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Dynamics of Stochastically Blinking Systems. Part II: Asymptotic Properties∗

Martin Hasler†, Vladimir Belykh‡, and Igor Belykh§

Abstract. We study stochastically blinking dynamical systems as in the companion paper (Part I). We analyze
the asymptotic properties of the blinking system as time goes to infinity. The trajectories of the
averaged and blinking system cannot stick together forever, but the trajectories of the blinking
system may converge to an attractor of the averaged system. There are four distinct classes of
blinking dynamical systems. Two properties differentiate them: single or multiple attractors of the
averaged system and their invariance or noninvariance under the dynamics of the blinking system.
In the case of invariance, we prove that the trajectories of the blinking system converge to the
attractor(s) of the averaged system with high probability if switching is fast. In the noninvariant
single attractor case, the trajectories reach a neighborhood of the attractor rapidly and remain
close most of the time with high probability when switching is fast. In the noninvariant multiple
attractor case, the trajectory may escape to another attractor with small probability. Using the
Lyapunov function method, we derive explicit bounds for these probabilities. Each of the four cases
is illustrated by a specific example of a blinking dynamical system. From a probability theory
perspective, our results are obtained by directly deriving large deviation bounds. They are more
conservative than those derived by using the action functional approach, but they are explicit in the
parameters of the blinking system.
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1. Introduction. This paper focuses on a largely unexplored area, namely, mathematical
analysis and modeling of dynamical systems and networks whose coupling or internal param-
eters stochastically evolve over time. Networks of dynamical systems are common models for
many systems in physics, engineering, chemistry, biology, and social sciences [1, 2, 3]. Re-
cently, a great deal of attention has been paid to algebraic, statistical, and graph theoretical
properties of networks and their relationship to the dynamical properties of the underlying
network (see, for example, [1, 2, 3, 4, 5, 6, 7, 8, 9] and the references therein). In most stud-
ies, network connectivity is assumed to be static. However, in many realistic networks the
coupling strength or the connection topology can vary in time, according to a dynamical rule,
whether deterministic or stochastic. Researchers are only now beginning to investigate the
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link between the time-evolving structure and the overall dynamics of a system or a network
[10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20].

In many engineering and biological networks, the individual nodes that compose the net-
work interact only sporadically via short on-off interactions. Packet switched networks such
as the Internet are an important example. To model realistic networks with intermittent con-
nections, we previously introduced a class of dynamical networks with fast on-off connections
that were called “blinking” networks [11, 12]. These networks are composed of oscillatory dy-
namical systems with connections that switch on and off randomly; the switching time is fast,
with respect to the characteristic time of the individual node dynamics. In [11], we proved
that global synchronization occurs almost surely in a blinking network, provided that coupling
strengths are strong enough and the switching time of blinking connections is fast. Similar
results for synchronization in on-off fast switching networks were also obtained in [13, 14, 15].

In this paper, we go beyond network synchronization and consider a general stochastically
switched dynamical system. We develop a general rigorous theory of stochastically switched
dynamical systems and networks and apply rigorous mathematical techniques to investigate
the interplay between overall system dynamics and the stochastic switching process.

As in our companion paper [21], we consider a class of dynamical systems whose parameters
are switched within a discrete set of values at equal time intervals. Similarly to the blinking
of the eye, switching is fast and occurs stochastically and independently for different time
intervals. Such blinking systems have two characteristic times, namely the characteristic time
of the individual dynamical system and the characteristic time scale of the fast stochastic
process. When it comes to a network, this stochastic process defines stochastic switchings of
network connections. If the stochastic switching is fast enough, we expect the blinking system
to follow the averaged system where the dynamical law is given by the expectation of the
stochastic variables.

The fact that the rapidly switched blinking system has the same behavior as the averaged
system seems apparent; however, there are exceptions. Therefore a careful proof of the prop-
erty is needed which shows what parameters the occurrence of the exceptions depends on. In
fact, the assumption that a trajectory of the blinking system can follow that of the averaged
systems can be true only for finite time, unless there is a mechanism that forces them to stick
together. Such a mechanism is present when the solutions of the averaged system converge
towards an attractor.

