‖(Tx)(t)− ξ‖ =
∥∥∥∫ t

0

f(s, x(s)) ds
∥∥∥ = max

|t|≤h

∣∣∣∫ t

0

f(s, x(s)) ds
∣∣∣ ≤Mh ≤ b.

Note that T (B̄(ξ; b)) is also continuous: by continuity of f , for any ε > 0,
there exists δ > 0, such that for any (t, η), (t′, η′) ∈ U and |(t, η)− (t′, η′)| < δ,
there is |f(t, η) − f(t′, η′)| < ε/h. Therefore, for any x, y ∈ B̄(ξ; b) satisfying
‖x− y‖ < δ, there is

‖Tx− Ty‖ =
∥∥∥∫ t

0

(f(s, x(s))− f(s, y(s))) ds
∥∥∥

≤ max
|t|≤h

∫ t

0

|f(s, x(s))− f(s, y(s))|ds ≤ h ε
h

= ε,

since |(s, x(s))− (s, y(s))| = |x(s)− y(s)| < δ.
We now show that T (B̄(ξ; b)), the image of B̄(ξ; b) under T is sequen-

tially precompact. By Theorem 1.45 (Arzelà-Ascoli), we only need to show
that T (B̄(ξ; b)) is uniformly bounded and equicontinous. To this end, for any
x ∈ B̄(ξ; b), we notice that

|(Tx)(t)| ≤ |ξ|+
∫ t

0

|f(s, x(s))|ds ≤ |ξ|+Mh,

|(Tx)(t)− (Tx)(t′)| =
∣∣∣∫ t′

t

f(s, x(s)) ds
∣∣∣ ≤M |t− t′|,

which show that T is uniformly bounded and equicontinuous, respectively.
Finally, by Theorem 2.48 (Schauder), we know T has a fixed point x in

B̄(ξ; b), which implies that the ODE has a solution x in B̄(ξ; b).

2.3 Inner product space and Hilbert space

B* space have norms and thus have the concept of convergence. However, they
do not have the concept of “angles” between vectors and thus no “orthogonal-
ity”. We plan to introduce such concept into linear spaces. We temporarily
allow complex values K which can be either R and C.

Definition 2.50 (Sesquilinear functional). Let X be a linear space. Then
a : X × X → K is called sesquilinear if the following identities hold for all
x, x1, x2, y, y1, y2 ∈ X and α1, α2 ∈ K:

1. a(α1x1 + α2x2, y) = α1a(x1, y) + α2a(x2, y);

31



2. a(x, α1y1 + α2y2) = α1a(x, y1) + α2a(x, y2).
We call q(x) := a(x, x) the quadratic form induced by a. If a : X × X → R,
then a is called bilinear.

Proposition 2.51. Let X be a linear space and a a sesquilinear functional on
X, then a(x, x) ∈ R for all x ∈ X iff a(x, y) = a(x, y) for all x, y ∈ X.

Proof. (⇐) a(x, x) = a(x, x) implies that a(x, x) ∈ R for all x.
(⇒)For any x, y ∈ X, we have a(x + y, x + y) = a(x+ y, x+ y). The left

hand side is a(x, x) + a(x, y) + a(y, x) + a(y, y), and the right hand side is
a(x, x) + a(x, y) + a(y, x) + a(y, y). Hence a(y, x) + a(x, y) = a(y, x) + a(x, y).
Replacing y by ιy (ι denotes the unit imaginary number, i.e., ι2 = −1), then
ιa(y, x) − ιa(x, y) = −ιa(y, x) + ιa(x, y). Multiplying ι and combining the two
identities yield a(x, y) = a(y, x).

Definition 2.52 (Inner product). Let X be a linear space, then a sesquilinear
functional 〈·, ·〉 : X ×X → K is called an inner porduct if for all x, y ∈ X, there
are

1. 〈x, y〉 = 〈y, x〉;
2. 〈x, x〉 ≥ 0; and 〈x, x〉 = 0 iff x = 0.

Then (X, 〈·, ·〉) is called an inner product space.

Example 2.53. (Rn, 〈·, ·〉) is an inner product where 〈x, y〉 :=
∑n
i=1 xiyi for

all x, y ∈ Rn. (Cn, 〈·, ·〉) is an inner product where 〈x, y〉 :=
∑n
i=1 xiyi for all

x, y ∈ Cn.

Example 2.54. (l2, 〈·, ·〉) is an inner product where 〈x, y〉 :=
∑∞
i=1 xiyi for all

x, y ∈ l2.

Example 2.55. (L2(Ω), 〈·, ·〉) is an inner product where 〈u, v〉 :=
∫

Ω
u(x)v(x) dx

for all u, v ∈ L2(Ω).

Example 2.56. (Ck(Ω̄), 〈·, ·〉) is an inner product where

〈u, v〉 :=
∑
|α|≤k

∫
Ω

∂αu(x)∂αv(x) dx

for all u, v ∈ Ck(Ω̄).

Theorem 2.57 (Cauchy-Schwarz inequality). Let (X, 〈·, ·〉) be an inner product
space, and ‖x‖ := 〈x, x〉1/2 be the norm induced by the inner product. Then
|〈x, y〉| ≤ ‖x‖‖y‖ for all x, y ∈ X. Moreover, the equality holds iff x = 0 or
y = 0 or x = λy for some λ 6= 0 (> 0 if without the absolute value on the left).

Theorem 2.58. Let X be a linear space and a be a sesequilinear functional
on X. Let q be the quadratic form induced by a. If q is positive definite, i.e.,
q(x) ≥ 0 for all x ∈ X and q(x) = 0 iff x = 0, then |a(x, y)| ≤ (q(x)q(y))1/2, and
the equality holds iff x and y are linearly dependent, i.e., there exist λ1, λ2 ∈ K
such that λ1x+ λ2y = 0.
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Proof. WLOG, assume y 6= 0. For any λ ∈ K, we know

q(x+ λy) = q(x) + λ̄a(x, y) + λa(y, x) + |λ|2q(y) ≥ 0

Let λ = −a(x, y)/q(y), then from the inequality above we obtain

q(x+ λy) = q(x)− |a(x, y)|2

q(y)
≥ 0,

which implies that |a(x, y)|2 ≤ q(x)q(y).
If x = −λy, then it is easy to check that the equality holds. On the other

hand, if the equality holds, then q(x+λy) = 0 which implies that x = −λy.

Proposition 2.59. Let (X, 〈·, ·〉) be an inner product space. Define ‖x‖ :=
〈x, x〉1/2 for all x ∈ X. Then (X, ‖ · ‖) is a B* space.

Proof. We just need to show that ‖ · ‖ defined above is a norm. The positive
definiteness and symmetry are easy to show. For triangle inequality, we have

‖x+ y‖2 = 〈x+ y, x+ y〉 = 〈x, x〉+ 〈x, y〉+ 〈y, x〉+ 〈y, y〉
≤ ‖x‖2 + 2‖x‖‖y‖+ ‖y‖2 = (‖x‖+ ‖y‖)2,

where we used Cauchy-Schwarz inequality.

Proposition 2.60. Let X be an inner product space. Then 〈·, ·〉 is continous
with respect to ‖ · ‖, i.e., xk → x and yk → y in ‖ · ‖ then 〈xk, yk〉 → 〈x, y〉.

Proof. As xk → x and yk → y, we know the sequences and x, y are all bounded
(say by L). Then we have

|〈xk, yk〉 − 〈x, y〉| = |〈xk, yk〉 − 〈xk, yk〉+ 〈xk, yk〉 − 〈x, y〉|
≤ |〈xk, yk − y〉|+ |〈x, yk〉| ≤ L‖yk − y‖+ ‖y‖‖xk − x‖ → 0

as k →∞ which completes the proof.

Proposition 2.61. Let (X, 〈·, ·〉) be an inner product space. Then X is a strictly
convex B* space.

Proof. For any x, y ∈ X, where ‖x‖ = ‖y‖ = 1 and x 6= y, λ ∈ (0, 1), there is

‖λx+ (1− λ)y‖2 = λ2‖x‖2 + 2λ(1− λ)<〈x, y〉+ (1− λ)2‖y‖2

< λ2‖x‖2 + 2λ(1− λ)‖x‖‖y‖+ (1− λ)2‖y‖2

= λ2 + 2λ(1− λ) + (1− λ) = 1

which completes the proof.

We also want to know in what case a B* space has an inner product 〈·, ·〉
such that ‖x‖ = 〈x, x〉1/2 for all x ∈ X.
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Proposition 2.62. Let (X, ‖ · ‖) be a B* space. Then there exists an inner
product 〈·, ·〉 such that ‖x‖ = 〈x, x〉1/2 for all x ∈ X iff ‖ · ‖ satisfies

‖x+ y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2), ∀x, y ∈ X.

Proof. (⇒) We can check that

‖x+ y‖2 + ‖x− y‖2 = 〈x+ y, x+ y〉+ 〈x− y, x− y〉
= ‖x‖2 + 〈y, x〉+ 〈x, y〉+ ‖y‖2 + ‖x‖2 − 〈y, x〉 − 〈x, y〉+ ‖y‖2

= 2(‖x‖2 + ‖y‖2)

(⇐) We can define

〈x, y〉 :=

{
1
4 (‖x+ y‖2 − ‖x− y‖2), if K = R,
1
4 (‖x+ y‖2 − ‖x− y‖2 + ι‖x+ ιy‖2 − ι‖x− ιy‖2), if K = C.

Then one can verify that this is an inner product.

Definition 2.63 (Hilbert space). A complete inner product space is called
Hilbert space.

Theorem 2.64 (Poincaré inequality). Let Ω be an open bounded set in Rn.
Denote

Ck0 (Ω) := {u ∈ Ck(Ω̄) : u = 0 near ∂Ω}.
Here by u = 0 near ∂Ω we meant that for any x ∈ ∂Ω there exists δx > 0 such
that u(y) = 0 for all y ∈ B(x; δx). Then for any u ∈ Ck0 (Ω), there is∑

|α|<k

∫
Ω

|∂αu(x)|2 dx ≤ C
∑
|α|=k

∫
Ω

|∂αu(x)|2 dx

where C = C(Ω, k) only depends on Ω and k.

Proof. Since Ω is bounded, we can enclose it by a cube Ω1 := [0, a]n for some
a > 0 large enough. Then u ∈ Ck(Ω̄1) and u = 0 on ∂Ω1. For any x ∈ Ω1, we
know

u(x) =

∫ x1

0

∂x1
u(t, x2, . . . , xn) dt.

By Cauchy-Schwarz inequality, we know

|u(x)|2 ≤
(∫ x1

0

1 dt
)(∫ x1

0

|∂x1
u(t, x2, . . . , xn)|2 dt

)
≤ a

∫ a

0

|∂x1
u(t, x2, . . . , xn)|2 dt,

which is independent of x1. So taking the integral on Ω1, we know∫
Ω

|u(x)|2 dx ≤ a2

∫
Ω

|∂x1u(x)|2 dx ≤ a2

∫
Ω

|∇u(x)|2 dx.

Applying this inductively to obtain the claimed inequality.
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Remark. If we define

‖u‖k :=
∑
|α|=k

∫
Ω

|∂αu(x)|2 dx,

then ‖ · ‖k is equivalent to the standard norm ‖ · ‖ defined by

‖u‖ :=
∑
|α|≤k

∫
Ω

|∂αu(x)|2 dx

Moreover, the completion of Ck0 (Ω) under ‖ · ‖ is Hk
0 (Ω) which is a closed sub-

space of Hk(Ω).

Example 2.65. Hk
0 (Ω) is a Hilbert space with 〈·, ·〉 defined by

〈u, v〉k :=
∑
|α|=k

∫
Ω

∂αu(x)∂αv(x) dx.

Remark. If ∂Ω is smooth (the outer normal ~n is a smooth function), then

u|∂Ω =
∂u

∂~n

∣∣∣
∂Ω

= · · · =
( ∂

∂~n

)k−1

u
∣∣∣
∂Ω

= 0.

Now we can define orthogonality.

Definition 2.66 (Orthogonal). The angle between x, y ∈ H is defined by

θ(x, y) := arccos
〈x, y〉
‖x‖‖y‖

.

We call x and y orthogonal if 〈x, y〉 = 0. If M ⊂ X is nonempty and 〈x, y〉 = 0
for all y ∈ M , we say x is “orthogonal to M”, denoted by x ⊥ M . We denote
the orthogonal complement of M by M⊥ := {x ∈ X : x ⊥M}.

Proposition 2.67. Let (X, 〈·, ·〉) be an inner product space and M ⊂ X be
nonempty. Then the following statements hold:

1. If x ⊥ y1 and x ⊥ y2, then x ⊥ (λ1y1 + λ2y2) for all λ1, λ2 ∈ K.
2. If x = y + z and y ⊥ z then ‖x‖2 = ‖y‖2 + ‖z‖2.
3. If x ⊥ yk for all k ∈ N and yk → y, then x ⊥ y.
4. If x ⊥M , then x ⊥ span(M).
5. M⊥ is a closed linear subspace of X.

Proof. Item 1 is trivial. For item 2, we have

‖x‖2 = ‖y + z‖2 = ‖y‖2 + 〈y, z〉+ 〈z, y〉+ ‖z‖2 = ‖y‖2 + ‖z‖2.

For item 3, note that 0 = 〈x, yk〉 → 〈x, y〉 and hence 〈x, y〉 = 0 since yk → y.
Item 4 is due to item 1. For item 5, for any y ∈ M , {xk} ⊂ M⊥, and xk → x,
then 〈xk, y〉 → 〈x, y〉 = 0, which implies that x ∈ M⊥, which means M⊥ is
closed.
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Definition 2.68. Let (X, 〈·, ·〉) be an inner product space, S := {eα : α ∈ A}
is called an orthogonal set if eα = eβ for all α, β ∈ A and α 6= β. If in addition
‖eα‖ = 1 for all α ∈ A, then S is called an orthonormal set. If S⊥ = {0}, then
S is called complete.

We now show that every inner product space as a complete orthonormal
set. The proof requires the Zorn’s lemma which is logically equivalent to the
axiom of choice. Recall that a set is X called partially ordered if an order
relation, denoted by ≤, is defined for some pairs a, b ∈ X, such that the order
has transitivity, i.e., a ≤ b and b ≤ c imply a ≤ c, and reflexivity, i.e., a ≤ a for
all a ∈ X. A subset E of a partially ordered set X is called totally ordered if
for every pair x, y ∈ E, either x ≤ y or y ≤ x. Let E ⊂ X, then we call u ∈ X
an upper bound of E if x ≤ u for all x ∈ E. We call m ∈ X a maximal element
of X if x ≤ m for all x ∈ X.

Lemma 2.69 (Zorn). Let X be a partially ordered set. If every totally ordered
set has an upper bound, then X has a maximal element.

Proposition 2.70. Let (X, 〈·, ·〉) be an inner product space and X 6= {0}, then
X has a complete orthonormal set.

Proof. Let E := {E ⊂ X : E is an orthonormal set}. Suppose E1 ⊂ E2 ⊂ · · · ,
then Ei is upper bounded by ∪∞i=1Ei in E . Hence there exists S ∈ E which is
maximal in E .

We claim that S is complete: if not, then there exists a nonzero x0 ∈ S⊥.
Let S0 := {x0}∪S⊥, then S0 is also an orthonormal set and S is a proper subset
of S0, but this contradicts to that S being maximal in E .

Definition 2.71. Let (X, 〈·, ·〉) be an inner product space, then an orthonormal
set S = {eα : α ∈ A} is called a basis of X if for any x ∈ X there is

x =
∑
α∈A
〈x, eα〉eα,

where 〈x, eα〉 is called the Fourier coefficient of x with respect to eα.

Theorem 2.72 (Bessel inequality). Let (X, 〈·, ·〉) be an inner product space. If
S = {eα : α ∈ A} is an orthonormal set of X, then for any x ∈ X, there is∑

α∈A
|〈x, eα〉|2 ≤ ‖x‖2.

Proof. For any finite subset of A, say e1, e2, . . . , en, we have

0 ≤
∥∥∥x− n∑

i=1

〈x, ei〉ei
∥∥∥2

= ‖x‖2 −
n∑
i=1

|〈x, ei〉|2.

Hence
∑n
i=1 |〈x, ei〉|2 ≤ ‖x‖2.
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Now consider Ak := {α ∈ A : |〈x, eα〉| ∈ ( 1
k+1 ,

1
k ]} and A0 := {α ∈

A : |〈x, eα〉| > 1}. Then every A0,A1, . . . is finite: otherwise we can ex-
tract n > k terms from Ak such that

∑n
i=1 |〈x, ei〉|2 > ‖x‖2. Hence there

are at most countably many α such that 〈x, eα〉 > 0. From above we can show∑∞
i=1 |〈x, eα〉|2 ≤ ‖x‖2.

Corollary 2.73. Let (X, 〈·, ·〉) be a Hilbert space, {eα : α ∈ A} be an orthonor-
mal set. Then for any x ∈ X, there is

∑
α∈A〈x, eα〉eα ∈ X and∥∥∥x−∑

α∈A
〈x, eα〉eα

∥∥∥2

= ‖x‖2 −
∑
α∈A
|〈x, eα〉|2.

Proof. We have shown above that Ax := {α ∈ A : 〈x, eα〉 6= 0} is at most
countable. Let Ax = {e1, e2, . . . }, then

∑
α∈A
〈x, eα〉eα =

∞∑
i=1

〈x, ei〉ei.

By the Bessel inequality, we know the series
∑
α∈A |〈x, eα〉|2 is convergent.

Hence
k+p∑
i=k+1

|〈x, ei〉|2 =
∥∥∥ k+p∑
i=k+1

〈x, ei〉ei
∥∥∥→ 0

as k → ∞ and for any p ∈ N. Let xk :=
∑k
i=1〈x, ei〉ei, then {xk} is a Cauchy

sequence in X, and

∑
α∈A
〈x, eα〉eα =

∞∑
i=1

〈x, ei〉ei = lim
k→∞

xk ∈ X

which verifies the first claim.
Furthermore, we know (x−

∑∞
i=1〈x, ei〉ei) ⊥ (

∑∞
i=1〈x, ei〉ei), so

∥∥∥x− ∞∑
i=1

〈x, ei〉eα
∥∥∥2

= ‖x‖2 −
∞∑
i=1

|〈x, ei〉|2.

This completes the proof.

Theorem 2.74. Let (X, 〈·, ·〉) be a Hilbert space, S := {eα : α ∈ A} be an
orthonormal set. Then the following statements are equivalent:

1. S is a basis.
2. S is complete.
3. The Parseval equality holds: ‖x‖2 =

∑
α∈A |〈x, eα〉|2 for all x ∈ X.

Proof. (1) ⇒ (2). If S is not complete, then there exists x ∈ S \ {0}, such that
〈x, eα〉 = 0 for all α ∈ A. Hence, as S is a basis, we have x =

∑
α∈A〈x, eα〉eα =

0, contradiction.
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(2) ⇒ (3). If the Parseval equality does not hold, we have

‖x−
∑
α∈A
〈x, eα〉eα‖2 = ‖x‖2 −

∑
α∈A
|〈x, eα〉|2 > 0.

Let y := x−
∑
α∈A〈x, eα〉eα, then y 6= 0 and y ∈ S⊥, which contradicts to that

S being complete.
(3) ⇒ (1). By the Parseval equality, we know∥∥∥x−∑

α∈A
〈x, eα〉eα

∥∥∥2

= ‖x‖2 −
∑
α∈A
|〈x, eα〉|2 = 0.

Therefore x =
∑
α∈A〈x, eα〉eα and hence S is a basis.

Example 2.75. Consider L2([0, 2π]), then {ek(t) := eιkt/
√

2π : k ∈ Z} is a
basis. The Fourier coefficients are

〈u, ek〉 =
1√
2π

∫ 2π

0

u(t)e−ιkt dt, ∀k ∈ Z.

Example 2.76. Consider l2, then {ek := (0, . . . , 0, 1, 0, . . . ) : k ∈ N} is a basis.

