
Analysis – Exercise Problems and Solutions

Real and Complex Numbers

1. If r is a nonzero rational number and x is irrational, prove that r + x and rx are irrational.

2. Convert 0.456123123123 · · · into the form of m/n where m and n are co-prime integers. Why does the
presence of a repeating block in the decimal form imply that the number is rational?

3. Give an example of two irrational numbers whose product is rational. Is it true that for every irrational
number x there exists another irrational number y such that xy is rational?

4. Let p denote a prime number. Prove that
√
p is irrational.

5. Prove that there is no rational number whose square is 12.

6. Prove that for every n ∈ N,
√
n+ 1 +

√
n− 1 is irrational.

7. Prove that the least upper bound of a set in an ordered set is unique.

8. Prove that a nonempty finite set in an ordered set contains its supremum and infimum.

9. Let A ⊂ R and A nonempty, and denote −A = {−x | x ∈ A}. Prove that inf A = − sup(−A).

10. Find the supremum and infimum of set {x ∈ R | 3x2 + 3 < 10x}. Do they belong to this set?

11. Find the supremum and infimum of set {1/n | n ∈ N}. Do they belong to this set?

12. Let A,B ⊂ R and C = {x + y | x ∈ A, y ∈ B}. How are the numbers inf A, inf B, and inf C related?
How are the numbers supA, supB, and supC related?

13. Let A,B ⊂ R and C = A∩B, how are the numbers inf A, inf B, and inf C related? If C = A∪B, how
are the numbers supA, supB, and supC related?

14. Let A ⊂ R, and A2 = {x2 | x ∈ A}. Is there any relation between supA and sup(A2)?

15. Let a, b ∈ R and b− a > 1. Prove that there exists at least one integer c ∈ N such that

16. Prove that there exists a real number x > 0 such that x3 = 5.

17. Under what condition is supA not a limit point of the set A?

18. Prove that no order can be defined in the set of complex numbers to turn it into an ordered field.

19. Suppose z = (a, b), w = (c, d), where a, b, c, d ∈ R. Define z < w if a < c and also if a = c but b < d.
Prove that this turns the set of complex numbers into an ordered set (this is called the dictionary order
or lexicographic order). Does this set have the least-upper-bound property?

20. Let zi ∈ C for i = 1, 2, · · · , n. Prove that |
∑

i zi| ≤
∑

i |zi|.

21. Prove that ||z| − |w|| ≤ |z|+ |w| for all z, w ∈ C.

22. Suppose that z ∈ C and |z| = 1. Compute |1 + z|2 + |1− z|2.

23. Prove that |x + y|2 + |x− y|2 = 2(|x|2 + |y|2) for all x,y ∈ Rn.

24. If n ≥ 2 and x ∈ Rn, prove that there exists y ∈ Rn such that y 6= 0 but x · y = 0. Is this also true
for n = 1?

25. Suppose that a,b ∈ Rn. Find c ∈ Rn and r > 0 such that |x− a| = 2|x− b| if and only if |x− c| = r.

Numerical Sequences



1. Give the definition in formula of the sequence {2, 1, 4, 1, 6, 1, 8, 1, · · · }.

2. Find x ∈ R and an N ∈ N such that |xn − x| ≤ 10−3 for all n ≤ N :

(a) xn = 2√
n+1

.

(b) xn = 1− 1
n3 .

(c) xn = 2 + 2−n.

3. Prove convergence or divergence of the sequences defined as follows.

(a) xn = 2n2+5n−6
n3 .

(b) xn = 3n5

6n+11 .

(c) xn = n
√
n+2+1
n2+4 .

(d) xn =
√
n(
√
n+ 1−

√
n).

4. Suppose that xn ∈ Z. Under what conditions does this sequence converge?

5. Show that the sequences {xn} and {yn} where yn = xn+100 for all n ∈ N are either both convergent or
both divergent.

6. Let x1 = 1 and xn+1 =
√
xn + 1. List the first few terms of this sequence. Prove that the sequence

converges to (1 +
√

5)/2.

7. Determine which of the followings about numerical sequences are true and justify your answer.

(a) If {xn} is unbounded, then either limn→∞ xn =∞ or limn→∞ xn = −∞.

(b) If {xn} is unbounded, then limn→∞ |xn| =∞.