While averaging is a classical technique in the study of nonlinear oscillators [26, 27, 28, 29,
30, 31, 37], research in averaging for blinking systems is more recent [32, 33, 34, 35, 36]. While
the application that these works implicitly address is dynamical systems perturbed by noise,
we rather target randomly switched networks. However, the mathematical techniques that
are used apply, of course, to both application areas. Generally speaking, the crucial discipline
of probability theory involved is large deviations. It concerns the exponentially fast decay of
rare events in stochastic processes. Using the notion of an action functional, it is in principle
possible to determine the exact exponential rate of decay of such events. However, in the
context of dynamical systems, this involves the solution of a variational problem [34, 35]. We
pursue in this paper a simpler approach. It has the advantage that all results are perfectly
explicit in the dynamical systems parameters, namely bounds and Lipschitz constants for the
right-hand side of the state equations of the blinking and the averaged system, and the rateD
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of decreasing of the Lyapunov function for the averaged system. Except, perhaps, for very
special cases, such results are not obtainable by the action functional approach. On the other
hand, our techniques do not yield the actual rates of exponential decay of the rare events
but only lower bounds on them. We used such techniques for synchronization of blinking
dynamical networks [11] and for the convergence of the blinking network to an attractor [12].
In this paper, we shall use a somewhat different approach.

In the companion paper [21] we have shown that if the blinking system switches fast
enough, i.e., if the switching period is sufficiently short, then a solution of the blinking system
closely follows the solution of the averaged system for a certain time and afterwards they
usually drift apart. We derived explicit bounds that relate the probability, the switching
frequency, the precision, and the length of the time interval to each other. We discovered the
presence of a soft upper bound for the time interval beyond which it is almost impossible to
keep the two trajectories together.

In this paper, we address the question of how the solutions of the blinking and the averaged
systems are related asymptotically, when t → +∞. More precisely, we ask the question under
what conditions a solution of the blinking system converges to an attractor of the averaged
system. The answer contains various subtleties, and it turns out that essentially four cases
have to be distinguished, depending on whether or not the attractor in the averaged system
is unique and whether it is an invariant set, attracting or not, for all switching sequences. We
introduce them through numerical analysis of four corresponding examples. After that, using
the technique developed in [21] combined with the Lyapunov function method, we prove four
general theorems that describe the behavior of the blinking system in the four cases. More
specifically, in the case of invariance, where the attractor of the averaged system is invariant
under the blinking system, we prove that the trajectories of the blinking system converge to the
attractor of the averaged system with high probability if switching is fast. In the noninvariant
single attractor case, the trajectories of the blinking system reach a neighborhood of the
attractor rapidly and remain close most of the time with high probability when switching
is fast. In this case, the attractor of the averaged system acts as a ghost attractor for the
blinking system. In the noninvariant multiple attractor case, the trajectory may escape to
another attractor with small probability.

In the literature, a number of works can be found that study systems similar to our
blinking system. Typically, they are more general in one direction and more restrictive in
another and the results are usually less detailed or of a different nature. We mention here just
a few examples as illustrations. In [41], randomly switched dynamical systems are considered,
but switching is not necessarily fast with respect to the time scale of the dynamical systems.
In addition, switching times are also random and there is perturbation by noise. The origin
in state space is always a solution and therefore also a solution of the averaged system. This
is one of the cases we consider, but for a less general system. The global asymptotic stability
of the origin is proved by a Lyapunov function that by hypothesis almost surely decreases
along solutions, even when taking into account the noise. This is much more restrictive than
what is required in this paper. In [42], systems similar to those of [41], but with deterministic
time dependence and deterministic perturbations, are studied. In [43], fast time-varying
deterministic systems with the zero equilibrium point are considered and it is shown that
for sufficiently rapid time dependence, the exponential stability of the equilibrium point inD
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the averaged system implies the exponential stability of the equilibrium point in the time-
varying system. In [44], Benäım et al. studied fast random switching with random switching
times between two linear asymptotically stable two-dimensional systems when the averaged
system is unstable. This loosely corresponds to our case where the attractor of the averaged
system (infinity) is invariant under the switched system, and indeed it is shown that for fast
enough switching almost all trajectories diverge to infinity. However, no estimate of the rate
of convergence is given. In the present paper, the asymptotic behavior of randomly switched
dynamical systems is described by convergence theorems, bounds on speed of convergence,
and bounds on permanence times in the vicinity of an attractor. Another characterization
is invariant probability densities. Two recent papers that address the existence of invariant
densities and their properties are [45] for continuous time and [46] for discrete time.