Now we consider orthogonalization in and homeomorphism between Hilbert
spaces. Let {x1, x2, . . . } be a linear independent set of H, then we can apply
Gram-Schmidt orthogonalization: start from y1 = x1 and e1 = y1/‖y1‖, we
obtain ek recursively by

yk = xk −
k−1∑
i=1

〈x, ei〉ei, ek =
yk
‖yk‖

for all k > 1. Then it is easy to show that {ek : k ∈ N} is an orthonormal set.

Definition 2.77 (Isometric inner product spaces). Let (X1, 〈·, ·〉1) and (X2, 〈·, ·〉2)
be two inner product spaces. If there exists an isomorphism T : X1 → X2 such
that

〈Tx, Ty〉2 = 〈x, y〉1, ∀x, y ∈ X1,

then we say X1 and X2 are isometric.

Theorem 2.78. Let (X, 〈·, ·〉) be a Hilbert space. Then the following statements
hold:

1. X is separable iff any basis S of X is at most countable.
2. Let S be a basis of a separable Hilbert space X. If |S| < ∞, then X is

isomorphic to Rn. If |S| =∞, then X is isomorphic to l2.

Proof. 1. (⇒) Let {xk} be a countable dense set of X. Then we can choose an
at most countable subset {yk} (by screening {xk} in order, and skipping xk if
it can be represented by a linear combination of the previous xk′ ’s for k′ < k,
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resulting in the at most countable subset {yk}. Let {ek} be the orthonormal
set obtained by applying Gram-Schmidt process to {yk}. Then

span(xk) = span(yk) = span(ek),

and hence span(ek) = span(xk) = X. Therefore span(ek)
⊥

= {0}, which implies
that {ek} is complete, i.e., {ek} is a basis.

(⇐) Consider the set E := {x =
∑∞
k=1 αkek : <(αk),=(αk) ∈ Q} where

S = {ek : k ∈ N}. Then E is countable and dense in X since S is a basis.
2. We only consider the case |S| =∞. Suppose S = {ek : k ∈ N}. Consider

the mapping T : X → l2 by T (x) = (a1, . . . , ak, . . . ) where ak = 〈x, ek〉 for all
k ∈ N. Then T is well defined (a is unique), linear, bijective. Moreover

〈x, y〉 =
〈 ∞∑
k=1

〈x, ek〉ek,
∞∑
k=1

〈y, ek〉ek
〉

=
∞∑
k=1

〈x, ek〉〈y, ek〉 = 〈T (x), T (y)〉l2

for all x, y ∈ X. Hence T is an isomorphism.

Remark. There exist non-separable Hilbert spaces. For example, let l2(R)
denote the set of functions that are nonzero for at most countably many points
in R. Define the inner product 〈f, g〉 :=

∑
x∈R f(x)g(x). Then (l2(R), 〈·, ·〉) is a

Hilbert space. Define ex ∈ l2(R) for every x ∈ R such that ex(y) = 1 if y = x
and 0 if y 6= x. Then S := {ex : x ∈ R} is an uncountable basis of l2(R).

Now we revisit the approximation problem but this time in Hilbert space X.
Given x ∈ X and a closed convex set C of X, does there exist y ∈ C such that
‖y − x‖ = infz∈C ‖z − x‖? If such y exists, is it unique?

Theorem 2.79. Let C be a closed convex set of X, then there exists a unique
x0 ∈ C such that it is the point in C closest to 0, i.e., ‖x0‖ = infz∈C ‖z‖.

Proof. We first show that such x0 exists. Let d = infz∈C ‖z‖, then for any
k ∈ N, there exists xk ∈ C, such that d ≤ ‖xk‖ < d + 1/k. We can show that
{xk} is Cauchy: for j > k, there is

‖xk − xj‖2 = 2(‖xk‖2 + ‖xj‖2)− ‖xk + xj‖2

= 2(‖xk‖2 + ‖xj‖2)− 4‖xk + xj
2

‖2

≤ 2
(

(d+
1

k
)2 + (d+

1

j
)2
)
− 4d2

≤ 4
(
d+

1

k

)2

− 4d2 =
4

k

(
d+

1

k

)
→ 0

as k →∞. As {xk} is Cauchy, there exists x0 ∈ C such that xk → x0. Therefore
‖xk‖ → ‖x0‖, which implies that ‖x0‖ = d.

Let x0, x
′
0 be such that ‖x0‖ = ‖x′0‖ = d, then

‖x0 − x′0‖2 = 2(‖x0‖2 + ‖x′0‖2)− 4
∥∥∥x0 + x′0

2

∥∥∥2

≤ 4d2 − 4d2 = 0.

Hence x0 = x′0.
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Corollary 2.80. If C is a closed convex subset of a Hilbert space X, then for
any y ∈ X, there exists a unique x0 ∈ C such that ‖y − x0‖ = infw∈C ‖y − w‖.

Proof. Consider C − {y} := {z = x − y : x ∈ C} which is still convex. Apply
the theorem above yields the claim.

Remark. If M is a linear subspace, then for any y ∈ X, there exists a unique
x0 ∈M such that ‖y − x0‖ = infw∈M ‖y − w‖.

Theorem 2.81. Let C be a closed convex set of a Hilbert space X and y ∈ X.
Then x0 ∈ X is such that ‖y − x0‖ = infw∈C ‖y − w‖ (we call x0 a projection
of y onto C) iff <(〈y − x0, x0 − x〉) ≥ 0 for all x ∈ C.

Proof. For any x ∈ C, consider φx : [0, 1]→ R by

φx(t) = ‖y − (tx+ (1− t)x0)‖2.

Then x0 is the projection of y onto C iff φx(t) ≥ φx(0) for any x ∈ C and
t ∈ [0, 1].

Note that φ′x(0) = 2<(〈y − x0, x− x0〉) and φ′′x(t) ≥ 0 (hence φx is convex).
Therefore φx(t) ≥ φx(0) for all t ∈ [0, 1] and x ∈ C iff φ′x(0) ≥ 0 for all x ∈ C
iff <(〈y − x0, x0 − x〉) ≥ 0 for all x ∈ C.

Corollary 2.82. Let M be a linear manifold in the Hilbert space X. For any
y ∈ X \M , x0 is the projection of y onto M iff 〈y − x0, x − x0〉 = 0 for all
x ∈M .

Proof. Since M is closed and convex, we know by Theorem 2.81 that <(〈y −
x0, x0 − x〉) ≥ 0 for all x ∈ M . Let x′ be such that x′ − x0 = −(x − x0), then
we know <(〈y− x0, x

′ − x0〉) = −<(〈y− x0, x− x0〉) ≥ 0. Hence <(〈y− x0, x−
x0〉) = 0. Similarly, by choosing x′ such that x′ − x0 = ±ι(x − x0), we have
=(〈y − x0, x − x0〉) = 0 for all x ∈ M . Therefore 〈y − x0, x − x0〉 = 0 for all
x ∈M .

Corollary 2.83. Let M be a closed linear subspace of a Hilbert space X, then
for any x ∈ X, there exist unique y ∈M and z ∈M⊥ such that x = y + z.

Proof. Let y be the projection of x onto M , then z = x−y ∈M⊥. So x = y+z,
where y ∈ M and z ∈ M⊥. If there exists y′ ∈ M and z′ ∈ M⊥, then
x = y + z = y′ + z′ implies that y − y′ = z′ − z ∈ M ∩ M⊥ = {0}. So
y = y′ and z = z′.
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3 Linear Operator and Linear Functional

3.1 Linear operator

The concept of linear operators was motivated by a number of operations, such
as linear transformations from Rm to Rn, realized by matrices in Rm×n. Other
linear mappings include P (∂x) : C∞(Ω)→ C∞(Ω) where P is a polynomial and
integral operator IK : C(Ω̄)→ C(Ω̄) defined by

IK(u) :=

∫
Ω

K(x, y)u(y) dy.

In this section, we exploit the properties of linear operators defined as follows.

Definition 3.1 (Linear operator). Let X and Y be two linear spaces and D
a linear subspace of X. Then T : D → Y is called a linear operator if for any
x, x′ ∈ D and α, α′ ∈ K, there is

T (αx+ α′x′) = αT (x) + α′T (x′).

We call D the domain of T and T (D) the range of T .

Example 3.2. Let X = Rn and Y = Rm. Consider the mapping T = [tij ] ∈
Rm×n. Then T : x 7→ Tx is a linear operator from X to Y .

Example 3.3. Let Ω ∈ Rn be open and bounded, and X = Y = C∞(Ω)∩C(Ω̄),
then T :=

∑
|α|≤k σα∂

α, where σα ∈ C∞(Ω̄) for all |α| ≤ k, is a linear operator.

Remark. If X = Y = L2(Ω), then D = Ck(Ω)∩C(Ω̄) is the domain of T , and
T : D → Y is a linear operator.

Example 3.4. Let X = L1(C) and T : X → X be defined by

(Tu)(ζ) :=

∫
C
eιζzu(z) dz

for all u ∈ X and ζ ∈ C. Then T is a linear operator.

Definition 3.5 (Linear functional). A linear operator T from X to K is called
a linear functional.

Example 3.6. Let X ∈ C(Ω̄) where f : X → R is defined by

f(x) :=

∫
Ω

x(ξ) dξ ∈ R.

Then f is a linear functional. Note that, however, x 7→
∫

Ω
x(ξ)2 dξ is not a

linear functional.

Example 3.7. Let X ∈ C(Ω̄) ∩ C∞(Ω), α a given multi-index, and ξ0 ∈ Ω
fixed. Then f : X → R is defined by

f(u) := ∂αu(ξ0), ∀u ∈ C∞(Ω)

is a linear functional on X.
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Definition 3.8. Let X and Y be B* spaces, D ⊂ X a linear subspace, then
T : D → Y is called continuous at x ∈ D if Txk → Tx whenever xk → x.

Proposition 3.9. Let T : X → Y be a linear operator. Then T is continuous
in X iff T is continuous at 0.

Proof. We only need to show necessity. For any xk → x, we know xk − x → 0
and hence

T (xk)− T (x) = T (xk − x)→ 0.

which completes the proof.

Definition 3.10 (Bounded operator). Let X and Y be B* spaces, D ⊂ X a
linear subspace, then T : D → Y is called bounded if there exists M > 0 such
that ‖Tx‖ ≤M‖x‖ for all x ∈ X.

Proposition 3.11. Let X and Y be B* spaces, T : X → Y is a linear mapping.
Then T is continuous iff T is bounded.

Proof. (⇐) If T is bounded, then T is continuous at 0, and thus continuous in
X.

(⇒) If not, then for any k ∈ N, there exists xk ∈ X, such that ‖Txk‖ >
k‖xk‖. Let yk := xk/(k‖xk‖), then ‖yk‖ = 1/k → 0 but

‖Tyk‖ = ‖Txk‖/(k‖xk‖) > 1,

which contradicts to T being continuous.

Definition 3.12. Let X and Y be B* spaces. The set of bounded linear op-
erators is denoted by L(X,Y ). For any T ∈ L(X,Y ), the norm of T is defined
by

‖T‖ := sup
x∈X\{0}

‖Tx‖
‖x‖

= sup
‖x‖=1

‖Tx‖.

We denote L(X,X) by L(X) and L(X,K) by X∗ for short.

Theorem 3.13. Let X be a B* space and Y a Banach space. Define summation
and scalar multiplication in L(X,Y ) as follows:

(α1T1 + α2T2)(x) = α1T1(x) + α2T2(x)

for all x ∈ X, α1, α2 ∈ K, and T1, T2 ∈ L(X,Y ). Then (L(X,Y ), ‖ · ‖) is a
Banach space.

Proof. 1. It is easy to show that L(X,Y ) is a linear space.
2. We need to show that ‖ · ‖ is a norm. It is easy to show that ‖ · ‖ is

positive definite and homogeneous. To show the triangle inequality, we observe
that

‖T1 + T2‖ = sup
‖x‖=1

‖(T1 + T2)(x)‖ ≤ sup
‖x‖=1

‖T1(x)‖+ ‖T2(x)‖

≤ sup
‖x‖=1

‖T1(x)‖+ sup
‖x‖=1

‖T2(x)‖ = ‖T1‖+ ‖T2‖.
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3. We need to show that (L(X,Y ), ‖ · ‖) is complete. Let {Tk} be a Cauchy
sequence in L(X,Y ), i.e., ‖Tk+p − Tk‖ → 0 as k → 0 for all p ∈ N. In other
words, for any ε > 0, there exists K = K(ε) ∈ N, such that

‖Tk+p(x)− Tk(x)‖ < ε‖x‖, ∀ k ≥ K, p ∈ N, x ∈ X. (1)

Hence for each x ∈ X, {Tk(x)} is a Cauchy sequence in Y . As Y is complete,
there exists y ∈ Y such that Tk(x)→ y as k →∞.

Now consider the mapping T : x 7→ Tx := y. Then it is easy to verify that
T is linear. We also claim that T is bounded: for any x ∈ X, there is

‖Tx‖ ≤ ‖Tkx− Tx‖+ ‖Tkx‖ = lim
p→∞

‖Tkx− Tk+px‖+ ‖Tkx‖

≤ ε‖x‖+ ‖Tk‖‖x‖ = (‖Tk‖+ ε)‖x‖.

Hence T ∈ L(X,Y ). Moreover, for any x ∈ X, we also have

‖Tkx− Tx‖ = lim
p→∞

‖Tkx− Tk+px‖ ≤ ε‖x‖

which implies ‖Tk − T‖ ≤ ε. Hence Tk → T in L(X,Y ).

Example 3.14. If T : X → Y where X and Y are finite dimensional Banach
spaces, then T is continuous.

Proof. In this case X is isomorphic to Rn and Y to Rm, and T can be fully
characterized by a matrix in Rm×n. Thus |Tx| ≤ |T |F |x| where | · |F is the
Frobenius norm.

Example 3.15. Let X be a Hilbert space and Y a nonzero closed linear sub-
space of X. Then for any x ∈ X, there exists a unique y ∈ Y such that
z = x− y ∈ Y ⊥. Define the projection operator P : X → Y by P (x) = y. Then
P is linear, continuous, and ‖P‖ = 1.

Proof. It is easy to verify that P is linear. Moreover,

‖Px‖2 = ‖x− z‖2 = ‖x‖2 − ‖z‖2 ≤ ‖x‖2.

Hence ‖P‖ ≤ 1, and thus P is continuous. For a nonzero x ∈ Y , there is Px = x
and hence ‖P‖ = 1.

3.2 Riesz theorem and its applications

Let X be a Hilbert space. For any fixed y ∈ X, define fy(x) := 〈x, y〉 for
all x ∈ X. Then clearly fy : X → K is linear. Moreover, ‖fy‖ ≤ ‖y‖ since
|fy(x)| ≤ ‖y‖‖x‖ for all x ∈ X. Taking x = y also yields fy(y) = ‖y‖2 and
hence ‖fy‖ = ‖y‖. The converse of the statements above are also true, as shown
by the following theorem.

Theorem 3.16 (Riesz representation theorem). Let X be a Hilbert space and
f ∈ X∗, then there exists a unique yf ∈ X such that f(x) = 〈x, yf 〉 for all
x ∈ X.
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Proof. If f = 0 then yf = 0. If f 6= 0, then Z := {x ∈ X : f(x) = 0} is a
proper closed linear subspace of X (check yourself). Let x0 ∈ Z⊥ such that
‖x0‖ = 1, then we can show that for any x ∈ X, x = ax0 + z for some z ∈ Z
and a := f(x)/f(x0):

f(z) = f(x− ax0) = f(x)− af(x0) = 0, (2)

by the definition of a. Let yf := f(x0)x0, then

〈x, yf 〉 = 〈ax0 + z, f(x0)x0〉 = f(x)‖x0‖2 = f(x).

If there exist y, y′ ∈ X such that f(x) = 〈x, y〉 = 〈x, y′〉 for all x ∈ X, then
〈x, y − y′〉 = 0 for all x ∈ X. Taking x = y − y′ yields ‖y − y′‖2 = 0 which
implies y = y′.

Theorem 3.17. Let X be a Hilbert space and a(·, ·) : X×X → R a sesquilinear
functional. If there exists M > 0 such that

|a(x, y)| ≤M‖x‖‖y‖, ∀x, y ∈ X

then there exists a unique A ∈ L(X) such that

a(x, y) = 〈x,Ay〉, ∀x, y ∈ X

and

‖A‖ = sup
x,y 6=0

a(x, y)

‖x‖‖y‖
= sup
‖x‖=‖y‖=1

a(x, y).

Proof. For any fixed y ∈ X, a(·, y) is a linear functional on X. Hence by
Theorem 3.16 (Riesz representation), there exists a unique zy ∈ X such that
a(x, y) = 〈x, zy〉 for all x ∈ X. Define A : X → X by Ay = zy (well defined due
to the uniqueness of zy).

We first show that A is linear: for any α1, α2 ∈ K and y1, y2 ∈ X, we have

〈x,A(α1y1 + α2y2)〉 = a(x, α1y1 + α2y2) = α1a(x, y1) + α2a(x, y2)

= α1〈x,Ay1〉+ α2〈x,Ay2〉 = 〈x, α1Ay1 + α2Ay2〉,

for any x ∈ X. Therefore A(α1y1 + α2y2) = α1Ay1 + α2Ay2, i.e., A is linear.
Since |a(x, y)| ≤M‖x‖‖y‖, we know

‖Ay‖ = sup
x6=0

|〈x,Ay〉|
‖x‖

= sup
x 6=0

|a(x, y)|
‖x‖

≤M‖y‖

where the second one due to the definition of A, and the inequality due to the
bound on a. Hence A ∈ L(X).

Example 3.18 (Weak solution of PDE). Let Ω be an open bounded set in Rn,
and f ∈ L2(Ω) be given. The Dirichlet boundary value problem of the Poisson
equation reads

(PDE)

{
−∆u = f, in Ω,

u = 0, on ∂Ω.
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A function u ∈ H1
0 (Ω) is called a weak solution (or generalized solution) of

(PDE) if

(Weak form)

∫
Ω

∇u · ∇v dx =

∫
Ω

fv dx, ∀ v ∈ H1
0 (Ω).

The weak form is obtained by multiplying v ∈ C2
0 (Ω) on both sides of the PDE

and applying integration by parts, noting the boundary condition of u and v
and that C2

0 (Ω) is dense in H1
0 (Ω).

Note that a classical solution (also called strong solution) of the PDE requires
u to be twice differentiable, which may be too strong to hold for certain f .
However, if a classical solution does exist, then it must be a weak solution. Hence
weak solution is a generalization of classical solution. The typical strategy in
modern PDE theory is to first show existence and uniqueness of weak solutions
of a given PDE (this can be carried out much more easily in the Sobolev space
with proper compactness properties), and then study the regularity of the weak
solutions and potentially show that a weak solution is in fact a strong solution.

Here we show an application of Theorem 3.16 (Riesz representation) to prove
the existence and uniqueness of the PDE above, giving a hint on how powerful
functional analysis is in modern PDE theory. Specifically, we show that for
any given f ∈ L2(Ω), the PDE has a unique weak solution: By Theorem 2.64
(Poincaré inequality), we know

〈u, v〉1 :=

∫
Ω

∇u(x) · ∇v(x) dx

for any u, v ∈ H1
0 (Ω) is an inner product on H1

0 (Ω) (check yourself). Moreover,
H1

0 (Ω) is complete under the norm ‖ · ‖1 induced by this inner product. Define
Tf : H1

0 (Ω) → R by Tf (v) :=
∫

Ω
fv dx, then it can be shown that Tf is linear

and bounded:

|Tf (v)| =
∣∣∣∫

Ω

fv
∣∣∣ ≤ (∫

Ω

|f |2
)1/2(∫

Ω

|v|2
)1/2

≤ C‖f‖L2‖v‖1,

where the constant C depends on Ω only (see Theorem 2.64). By Theorem
3.16 (Riesz representation), there exists a unique u ∈ H1

0 (Ω), such that Tf (v) =
〈u, v〉1 for any v ∈ H1

0 (Ω), i.e., u satisfies the claimed (Weak form) above and
is a weak solution of (PDE).