(c) If {xn} and {yn} are both bounded, then so is {xn + yn}.
(d) If {xn} and {yn} are both unbounded, then so is {xn + yn}.
(e) If {xn} and {yn} are both bounded, then so is {xnyn}.
(f) If {xn} and {yn} are both unbounded, then so is {xnyn}.

8. Determine which of the followings about numerical sequences are true and justify your answer.

(a) If {xn} and {yn} are both divergent, then so is {xn + yn}.
(b) If {xn} and {yn} are both divergent, then so is {xnyn}.
(c) If {xn} and {xn + yn} are both convergent, then so is {yn}.
(d) If {xn} and {xnyn} are both convergent, then so is {yn}.
(e) If {xn} is convergent, then so is {x2n}.
(f) If {xn} is convergent, then so is {1/xn}.
(g) If {x2n} is convergent, then so is {xn}.

9. Suppose that a sequence {xn} satisfies |xn+1− xn| < 2−n for all n ∈ N. Prove that {xn} is Cauchy. Is
this result true under the condition |xn+1 − xn| < 1

n?

10. Let x1 = 1 and xn+1 = (xn + 1)/3 for all n ∈ N. Find the first five terms in this sequence. Use
induction to show that xn > 1/2 for all n ∈ N. Prove that this sequence is non-increasing, convergent,
and find the limit.

11. Let x1 = 1 and xn+1 = (1− 1
4n2 )xn for n ∈ N. Determine if the sequence converges.

12. Which statements are true?

(a) a sequence is convergent if and only if all its subsequences are convergent.



(b) a sequence is bounded if and only if all its subsequences are bounded.

(c) a sequence is monotone if and only if all its subsequences are monotone.

(d) a sequence is divergent if and only if all its subsequences are divergent.

13. The sequence {xn} has the property that ∀ε > 0, ∃N ∈ N, such that |xn+1 − xn| < ε for all n ≥ N . Is
this sequence necessarily a Cauchy sequence?

14. Prove that the convergence of {xn} implies the convergence of {|xn|}. Is the converse true?

15. Calculate limn→∞(
√
n2 + n− n).

16. Let x1 =
√

2 and xn+1 =
√

2 +
√
xn for all n ∈ N. Prove that {xn} converges and xn < 2 for all

n ∈ N.

17. Find the upper and lower limits of the sequence {xn} defined by x0 = 0, x2m = x2m−1/2, and
x2m+1 = 1

2 + x2m for all m ∈ N.

18. For any two real numerical sequences {xn}, {yn}, prove that

lim sup
n→∞

(xn + yn) ≤ lim sup
n→∞

xn + lim sup
n→∞

yn

19. Prove that the convergence of
∑∞

n=1 an implies the convergence of
∑∞

n=1

√
an/n if an ≥ 0.

20. If
∑∞

n=1 an converges and {bn} is monotonic and bounded, prove that
∑∞

n=1 anbn converges.

21. Suppose that {xn} and {yn} are Cauchy. Prove that {|xn − yn|} is Cauchy.

Basic Topology

1. Find all the interior points, isolated points, accumation points and boundary points for the following
sets:

(a) N,Q,R.

(b) (a, b), (a, b] and [a, b] as intervals in R.

(c) R \ N.

(d) R \Q.

2. Give an example of:

(a) A set with no accumulation points.

(b) A set with infinitely many accumulation points, none of which belong to the set.

(c) A set that contains some, but not all, of its accumulation points.

3. Give an example of a nonempty set with the following properties or explain why no such set can exist:

(a) a set with no accumulation points and no isolated points.

(b) a set with no interior points and no isolated points.

(c) a set with no boundary points and no isolated points.

4. Is every interior point of a set A an accumulation point? Is every accumulation point of a set A an
interior point?

5. Let x be an interior point of set A and suppose {xn} is a sequence of points, not necessarily in A, but
converging to x. Show that there exists an integer N such that xn ∈ A for all n ≥ N .

6. Prove that a set F is closed if and only if F contains all its boundary points.



7. Find the interior and boundary of each of the sets {1/
√
n : n ∈ N} and {x ∈ Q : 0 < x2 < 2}.

8. Is the set of irrational real numbers countable? Justify your claim.

9. Construct a bounded set of real numbers with exactly three limit points.

10. Let E′ be the set of all limit points of a set E. Prove that E′ is closed. Prove that E and E := E ∪E′
have the same limit points. Do E and E′ always have the same limit points?