The layout of this paper is as follows. First, in section 2, we briefly describe the blinking
model and the corresponding averaged system. Then, in sections 3, 4, 5, and 6, we present and
numerically study four examples for the four distinct classes of blinking systems. These are (i)
a blinking network of coupled Lorenz systems where connections are stochastically switched
on and off (section 3); (ii) two bistable systems coupled by a blinking connection (section 4);
(iii) a stochastically switched power converter (section 5); (iv) an information processing
cellular neural network with blinking shortcuts (section 6). Then, in section 7, we make basic
assumptions on the dynamics of the blinking systems and its averaged analogue. Sections 8,
9, 10, and 11 present four main theorems and their proofs. Finally, a brief discussion of the
obtained results is given.

2. The blinking model. We introduce the system only briefly in this study. More details
can be found in the companion paper [21]. The blinking system is described by N time-
dependent ordinary differential equations of the form

(2.1)
dx

dt
= F (x (t) , s (t)) , x ∈ R

N , F : RN+M → R
N , s (t) ∈ {0, 1}M ,

where the function s(t) is piecewise constant, taking the constant binary vector value sk =(
sk1 , . . . , s

k
M

)
in the time interval t ∈ [(k − 1) τ, kτ). The sequence of binary vectors sk,

k = 1, 2, . . . , is called the switching sequence, as each component ski of sk switches on (ski = 1)
or off (ski = 0) during the kth time interval. The switching sequences are assumed to be
the instances of the stochastic process Sk, k = 1, 2, . . ., where all random vectors Sk are
independent and identically distributed, taking the value s ∈ {0, 1}M with probability ps.

In this paper, we study the asymptotic behavior of solutions of (2.1) as time goes to
infinity. System (2.1) inherently has two time scales, the switching period τ and the time
scale of the dynamics of the nonswitched system where the vector s is kept constant. We
limit our attention to the case where switching is fast with respect to the time scale of the
nonswitched system dynamics. In this case, one can expect that the dynamics of the stochastic
blinking system (2.1) is close to that of the averaged system where the dynamical law is simply
averaged over the driving stochastic variables sk(t) at each time instant.

The averaged system associated with the blinking system (2.1) reads as

(2.2)
dx

dt
= Φ(x (t)) ,
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Figure 1. First example: coupling graph of five coupled Lorenz systems.

where

(2.3)

Φ (x) = E (F (x, S))

=
∑

s∈{0,1}M
F (x, s) ps

and E (F (x, S)) is the expected value of (F (x, S)). In (2.3) we have omitted the upper
index k for the switching variables since in each time interval they have the same probability
distribution.

Blinking systems can be found in various applications. The four examples given below
can give a first idea. It is worth noticing that these examples represent four distinct classes of
blinking dynamical systems. Two properties differentiate them: single or multiple attractors of
the averaged system and their invariance or noninvariance under the dynamics of the blinking
system.

3. First example: Synchronization of chaotic systems. Consider the network of five
chaotic Lorenz systems, diffusively coupled with coupling strengths proportional to the con-
stant d > 0 according to Figure 1. Instead of connecting the individual systems permanently,
they are stochastically switched on and off, as described in section 2. The ith Lorenz system
is described by the three ordinary differential equations

ẋi = σ (yi − xi) = G1 (xi) ,
ẏi = rxi − yi − xizi = G2 (xi) ,
żi = −bzi + xiyi = G3 (xi) ,

where xi = (xi, yi, zi). We choose the standard parameter values b = 8/3, r = 28, and s = 10,
which guarantee chaotic behavior.

If we couple the first state variables of the five Lorenz systems in the blinking modeD
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according to Figure 1, we obtain the system of equations

(3.1)

ẋ1 = G (x1) + 0.8ds1(t)P (x2 − x1) + 0.8ds2(t)P (x3 − x1) ,
ẋ2 = G (x2) + 0.8ds1(t)P (x1 − x2) + 0.2ds3(t)P (x3 − x2) + ds4(t)P (x4 − x2) ,
ẋ3 = G (x3) + 0.8ds2(t)P (x1 − x3) + 0.2ds3(t)P (x2 − x3) + ds5 (t)P (x5 − x3) ,
ẋ4 = G (x4) + ds4 (t)P (x2 − x4) + ds6 (t)P (x5 − x4) ,
ẋ5 = G (x5) + ds5 (t)P (x3 − x5) + ds6 (t)P (x4 − x5) ,

where G = {G1, G2, G3} and P is the projection operator onto the first state variable

P =

⎛
⎝ 1 0 0

0 0 0
0 0 0

⎞
⎠ .