Remark. If the boundary condition is u = g on ∂Ω for some g ∈ C(∂Ω), then
we can first try to find a function u0 ∈ C(Ω̄) ∩ C2(Ω) such that u0 = g on ∂Ω,
and denote f0 = f −∆u0 and v = u− u0. Then the problem can be converted
to (PDE) above of v with f0. There are results on the condition under which
such u0 exists.

Theorem 3.19. Let C be a closed convex subset of H1
0 (Ω). If f ∈ L2(Ω), then

the following variational inequality (VI) has a unique solution u∗ ∈ C:

(VI)

∫
Ω

∇u∗ · ∇(v − u∗) dx ≥
∫

Ω

f(v − u∗) dx, ∀ v ∈ C.
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Proof. By Theorem 3.16 (Riesz representation), there exists a unique w ∈
H1

0 (Ω) such that ∫
Ω

∇w · ∇udx =

∫
Ω

fudx, ∀u ∈ H1
0 (Ω).

Therefore (VI) is equivalent to

(VI’)

∫
Ω

∇u∗ · ∇(v − u∗) dx ≥
∫

Ω

∇w · ∇(v − u∗) dx, ∀ v ∈ C,

which is 〈u∗ − w, v − u∗〉1 ≥ 0 for all v ∈ C. Hence (VI’) holds iff u∗ is the
projection of w onto C. From Corollary 2.82, such u∗ exists and is unique.

Remark. This result can be applied to more general setting. Let Ω be an open
bounded set in Rn, A : Ω̄ → Rn×n where A(x) := [aij(x)]i,j is a symmetric
positive definite matrix for every x ∈ Ω. Let M := max1≤i,j≤n maxx∈Ω̄ |aij(x)|.
Moreover, there exists δ > 0 such that

n∑
i,j=1

aij(x)ξiξj ≥ δ
n∑
i=1

|ξi|2, ∀x ∈ Ω, ∀ ξ = (ξ1, . . . , ξn) ∈ Rn.

Namely, A(x) � δI for every x ∈ Ω. Now consider a generalization of (PDE)
where the Poisson equation is replaced with −∇ · (A∇u) = f in Ω, i.e.,

−
∑
i,j

∂xi(aij(x)∂xju(x)) = f(x), ∀x ∈ Ω.

Then we can also show that a weak solution of (PDE) exists and is unique.
To see this, define a mapping b : H1

0 (Ω) × H1
0 (Ω) → R as follows: for any

u, v ∈ H1
0 (Ω),

b(u, v) :=

∫
Ω

∇u(x) ·A(x)∇v(x) dx =

n∑
i,j=1

∫
Ω

aij(x)∂xiu(x)∂xjv(x) dx.

Then it is clear that b is bilinear and symmetric. Moreover,

b(u, u) ≥ δ
∫

Ω

|∇u(x)|2 dx, ∀u ∈ H1
0 (Ω),

and b(u, u) = 0 iff u = 0 by Theorem 2.64 (Poincaré inequality). Hence b is an
inner product on H1

0 (Ω). We denote it by 〈u, v〉b := b(u, v) for all u, v ∈ H1
0 (Ω).

Let ‖u‖b := 〈u, u〉1/2b be the norm induced by this inner product. Consider
another inner product 〈u, v〉1 =

∫
Ω
∇u · ∇v dx on H1

0 (Ω) and its induced norm
‖ · ‖1, then it is easy to verify that

δ‖u‖21 ≤ ‖u‖2b ≤ nM‖u‖21,
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which means that ‖·‖b and ‖·‖1 are equivalent. Hence (H1
0 (Ω), 〈·, ·〉b) is complete

and thus a Hilbert space.
For any f ∈ L2, consider Tf : H1

0 (Ω) → R by Tf (u) :=
∫

Ω
fudx. Then it

is easy to show that Tf is linear and bounded. Hence, by Theorem 3.16 (Riesz
representation), there exists a unique wf ∈ H1

0 (Ω) such that Tf (v) = 〈v, wf 〉b
for all v ∈ H1

0 (Ω), which implies that wf is the unique weak solution of (PDE).
We can also show that (VI) with the left-hand-side integral replaced with

〈u∗, v − u∗〉b has a unique solution: By Corollary 2.82, we know that the
projection of wf onto C, denoted by u∗, exists and is unique, and satisfies
〈u∗ − wf , v − u∗〉b ≥ 0 for all v ∈ C. This is equivalent to

〈u∗, v − u∗〉b ≥ 〈wf , v − u∗〉b = Tf (v − u∗), ∀ v ∈ C.

Therefore, u∗ is the unique solution of this generalized (VI).

3.3 Category and open mapping theorem

Definition 3.20 (Nowhere dense set). Let (X, d) be a metric space. A subset
E of X is called nowhere dense if int(Ē) = ∅, namely, Ē has no interior point.

Example 3.21. Finite set, Z, Cantor set are nowhere dense sets in R.

Proposition 3.22. Let (X, d) be a metric space. Then a subset E is nowhere
dense iff for any B(x; r) ⊂ X, there exists B(x′; r′) ⊂ B(x; r) such that Ē ∩
B̄(x′; r′) = ∅.

Proof. (⇒) Since Ē has no interior point, Ē cannot contain any ball B(x; r).
That is, for any B(x; r), there exists x′ ∈ B(x; r) \ Ē. Since x ∈ Ēc which is
open, we know there exists r′ > 0 such that B(x′; r′) ⊂ B(x; r) ∩ Ēc. Thus
B̄(x′; r′) ∩ Ēc = ∅ (if necessary, choose r′ = r′/2 to make this hold).

(⇐) Assume E is not nowhere dense, then Ē has an interior point, and thus
there exists an open ball B(x; r) ⊂ Ē. Then any ball B(x′; r′) contained in
B(x; r) must satisfy B̄(x′; r′)∩B(x; r) ⊂ B̄(x′; r′)∩ Ē 6= ∅, a contradiction.

Definition 3.23 (Category). Let (X, d) be a metric space. Then E is said to
be of first category if E = ∪∞k=1Ek where all Ek are nowhere dense. Otherwise,
E is said to be of second category.

Remark. A set E is of first category (meager) if it can be written as a countable
union of nowhere dense sets; otherwise it is of second category (fat).

Example 3.24. Q is of first category in R. In fact, all countable sets are of
first category, since they are countable union of singletons which are nowhere
dense.

Theorem 3.25 (Baire). A complete metric space (X, d) is of second category.

Proof. Assume not, then there exist nowhere dense sets Ek such that X =
∪∞k=1Ek. For any B(x0; r0), there exists B(x1; r1) ⊂ B(x0; r0) (WLOG we
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assume r1 < 1) such that B̄(x1; r1) ∩ Ē1 = ∅ since E1 is nowhere dense. Then
there exists B(x2; r2) ⊂ B(x1; r1) (again assume r2 < 1/2) such that B̄(x2; r2)∩
Ē2 = ∅ since E2 is nowhere dense, and so on. Thus we obtain a sequence of
balls:

B(x1; r1) ⊃ B(x2; r2) ⊃ · · · ⊃ B(xk; rk) ⊃ · · ·

where rk < 1/k and B̄(xk; rk) ∩ (∪ki=1Ēi) = ∅ for all k ∈ N.
Moreover, we know xk+p ∈ B(xk; rk) for all p ∈ N, which implies that

d(xk+p, xk) < rk < 1/k. Hence {xk} is Cauchy. As X is complete, there exists
x ∈ X such that xk → x. Note that d(xk, x) = limp→∞ d(xk, xk+p) ≤ rk, we
know x ∈ B̄(xk; rk) for all k ∈ N, and thus x /∈ (∪∞k=1Ek) = X, which is a
contradiction.

Example 3.26. Weierstrass constructed a class of function which are con-
tinuous everywhere but nowhere differentiable, which is quite surprising and
counter-intuitive. However, we can use Theorem 3.25 (Baire) to show that such
functions are not rare. On the contrary, they dominate the space of continuous
functions.

Theorem 3.27. Let E := {f ∈ C([0, 1]) : f is nowhere differentiable}. Then
Ec is of first category in (C([a, b]), d).

Proof. Note that Ec is the set of continuous functions which are differentiable
at at least one point in [0, 1]. For every k ∈ N, we define

Ak := {f ∈ C([0, 1]) : ∃ s ∈ (0, 1), s.t. |f(s+ h)− f(s)| ≤ kh, ∀h ∈ (0, 1/k]}.

(To simplify notation, we only consider h such that h ≤ 1/k and s + h ≤ 1.)
We can see that if f is differentiable at some s, then f ∈ Ak for some k ∈ N.
Hence Ec ⊂ ∪∞k=1Ak. Now we show that Ak is nowhere dense in C([0, 1]). To
this end, we show that Ak is closed (hence Ak = Āk) but int(Ak) = ∅.

To show that Ak is closed, it suffices to show that Ack is open. Let f ∈ Ack,
then for any s ∈ [0, 1], there exists hs ∈ (0, 1/k], such that |f(s+ hs)− f(s)| >
khs. As f is continuous in [0, 1], we know there exists εs > 0 (e.g., we can
choose εs = (|f(s+ hs)− f(s)| − khs)/4 > 0) and an open neighborhood Js of
s, such that for any σ ∈ Js, there are |f(s+ hs)− f(σ+ hs)|, |f(s)− f(σ)| < εs
and hence

|f(σ + hs)− f(σ)| ≥ |f(s+ hs)− f(s)| − |f(s+ hs)− f(σ + hs)| − |f(s)− f(σ)|
> (khs + 4εs)− εs − εs = khs + 2εs,

where the second inequality is due to the definition of εs. As [0, 1] is compact,
there exists a finite subcover of [0, 1]: Js1 , . . . , Jsm , such that [0, 1] ⊂ ∪mi=1Jsk .
Let ε := min{εs1 , . . . , εsm} > 0. For any g ∈ C([0, 1]) such that ‖g − f‖ < ε, we
know for any i = 1, . . . ,m and any σ ∈ Jsi , there is

|g(σ + hsi)− g(σ)| ≥ |f(σ + hsi)− f(σ)| − 2ε > khsi ,

which means that B(f ; ε) ⊂ Ack. Hence Ack is open and Ak is closed.
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We now show int(Ak) = ∅. For any f ∈ Ak and ε > 0, there exists a
polynomial p such that ‖f − p‖ < ε/2. Since p ∈ C∞([0, 1]), we know there
exists M > 0 such that |p′(x)| ≤ M for all x ∈ [0, 1]. Hence, for any s ∈ [0, 1]
and h ∈ (0, 1/k], there is |p(s + h) − p(s)| ≤ Mh by the mean value theorem.
Now let g ∈ C([0, 1]) be a piecewise linear function such that ‖g‖ < ε/2 and the
slope on each segment is larger than M+k. Then ‖p+g−f‖ ≤ ‖p−f‖+‖g‖ < ε,
but

|(p(s+ h) + g(s+ h))− (p(s) + g(s))| ≥ |g(s+ h)− g(s)| − |p(s+ h)− p(s)|
> (M + k)h−Mh = kh.

Therefore p + g ∈ B(f ; ε) but p + g /∈ Ak. Therefore f is not an interior point
of Ak. As f is arbitrary, we know int(Ak) = ∅.

Let X and Y be Banach spaces, T ∈ L(X,Y ). If T is bijective, we would
like to know if T−1 is continuous. The answer is positive. In fact, this can be
deduced from a more general result as follows.

Theorem 3.28 (Open mapping theorem). Let X and Y be Banach spaces and
T ∈ L(X,Y ). If T is surjective, then T is an open mapping, namely, T (W ) is
open in Y whenever W is open in X.

Proof. We use B(x; r) and U(y; r) to denote the open balls in X and Y respec-
tively.

1. We first show that T is an open mapping iff there exists δ > 0 such that
U(0; δ) ⊂ T (B(0; 1)), i.e., 0 is an interior point of T (B(0; 1)).

(⇒) Suppose T is an open mapping, then T (B(0; 1)) is open in Y and 0 ∈
T (B(0; 1)). Hence there exists δ > 0 such that U(0; δ) ⊂ T (B(0; 1)).

(⇐) Suppose there exists δ > 0 such that U(0; δ) ⊂ T (B(0; 1)). As T is
linear, we know for any r > 0 and x ∈ X, there is U(Tx; rδ) ⊂ T (B(x; r)) (by
homogeneity of norm). Now for any y ∈ T (W ), where W is open, we know
there exists x ∈ W such that y = Tx. As W is open, there exists B(x; r) ⊂ W
(and hence T (B(x; r)) ⊂ T (W )), so T (W ) is open.

2. We now show that there exists δ > 0, such that U(0; 3δ) ⊂ T (B(0; 1)).
To this end, since T is surjective, we know Y = T (X) = ∪∞k=1T (B(0; k)). Since
Y is of second category, then there exists k ∈ N such that T (B(0; k)) is not
nowhere dense, i.e., T (B(0; k)) contains at least one interior point. Hence, there
exists y0 ∈ Y and r > 0, such that U(y0; r) ⊂ T (B(0; k)). Since T (B(0; k)) is
symmetric, we know U(−y0; r) ⊂ T (B(0; k)). Thus,

U(0; r) ⊂ 1

2
U(y0; r) +

1

2
U(−y0; r) ⊂ T (B(0; k)).

As T is homogeneous, we know by choosing δ = r/(3k) there is U(0; 3δ) ⊂
T (B(0; 1)).

3. We need to show that U(0; δ) ⊂ T (B(0; 1)) (without closure). For
any y0 ∈ U(0; δ) ⊂ T (B(0; 1/3)), there exists x1 ∈ B(0; 1/3) such that ‖y0 −
Tx1‖Y < δ/3 (since y0 ∈ T (B(0; 1/3)) or y0 is a limit point of T (B(0; 1/3))).
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For y1 := y0−Tx1 ∈ U(0; δ/3) ⊂ T (B(0; 1/32)), there exists x2 ∈ B(0; 1/32)
such that ‖y1−Tx2‖ < δ/32, and inductively, for yk := yk−1−Txk ∈ U(0; δ/3k) ⊂
T (B(0; 1/3k+1)), there exists xk+1 ∈ B(0; 1/3k+1) such that ‖yk − Txk+1‖ <
δ/3k+1 for all k ∈ N. Hence

∑∞
k=1 ‖xk‖ <

∑∞
k=1 1/3k = 1/2, which means

that
∑∞
k=1 xk is absolutely convergent. Let x0 :=

∑∞
k=1 xk, then x0 ∈ B(0; 1).

Denote sk =
∑k
i=1 xi, then we know that sk → x0 and yk = y0 − Tsk → 0, i.e.,

Tsk → y0. As T is continuous, we know Tx0 = y0. As y0 ∈ U(0; δ) is arbitrary
and x0 ∈ B(0; 1), we obtain U(0; δ) ⊂ T (B(0; 1)).

Theorem 3.29 (Banach). Let X and Y be Banach spaces and T ∈ L(X,Y ).
If T is bijective, then T−1 is continuous.

Proof. From the proof above, we know U(0; 1) ⊂ T (B(0; 1/δ)). As T is bijective,
T−1(U(0; 1)) ⊂ B(0; 1/δ), that is, ‖T−1y‖ < 1/δ for all y ∈ Y where ‖y‖ < 1.
For any ε > 0 and nonzero y ∈ Y , we know ‖ 1

1+ε
y
‖y‖‖ = 1

1+ε < 1, and hence∥∥∥T−1
( 1

1 + ε

y

‖y‖

)∥∥∥ =
1

1 + ε

1

‖y‖
‖T−1y‖ < 1

δ
,

which means ‖T−1y‖ ≤ 1+ε
δ ‖y‖. Letting ε → 0, we have ‖T−1y‖ ≤ ‖y‖/δ.

Hence T−1 is bounded and therefore continuous.

Remark. In Theorem 3.28 (Open mapping), it is necessary that T (X) is of
second category (this is guaranteed by Y = T (X) being complete). If this
condition is missing, then the conclusion may not hold, as shown in the following
example.

Example 3.30. Let X = Y = C([0, 1]) with the standard norm ‖ · ‖. Define

T : X → Y such that (Tx)(t) =
∫ t

0
x(s) ds. Then T ∈ L(X,Y ) and T (X) =

Y0 := {y ∈ C1([0, 1]) : y(0) = 0} which is not of second category in Y . In this
case T−1 = d

dt , which is not continuous in Y0. For example, let xk(t) = sin(kπt),
then ‖xk‖ = 1 but ‖T−1xk‖ = ‖kπ cos(kπt)‖ = kπ →∞ as k →∞. Hence, by
letting yk = xk/k, we know ‖yk‖ → 0 but ‖T−1yk‖ = π for all k. Hence T−1 is
not continuous.

However, if we use ‖x‖1 := max0≤x≤1 max(|x(t)|, |x′(t)|), then (Y0, ‖ · ‖1) is
a closed subspace of (C1([0, 1]), ‖ · ‖1) and hence (Y0, ‖ · ‖1) is a Banach space.
In this case T−1 is continuous: for any y ∈ Y0, ‖T−1y‖ = ‖y′(t)‖ ≤ ‖y‖1, which
means T is bounded and hence continuous.

Remark. In the proof of Theorem 3.28 (Open mapping), we only needed con-
tinuity in the last step: as sk → x0 and Tsk → y0, by the continuity of T we
can show that Tx0 = y0. But T does not need to be continuous for this to hold.
See the following definition.

Definition 3.31 (Closed operator). Let X and Y be metric spaces, then an
operator T : X → Y is called closed if xk → x and Txk → y imply Tx = y.
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Example 3.32. Let X = C1([0, 1]) and Y = C([0, 1]). Let T = d
dt (both use

‖ · ‖, so X is not complete). Suppose xk → x and Txk = x′k → y. Then

xk(t)− xk(0) =

∫ t

0

x′k(s) ds→
∫ t

0

y(s) ds.

(Note that x′k → y in the sense of ‖ · ‖ means x′k converges to y uniformly.) On

the other hand, xk(t)− xk(0)→ x(t)− x(0), so x(t)− x(0) =
∫ t

0
y(s) ds. Hence

x ∈ C1([0, 1]) and x′ = y. Therefore T is a closed (and linear) operator, but T
is not continuous.

Remark. If we have a closed, rather than continuous, linear operator T in
Theorem 3.28 (Open mapping), then we could start from D(T ), the domain of
T , rather than X and consider T : D(T )→ Y . Then in the last step of the proof
of Theorem 3.28 (Open mapping), we also have sk → x0 and Tsk → y0. Note
that D(T ) is a B* space (not necessarily Banach space, as seen in the example
above), but we still have x0 ∈ D(T ) provided that T is a closed operator.

Theorem 3.33. Let X and Y be Banach spaces, T : X → Y a closed linear
operator, T (X) is of second category in Y . Then T (X) = Y , and for any ε > 0,
there exists δ = δ(ε) > 0, such that U(0; δ) ⊂ T (B(0; ε)).

Proof. Following the the proof of Theorem 3.28 (Open mapping), we know that
there exists δ > 0, such that U(0; δ) ⊂ T (B(0; 1)). So now we only need to show
T (X) = Y . Obviously 0 ∈ T (B(0; 1)). If y 6= 0, then let δ1 ∈ (0, δ), we have

δ1
‖y‖

y ∈ U(0; δ) ⊂ T (B(0; 1)).

Hence there exists x ∈ B(0; 1) such that Tx = δ1y/‖y‖. Thus y = T (‖y‖x/δ1) ∈
T (X). Therefore T (X) = Y .

We want to study the relation of continuity and closedness of operators.

Theorem 3.34 (Bounded linear transformation, or BLT). Let X be a B* space
and Y a Banach space, T : X → Y be linear. Then T can be extended to T1 on
D(T ) such that T1|D(T ) = T and ‖T1‖ = ‖T‖.