11. Let A1, A2, · · · be subsets of a metric space. (a) If Bn = ∪ni=1Ai, prove that Bn = ∪ni=1Ai, for
n = 1, 2, · · · . (a) If B = ∪∞i=1Ai, prove that ∪∞i=1Ai ⊂ B. Show, by an example, that this inclusion can
be proper.

12. Is every point of every open set E ⊂ R2 a limit point of E? Answer the same question for closed sets
in R2.

13. Let X be an infinity set. For p, q ∈ X, define d(p, q) = 1 if p 6= q and 0 otherwise. Prove that this is a
metric. Which subsets of the resulting metric space are open? Which are closed? Which are compact?

14. For x, y ∈ R, define d1(x, y) = (x − y)2, d2(x, y) =
√
|x− y|, d3(x, y) = |x2 − y2|, d4(x, y) = |x − 2y|,

and d5(x, y) = |x−y|
1+|x−y| . Determine, for each of these, whether it is a metric or not.

15. Prove directly from the definition that the set E := {0} ∪ { 1n : n ∈ N} is compact.

16. Construct a compact set of real numbers whose limit points form a countable set.

17. Give an example of an open cover of the segment (0, 1) which has no finite sub-cover.

18. Regard Q, the set of all rational numbers, as a metric space with d(x, y) = |x− y|. Let E be the set of
all x ∈ Q such that 2 < x2 < 3. Show that E is closed and bounded in Q, but that E is not compact.
Is E open in Q?

Functions and Continuity

1. Suppose f is a real function defined on R which satisfies

lim
h→0

(f(x+ h)− f(x− h)) = 0

for every x ∈ R. Does this imply that f is continuous?

2. If f is a continuous mapping of a metric space X into a metric space Y , prove that f(E) ⊂ f(E) for
every set E ⊂ X. Show, by an example, that f(E) can be a proper subset of f(E).

3. Let f be a continuous real function on a metric space X. Let Z(f) := {x ∈ X : f(x) = 0}. Prove that
Z(f) is closed in X.

4. Let f and g be continuous mappings of a metric space X into a metric space Y , and let E be a dense
set in X. Prove that f(E) is dense in f(X). If g(p) = f(p) for all p ∈ E, prove that g(p) = f(p) for all
p ∈ X.

5. If f is defined on E, the graph of f is the set {(x, f(x)) : x ∈ E}. In particular, if E is a set of real
numbers, and f is real-valued, the graph of f is a subset of the plane. Suppose E is compact, prove
that f is continuous on E if and only if its graph is compact.

6. Let E ⊂ X and if f is a function defined on X, the restriction of f to E is the function g whose
domain is E such that g(p) = f(p) for all p ∈ E. Define f and g on R2 by: f(0, 0) = g(0, 0) = 0,
f(x, y) = xy2/(x2 + y4), g(x, y) = xy2/(x2 + y6) if (x, y) 6= (0, 0). Prove that f is bounded on R2, that
g is unbounded in every neighborhood of (0, 0), and that f is not continuous at (0, 0); nevertheless,
the restrictions of both f and g to every straight line in R2 is continous.



7. Let f be a real uniformly continuous functions on the bounded set E in R. Prove that f is bounded
on E. Show that the conclusion is false if boundedness of E is omitted from the hypothesis.

8. Show that the requirement in the definition of uniform continuity can be rephrased as follows, in terms
of diameters of sets: To every ε > 0, there exists a δ > 0 such that diam(f(E)) < ε for all E ⊂ X with
diam(E) < δ, where diam(E) := sup{d(x, y) : x, y ∈ E} is the diameter of a set E.

9. Suppose f is a uniformly continuous mapping of a metric space (X, d) into a metric space (Y, ρ), and
prove that {f(xn)} is a Cauchy sequence in Y for every Cauchy sequence {xn} in X.

10. Prove that a uniformly continuous function of a uniformly continuously function is uniformly continu-
ous.

11. Let I = [0, 1] be the closed unit interval in R. Suppose f is a continuous mapping of I onto I. Prove
that f(x) = x for at least one x ∈ I.

12. Call a mapping of X into Y open if f(V ) is open in Y whenever V is open in X. Prove that every
continuous open mapping of R to R is monotonic.

13. Let bxc denote the integer that x− 1 < bxc ≤ x, and let (x) = x− bxc denote the fractional part of x.
What discontinuities do the function bxc and (x) have?