Proof. For any x ∈ D(T ), there exists a sequence xk in D(T ) such that xk → x.
As T is continuous on D(T ), we know there exists M > 0 such that ‖Tx‖ ≤
M‖x‖ for all x ∈ D(T ). Hence ‖Txk+p−Txk‖ ≤M‖xk+p−xk‖ → 0 as k →∞
for any p ∈ N. So {Txk} is Cauchy in Y . As Y is complete, there exists y ∈ Y
such that Txk → y. Note that y only depends on x, not {xk}. Hence define
T1 : x 7→ y. Obviously T1|D(T ) = T . For any α, α′ ∈ R and x, x′ ∈ X, we choose
{xk}, {x′k} such that xk → x and x′k → x′, and Txk → y and Tx′k → y′. Then

T1(αx+ α′x′) = lim
k→∞

T (αxk + α′x′k) = αy + α′y′ = αT1x+ α′T1x
′.
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Hence T1 is linear. Moreover,

‖T1x‖ = ‖y‖ = lim
k→∞

‖Txk‖ ≤ ‖T‖ lim
k→∞

‖xk‖ = ‖T‖‖x‖.

Hence T1 ∈ L(X,Y ). Moreover ‖T1‖ = ‖T‖ (we know ‖T1‖ ≥ ‖T‖ by the
definition of norm).

Corollary 3.35. Let ‖ · ‖1 and ‖ · ‖2 be two norms of a linear space X. If X is
complete with respect to both norms, and ‖ · ‖1 is stronger than ‖ · ‖2, then ‖ · ‖1
and ‖ · ‖2 are equivalent.

Proof. Consider the identity mapping I : (X, ‖ · ‖1) → (X, ‖ · ‖2). As ‖ · ‖1 is
stronger than ‖·‖2, we know ‖Ix‖2 = ‖x‖2 ≤ C‖x‖1. Hence I is continuous. As
I is bijective, we know by Theorem 3.29 (Banach) I−1 is continuous and hence
bounded. So there exists M > 0 such that ‖x‖1 = ‖I−1x‖1 ≤ M‖x‖2 for all
x ∈ X. Therefore ‖ · ‖1 and ‖ · ‖2 are equivalent.

Remark. This also proves that, in a finite dimensional B* space (which is in
fact a Banach space), all norms are equivalent.

Theorem 3.36 (Closed graph theorem). Let X and Y be Banach spaces,
T : D(T ) ⊂ X → Y be closed linear operator. If D(T ) is closed, then T is
continuous.

Proof. 1. Since D(T ) is closed, (D(T ), ‖ · ‖) is a Banach space. Now consider
T : D(T )→ Y and a new norm ‖ · ‖G on D(T ) as follows:

‖x‖G = ‖x‖+ ‖Tx‖, ∀x ∈ D(T ).

It is easy to verify that ‖ · ‖G is a norm.
2. We claim that (D(T ), ‖ ·‖G) is a Banach space. To this end, we only need

to show that D(T ) is complete under ‖ · ‖G. Let {xk} be a Cauchy sequence in
D(T ) with respect to ‖ · ‖G. Then

‖xk − xj‖G = ‖xk − xj‖+ ‖Txk − Txj‖ → 0

as k, j → ∞. So {xk} is a Cauchy sequence in D(T ) with respect to ‖ · ‖, and
{Txk} is a Cauchy sequence in Y . As D(T ) and Y are both complete (as D(T )
is closed), we know there exists x∗ ∈ D(T ) and y∗ ∈ Y , such that xk → x
in D(T ) and Txk → y in Y . Since T is closed, we know Tx∗ = y∗. Hence
Txk → Tx. Therefore

‖xk − x∗‖G = ‖xk − x∗‖+ ‖Txk − Tx∗‖ → 0

as k →∞. This implies that (D(T ), ‖ · ‖G) is complete.
3. By the definition of ‖ · ‖G, we know ‖ · ‖G is stronger than ‖ · ‖ in X.

By Corollary 3.35, they are equivalent, namely, there exists M > 0 such that
‖x‖ ≤ ‖x‖G ≤ M‖x‖ for all x ∈ D(T ). Hence T is bounded and therefore
continuous.
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Remark. G(T ) := {(x, Tx) : x ∈ D(T )} is called the graph of T . So ‖x‖G is
the norm of (x, Tx) in the product space X × Y . Moreover, T is closed means
that G(T ) is closed under this norm on the graph.

Theorem 3.37 (Uniform boundedness theorem). Let X be a Banach space and
Y a B* space. Define F ⊂ L(X,Y ) such that

sup
T∈F
‖Tx‖ <∞, ∀x ∈ X.

Then there exists M > 0 such that ‖T‖ ≤M for all T ∈ F .

Proof. For any x ∈ X, define

‖x‖F := ‖x‖+ sup
T∈F
‖Tx‖.

It is easy to show that ‖ · ‖F is a norm.
We now show that X is complete under ‖·‖F . Let {xk} be a Cauchy sequence

under ‖ · ‖F , then

‖xk − xj‖F = ‖xk − xj‖+ sup
T∈F
‖Txk − Txj‖ → 0

as k, j → ∞. Since X is complete, we know {xk} is Cauchy in X, and thus
there exists x ∈ X such that xk → x. Moreover, for any ε > 0, there exists
K = K(ε) ∈ N, such that supT∈F ‖Txk − Txj‖ < ε for all k, j ≥ K. Therefore,
for any T ∈ F , we know ‖Txk−Txj‖ < ε. Hence ‖Txk−Tx‖ = limj→∞ ‖Txk−
Txj‖ ≤ ε. Hence supT∈F ‖Txk − Tx‖ ≤ ε. So

‖xk − x∗‖F = ‖xk − x∗‖+ sup
T∈F
‖Txk − Tx∗‖ → 0

as k →∞. Therefore X is complete under ‖ · ‖F .
Since (X, ‖ · ‖) and (X, ‖ · ‖F ) are both complete and ‖ · ‖F is stronger than

‖ · ‖, we know by Corollary 3.35 the two norms are equivalent. Therefore there
exists M > 0 such that

sup
T∈F
‖Tx‖ ≤M‖x‖.

Hence we know ‖T‖ ≤M for all T ∈ F .

Remark. The conclusion of Theorem 3.37 is different and stronger than the
condition: the condition says that for any x ∈ X, supT∈F ‖Tx‖ < ∞, which
means that there exists Mx > 0 dependent on x, such that ‖Tx‖ ≤ Mx‖x‖ for
all T ∈ F . On the other hand, the conclusion says that ‖T‖ ≤M for all T ∈ F
where M is independent of x. Therefore, the condition says that F is bounded
at every point x ∈ X, whereas the conclusion says that F is uniformly bounded
on X. Note that another way of stating Theorem 3.37 is

sup
T∈F
‖Tx‖ =∞ =⇒ ∃x0 ∈ X, s.t. sup

T∈F
‖Tx0‖ =∞.
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Theorem 3.38 (Banach-Steinhaus). Let X be a Banach space and Y a B*
space, M is dense in X. Suppose T, Tk ∈ L(X,Y ) for all k ∈ N. Then
limk→∞ Tkx = Tx for all x ∈ X iff the following two statements hold:

1. There exists C > 0 such that ‖Tk‖ ≤ C for all k ∈ N.
2. limk→∞ Tkx = Tx for all x ∈M .

Proof. (⇒) We only need to show Item 1. For any x ∈ X, {Tkx} is a bounded
set and hence supk ‖Tkx‖ <∞. By Theorem 3.37 (Uniform boundedness), there
exists C > 0 such that ‖Tk‖ ≤ C.

(⇐) Notice that M is dense in X, for any x ∈ X and ε > 0, we know there
exists y ∈M such that ‖x− y‖ ≤ ε/(2(‖T‖+ C)). Then

‖Tkx− Tx‖ = ‖Tkx− Tky‖+ ‖Tky − Ty‖+ ‖Ty − Tx‖
= C‖x− y‖+ ‖Tky − Ty‖+ ‖T‖‖y − x‖

=
ε

2
+ ‖Tky − Ty‖.

Let K = K(ε) ∈ N be such that ‖Tky − Ty‖ < ε/2 for all k ≥ K. Then
‖Tkx− Tx‖ < ε/2 + ε/2 = ε. Hence limk→∞ Tkx = Tx.

Now we consider a few applications of the results in above.

Theorem 3.39 (Lax-Milgram). Let X be a Hilbert space and a(·, ·) : X×X →
K a sesquilinear functional which satisfies the following two conditions:

1. There exists C > 0 such that |a(x, y)| ≤ C‖x‖‖y‖ for all x, y ∈ X.
2. There exists δ > 0 such that |a(x, x)| ≥ δ‖x‖2 for all x ∈ X.

Then there exists a unique A ∈ L(X) such that a(x, y) = 〈x,Ay〉 for all x, y ∈ X,
A−1 exists and ‖A−1‖ ≤ 1/δ.

Proof. By Theorem 3.17, we know such A ∈ L(X) exists and is unique. We now
show that A is bijective.

1. If Ay1 = Ay2, then a(x, y) = 〈x,Ay1〉 = 〈x,Ay2〉 = a(x, y2) for all
x ∈ X. That is, a(x, y1 − y2) = 0 for all x ∈ X. Taking x = y1 − y2 yields
δ‖y1 − y2‖2 ≤ a(y1 − y2, y1 − y2) = 0, which implies that y1 = y2. Hence A is
injective.

2. To show that A is surjective, i.e., A(X) = X, we first show that A(X)
is closed. To this end, let w ∈ A(X), then there exists a sequence {yk} in X
such that Ayk → w. Now we know {Ayk} is Cauchy, so ‖Ayk+p −Ayk‖ → 0 as
k →∞ for all p ∈ N. Hence

δ‖yk+p − yk‖2 ≤ |a(yk+p − yk, yk+p − yk)| = |〈yk+p − yk, A(yk+p − yk)〉|
≤ ‖yk+p − yk‖‖Ayk+p −Ayk‖.

So ‖yk+p − yk‖ ≤ ‖Ayk+p −Ayk‖/δ → 0 as k → 0 and p ∈ N.
Therefore, {yk} is Cauchy in X, which implies that there exists y ∈ X such

that yk → y. As A is continuous, we know Ayk → Ay. So Ay = w and hence
w ∈ A(X). Therefore A(X) is closed.
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We then show that A(X)⊥ = {0}. Let w ∈ A(X)⊥, then 〈w,Ay〉 = 0 for all
y ∈ X. Taking y = w, we have

δ‖w‖2 ≤ a(w,w) = 〈w,Aw〉 = 0.

So w = 0. Hence A(X)⊥ = {0}. Combining with A(X) being closed, we know
A(X) = X.

3. As A : X → X is bijective and X is complete, we know by Theorem 3.29
(Banach) that A−1 is continuous. Hence A−1 ∈ L(X). For any x ∈ X, we know

δ‖A−1x‖2 ≤ |a(A−1x,A−1x)| = |〈A−1x,AA−1x〉| ≤ ‖A−1x‖‖x‖.

Hence ‖A−1x‖ ≤ ‖x‖/δ for all x ∈ X, and thus ‖A−1‖ ≤ 1/δ.

Consider L(X,Y ) and suppose T, Tk ∈ L(X,Y ) are all bijective. Then for
any y ∈ Y there exist unique x, xk ∈ X such that Tx = y and Tkxk = y for
all k ∈ N. In Numerical Analysis, Tk often corresponds to a discretization of
the problem with mesh grid or step size hk such that hk → 0, which is used
to approximate the original T . Then we hope to have xk → x. We have the
following definitions regarding {Tk}:

1. {Tk} is said to be convergent if T−1
k y → T−1y for any y ∈ Y .

2. {Tk} is said to be consistent if Tkx→ Tx for any x ∈ X.
3. {Tk} is said to be stable if there exists C > 0 such that ‖T−1

k ‖ ≤ C for all
k ∈ N.

Theorem 3.40 (Lax equivalence theorem). Let X,Y be Banach space and
T, Tk ∈ L(X,Y ) be bijective for all k ∈ N. Suppose {Tk} is consistent. Then
{Tk} is convergent iff {Tk} is stable.

Proof. (⇐) For any y ∈ X, we have

‖T−1
k y − T−1y‖ = ‖T−1

k y − x‖ = ‖T−1
k Tx− T−1

k Tkx‖ ≤ C‖Tx− Tkx‖ → 0

as {Tk} is consistent.
(⇒) For any y ∈ Y , T−1

k y → T−1y. Therefore {T−1
k y} is bounded and thus

supk ‖T−1
k y‖ < ∞. By Theorem 3.37 (Uniform boundedness), we know there

exists C > 0 such that ‖T−1
k ‖ ≤ C for all k ∈ N.
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4 Hahn-Banach Theorem

4.1 Hahn-Banach theorem

Let X be a linear space. Suppose we have a linear functional f : X0 → R, where
X0 is a linear subspace of X. If we have a sublinear functional p : X → R, and f0

is upper bounded by p on X0, can we extend f0 to a linear functional f : X → R,
such that f(x) = f0(x) for all x ∈ X0 and f(x) ≤ p(x) for all x ∈ X? The
answer is yes, as given by the Hahn-Banach Theorem.

Theorem 4.1 (Hahn-Banach theorem). Let X be a real linear space and p :
X → R a sublinear functional. Let X0 be a linear subspace of X0 and f0 : X0 →
R a linear functional such that f0(x) ≤ p(x) for all x ∈ X0. Then there exists
a linear functional f : X → R such that

1. (Controlled by p) f(x) ≤ p(x) for all x ∈ X.
2. (Extending f0) f(x) = f0(x) for all x ∈ X0. (Also denoted by f |X0

= f0).

Proof. 1. We first consider a simple extension of X0. Let y0 ∈ X \ X0, and
consider

X1 := X0 + {ay0 : a ∈ R} = {x+ ay0 : x ∈ X0, a ∈ R}.

Suppose a linear functional f : X1 → R is a desired extension of f0 on X1, then
we will have

f(x+ ay0) = f(x) + af(y0) = f0(x) + af(y0).

Therefore, to determine f , it suffices to determine the value of f(y0). Next we
will show what the range of this value is.

Since f needs to be controlled by p, we know

f(x+ ay0) ≤ p(x+ ay0), ∀x ∈ X.

Taking a = 1 and x = −z ∈ X0, we have

f(y0)− f0(z) = f(y0)− f(z) = f(y0 − z) ≤ p(y0 − z), ∀ z ∈ X0.

Taking a = −1 and x = y ∈ X0, we have

−f(y0) + f0(y) = −f(y0) + f(y) = f(y − y0) ≤ p(y − y0), ∀ y ∈ X0.

Thus, combining the two inequalities above, we can see that f(y0) must satisfy

f0(y)− p(−y0 + y) ≤ f(y0) ≤ f0(z) + p(y0 − z), ∀ y, z ∈ X0.

In other words, f(y0) must satisfy

sup
y∈X0

f0(y)− p(−y0 + y) ≤ f(y0) ≤ inf
z∈X0

f0(z) + p(y0 − z).
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It remains to show LHS ≤ RHS above: to this end, for any y, z ∈ X0, there is

f0(y)− f0(z) = f0(y − z) ≤ p(y − z) ≤ p(y − y0) + p(y0 − z)

which implies that f0(y0) − p(−y0 + y) ≤ f0(z) + p(y0 − z) for all y, z ∈ X0.
Therefore indeed LHS ≤ RHS. However, note that < may hold in which case
the choice of f(y0) is not unique.

2. Now we consider extending f0 to X. Denote

F := {(X∆, f∆) : X0 ⊂ X∆ ⊂ X, f∆|X0 = f0, f∆ ≤ p|X∆}.

We also define an order “<” on F by inclusion:

(X∆1
, f∆1

) < (X∆2
, f∆2

) ⇐⇒ X∆1
⊂ X∆1

and f∆2
|X∆1

= f∆1
.

Then F is a partially ordered set. Moreover, for any totally ordered subset M

M := {(X∆k
, f∆k

) : (X∆k
, f∆k

) < (X∆k+1
, f∆k+1

), ∀ k ∈ N} ⊂ F ,

we let
XM :=

⋃
(X∆,f∆)∈M

X∆, fM |X∆
= f∆, ∀ (X∆, f∆) ∈M.

Hence (XM , fM ) is an upper bound of M . By Lemma 2.69 (Zorn), we know
that there exists (XΛ, fΛ) ∈ F which is maximal in F .

We claim that XΛ = X: If not, then there exists y0 ∈ X \XΛ and we can
follow the proof in the first part to construct (X̃Λ, f̃Λ) such that XΛ ⊂ X̃Λ and
f̃Λ|XΛ

= fΛ. Hence (XΛ, fΛ) < (X̃Λ, f̃Λ), which contradicts to (X̃Λ, f̃Λ) being
maximal in F .

Corollary 4.2. Let (X, ‖ · ‖) be a B* space, X0 a linear subspace of X, and
f0 ∈ X∗0 . Then there exists f ∈ X∗ such that

1. f |X0
= f0.

2. ‖f‖ = ‖f0‖0 where ‖ · ‖0 is the norm in X∗0 .

Proof. Let p(x) ≤ ‖f0‖0‖x‖, then p is sublinear. By Theorem 4.1 (Hahn-
Banach), there exists f ∈ X∗ such that f |X0 = f and f(x) ≤ p(x) = ‖f0‖0‖x‖
for all x ∈ X. Hence ‖f‖ ≤ ‖f0‖0. Since f(x) = f0(x) for all x ∈ X0, we also
know that

‖f0‖0 = sup
x∈X0\{0}

‖f0(x)‖
‖x‖

= sup
x∈X0\{0}

‖f(x)‖
‖x‖

≤ sup
x∈X\{0}

‖f(x)‖
‖x‖

= ‖f‖.

Hence ‖f‖ = ‖f0‖0.

Corollary 4.3. For any x1, x2 ∈ X, x1 6= x2, there exists f ∈ X∗ such that
f(x1) 6= f(x2).

57



Proof. Let x0 = x1 − x2 6= 0. Consider X0 := {ax0 : a ∈ R} and f0 : X0 → R
by f0(ax0) = a‖x0‖ ∈ R. Then we can show f0 ∈ X∗0 : for any ax0, ax

′
0 ∈ X0,

there is

f0(ax0 + ax′0) = f0((a+ a′)x0) = (a+ a′)‖x0‖ = a‖x0‖+ a′‖x0‖
= f0(ax0) + f0(a′x0).

It is easy to verify that f0(x0) = ‖x0‖ and ‖f0‖0 = 1. By Corollary 4.2, we know
there exists f ∈ X∗ such that f(x0) = f0(x0) = ‖x0‖ and ‖f‖ = ‖f0‖0 = 1.
Then we know that f(x0) = f(x1 − x2) = f(x1)− f(x2) = ‖x0‖ 6= 0.

Corollary 4.4. Let X be a B* space, then for any nonzero x0 ∈ X, there exists
f ∈ X∗ such that f(x0) = ‖x0‖ and ‖f‖ = 1.

Remark. This corollary says that x = 0 iff f(x) = 0 for all f ∈ X∗.
Let X be a B* space and f ∈ X∗, then consider M := {x ∈ X : f(x) = 0}.

For any x0 ∈ X, the distance from x0 to M is defined by

d(x0,M) := inf
x∈M
‖x0 − x‖.

Hence, there exists a sequence {xk} in M such that

d(x0,M) ≤ ‖x0 − xk‖ < d(x0,M) +
1

k
.

Then we have

|f(x0)| = |f(xk − x0)| ≤ ‖f‖‖xk − x0‖ ≤ ‖f‖
(
d(x0,M) +

1

k

)
for all k ∈ N. Therefore f(x0) ≤ ‖f‖d(x0,M).

Now consider the case where X is a B* space and M is a linear subspace of
X. For any given x0 ∈ X \M , does there exist f ∈ X∗ such that f |M = 0 and
|f(x0)| = ‖f‖d(x0,M)? The answer is yes, as shown in the following theorem.

Theorem 4.5. Let X be a B* space and M a linear subspace of X. If x0 ∈ X
and δ := d(x0,M) > 0, then there exists f ∈ X∗ such that f(x) = 0 for all
x ∈M , f(x0) = δ, and ‖f‖ = 1.

Proof. Consider the linear subspace X0 := {x = x′ + ax0 : x′ ∈M,a ∈ R}. For
any x = x′ + ax0 ∈ X0, define f0(x) := aδ. Then it is easy to verify that f0 is
linear. Moreover, if a 6= 0, then

|f0(x)| = |aδ| = |a|d(x0,M) ≤ |a|
∥∥∥x′
a

+ x0

∥∥∥ = ‖x′ + ax0‖ = ‖x‖.

Hence ‖f0‖0 ≤ 1 and f0 ∈ X∗0 . Let xk ∈ M be such that ‖xk − x‖ → δ as
k →∞. Then we have

δ = |f0(x0 − xk)| ≤ ‖f0‖0‖x0 − xk‖ → ‖f0‖0δ.

Hence 1 ≤ ‖f0‖0, and therefore ‖f0‖0 = 1. By Corollary 4.2, there exists f ∈ X∗
such that f |X0

= f0 (which implies that f(x) = 0 for all x ∈M and f(x0) = δ)
and ‖f‖ = ‖f0‖0 = 1.
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Corollary 4.6. Let (X, ‖ · ‖) be a B* space and M a subset of X. Suppose
x0 ∈ X is nonzero. Then x0 ∈ span(M) iff f(x0) = 0 whenever f ∈ X∗ and
f |M = 0.

Proof. (⇒) If x0 ∈ span(M), then there exists a sequence {xk} in M such that
xk → x0. For any f ∈ X∗, we know f(xk)→ f(x0) = 0 as f is continuous.

(⇐) If not, then d(x0,M) > 0. By Theorem 4.5, there exists f ∈ X∗ such
that f |M = 0 and f(x0) = d(x0,M) > 0, which is a contradiction.

Example 4.7. Let M = {x1, x2, · · · } ⊂ X and x0 ∈ X. Then x0 ∈ span(M)
iff f(x0) = 0 whenever f ∈ X∗ and f(xk) = 0 for all k ∈ N.

4.2 Geometric Hahn-Banach theorem

Now we consider the geometric meaning of the Hahn-Banach theorem.

Definition 4.8. Let X be a linear space. Then a proper linear subspace M of
X is called maximal if Y = X whenever M is a proper linear subspace of Y .

Proposition 4.9. Let X be a linear space and M a proper linear subspace.
Then M is maximal iff for any x0 ∈ X \M there is X = {ax0 : a ∈ R} ⊕M .

Proof. (⇒) If X0 := {ax0 : a ∈ R}⊕M 6= X, then there exist x1 ∈ X \X0 such
that M ( X0 ( {ax1 : a ∈ R} ⊕X0 which contradicts to M being maximal.

(⇐) Let M1 be a linear subspace and M ⊂M1, then there exists x0 ∈M1\M
and {ax0 : a ∈ R}⊕M ⊂M1. Therefore M1 = X. By the definition of maximal
linear subspace, we know M is a maximal linear subspace.

Definition 4.10 (Hyperplane). Let X be a linear space and M a proper linear
subspace of X. Then L = x0 + M is called a maximal linear manifold, or a
hyperplane, if M is maximal in X.

Maximal linear manifold is an extension of hyperplane in Rn to a general
linear space, as shown by the following theorem.

Theorem 4.11. Let X be a B* space. Then L is a hyperplane in X iff there
exists a nonzero linear functional f : X → R and r ∈ R such that L = Hr

f .
Moreover, L is closed iff f is continuous.

Proof. 1. (⇐) Let H0
f := {x ∈ X : f(x) = 0}. Hence H0

f is a linear subspace of

X. Then for any x1 ∈ X \H0
f and any x ∈ X, we can show

x ∈ f(x)

f(x1)
x1 +H0

f .

Therefore X = {ax1 : a ∈ R}⊕H0
f , which implies that H0

f is maximal. For any

x0 ∈ X \H0
f , set r := f(x0) 6= 0 and Hr

f := {x ∈ X : f(x) = r}, then we have

x ∈ Hr
f ⇔ f(x− x0) = f(x)− r = 0 ⇔ x− x0 ∈ H0

f ⇔ x ∈ x0 +H0
f .
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Hence L = Hr
f is a hyperplane.

(⇒) Suppose L is a hyperplane in X, then there exists a maximal linear
subspace M and x0 ∈ X \M such that L = x0 + M (or L = M if L coincides
with M). Then for any x ∈ X, we know x can be written as x = ax0 + y for
some y ∈ M and a ∈ R. Define f : X → R by f(x) = f(ax0 + y) := a. Then
it easy to show that f is linear, H0

f = M , and f(x0) = 1. Hence L = H1
f (or

L = H0
f if L = M).

2. We notice that L is closed iff H0
f is closed iff f is continuous.

Definition 4.12 (Separation of two sets by a hyperplane). Two sets E and F
of X are said to be separated by a hyperplane Hr

f if there exist a linear functional
f : X → R and r ∈ R such that f(x) ≤ r for all x ∈ E and f(x) ≥ r for all
x ∈ F . If the strict inequalities hold, then we say the separation is strict.

Theorem 4.13 (Separating a convex set and a point using hyperplane). Let
E be a proper convex subset of a B* space X, and 0 ∈ int(E). If x0 /∈ E, then
there exists a hyperplane Hr

f that separates x0 and E.

Proof. Let p : X → R be the Minkowski functional of E:

p(x) := inf
{
a > 0 :

x

a
∈ E

}
.

Define X0 := {ax0 : a ∈ R} and f0 : X0 → R by f0(ax0) := ap(x0) ∈ R for all
a ∈ R. Then it is easy to show that f0 ∈ X∗0 , and

f0(x) = f0(ax0) = ap(x0) ≤ p(ax0) = p(x)

for any x = ax0 ∈ X0 since p : X → R+ is positive homogeneous. By Theorem
4.1 (Hahn-Banach), there exists f ∈ X∗ such that f |X0 = f0 and f(x) ≤ p(x)
for all x ∈ X. In particular, f(x0) = f0(x0) = p(x0) ≥ 1. On the other hand,
f(x) ≤ p(x) ≤ 1 for all x ∈ E. Hence H1

f separates x0 and E.

Remark. As long as E has an interior point (not necessarily the origin), we
can apply translation such that 0 ∈ int(E). But E must have an interior point
in the case of infinite dimensional B* space.

Remark. We can show that Hr
f is closed. We only need to show that f is

continuous. Note that

|f(x)| ≤ max(p(x),−p(x)), ∀x ∈ X,

which is continuous at 0 since p(x), −p(x) and max are continuous functions.
Hence f is continuous at 0disjoint, and therefore continuous in X since f is
linear.

Theorem 4.14 (Separating two disjoint convex sets by a hyperplane). Let E1

and E2 be two disjoint convex sets in B* space X, and int(E1) 6= ∅. Then there
exists s ∈ R and f ∈ X∗ such that Hs

f separates E1 and E2. That is, f(x) ≤ s
for all x ∈ E1 and f(x) ≥ s for all x ∈ E2.
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Proof. We first convert this to the problem of separating a convex set and a
point above. Denote

E := E1 − E2 = {x1 − x2 ∈ X : x1 ∈ E1, x2 ∈ E2}.

It is easy to verify that E is convex and contains an interior point. Moreover
0 /∈ E: if not, then there exist x1 ∈ E1 and x2 ∈ E2 such that 0 = x1 − x2,
which implies that x1 = x2 ∈ E1 ∩ E2, contradicting to E1 ∩ E2 = ∅.

By Theorem 4.13, we know there exist f ∈ X∗ and r ∈ R such that Hr
f

separates 0 and E, i.e., f(x) ≤ r for all x ∈ E and f(0) ≥ r. This implies r ≤ 0
since f(0) = 0 for f ∈ X∗. Hence f(x1 − x2) = f(x1) − f(x2) ≤ r ≤ 0 for all
x1 ∈ E1 and x2 ∈ E2. Hence there exists s ∈ R in between supx1∈E1

f(x1) and
infx2∈E2 f(x2), and hence Hs

f separates E1 and E2.

Remark. The condition E1 ∩E2 = ∅ can be relaxed to int(E1)∩E2 6= ∅. Since
int(E1) is a nonempty convex set, we know there exists Hs

f separates int(E1)
and E2, such that f(x) ≤ s for all x ∈ int(E1) and f(x) ≥ s for all x ∈ E2.
As f is continuous, we know f(x) ≤ s for all x ∈ int(E1) = Ē1. Hence Hs

f still
separates E1 and E2.

Theorem 4.15 (Ascoli). Let X be a B* space and E a closed convex set, then
for any x0 ∈ X \ E, there exists f ∈ X∗ and s ∈ R such that f(x) < s < f(x0)
for all x ∈ E.

Proof. Since Ec is open, there exists δ > 0 such that B(x0; δ) ⊂ Ec. Since
B(x0; δ) is open and convex, we know there exists f ∈ X∗ such that supx∈E f(x) ≤
infx∈B(x0;δ) f(x).

We claim that f(x0) > infx∈B(x0;δ) f(x): If not, then f(x0) = infx∈B(x0;δ) f(x).
Since f is nonzero, there exists nonzero y ∈ X such that f(y) > 0. Then
x0 − δ

2‖y‖y ∈ B(x0; δ) but

f
(
x0 −

δ

2‖y‖
y
)

= f(x0)− δ

2‖y‖
f(y) < f(x0),

which is a contradiction. Hence we can choose s to be strictly between supx∈E f(x)
and f(x0), then f(x) ≤ supx∈E f(x) < s < f(x0) for all x ∈ E.

Theorem 4.16 (Mazur). Let X be a B* space and E a convex subset such that
int(E) 6= ∅. Let F be a linear manifold in X. If int(E) ∩ F = ∅, then there
exists a hyperplane L containing F , such that E is on one side of L only.

Proof. Suppose F = x0 + X0 where x0 ∈ X and X0 is a linear subspace of X.
Hence there exists a linear functional f : X → R and r ∈ R, such that the
hyperplane Hr

f separates E and F : f(x) ≤ r for all x ∈ E and f(x) ≥ r for all
x ∈ F . Denote s := f(x0), then for any x′ ∈ X0, there is

r ≤ f(x) = f(x0 + x′) = f(x0) + f(x′) = s+ f(x′).

Hence f(x′) ≥ r − s for all x′ ∈ X0. Since 0 ∈ X ′0, we know 0 ≥ r − s.
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As X0 is a linear subspace, we claim f(x′) = 0 for all x′ ∈ X0: If not, say
f(x′) > 0 for some x′ ∈ X0, then f(−ax′) < r − s for a > 0 sufficiently large,
which results in a contradiction. Hence X0 ⊂ H0

f and F ⊂ x0 + H0
f = Hs

f .
Therefore s ≥ r ≥ f(x) for all x ∈ E, which implies that the hyperplane Hs

f is
the claimed one.

Remark. In other words, there exists a nonzero f ∈ X∗ and s ∈ R such that
f(x) ≤ s for all x ∈ E and f(x) = s for all x ∈ F .

4.3 Applications

Example 4.17 (Convex program in linear space). Let X be a linear space and
C a convex subset. Then f : C → R is called a convex functional if for all
x, y ∈ C and λ ∈ [0, 1], there is

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

We define the epigraph of f as follows:

epi(f) := {(x, t) ∈ C × R : f(x) ≤ t}.

Then f is convex iff epi(f) is convex in C × R.
Now consider a convex program (CP) as follows,

(CP) min
x∈C

f(x) s.t. g1(x), . . . , gm(x) ≤ 0,

where f, g1, . . . , gm : C → R are convex functionals. The goal of (CP) is to find
x0 ∈ C that minimizes f(x) subject to the inequality constraints gi(x) ≤ 0 for
all i = 1, . . . ,m.

We want to characterize the solution x0 of (CP), i.e., the necessary condition
for x0 to be a solution of (CP). In particular, we want to show that there

exist λ̂1, . . . , λ̂m ∈ R, called the Lagrange multipliers, such that x0 satisfies the
optimality condition

(OC) f(x0) +

m∑
i=1

λ̂igi(x0) = min
x∈C

{
f(x) +

m∑
i=1

λ̂igi(x)
}
.

Note that we can show λ̂1, . . . , λ̂m exist, but do not know their values. Never-
theless, the structure of (OC) provides many useful information that may lead
us to find x0.

To show the existence of λ̂1, . . . , λ̂m, we introduce an additional λ̂0, and
rewrite (OC) as

(OC’) λ̂0f(x0) +

m∑
i=1

λ̂igi(x0) ≤ λ̂0f(x) +

m∑
i=1

λ̂igi(x), ∀x ∈ C.
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If λ̂0 > 0, then (OC) and (OC’) are equivalent. To show the existence of

λ̂0, . . . , λ̂m in (OC’), we consider two sets in Rm+1:

E := {(t0, . . . , tm) ∈ Rm+1 : t0 ≤ f(x0), ti ≤ 0, i = 1, . . . ,m},
F := {(t0, . . . , tm) ∈ Rm+1 : ∃x ∈ C, s.t. t0 ≥ f(x), ti ≥ gi(x), i = 1, . . . ,m}.

It is straightforward to show that both E and F are convex sets in Rm+1 (check
yourself). Also note that int(E) = {(t0, . . . , tm) ∈ Rm+1 : t0 < f(x0), ti <
0, i = 1, . . . ,m} is open and has interior points. We also claim that int(E)∩F =
∅: if not, then there exist t0, . . . , tm and x ∈ C such that f(x) ≤ t0 < f(x0) and
gi(x) ≤ ti < 0 for all i, which contradicts to x0 being optimal.

Now we know, by Hahn-Banach theorem, there exists a separating hyper-
plane, determined by a nonzero (λ̂0, . . . , λ̂m) ∈ Rm+1. Note that

(f(x0), g1(x0), . . . , gm(x0)) ∈ E
(f(x) + ξ0, g1(x) + ξ1, . . . , gm(x) + ξm) ∈ F

for all x ∈ C and ξi ≥ 0. Hence

λ̂0f(x0) +

m∑
i=1

λ̂igi(x0) ≤ λ̂0(f(x) + ξ0) +

m∑
i=1

λ̂i(gi(x) + ξi), ∀x ∈ C.

It is clear that λ̂0, . . . , λ̂m ≥ 0: if λ̂i < 0, then letting ξi → ∞ makes the RHS
tend to −∞, contradiction.

Note that (f(x0), 0, · · · , 0) ∈ E and (f(x0), g1(x0), . . . , gm(x0)) ∈ F , and
therefore

λ̂0f(x0) ≤ λ̂0f(x0) +

m∑
i=1

λ̂igi(x0).

Hence
∑m
i=1 λ̂igi(x0) ≥ 0. But λ̂i ≥ 0 and gi(x0) ≤ 0, which implies that

λ̂igi(x0) = 0 for all i.

We can also show that λ̂0 > 0 as long as there exists x̂ ∈ C such that
gi(x̂) < 0 for all i. To this end, assume λ̂0 = 0, then we know

0 = λ̂0f(x0) ≤ λ̂0f(x̂0) +

m∑
i=1

λ̂igi(x̂0) =

m∑
i=1

λ̂igi(x̂0).

Since (λ̂0, λ̂1, . . . , λ̂m) is nonzero, we know (λ̂1, . . . , λ̂m) is nonzero and hence

λ̂igi(x0) < 0, which is a contradiction. This proves that λ̂0 > 0. This result is
summarized in the following theorem.

Theorem 4.18 (Kuhn-Tucker). Let X be a linear space and C a convex subset
of X. Suppose f, g1, . . . , gm : C → R are convex functionals, and there exists
x̂ ∈ C such that g1(x̂), . . . , gm(x̂) < 0. If x0 ∈ C solves (CP), then there exist
λ1, . . . , λm ≥ 0 such that

f(x0) = min
x∈C

{
f(x) +

m∑
i=1

λigi(x)
}
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and λigi(x0) = 0 for all i.

Example 4.19. Let X be a Banach space and f : X → R a convex functional
(not necessarily differentiable), we can extend the definition of gradient to this
case.

Definition 4.20 (Subdifferential and subgradient). Let f : X → R be convex.
For any x0 ∈ X, the set

∂f(x0) = {x∗ ∈ X∗ : 〈x∗, x− x0〉+ f(x0) ≤ f(x), ∀x ∈ X}

is called the subdifferential of f at x0. Each element of ∂f(x0) is called a
subgradient of f at x0. Note that here x∗ is some bounded linear functional and
not related to x.

Theorem 4.21. Let f : X → R be convex. If f is continuous at x0 ∈ X, then
∂f(x0) 6= ∅.

Proof. Consider epi(f) and {(x0, f(x0))}. Note that (x0, f(x0)+1) is an interior
point of epi(f) (since f is continuous at x0), and (x0, f(x0)) /∈ int(epi(f)). Hence
there exists (x∗, ξ) ∈ X∗ × R that separates epi(f) and (x0, f(x0)), i.e.,

〈x∗, x0〉+ ξf(x0) ≤ 〈x∗, x〉+ ξt, ∀ (x, t) ∈ epi(f).

Letting x = x0 and t = f(x0) + s for all s > 0, we see ξ ≥ 0, otherwise s→∞
makes RHS tend to −∞.

We claim that ξ > 0. If not, then ξ = 0, and

〈x∗, x0 − x〉 ≤ 0, ∀x ∈ X.

Then x∗ = 0 in X∗, which contradicts to (x∗, ξ) being nonzero.
Denote x∗0 = −x∗/ξ, then there is

〈x∗0, x− x0〉+ f(x0) ≤ f(x), ∀x ∈ X.

Hence x∗0 ∈ ∂f(x0), and thus ∂f(x0) 6= ∅.
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5 Weak Topologies

5.1 Dual spaces

Definition 5.1 (Dual space). Let X be a B* space and define the norm ‖f‖ :=
sup‖x‖=1 |f(x)| for every linear functional f ∈ X∗. Then (X∗, ‖ · ‖) is a Banach
space, called the dual space of X.

Example 5.2 (Dual space of Lp). For any p ∈ [1,∞), let q be the conjugate of
p, i.e., q = p/(p− 1) if p > 1 and q =∞ if p = 1. Then Lp([0, 1])∗ = Lq([0, 1]).

Proof. By Hölder inequality, we know that for any f ∈ Lp and g ∈ Lq, there is∣∣∣∫ 1

0

fg
∣∣∣ ≤ ∫ 1

0

|fg| ≤
(∫ 1

0

|f |p
)1/p(∫ 1

0

|g|q
)1/q

,

and the equality holds iff

g(x) =

sign(f(x)) |f(x)|p−1

‖f‖p−1
p

, if p ∈ (1,∞),

sign(f(x)), if p = 1,
a.e. [0, 1].

Hence, for any g ∈ Lq, we define Fg : Lp → R by Fg(f) :=
∫ 1

0
fg dµ. Then Fg

is a linear functional on Lp, and |Fg(f)| ≤ ‖g‖q‖f‖p. Hence ‖Fg‖ = ‖g‖q and
Fg ∈ (Lp)∗.

Now we want to show (Lp)∗ = Lq, i.e., for any F ∈ (Lp)∗, there exists

g ∈ Lq, such that F (f) =
∫ 1

0
fg for all f ∈ Lp. We proceed this in three steps

as follows.
1. For any F ∈ (Lp)∗, we define ν : M → R as follows: ν(E) := F (χE),

where E ∈ M is any Lebesgue measurable set and χE is the characteristic
function of E, i.e., χE(x) = 1 if x ∈ E and 0 otherwise. Then we can show that
ν is a signed measure: it is easy to show that ν(∅) = 0 and ν only takes finite
values.

We shall show that ν is countably additive. Firstly, finite additivity is clear
from the definition of ν. Let {Ek : k ∈ N} be mutually disjoint sets in [0, 1].
Then

ν(∪∞i=1Ei) =

k∑
i=1

ν(Ei) + ν(Dk) =

k∑
i=1

F (χEi) + F (χDk),

where Dk := ∪∞i=k+1Ek. Then ν(Dk) <∞, limkDk = ∅, and

ν(Dk) = F (χDk) ≤ ‖F‖‖χDk‖p = ‖F‖(µ(Dk))1/p → 0

as k → ∞. Hence ν is a signed measure. Moreover, following the similar
estimate for ν(Dk), it is easy to verify that ν(E) = 0 whenever µ(E) = 0.
Hence ν � µ. Thus, by Radon-Nikodym theorem, there exists a measurable
function g such that ν(E) =

∫
E
g dµ for all E ∈M. Hence

F (χE) = ν(E) =

∫
E

g dµ =

∫ 1

0

χEg dµ
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for all E ∈ M. Hence F (f) =
∫
fg dµ for all simple functions f . We hereafter

drop dµ for notation simplicity.
2. We now show that ‖g‖q ≤ ‖F‖. If p ∈ (1,∞), then for any t > 0,

we denote Et := {x ∈ [0, 1] : |g(x)| ≤ t} and let f := χEt |g|q−2g. Then

F (f) =
∫ 1

0
fg (see Remark below). It is easy to verify that∫ 1

0

fg =

∫
Et

|g|q and

∫ 1

0

|f |p =

∫
Et

|g|q.