14. Every rational number x can be written as m/n for integers m,n such that n > 0 and m,n having
no common divisors. When x = 0, take n = 1. Consider the function f defined on R by f(x) = 1/n
if x = m/n is rational, and f(x) = 0 if x is irrational. Prove that f is continuous at every irrational
point, and that f has simple discontinuity at every rational point.

15. Suppose X,Y, Z are metric spaces, and Y is compact. Let f map X into Y , let g be a continuous one-
to-one mapping of Y into Z, and put h(x) = g(f(x)) for x ∈ X. Prove that f is uniformly continuous
if h is uniformly continuous. Prove also that f is continuous if h is continuous.

Differentiation of real functions

1. Suppose g is a real function on R with bounded derivatives, i.e., ∃M > 0 such that |g′(x)| ≤M for all
x ∈ R. Fix ε > 0 and define f(x) = x+ εg(x). Prove that f is one-to-one if ε is small enough.

2. Suppose f is defined and differentiable for every x > 0, and f ′(x) → 0 as x → ∞. Put g(x) =
f(x+ 1)− f(x). Prove that g(x)→ 0 as x→∞.

3. Suppose that f is defined in a neighborhood of x, and f ′′(x) exists. Show that

lim
h→0

f(x+ h) + f(x− h)− 2f(x)

h2
= f ′′(x).

In addition, show by an example that this limit may exist even if f ′′(x) does not.

4. Suppose a ∈ R and f is twice differentiable in (a,∞), and M0,M1,M2 are the least upper bounds of
|f(x)|, |f ′(x)|, and |f ′′(x)| in (a,∞), respectively. Prove that M2

1 ≤ 4M0M2.

Riemann integrals

1. Suppose f is a bounded real function on [a, b], and f2 is Riemann integrable on [a, b]. Does it follow
that f is Riemann integrable on [a, b]? Does the answer change if we assume that f3 is Riemann
integrable?

2. For fixed a ∈ R, suppose f is integrable on [a, b] for all b > a. Define∫ ∞
a

f(x) dx = lim
b→∞

∫ b

a

f(x) dx

if this limit exists and is finite. In this case we say that the integral on the left converges. Assume that
f(x) ≥ 0 and f is non-increasing on [1,∞). Prove that

∫∞
1
f(x) dx converges if and only if

∑∞
n=1 f(n)

converges.



3. Let p and q be positive real numbers such that 1
p + 1

q = 1. Prove the following statements:

(a) If u ≥ 0 and v ≥ 0, then

uv ≤ up

p
+
vq

q

and the equality holds if and only if up = vq. [Hint: apply the convex function “− log” on both sides.]

(b) If f and g are Riemann integrable, f, g ≥ 0, and
∫ b

a
fp dx =

∫ b

a
gq dx = 1, then

∫ b

a
fg dx ≤ 1.

(c) If f and g are Riemann integrable, then∣∣∣∣∣
∫ b

a

fg dx

∣∣∣∣∣ ≤
(∫ b

a

|f |p dx

)1/p(∫ b

a

|g|q dx

)1/q

.

4. For Riemann integrable function u : [a, b]→ R, define

‖u‖2 :=

(∫ b

a

|u|2 dx

)1/2

.

Suppose f, g, h : [a, b]→ R are integrable, prove the triangle inequality

‖f − h‖2 ≤ ‖f − g‖2 + ‖g − h‖2.

[Hint: take square on both sides and apply the inequality from previous homework].

5. Suppose f : [a, b] → R is bounded and Riemann integrable. Prove that for any ε > 0, there exists
a continuous function g : [a, b] → R such that ‖f − g‖2 < ε. [Hint: Find a suitable partition P =
{x0, x1, . . . , xn} of [a, b] and define

g(t) =
xk+1 − t
xk+1 − xk

f(xk) +
t− xk

xk+1 − xk
f(xk+1),

for t ∈ [xk, xk+1].]

Sequence of Functions

1. Prove that every uniformly convergent sequence of bounded functions is uniformly bounded.

2. If {fn} and {gn} converge uniformly on a subset E of a metric space, prove that {fn + gn} converges
uniformly on E. If in addition, {fn} and {gn} are sequences of bounded functions, prove that {fngn}
converges uniformly on E.

3. Prove a comparison test for uniform convergence of series: if fn and gn are functions and 0 ≤ fn ≤ gn,
and the series

∑
n gn conveges uniformly then so also does the series

∑
n fn.