Therefore, we can show that∫
Et

|g|q =

∫ 1

0

fg = F (f) ≤ ‖F‖‖f‖p = ‖F‖
(∫

Et

|g|q
)1/p

.

Hence (
∫
Et
|g|q)1/q ≤ ‖F‖. Letting t→∞, we have Et ↑ [0, 1] and thus ‖g‖q ≤

‖F‖.
If p = 1, then for any ε > 0, we denote Aε := {x ∈ [0, 1] : |g(x)| ≥ ‖F‖+ ε}

and let f = χEt∩Aεsign(g), then there is∫ 1

0

|f | =
∫ 1

0

χEt∩Aε = µ(Et ∩Aε).

On the other hand, we know

F (f) =

∫ 1

0

fg =

∫ 1

0

χEt∩Aε |g| =
∫
Et∩Aε

|g| ≥ (‖F‖+ ε)µ(Et ∩Aε).

Hence there is

0 ≤ (‖F‖+ ε)µ(Et ∩Aε) ≤ F (f) ≤ ‖F‖‖f‖1 = ‖F‖µ(Et ∩Aε).

Letting t → ∞, we have Et ↑ [0, 1] and hence (‖F‖ + ε)µ(Aε) ≤ ‖F‖µ(Aε).
Thus µ(Aε) = 0. As ε > 0 is arbitrary, we know ‖g‖∞ ≤ ‖F‖.

3. Now we show F (f) =
∫ 1

0
fg for any f ∈ Lp. Let fk be simple functions

such that fk → f in Lp, then∣∣∣∫ 1

0

(fk − f)g
∣∣∣ ≤ ‖fk − f‖p‖g‖q ≤ ‖F‖‖fk − f‖p → 0.

Hence F (fk) =
∫ 1

0
fkg →

∫ 1

0
fg. As F ∈ (Lp)∗, we know F (fk) → F (f), and

hence F (f) =
∫ 1

0
fg.

Remark. In Step 2 of the proof above, we used the fact that F (f) =
∫ 1

0
fg

where f = χEt |g|q−2g is not simple when p ∈ (1,∞). To see this, let fk be
a sequence of simple functions such that fk ∈ Lp and f±k ↑ f± in Lp. Then,
on the one hand, we know F (fk) → F (f) since F ∈ (Lp)∗; and on the other
hand, there is fkg ↑ χEt |g|q = fg, which by Beppo Levi theorem we know∫ 1

0
fkg →

∫ 1

0
χEt |g|q =

∫ 1

0
fg. Since F (fk) =

∫ 1

0
fkg for every simple function

fk, we know F (f) =
∫ 1

0
fg.
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Remark. The result above can be extended from [0, 1] to any σ-finite measur-
able space.

Example 5.3 (Dual space of C([0, 1])). The dual space of C([0, 1]) is the
bounded variation space BV([0, 1]) := {f : [0, 1] → R : f(0) = 0, ‖f‖TV < ∞},
where ‖f‖TV is the total variation of f defined by

‖f‖TV := sup
∆

n∑
i=1

|f(ti)− f(ti−1)|,

and ∆ : 0 = t0 < t1 < · · · < tn = 1 is a partition of [0, 1] and n ∈ N is arbitrary.

Proof. 1. It is straightforward to show that (BV([0, 1]), ‖ · ‖TV) is a Banach
space: BV([0, 1]) is a linear space, ‖ · ‖TV is a norm, and BV([0, 1]) is complete
under ‖ · ‖TV (check yourself).

2. For any x ∈ C([0, 1]) and f ∈ BV([0, 1]), consider the Stieltjes integral :∫ 1

0

x(t) df(t) := lim
|∆|→0

n∑
i=1

x(t∗i )(f(ti)− f(ti−1)),

where t∗i ∈ [ti−1, ti] and |∆| := max1≤i≤n |ti − ti−1|. We can show Ff : X → R
defined by Ff (x) :=

∫ 1

0
x(t) df(t) is a bounded linear functional on C([0, 1]):

the linearity is obvious, and the boundedness is because for any x ∈ C([0, 1])

and ‖x‖ ≤ 1, there is |Ff (x)| = |
∫ 1

0
x(t) df(t) ≤ ‖f‖TV.

3. We shall show that, for any F ∈ C([0, 1])∗, there exists a unique f ∈
BV([0, 1]), such that F (x) =

∫ 1

0
x(t) df(t) for all x ∈ C([0, 1]). The key is to

determine f using the linear functional F , as shown below.
We first observe that C([0, 1]) is a closed linear subspace of (L∞([0, 1]), ‖ ·

‖∞). Then by Corollary 4.2, we know there exists F̃ ∈ L∞([0, 1])∗ such that
F̃ |[0,1] = F , ‖F̃‖ = ‖F‖. Define

f(s) :=

{
F̃ (χ(0,s]), 0 < s ≤ 1,

0, s = 0.

Next we show that f ∈ BV([0, 1]), ‖f‖TV ≤ ‖F‖, and F (x) =
∫ 1

0
x(t) df(t) for

all x ∈ C([0, 1]).
First of all, for any partition ∆ : 0 = t0 < t1 < · · · < tn = 1 of [0, 1], denote

λi = sign(f(ti)− f(ti−1)). Then

n∑
i=1

|f(ti)− f(ti−1)| =
n∑
i=1

λi(f(ti)− f(ti−1)) =

n∑
i=1

λi(F̃ (χ(0,ti])− F̃ (χ(0,ti−1])

= F̃
( n∑
i=1

λiχ(ti−1,ti]

)
≤ ‖F̃‖ = ‖F‖,
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since ‖
∑n
i=1 λiχ(ti−1,ti]‖∞ = 1. Since ∆ is arbitrary, we have ‖f‖TV ≤ ‖F‖.

For any x ∈ C([0, 1]) and ε > 0, choose a partition ∆ such that

|x(t)− x(t′)| ≤ ε

2‖F‖
, ∀ t, t′ ∈ [ti−1, ti], i = 1, . . . , n,∣∣∣∫ 1

0

x(t) df(t)−
n∑
i=1

x(ti)(f(ti)− f(ti−1))
∣∣∣ < ε

2
,

where the first inequality is because of the uniform continuity of x on [0, 1], and
the second inequality is due to the definition of Stieltjes integral. We denote
x∆ :=

∑n
i=1 x(ti)χ(ti−1,ti] +x(0)χ{0}, then F̃ (x∆) =

∑n
i=1 x(ti)(f(ti)−f(ti−1)),

and ∣∣∣F (x)−
∫ 1

0

x(t) df(t)
∣∣∣ ≤ |F (x)− F̃ (x∆)|+

∣∣∣F̃ (x∆)−
∫ 1

0

x(t) df(t)
∣∣∣

≤ ‖F‖‖x− x∆‖∞ +
∣∣∣F̃ (x∆)−

∫ 1

0

x(t) df(t)
∣∣∣

<
ε

2
+
ε

2
= ε.

As ε > 0 is arbitrary, we know F (x) =
∫ 1

0
x(t) df(t).

5.2 Bidual and reflexive space

We showed that X∗ is a Banach space, hence we can consider X∗∗, called the
bidual space of X. In particular, for any x ∈ X, we can define Jx : X∗ → R
by Jx(f) = f(x) for any f ∈ X∗. It is clear that Jx is linear, and |Jx(f)| =
|f(x)| ≤ ‖x‖‖f‖, which implies ‖Jx‖ ≤ ‖x‖ and hence Jx ∈ X∗∗.

Now we can define T : X → X∗∗ by Tx := Jx. Then T is called the canonical
mapping (also called evaluation mapping). It is easy to show that T is linear:
for any x, y ∈ X and α, β ∈ R, there is(

T (αx+ βy)
)
(f) = Jαx+βy(f) = f(αx+ βy)

= αf(x) + βf(y) = αJx(f) + βJy(f)

= α(Tx)(f) + β(Ty)(f) = (αTx+ βTy)(f),

for all f ∈ X∗. Moreover, we have showed that ‖Tx‖ = ‖Jx‖ ≤ ‖x‖ for all
x ∈ X, so T ∈ L(X,X∗∗).

In fact, we can show ‖Tx‖ = ‖Jx‖ = ‖x‖: for any x ∈ X, there exists f ∈ X∗
such that ‖f‖ = 1 and ‖f(x) = ‖x‖ (e.g., f : X0 → R defined by f(ax) = a‖x‖
where X0 := {ax : a ∈ R}, and then use Corollary 4.2 to extend f from X0 to
X). Then

‖x‖ = f(x) = Jx(f) = (Tx)(f) ≤ ‖Tx‖‖f‖ = ‖Tx‖.

Therefore ‖Tx‖ = ‖x‖, and thus T is an isometric isomorphism.
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If X is a Banach space, then we can show that X is isometrically embedded
as a closed linear subspace of X∗∗. To see this, let {Txk} be Cauchy in X∗∗,
then {xk} is Cauchy in X due to the isometry between X and T (X). Hence
there exists x ∈ X such that xk → x, and it is easy to verify that Txk → Tx in
X∗∗. This result is summarized in the following theorem.

Theorem 5.4. Let X be a Banach space. Then X is isometrically isomorphic
to a closed linear subspace of X∗∗.

Remark. We often just identify Tx = Jx with x ∈ X.

Definition 5.5 (Reflexive space). A B* space X is called reflexive if X = X∗∗.
Namely, the canonical mapping T : x 7→ Tx is surjective.

Example 5.6. If p ∈ (1,∞), then (Lp)∗ = Lq and (Lp)∗∗ = (Lq)∗ = Lp. In
addition, (L1)∗ = L∞, and

(L∞)∗ = ba(Ω) := {ν :M→ R : ν is bounded, finitely additive, and ν � µ}.

We now consider adjoint operators, which are generalization of the conjugate
transpose operator of matrices.

Definition 5.7 (Adjoint operator). Let X and Y be B* spaces, T ∈ L(X,Y ).
Then T ∗ : Y ∗ → X∗ is called the adjoint operator of T if for any f ∈ Y ∗ and
x ∈ X, there is

(T ∗f)(x) = f(Tx).

This is also written as 〈T ∗f, x〉 = 〈f, Tx〉.
Remark. T ∗ is well defined. To see this, for any T ∈ L(X,Y ) and f ∈ Y ∗,
define gf : X → R by gf (x) = f(Tx). Then gf is linear and |gf (x)| = |f(Tx)| ≤
‖f‖‖T‖‖x‖. So gf ∈ X∗. Then the adjoint operator T ∗ : Y ∗ → X∗ by T ∗f :=
gf . It is easy to show that T ∗ is linear, and ‖T ∗f‖ = ‖gf‖ ≤ ‖f‖‖T‖ implies
‖T ∗‖ ≤ ‖T‖, so T ∗ ∈ L(Y ∗, X∗). In fact we can show the following theorem.

Theorem 5.8. Let the mapping ∗ : L(X,Y )→ L(Y ∗, X∗) be defined by ∗(T ) =
T ∗. Then ∗ is an isometric isomorphism.

Proof. 1. We first show that * is linear. For any α1, α2 ∈ R and T1, T2 ∈
L(X,Y ), we know

[∗(α1T1 + α2T2)(f)](x) = [(α1T1 + α2T2)∗f ](x) = f(α1T1x+ α2T2x)

= α1f(T1x) + α2f(T2x) = α1(T ∗1 f)(x) + α2(T ∗2 f)(x)

= α1[(∗T1)(f)](x) + α2[(∗T )(f)](x)

= [(α1(∗T1) + α2(∗T2))f ](x)

for all x ∈ X and f ∈ Y ∗.
2. We only need to show ‖T‖ ≤ ‖T ∗‖. To this end, for any x ∈ X such that

Tx 6= 0, by Corollary 4.4, there exists f ∈ Y ∗ such that f(Tx) = ‖Tx‖ and
‖f‖ = 1. Then

‖Tx‖ = f(Tx) = (T ∗f)(x) ≤ ‖T ∗f‖‖x‖ ≤ ‖T ∗‖‖f‖‖x‖ = ‖T ∗‖‖x‖.

Therefore ‖T‖ ≤ ‖T ∗‖.
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We can further consider the adjoint operator T ∗∗ := (T ∗)∗ of T ∗. Then
T ∗∗ ∈ L(X∗∗, Y ∗∗). Since X ⊂ X∗∗ and Y ⊂ Y ∗∗, we denote U and V their
canonical embedding respectively (i.e, Ux := Jx = x∗∗ and V y := Jy = y∗∗).
Then for any x ∈ X and f ∈ Y ∗, we have

〈T ∗∗Ux, f〉 = 〈Ux, T ∗f〉 = 〈T ∗f, x〉 = 〈f, Tx〉 = 〈V Tx, f〉.

Hence T ∗Ux = V Tx, namely T ∗∗ is the extension of TX from X (as the em-
bedded in X∗∗) to X∗∗. This is given in the following theorem.

Theorem 5.9. Let X and Y be B* space and T ∈ L(X,Y ). Then T ∗∗ ∈
L(X∗∗, Y ∗∗) is the extension of T on X∗∗ and ‖T ∗∗‖ = ‖T‖.

Example 5.10. Let (Ω, µ) be a measure space, and K : Ω×Ω→ R be a square
integrable function on Ω× Ω, i.e.,

‖K‖ :=
(∫∫

Ω×Ω

|K(x, y)|2 dµ(x) dµ(y)
)1/2

<∞.

Define the operator T : L2(Ω, µ)→ L2(Ω, µ) by

(Tu)(x) =

∫
Ω

K(x, y)u(y) dµ(y), ∀u ∈ L2(Ω, µ), ∀x ∈ Ω.

Then it is easy to show T is a bounded linear mapping from L2(Ω, µ) to itself:
the linearity is clear, and

‖Tu‖2 =

∫
Ω

∣∣∣ ∫
Ω

K(x, y)u(y) dµ(y)
∣∣∣2 dµ(x)

≤
∫

Ω

[∫
Ω

|K(x, y)|2 dµ(y)

∫
Ω

|u(y)|2 dµ(y)
]

dµ(x)

=
[∫∫

Ω×Ω

|K(x, y)|2 dµ(x) dµ(y)
]
‖u‖2.

Hence ‖T‖ ≤ ‖K‖.
We claim that T ∗ : L2(Ω, µ)→ L2(Ω, µ) is given by

(T ∗v)(x) =

∫
Ω

K(y, x)v(y) dµ(y), ∀v ∈ L2(Ω, µ).

To see this, notice that

〈v, Tu〉 =

∫
Ω

v(x)
[∫

Ω

K(x, y)u(y) dµ(y)
]

dµ(x)

=

∫
Ω

u(y)
[∫

Ω

K(x, y)v(x) dµ(x)
]

dµ(y)

=

∫
Ω

u(x)
[∫

Ω

K(y, x)v(y) dµ(y)
]

dµ(x)

= 〈T ∗v, u〉,
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where the second inequality is due to Fubini theorem, which holds here because∣∣∣∫∫
Ω×Ω

K(x, y)u(x)v(y) dµ(x)µ(y)
∣∣∣

≤
∫∫

Ω×Ω

|K(x, y)||u(x)||v(y)|dµ(x)µ(y)

≤
(∫∫

Ω×Ω

|K(x, y)|2 dµ(x) dµ(y)
)1/2(∫∫

Ω×Ω

|u(x)|2|v(y)|2 dµ(x) dµ(y)
)1/2

=
(∫∫

Ω×Ω

|K(x, y)|2 dµ(x) dµ(y)
)1/2

‖u‖‖v‖ <∞.

Lemma 5.11 (Young’s inequality). Let p ∈ [1,∞], f ∈ Lp(R) and K ∈ L1(R),
then ‖K ∗ f‖p ≤ ‖K‖1‖f‖p.

Proof. If p ∈ (1,∞), then by Hölder inequality, we know for any x ∈ R there is∣∣∣∫ ∞
−∞

K(x− y)f(y) dy
∣∣∣ ≤ ∫ ∞

−∞
|K(x− y)|1/q|K(x− y)|1/p|f(y)|dy

≤
(∫ ∞
−∞
|K(x− y)|dy

)1/q(∫ ∞
−∞
|K(x− y)||f(y)|p dy

)1/p

= ‖K‖1/q1

(∫ ∞
−∞
|K(x− y)||f(y)|p dy

)1/p

.

Hence, there is

‖K ∗ f‖pp =

∫ ∞
−∞

∣∣∣ ∫ ∞
−∞

K(x− y)f(y) dy
∣∣∣p dx

≤ ‖K‖p/q1

∫ ∞
−∞

∫ ∞
−∞
|K(x− y)||f(y)|p dy dx

= ‖K‖p/q1 ‖K‖1‖f‖pp,

which implies that ‖K ∗ f‖p ≤ ‖K‖1‖f‖p.
If p =∞, then for any x ∈ R, we know∣∣∣∫ ∞

−∞
K(x− y)f(y) dy

∣∣∣ ≤ ‖f‖∞ ∫ ∞
−∞
|K(x− y)|dy = ‖f‖∞‖K‖1.

Hence ‖K ∗ f‖∞ ≤ ‖K‖1‖f‖∞.
If p = 1, then∫ ∞
−∞

∣∣∣∫ ∞
−∞

K(x− y)f(y) dy
∣∣∣dx ≤ ∫ ∞

−∞

(∫ ∞
−∞
|K(x− y)|dx

)
|f(y)|dy

≤ ‖K‖1‖f‖1.

Hence ‖K ∗ f‖1 ≤ ‖K‖1‖f‖1.
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Example 5.12 (Adjoint of convolution). Let K ∈ L(R) and p ∈ [1,∞). Define
the convolution cK : Lp(R)→ Lp(R) as follows:

(cKf)(x) =

∫ ∞
−∞

K(x− y)f(y) dy.

i.e., cKf = K ∗ f ∈ Lp is the convolution of f using kernel K.
It is easy to show that cK is linear, and by Young’s inequality we know

‖cK‖ ≤ ‖K‖1. Hence cK is continuous.
We claim that c∗K = cK̃ where K̃(x) = K(−x) for all x ∈ R. To see this, we

note that

〈g, cKf〉 = 〈g,K ∗ f〉 =

∫ ∞
−∞

(∫ ∞
−∞

K(x− y)f(y) dy
)
g(x) dx

=

∫ ∞
−∞

f(y)
(∫ ∞
−∞

K(x− y)g(x) dx
)

dy

=

∫ ∞
−∞

f(y)
(∫ ∞
−∞

K̃(y − x)g(x) dx
)

dy

=

∫ ∞
−∞

(K̃ ∗ g)(y)f(y) dy

= 〈K̃ ∗ g, f〉 = 〈cK̃g, f〉

for all f ∈ Lp and g ∈ Lq.

5.3 Weak and weak* convergence

Definition 5.13 (Weak convergence). Let X be a B* space, xk, x0 ∈ X for
all k. Then {xk} is said to weakly converge to x0, denoted xk ⇀ x0, if for any
f ∈ X∗ there is limk→∞ f(xk) = f(x0). In this case, x0 is called the weak limit
of {xk}. To distinguish, the classical convergence xk → x0 (i.e., ‖xk−x0‖ → 0)
is also called strong convergence.

Remark. If dim(X) < ∞, then weak convergence reduces to strong conver-
gence. To see this, we let e1, . . . , en be a basis (complete orthonormal set) of
the n-dimensional Banach space X. Then

xk = a
(k)
1 e1 + · · ·+ a(k)

n en, ∀ k ∈ N,

x0 = a
(0)
1 e1 + · · ·+ a(0)

n en.

Now define fi ∈ X∗ such that fi(ej) = δij for all j = 1, . . . , n. Then there are

fi(xk) = a
(k)
i and fi(x0) = a

(0)
i for all i = 1, . . . , n and k ∈ N. If xk ⇀ x, then

fi(xk) → fi(x0), i.e., a
(k)
i → a

(0)
i . Hence ‖xk − x0‖ ≤

∑n
i=1 |a

(k)
i − a

(0)
i | → 0,

which means xk → x strongly.

Proposition 5.14. Weak limit is unique if exists.
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Proof. Suppose xk ⇀ x and xk ⇀ y. Then for any f ∈ X∗, we know f(xk) →
f(x) and f(xk) → f(y). Hence f(x) = f(y), i.e., f(x − y) = 0 for all f ∈ X∗.
Therefore x = y.

Proposition 5.15. If xk → x0 then xk ⇀ x0.

Proof. For any f ∈ X∗, we know

|f(xk)− f(x0)| = |f(xk − x0)| ≤ ‖f‖‖xk − x0‖ → 0.

Therefore strong convergence implies weak convergence.

Example 5.16. Consider L2([0, 1]). Let xk(t) := sin(kπt). By Riemann-
Lebesgue theorem, we know for any f ∈ L2([0, 1]), there is

〈f, xk〉 =

∫ 1

0

f(t) sin(kπt) dt→ 0

as k → ∞. Hence xk ⇀ 0. However, ‖xk‖2 = 1/
√

2 for all k ∈ N and hence
{xk} does not converge strongly.

Although in general weak convergence does not imply strong convergence,
we can show that convex combinations of weakly convergence sequence may
strongly converge to the weak limit, as shown in the following theorem.

Theorem 5.17 (Mazur). Let X be a B* space and xk ⇀ x0. Then for any ε >
0, there exist n ∈ N, λi ≥ 0 and

∑n
i=1 λi = 1, such that ‖x0 −

∑n
i=1 λixi‖ ≤ ε.

Proof. Let M := conv({xk}), then M is a closed convex set of M . If x0 /∈ M ,
then by Theorem 4.15 (Ascoli), there exists f ∈ X∗ and a ∈ R such that
f(x) < a < f(x0) for all x ∈M . As {xk} ⊂M , we know f(xk) < a < f(x0) for
all k ∈ N, which contradicts to xk ⇀ x0.

Since X∗ is a Banach space, we can consider weak convergence in X∗: let
fk, f ∈ X∗, then fk ⇀ f if x∗∗(fk) → x∗∗(f) for any x∗∗ ∈ X∗∗. However, we
sometimes want to study convergence of {fk} without invoking X∗∗.

Definition 5.18 (Weak* convergence). Let X be a B* space, fk, f ∈ X. Then

{fk} is said to weak* converge to f , denoted by fk
∗
⇀ f or w∗− limk→∞ fk = f ,

if limk→∞ fk(x) = f(x) for any x ∈ X. In this case, f is called the weak* limit
of {fk}.

Remark. We know X ⊂ X∗∗, hence weak* convergence is weaker than weak
convergence. If X is reflexive, then weak* convergence and weak convergence
are equivalent. It is also easy to show that weak* limit is unique.

As a direct application of Theorem 3.38 (Banach-Steinhaus), we have the
following result.
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Theorem 5.19. Let X be a B* space, and xk, x ∈ X. Then xk ⇀ x iff ‖xk‖ is
bounded and there is a dense subset M∗ of X∗ such that f(xk) → f(x) for all
f ∈M∗.

Proof. We treat {xk} as a sequence inX∗∗, then applying Theorem 3.38 (Banach-
Steinhaus) yields the claim.

Theorem 5.20. Let X be a Banach space, fk, f ∈ X∗. Then fk
∗
⇀ f iff ‖fk‖

is bounded and there exists a dense set M of X such that fk(x)→ f(x) for all
x ∈M .

Similar to linear functional, we can consider various convergences of linear
operators.

Definition 5.21 (Convergence of linear operators). Let X and Y be B* spaces,
Tk, T ∈ L(X,Y ) for all k ∈ N. Then
• {Tk} is said to uniformly converge to T , denoted by Tk ⇒ T , if ‖Tk−T‖ →

0.
• {Tk} is said to strongly converge to T , denoted by Tk → T , if ‖Tkx−Tx‖ →

0 for any x ∈ X.
• {Tk} is said to weakly converge to T , denoted by Tk ⇀ T , if f(Tkx) →
f(Tx) for all x ∈ X and f ∈ Y ∗.

Remark. It is easy to verify that

Uniform convergence =⇒ Strong convergence =⇒ Weak convergence

Moreover, all these limits are unique if exist.

Example 5.22 (Strongly convergent but not uniformly convergent). Denote
T : l2 → l2 by Tx = (x2, x3, . . . ) for any x = (x1, x2, . . . ) ∈ l2. Namely, T is the
left shift operator. Let Tk := T k, i.e., Tkx = (xk+1, xk+2, . . . ). It is clear that
Tk ∈ L(l2) for all k ∈ N.

We first show that Tk → 0: for any x ∈ l2, we have ‖Tkx‖ = (
∑∞
i=k+1 x

2
i )

1/2 →
0 as k →∞.

We then show that Tk is not uniformly converging to 0: denote ek =
(0, . . . , 0, 1, 0, . . . ), then ‖Tkek+1‖ = ‖e1‖ = 1. Hence ‖Tk‖ ≥ 1 for all k ∈ N.

Example 5.23 (Weakly convergent but not strongly convergent). Denote S :
l2 → l2 by Sx = (0, x1, x2, . . . ). Namely S is the right shift operator. Define
Sk := Sk. It is clear that Sk ∈ L(l2) for all k ∈ N.

We first show that Sk ⇀ 0. To see this , we know for any f ∈ (l2)∗ = l2,
there exists yf = (y1, y2, . . . ) ∈ l2 such that

f(Skx) = 〈yf , Skx〉 =

∞∑
i=1

yi+kxi

≤
( ∞∑
i=1

|yi+k|2
)1/2

‖x‖ ≤
( ∞∑
i=k+1

|yi|2
)1/2

‖x‖ → 0
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as k →∞. Hence Sk ⇀ 0.
But it is easy to show that Sk does not converge to 0 strongly: for any x ∈ l2

there is ‖Skx‖ = ‖x‖ for all k ∈ N.

5.4 Weak and weak* compactness

One of the main goals to have weak and weak* convergence is to derive weak and
weak* sequential compactness from boundedness. We say E is weakly sequen-
tially precompact if any sequence in A has a weakly convergent subsequence,
and E is weak* sequentially precompact if any sequence in A has a weak* con-
vergent subsequence. If the weak or weak* limit is also in E respectively, then
precompactness improves to compactness.

Theorem 5.24. Let X be a separable B* space. Then any bounded sequence
{fk} in X∗ has a weak* convergent subsequence.

Proof. Since X is separable, there exists a countable dense set {xm} of X.
Since {fk} is bounded, we know for any xm, {fk(xm)} is a bounded sequence
in R. Therefore, for m = 1, there exists a subsequence, denoted by {fkj},
such that {fkj (x1)} is convergent. Similarly, for m = 2, there exists a subse-
quence of {fkj}, still denoted by {fkj}, such that {fkj (x2)} is convergent, and
so on. Continue doing so, we obtain a subsequence {fkj}, such that {fkj (xm)}
is convergent for every m ∈ N.

For any x ∈ X, there exists a sequence {xmi} such that limi→∞ xmi = x
since {xm} is dense in X. Then we can show {fkj (x)} is convergent (to see
this, note that |fkj (x)−fkj′ (x)| ≤ |fkj (x)−fkj (xmi)|+ |fkj (xmi)−fkj′ (xmi)|+
|fkj′ (xmi) − fkj′ (x)| and show {fkj (x)} is a Cauchy sequence in R). Denote
f : X → R by f(x) = limj→∞ fkj (x). Then it is easy to show f is linear and

|f(x)| ≤ (supk∈N ‖fkj‖)‖x‖, i.e., f ∈ X∗. Hence fk
∗
⇀ f in X∗.

If X is reflexive, we can show weak* convergence (which is equivalent to
weak convergence now) without assuming X to be separable. The following
theorems lead us to this result.

Theorem 5.25 (Banach). Let X be a B* space. If X∗ is separable, then X is
separable.

Proof. 1. We first show that S∗1 := {f ∈ X∗ : ‖f‖ = 1} is separable. To see
this, let {fk} be a countable dense set of X∗, then for any f ∈ S∗1 , there exists a
sequence {kj} in N such that limj→∞ fkj = f . Let gk := fk/‖fk‖ for all k ∈ N
(WLOG, we assume fk 6= 0), then

‖f − gkj‖ ≤ ‖f − fkj‖+ ‖fkj − gkj‖
= ‖f − fkj‖+ ‖fkj − fkj/‖fkj‖‖
= ‖f − fkj‖+ | ‖fkj‖ − 1 | → 0,

as j → ∞, since fkj → f and ‖fkj‖ → ‖f‖ = 1. Hence {gk} is a countable
dense set of S∗1 .
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2. Since ‖gk‖ = 1, there exists xk ∈ S1 := {x ∈ X : ‖x‖ ≤ 1} such that
|gk(xk)| ≥ 1/2 for all k ∈ N. Let X0 = span({xk}). Then X0 is separable (to
see this, consider the set of all linear combinations of {xk} with coefficients in
Q and show that it is dense in X0).

3. We now show X0 = X. If not, then there exists x0 ∈ X \X0 such that
d(x0, X0) > 0. By Theorem 4.5, there exists f0 ∈ X∗ such that ‖f0‖ = 1 and
f0(x) = 0 for all x ∈ X0. Note that f0 ∈ S∗1 , but for any k ∈ N there is

‖gk − f0‖ = sup
‖x‖=1

‖gk(x)− f0(x)‖ ≥ |gk(xk)− f0(xk)| = |gk(xk)| ≥ 1

2
,

which contradicts to {gk} being dense in S∗1 . Hence X = X0 and is thus
separable.

Theorem 5.26 (Pettis). Let X be a Banach space. If X is reflexive and X0 is
a closed linear subspace of X, then X0 is reflexive.

Proof. We need to show for any z0 ∈ X∗∗0 , there exists x0 ∈ X0 such that
〈z0, f0〉 = 〈f0, x0〉 for all f0 ∈ X∗0 .

For any f ∈ X∗, consider its restriction mapping T to X∗0 . Namely, T :
X∗ → X∗0 such that Tf = f0 := f |X0 ∈ X∗0 . Since ‖Tf‖ = ‖f0‖ ≤ ‖f‖, we
know T ∈ L(X∗, X∗0 ) and thus T ∗ ∈ L(X∗∗0 , X∗∗). Let z := T ∗z0 ∈ X∗∗. Since
X is reflexive, we know there exists x ∈ X such that 〈z, f〉 = 〈f, x〉 for all
f ∈ X∗.

We claim that x ∈ X0: If not, then δ := d(x,X0) > 0. By Theorem 4.5,
there exists f ∈ X∗ such that f |X0

= 0 (thus Tf = 0) and 〈f, x〉 = f(x) = δ.
However we also have

0 = 〈z0, T f〉 = 〈T ∗z0, f〉 = 〈z, f〉 = 〈f, x〉 = δ > 0,

which is a contradiction. Hence x ∈ X0.
Now we show 〈z0, f0〉 = 〈f0, x〉 for all f0 ∈ X∗0 . For any f0 ∈ X∗0 , by Corol-

lary 4.2, there exists f ∈ X∗ such that Tf = f0. Hence 〈z0, f0〉 = 〈z0, T f〉 =
〈T ∗z0, f〉 = 〈z, f〉 and 〈f0, x〉 = 〈f, x〉 (since f extends f0). So 〈z0, f0〉 = 〈f0, x〉
for all f0 ∈ X∗0 .

Theorem 5.27 (Eberlein-Šmulian). If X is a reflexive Banach space, then the
closed unit ball B̄(0; 1) := {x ∈ X : ‖x‖ ≤ 1} is weakly sequentially compact.

Proof. We first show that any bounded sequence {xk} in X has a weakly conver-
gent subsequence. Let X0 := span({xk}). Since X0 is a closed linear subspace
of X, we know X0 is reflexive, i.e., X∗∗0 = X0, by Theorem 5.26 (Pettis). Since
X0 is separable, we know X∗∗0 is separable. By Theorem 5.25 (Banach), X∗0 is
separable.

We consider gk ∈ X∗∗0 , such that 〈gk, f0〉 = 〈f0, xk〉 for all f0 ∈ X∗0 (i.e.,
xk 7→ gk is the canonical mapping), then we know {gk} is bounded in X∗∗0

since {xk} is bounded in X0. Thus, by Theorem 5.24, we know {gk} has a
weak* convergent subsequence, i.e., there exist a subsequence {gkj} and g ∈ X∗∗0
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such that limj〈gkj , f0〉 = 〈g, f0〉 for all f0 ∈ X∗0 . Let x0 ∈ X0 be such that
〈g, f0〉 = 〈f0, x0〉 for all f0 ∈ X∗0 (i.e., g is the canonical map of x0). Thus we
have

lim
j→∞
〈f0, xkj 〉 = lim

j→∞
〈gkj , f0〉 = 〈g, f0〉 = 〈f0, x0〉

for all f0 ∈ X∗0 .
We also need to show that 〈f, xkj 〉 → 〈f, x0〉 for all f ∈ X∗. To this end,

for any f ∈ X∗, let T : X∗ → X∗0 be defined by Tf := f |X∗0 , i.e., Tf is
the restriction of f onto X∗0 . Then 〈f, xkj 〉 = 〈Tf, xkj 〉 → 〈Tf, x0〉 = 〈f, x0〉.
Therefore xkj ⇀ x. To this point, we have showed that any bounded sequence
in X has at least one weakly convergent subsequence.

Now we show that if {xk} ⊂ B̄(0; 1) ⊂ X and x0 is a weak accumulation
point (the limit of a weakly convergent subsequence of {xk}), then x ∈ B̄(0; 1)
(we assume x0 6= 0 otherwise there is already x0 ∈ B̄(0; 1)). To this end, we
know by Corollary 4.4 that there exists f ∈ X∗ such that f(x0) = ‖x0‖ and
‖f‖ = 1. Hence

‖x0‖ = f(x0) = lim
j→∞

f(xkj ) ≤ ‖f‖ lim
j→∞

‖xkj‖ ≤ ‖f‖ = 1.

Therefore x0 ∈ B̄(0; 1), which completes the proof.

Remark. Theorem 5.27 (Eberlein-Šmulian) implies that any bounded sequence
has a weakly convergent subsequence. The converse of the theorem also holds.

Theorem 5.28 (Alaoglu). Let X be a B* space. Then B̄∗(0; 1) := {f ∈ X∗ :
‖f‖ ≤ 1} is weak* sequentially compact.

Proof. First of all, note that, for any x ∈ X and f ∈ B̄∗1 := B̄∗(0; 1), there is
|f(x)| ≤ ‖f‖‖x‖ ≤ ‖x‖.

Denote Ix := [−‖x‖, ‖x‖] ⊂ R, and let P :=
∏
x∈X Ix be the product space

equipped with the topology such that p(k) → p in P if p
(k)
x → px for each x ∈ X,

where p(k) = (p
(k)
x )x∈X , p = (px)x∈X ∈ P . Moreover, by Tychonoff theorem, P

is compact.
Let B̄∗1 be equipped with the weak* topology. Define F : B̄∗1 → P by

F (f) := (f(x))x∈X ∈ P for any f ∈ B̄∗1 . Then it is clear that F is injective and
continuous under the topologies specified above. Now we need to show F (B̄∗1)
is compact. Since P is compact, it suffices to show that F (B̄∗1) is closed.

Let p ∈ F (B̄∗1) ⊂ P be arbitrary. Then let f : X → R be defined by
f(x) := px for every x ∈ X and fk ∈ B̄∗1 be such that F (fk)→ p in P . Now we
just need to show that f ∈ B̄∗1 . To see this, for any x, y ∈ X, we have fk(x+y) =
fk(x) + fk(y) → px + py = f(x) + f(y) and fk(x + y) → px+y = f(x + y) as
k → ∞. Hence f(x + y) = f(x) + f(y). Similarly, we can show f(cx) = cf(x)
for all c ∈ R and x ∈ X. Therefore f is linear. Moreover, |f(x)| = |px| ≤ ‖x‖.
Hence f ∈ B̄∗1 .

Remark. Theorem 5.28 (Alaoglu) implies that any bounded sequence in X∗

has a weak* convergent subsequence.
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6 Spectral Theory of Linear Operators

6.1 Basics of Banach algebra

Definition 6.1 (Banach algebra). A normed algebra L with norm ‖·‖ is a unital
associative algebra over C with unit I such that ‖I‖ = 1 and ‖AB‖ ≤ ‖A‖‖B‖
for all A,B ∈ L. If L is complete under ‖ · ‖, then L is called a Banach algebra.

Example 6.2. Let X be a Banach space, then L := L(X) with the operator
norm ‖ · ‖ is a Banach algebra.

Definition 6.3 (Inverse). An element T of a Banach algebra L is said to be
invertible if there exists S ∈ L, often denoted by T−1, such that ST = TS = I.
We say T has left inverse (resp. right inverse) if there exists A ∈ L (resp.
B ∈ L) such that AT = I (resp. TB = I). Note that if T has both left and
right inverses, then T is invertible, and the left and right inverses are identical:

A = AI = A(TB) = (AT )B = IB = B,

which is just T−1. It is also clear that, if T and U are both invertible, then TU
is invertible and (TU)−1 = U−1T−1.

Theorem 6.4. If T and S commute, i.e., TS = ST , and TS is invertible, then
T and S are invertible.

Proof. Let U be the inverse of TS, then T (SU) = (TS)U = I and (US)T =
U(ST ) = U(TS) = I. Hence SU is the right inverse of T and US is the left
inverse of T . Therefore T is invertible. Similar for S.

Theorem 6.5. Suppose T ∈ L is invertible, then T − A is invertible for any
A ∈ B(0; 1/‖T−1‖).

Proof. 1. We first consider the case of T = I. We claim that I −B is invertible
for any B satisfying ‖B‖ < 1, and moreover (I − B)−1 =

∑∞
k=0B

k (called the
Neumann series of B). To see this, notice that

∥∥∥ k+p∑
i=k+1

Bi
∥∥∥ ≤ k+p∑

i=k+1

‖B‖i ≤
∞∑

i=k+1

‖B‖i → 0,

as k →∞ for any p ∈ N. Hence S :=
∑∞
k=0B

k converges and S ∈ L. Therefore

BS = B

∞∑
k=0

Bk =

∞∑
k=1

Bk = S − I,

which implies that (I −B)S = I. Similarly, we can show S(I −B) = I. Hence
the claim holds.

2. Now we consider the general case where T is invertible. Consider T −
A = T (I − T−1A), then ‖T−1A‖ ≤ ‖T−1‖‖A‖ < 1 for all A satisfying ‖A‖ <
1/‖T−1‖. Hence we know I − T−1A is invertible from above and thus T −A =
T (I − T−1A) is invertible by noticing that T is invertible.
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Remark. Theorem 6.5 implies that, if T is invertible, then so are all elements
in the open neighborhood B(T ; 1/‖T−1‖) of T .

6.2 Decomposition of spectrum

Definition 6.6 (Spectrum of linear operator). Let X be a (complex) Banach
space, D ⊆ X, and T : D → X a closed linear operator. Then we define
• Point spectrum σp(T ) := {λ ∈ C : λI − T is not invertible}. We call
λ ∈ σp(T ) an eigenvalue of T .

• Resolvent set ρ(T ) := {λ ∈ C : λI − T : D → X is bijective}. We call
λ ∈ ρ(T ) a regular value of T .

• Continuous spectrum σc(T ) := {λ ∈ C : λI−T is injective, (λI−T )(D) (
X, (λI − T )(D) = X}.

• Residual spectrum σc(T ) := {λ ∈ C : λI − T is injective, (λI − T )(D) (
X}.

Then we have the disjoint union

C = ρ(T ) ∪ σp(T ) ∪ σc(T ) ∪ σr(T )︸ ︷︷ ︸
=:σ(T )

,

where σ(T ) is called the spectrum of T .