4. If fn → f uniformly on a domain E and if fn, f never vanish on E (i.e. fn(x) 6= 0 and f(x) 6= 0 for all
x ∈ E and n ∈ N) then does it folow that functions 1/fn converge uniformly to 1/f on E?

5. A function is called “piecewise linear” if it is (i) continuous and (ii) its graph consists of finitely many
linear segments. Prove that a continuous function on an interval [a, b] is the uniform limit of a sequence
of piecewise linear functions.

6. Let fn(x) = x
1+nx2 for all x ∈ R and n = 1, 2, . . . . Show that {fn} converges uniformly to a function

f and that the equation f ′(x) = limn→∞ f ′n(x) is correct if x 6= 0 but false if x = 0.

7. Consider the functions fn : R→ R for n = 1, 2, · · · defined by fn(x) = x
n sin

(
x
n

)
. (a) Give the set of all

points in R where {fn} converges pointwisely. (b) Does {fn} converge uniformly on R? Justify your
claim.



8. If I(x) = 0 if x ≤ 0 and I(x) = 1 if x > 0, and if {xn} is a distinct sequence in [a, b], and
∑

n |cn|
converges, prove that the series f(x) =

∑∞
n=1 cnI(x− xn) for a ≤ x ≤ b converges uniformly, and that

f is continuous for every x 6= xn.

9. Let {fn} be a sequence of functions where fn(x) = x2

x2+(1−nx)2 for x ∈ [0, 1] and n ∈ N. Prove that

{fn} is uniformly bounded but does not contain uniformly convergent subsequence.

10. Prove that every function in an equicontinuous family of functions is uniformly continuous.

11. Suppose {fn} is an equicontinuous sequence of functions on a compact set K and {fn} converges
pointwise on K. Prove that {fn} converges uniformly on K.

12. Let {fn} be a uniformly bounded sequence of functions which are Riemann-integrable on [a, b], and
put Fn(x) =

∫ x

a
fn(t)dt for x ∈ [a, b]. Prove that there exists a subsequence {Fnk

} which converges
uniformly on [a, b].

13. Let f : [a, b] → R be a bounded and Riemann integrable function. Prove that there are polynomials

Pn such that limn→∞
∫ b

a
|f − Pn|2 dx = 0.

14. If f is continuous on [0, 1] and if
∫ 1

0
f(x)xn dx = 0 for all n = 0, 1, 2, . . . . Prove that f(x) = 0 on [0, 1].

[Hint: The integral of the product of f with any polynomial is zero. Use the Weierstrass theorem to

show that
∫ 1

0
f2(x) dx = 0.]

15. Let K be a compact metric space, and S be a subset of C(K), the set of continuous real-valued
functions on K. Equip C(K) with the norm ‖f‖ := supx∈K |f(x)| for every f ∈ C(K) and define the
metric d(f, g) = ‖f − g‖ for f, g ∈ C(K). Prove that S is compact with respect to this metric if and
only if S is uniformly closed, pointwise bounded, and equicontinuous.

16. Suppose {fn} is an equicontinuous sequence of functions on a compact set K, and {fn} converges
pointwise on K. Prove that {fn} converges uniformly on K.

17. Suppose f is a real continuous function on R, and fn(t) = f(nt) for n = 1, 2, . . . , and {fn} is equicon-
tinuous on [0, 1]. What conclusion can you draw about f and justify it.

18. Suppose X is a metric space. Let S be a subset of C(X), the set of continuous real-valued functions
on X. If S is equicontinuous and bounded, and define g : X → R such that for every x ∈ X there is
g(x) = supf∈S f(x). Prove that g ∈ C(X).

Functions of Several Variables

1. Let y ∈ Rn and define A : Rn → R such that Ax = x · y. Prove that A ∈ L(Rn,R) and ‖A‖ = |y|.

2. Give an example of two 2 × 2 matrices such that the operator norm of the product is less than the
product of the operator norms.

3. Suppose f is a differentiable mapping of R to R3 such that |f(t)| = 1 for every t ∈ R. Prove that
f ′(t) · f(t) = 0.

4. Show that both partial derivatives of the function

f(x, y) =

{
xy

x2+y2 if(x, y) 6= (0, 0)

0 otherwise

exist at (0, 0) but the function is not differentiable there.