Remark. Note that λ ∈ σp(T ) iff (λI − T )−1 does not exist iff λI − T is not
injective iff there exists nonzero x ∈ X such that Tx = λx.

Remark. Note that if λ ∈ ρ(T ) then (λI−T )−1 : X → D is bijective. Moreover,
we can show that (λI − T )−1 is closed. To see this, let yk → y and xk :=
(λI − T )−1yk → x, then we have λxk − Txk = yk → y, which thus implies
Txk → λx− y. Since T is closed, we know Tx = λx− y, i.e., (λI − T )−1y = x,
which proves our claim.

From the arguments above, we can also see that D is closed and hence is
complete. Moreover, since X is closed, by Theorem 3.36 (Closed graph), we
know (λI − T )−1 ∈ L(X,D). By Theorem 3.29, we know λI − T ∈ L(D,X).

Remark. If dim(X) <∞, then C = ρ(T )∪σp(T ). Otherwise, σc(T ) and σr(T )
may be nonempty.

Example 6.7 (Point spectrum). Let X = L2([0, 1]), D = {x ∈ C2([0, 1]) :
x(0) = x(1) = 0, x′(0) = x′(1) = 0}, and T : D → X be defined by (Tx)(t) =
−x′′(t) for all t ∈ [0, 1] and x ∈ D. Then T is a closed linear operator, and
σ(T ) = σp(T ) = Λ := {(2kπ)2 : k ∈ N ∪ {0}}.

Proof. For any k ∈ N ∩ {0}, let x(t) = cos(2πkt) which is nonzero. Then
(Tx)(t) = −x′′(t) = (2kπ)2x(t). Hence Λ ⊆ σp(T ).

If λ ∈ C \ Λ, then for any f ∈ X, the equation (T − λI)x = f has a unique
solution:

x(t) =
∑
k∈Z

ck
(2kπ)2 − λ2

e2kπtι, where ck =

∫ 1

0

f(t)e−2kπtι dt.
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(To see this, apply Fourier transform to both sides and solve for x, then ck are
the Fourier coefficients of f under the Fourier basis {e2kπtι : k ∈ Z} of X.) Also
note that

‖x‖2 =
∑
k∈Z

|ck|2

|(2kπ)2 − λ2|2
≤Mλ

∑
k∈Z
|ck|2 = Mλ‖f‖2,

where Mλ := supk∈Z |(2kπ)2 − λ2|−2 < ∞. Therefore λ ∈ ρ(T ). Hence Λ =
σp(T ) = σ(T ).

Example 6.8 (Residual spectrum). Let X = C([0, 1]) and T : X → X be
defined by (Tx)(t) := tx(t) for any t ∈ [0, 1] and x ∈ X. Then σ(T ) = σr(T ) =
[0, 1].

Proof. If λ ∈ C \ [0, 1], then [(λI − T )−1x](t) = x(t)
λ−t , and ‖(λI − T )−1x‖ ≤

(sup0≤t≤1 |λ− t|−1)‖x‖. Hence λI − T is bijective and λ ∈ ρ(T ).
If λ ∈ [0, 1], then (λI − T )x = 0 has a unique solution x = 0 and hence

λI − T is injective. Moreover, for any y ∈ (λI − T )(X), there exists x ∈ X,
such that y(t) = (λ− t)x(t) for all t ∈ [0, 1]. Hence y(λ) = 0. This implies that
all nonzero functions in X must not be in (λI − T )(X) (e.g., 1 /∈ (λI − T )(X)).
Hence λ ∈ σr(T ) ⊆ σ(T ) ⊆ [0, 1]. Therefore σ(T ) = σr(T ) = [0, 1].

Example 6.9 (Continuous spectrum). Let X = L2([0, 1]) and T : X → X be
defined by (Tx)(t) := tx(t) for any t ∈ [0, 1] and x ∈ X. Then σ(T ) = σc(T ) =
[0, 1].

Proof. Similar as in the previous example, if λ ∈ C\[0, 1], then [(λI−T )−1x](t) =
x(t)
λ−t , and ‖(λI − T )−1x‖ ≤ (sup0≤t≤1 |λ− t|−1)‖x‖. Hence λ ∈ ρ(T ).

If λ ∈ [0, 1], then we claim that 1 /∈ (λI − T )(X): if there exists x ∈ X
such that (λI − T )x = 1, then x(t) = 1

λ−t /∈ X, which is a contradiction. On

the other hand, for any y ∈ X, let Ek = (λ − 1
k , λ + 1

k ) ∩ [0, 1] and define
xk(t) := 1

λ−ty(t)χEck(t). Then

‖(λI − T )(xk)− y‖2 =

∫ 1

0

|y(t)χEk(t)|2 dt =

∫ λ+ 1
k

λ− 1
k

|y(t)|2 dt→ 0

as k → ∞. Hence y ∈ (λI − T )(X). Hence λ ∈ σc(T ) ⊆ σ(T ) ⊆ [0, 1].
Therefore σ(T ) = σc(T ) = [0, 1].

6.3 Gelfand theorem

Definition 6.10 (Resolvent). Let X be a Banach space and T : X → X be a
closed linear operator. Then the resolvent of T is the mapping RT : ρ(T ) →
L(X) defined by RT (λ) := (λI − T )−1 for every λ ∈ ρ(T ).

Lemma 6.11. Suppose T ∈ L(X) and ‖T‖ < 1, then (I − T )−1 ∈ L(X) and
‖(I − T )−1‖ ≤ 1/(1− ‖T‖).
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Proof. By Theorem 6.5 we know (I − T )−1 ∈ L(X). For any y ∈ X, let
x = (I − T )−1y, then

‖y‖ = ‖(I − T )x‖ ≥ ‖x‖ − ‖Tx‖ ≥ ‖x‖ − ‖T‖‖x‖ = (1− ‖T‖)‖x‖.

Hence ‖(I − T )−1y‖ = ‖x‖ ≤ ‖y‖
1−‖T‖ . Therefore ‖(I − T )−1‖ ≤ 1

1−‖T‖ .

Remark. Recall that (I−T )−1 =
∑∞
k=0 T

k, and hence ‖(I−T )−1‖ ≤
∑∞
k=0 ‖T‖k =

1
1−‖T‖ . We can also prove the lemma above using Banach contractive mapping

theorem.

Corollary 6.12 (ρ(T ) is open in C). Let X be a Banach space. If T : X → X
is a closed linear operator, then ρ(T ) is open in C.

Proof. Let λ0 ∈ ρ(T ) be arbitrary. Then (λ0I − T )−1 ∈ L(X). Note also that

λI − T = (λ− λ0)I + (λ0I − T ) = (λ0I − T )(I + (λ− λ0)(λ0I − T )−1).

For any λ ∈ C such that |λ− λ0| < 1/‖(λ0I − T )−1‖, we have ‖(λ− λ0)(λ0I −
T )−1‖ < 1. Hence by Lemma 6.11 we know U := I + (λ − λ0)(λ0I − T )−1 is
invertible. Thus (λI − T )−1 = U−1(λ0I − T )−1 ∈ L(X). Therefore λ ∈ ρ(T ).
This implies that B(λ0; 1/‖(λ0I − T )−1‖) ⊆ ρ(T ). Hence ρ(T ) is open.

Lemma 6.13 (First resolvent identity). For any λ, µ ∈ ρ(T ), there is RT (λ)−
RT (µ) = (µ− λ)RT (λ)RT (µ).

Proof. We have

(λI − T )−1 = (λI − T )−1(µI − T )(µI − T )−1

= (λI − T )−1[(µ− λ)I + (λI − T )](λI − T )−1

= (µ− λ)(λI − T )−1(µI − T )−1 + (µI − T )−1,

which is the claimed identity.

Theorem 6.14 (Analyticity of resolvent). The resolvent RT : ρ(T )→ L(X) is
an analytic function.

Proof. 1. We first show that RT is continuous. Let λ0 ∈ ρ(T ) be arbitrary. Then
by Corollary 6.12, we know for any λ ∈ C satisfying |λ− λ0| < (2‖RT (λ0)‖)−1,
there is

‖RT (λ)‖ = ‖RT (λ0)‖‖(I + (λ− λ0)RT (λ0))−1‖ ≤ 2‖RT (λ0)‖.

Then by Lemma 6.13, we know

‖RT (λ)−RT (λ0)‖ = ‖RT (λ0)‖‖RT (λ)‖|λ− λ0| ≤ 2‖RT (λ0)‖2|λ− λ0|,

which implies that RT is continuous at λ0. As λ0 is arbitrary, we know RT is
continuous in ρ(T ).
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2. Now we show that RT is analytic. By Lemma 6.13, we have

lim
λ→λ0

RT (λ)−RT (λ0)

λ− λ0
= − lim

λ→λ0

RT (λ0)RT (λ) = −RT (λ0)2,

where the last equality is due to continuity of RT at λ0. Hence RT is an analytic
function in ρ(T ).

Remark. Differentiability in C implies analyticity. We can also prove the ana-
lyticity from another point of view: for any λ0 ∈ ρ(T ) and h ∈ (0, 1/‖RT (λ0)‖),
we have

RT (λ0 − h) = ((λ0 − h)I − T )−1

=
(
(λ0I − T )[I − h(λ0I − T )−1]

)−1
= [I − h(λ0I − T )−1]−1(λ0I − T )−1

=
∑∞

k=0
[h(λI − T )−1]k(λI − T )−1 =

∑∞

k=0
RT (λ0)k+1hk.

That is, RT can be expanded as a convergent power series in an open neighbor-
hood of λ0, which means that RT is an analytic function.

Theorem 6.15. If T ∈ L(X), then σ(T ) 6= ∅.

Proof. If not, then ρ(T ) = C and thus RT : C→ L(X) is analytic. Furthermore,
for any positive number λ0 > ‖T‖, we know RT (λ) = (λI−T )−1 = λ−1(I− T

λ )−1

and therefore

‖RT (λ)‖ ≤ |λ|−1 1

1− ‖T/λ‖
=

1

|λ| − ‖T‖
≤ 1

λ0 − ‖T‖
<∞,

for any |λ| ≥ λ0. On the other hand, RT is bounded in B̄(0; |λ0|) since RT is
continuous. Therefore, RT is bounded on C. For any f ∈ L(X)∗, we define
wf : C→ C by wf (λ) := f(RT (λ)). Then wf is analytic and bounded on C. By
Liouville theorem, wf must be a constant which depends on f but not λ. By
Corollary 4.3, we know RT is constant (if not, then RT (λ1) = RT (λ2) for some
λ1 6= λ2, and they can be distinguished by some f ∈ L(X)∗ due to Corollary
4.3). Therefore, by Lemma 6.13, we have RT (λ)RT (µ) = 0 ∈ L(X) for any
λ, µ ∈ C, which contradicts to RT (λ) being invertible for any λ ∈ C.

Remark. From the proof above, we can see that, if |λ| ≥ ‖T‖, then RT (λ) ∈
L(X) and hence λ ∈ ρ(T ). Therefore C \ B(0; ‖T‖) ⊆ ρ(T ) and hence σ(T ) ⊆
B̄(0; ‖T‖), which means that σ(T ) is bounded. Since ρ(T ) is open, we know
σ(T ) is closed and thus compact in C. Next we want to obtain a tight bound
of σ(T ).

Definition 6.16 (Spectral radius). Let X be a Banach space and T ∈ L(X),
then rσ(T ) := sup{|λ| : λ ∈ σ(T )} is called the spectral radius of T . Note that
rσ(T ) ≤ ‖T‖ from the remark above.

Theorem 6.17 (Gelfand). Let X be a Banach space and T ∈ L(X), then
rσ(T ) = limk→∞ ‖T k‖1/k.
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Proof. For notation simplicity, we denote r := rσ(T ), l := lim infk→∞ ‖T k‖1/k,
and u := lim supk→∞ ‖T k‖1/k. Then it suffices to show l = r = u.

1. We first show that r ≤ u. To this end, recall that RT (λ) = (λI −
T )−1 =

∑∞
k=0

Tk

λk+1 for |λ| > ‖T‖. By Cauchy-Hadamard theorem (the radius

of convergence of the power series
∑∞
k=0 ckz

k is (lim supk |ck|1/k)−1), we know
RT (λ) ∈ L(X) if |λ|−1 < u−1 or |λ| > u. In this case, λ ∈ ρ(T ), and hence
r ≤ u.

2. Next we show r ≥ u. For any ε > 0 and f ∈ L(X)∗, we define the mapping
wf : ρ(T )→ C by wf (λ) := f(RT (λ)). Therefore wf (r+ ε) =

∑∞
k=0 f(T k)/(r+

ε)k+1 <∞, which implies that∣∣∣ f(T k)

(r + ε)k+1

∣∣∣ =
∣∣∣f ( T k

(r + ε)k+1

)∣∣∣ =
∣∣∣〈 T k

(r + ε)k+1
, f
〉∣∣∣ <∞,

where we identify T k/(r + ε)k+1 with its canonical image in L(X)∗∗. Then by
Theorem 3.37 (Uniform boundedness), we know there exists M > 0 such that∥∥∥ T k

(r + ε)k+1

∥∥∥ =
‖T k‖

(r + ε)k+1
≤M, ∀ k ∈ N.

Therefore r+ε ≥ lim supk ‖T k‖1/k = u. Since ε > 0 is arbitrary, we know r ≥ u.
3. Now we only need to show r ≤ l. Note that, for any k ∈ N, there is

λkI − T k = (λI − T )Pk(λ;T ) = Pk(λ;T )(λI − T ),

where Pk(λ;T ) :=
∑k
j=1 λ

j−1T k−j . Hence, if λk ∈ ρ(T k), then (λkI − T k)−1 ∈
L(X). By Theorem 6.4, we know (λI − T )−1 ∈ L(X) and hence λ ∈ ρ(T ).
Therefore, if λ ∈ σ(T ), then λk ∈ σ(T k) and hence |λk| ≤ ‖T k‖. This implies
that |λ| ≤ ‖T k‖1/k for all k ∈ N, and thus |λ| ≤ lim infk ‖T k‖1/k = l. Therefore
r ≤ l.

Example 6.18 (Spectrum decomposition). Let X = l2 and T ∈ L(X) be
defined by Tx := (0, x1, x2, . . . ) for any x = (x1, x2, . . . ) ∈ X. Namely, T is
the right shift operator. Then σp(T ) = ∅, σc(T ) = {λ ∈ C : |λ| = 1}, and
σr(T ) = {λ ∈ C : |λ| < 1}.
Proof. Note that ‖T‖ = 1, and therefore σ(T ) ⊆ B̄(0; 1). Therefore, we only
need to check λ satisfying |λ| ≤ 1.

1. We first check the case where |λ| < 1. Specifically, we claim that, if
|λ| < 1, then (λI − T )(X) = span(z)⊥ where z := (1, λ̄, λ̄2, . . . ) ∈ X.

Suppose y = (y1, y2, . . . ) ∈ (λI−T )(X), then there exists x = (x1, x2, . . . ) ∈
X such that y = (λI−T )x, i.e., yk = λxk−xk−1 for all k ∈ N (we define x0 = 0
for convenience). Notice that

k∑
i=1

λi−1yi = y1 + λy1 + · · ·+ λk−1yk

= λx1 + λ(λx2 − x1) + · · ·+ λk−1(λxk − xk−1)

= λkxk → 0,
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as k →∞ (because x ∈ X and hence xk are bounded). Therefore we know

〈y, z〉 =

∞∑
k=1

ykzk =

∞∑
k=1

λk−1yk = 0.

Therefore y ⊥ z. Hence (λI − T )(X) ⊂ span(z)⊥.
Now suppose y ⊥ z. Then we need to show that y ∈ (λI − T )(X). To this

end, let x = (x1, x2, . . . ) be such that xk = −
∑∞
j=0 λ

jyk+j−1 for each k ∈ N. If
λ = 0, then obviously x = −Ty = (λI − T )y. If λ 6= 0, then we have

|xk|2 =
∣∣∣ ∞∑
j=0

λjyk+j+1

∣∣∣2 ≤ ( ∞∑
j=0

|λ|j
)( ∞∑

j=0

|λ|j |yk+j+1|2
)

where we used Cauchy-Schwarz inequality. Therefore, we obtain

∞∑
k=1

|xk|2 ≤
( ∞∑
j=0

|λ|j
)( ∞∑

k=1

∞∑
j=0

|λ|j |yk+j+1|2
)
≤
( ∞∑
j=0

|λ|j
)2

‖y‖2 <∞

where we exchanged the summations in k and j to deduce the second inequality.
Therefore x ∈ X. Similar as above, we know

∑∞
k=1 λ

k−1yk = 0 since y ∈ X.
Hence

xk = −
∞∑
j=0

λjyk+j+1 = −λ−k
∞∑
j=0

λk+jyk+j+1 = −λ−k
∞∑

j=k+1

λj−1yj

= −λ−k
(

0−
k∑
j=1

λj−1yj

)
=

k∑
j=1

λ−k+j−1yj =

k∑
j=1

λ−jyk−j+1.

Therefore yk = λxk − xk−1 for all k ∈ N, which implies y = (λI − T )x. Hence
span(z)⊥ ⊆ (λI − T )(X).

In conclusion, we have (λI − T )(X) = span(z)⊥. Therefore (λI − T )(X) (
X. Thus, {λ ∈ C : |λ| < 1} ⊂ σr(T ).

2. Now we check the case where |λ| = 1. We first consider the case λ = 1.
If y = (I − T )(X), then there exists x ∈ X such that yk = xk − xk−1 for all

k ∈ N. Therefore xk =
∑k
i=1 yi, and thus we know

(I − T )(X) =
{
y ∈ X :

∞∑
k=1

∣∣∣ k∑
i=1

yi

∣∣∣2 <∞} ( X.

Now we shall show (I − T )(X) = X. For any ξ = (ξ1, ξ2, . . . ) ∈ X and any
ε > 0, we know there exists K = K(ξ, ε) ∈ N such that

∑∞
k=K+1 |ξk|2 < ε2/6.

Denote c :=
∑K
k=1 ξk and choose m ∈ N sufficiently large such that |c|

2

m < ε2

6 .
Define y = (y1, y2, . . . ) where

yk =


ξk, if 1 ≤ k ≤ K,
−c/m, if K + 1 ≤ k ≤ K +m,

0, if K +m < k.
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Then there is

∞∑
k=1

∣∣∣ k∑
i=1

yi

∣∣∣2 =

K∑
k=1

∣∣∣ k∑
i=1

ξi

∣∣∣2 +

K+m∑
k=K+1

∣∣∣c− (k −K)
c

m

∣∣∣2 <∞,
which means that y ∈ X. Moreover,

‖ξ − y‖2 =

∞∑
k=1

|ξk − yk|2 =

K+m∑
k=K+1

∣∣∣ξk − c

m

∣∣∣2 +

∞∑
k=K+m+1

|ξk|2

≤
K+m∑
k=K+1

(
2|ξk|2 + 2

∣∣∣ c
m

∣∣∣2)+

∞∑
k=K+m+1

|ξk|2

≤ 2c2

m
+ 2

∞∑
k=K+1

|ξk|2 < ε2,

where we used |a− b|2 ≤ 2|a|2 + 2|b|2. Hence (I − T )(X) = X.
For general λ with |λ| = 1, we can convert it to the case of λ = 1. To see

this, notice that

η = (λI − T )ξ ⇐⇒ ηk = λξk − ξk−1

⇐⇒ λk−1ηk = λkξk − λk−1ξk−1

⇐⇒ yk = xk − xk−1

⇐⇒ y = (I − T )x,

where xk := λkξk and yk := λk−1ηk for all k ∈ N. Therefore the proof reduces
to the case with λ = 1. In conclusion, we have {λ ∈ C : |λ| = 1} ⊂ σc(T ).

3. Combining the results above and that σ(T ) = σp(T ) ∪ σc(T ) ∪ σr(T ) ⊂
B̄(0; 1), we know σc(T ) = {λ ∈ C : |λ| = 1}, and σr(T ) = {λ ∈ C : |λ| < 1}, and
σp(T ) = ∅. The spectral radius is rσ(T ) = 1. Furthermore, ρ(T ) = C \ σ(T ) =
{λ ∈ C : |λ| > 1}.
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