This blinking system has the form (2.1) with N = 15 and M = 6. During each time interval of
length τ , each of the six edges (cf. Figure 1), defined by the switching variables s1(t), . . . , s6(t),
is turned on with probability p, independently of the switching on and off of the other edges,
and independently of whether or not it has been turned on during the previous time interval.

The averaged system (2.2) associated with the blinking system (3.1) is obtained by replac-
ing all switching variables, s1(t), . . . , s6(t), by their mean value p. In Figure 1 this amounts
to replacing d by pd.

The question we are interested in is whether the blinking system synchronizes when the
averaged system does. Synchronization can be interpreted as convergence to the diagonal
subspace D = {x1 = x2 = · · · = x5}. So the question can be reformulated as follows: if the
solutions of the averaged system converge to the diagonal subspace D, is the same true for
the solutions of the blinking system?

Applying the connection graph stability method [5], we can conclude that the averaged
system synchronizes if the coupling coefficient pd is large enough. In this case, our previous
analysis [11] guarantees that the blinking system synchronizes with high probability if the
switching time is small enough. An explicit and rigorous upper bound on the switching time
τ for synchronization in a blinking network of Lorenz systems was given in [11].

In order to illustrate these results, we introduce a measure of the synchronization error

V (x1, . . . , x5) =

√√√√ 1

30

5∑
i=1

5∑
j=i+1

(
(xi − xj)

2 + (yi − yj)
2 + (zi − zj)

2
)
,

i.e., the average deviation of the same component of a state in one Lorenz system from the
same component of the state of another Lorenz system.

We now present the results of some numerical simulations. Figure 2 indicates, at least for
the given switching sequence of the blinking system, that both the averaged and the blinking
systems synchronize (cf. the upper panel of Figure 2). In other words, they converge to the
same attracting set, the diagonal manifoldD, but they are not close to each other. In the lower
panel of Figure 2 the synchronization error V , as a function of time, is represented for the
same solutions of the averaged system and the same instance of the blinking system as in the
upper panel. Once again, this indicates that both synchronize. Furthermore, synchronizationD
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Figure 2. Upper panel: x1-coordinate of the first Lorenz system in the averaged system (red solid curve)
and xi-coordinates of all five blinking Lorenz systems (blue dashed curve) as functions of time. The blinking
system and the averaged system start from the same nonhomogeneous initial conditions x1 �= · · · �= x5. The
xi-components of the other Lorenz systems in the averaged system would be indistinguishable due to fast syn-
chronization and are not shown. Lower panel: Synchronization error V as a function of time for the averaged
system (red solid curve) and the blinking system (blue dashed curve). Synchronization is exponentially fast, but
the convergence of the blinking system to the synchronized solution is slower than that of the averaged system.
Parameters are the switching probability p = 1/2, switching time τ = 0.1, and coupling parameter d = 200.

appears to be exponentially fast, but the exponential speed of synchronization is smaller in
the case of the blinking system as compared to the averaged system.

Let us remark that the diagonal subspace D is not really an attractor of the averaged
system, but on the diagonal subspace all solutions are identical to the solutions of a single
Lorenz system. Similarly, the network solutions of both the averaged and the blinking systems
converge to the Lorenz attractor in the diagonal subspace.

Figure 3 indicates that the solution of the averaged system as well as the solution of the
blinking system for τ = 0.1 both synchronize exponentially fast, the blinking system being
slower than the averaged system. This repeats the findings of Figure 2 for τ = 0.1, but on a
longer time scale. The deviation from synchronization of the solution of the blinking system,
after having reached about 10−15, irregularly oscillates between this value and about 10−10,
the precision of the numerical integration of the differential equations. This can be attributed
to numerical errors.

For τ = 1, after a much longer transient phase, the solution of the blinking system also
appears to synchronize, whereas for τ = 5 synchronization appears to be lost. This illustrates
that somewhere there probably is a threshold for synchronization between τ = 1 and τ = 5.D
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Figure 3. Synchronization error as a function of time for the same solutions as in Figure 2 for the averaged
system (black dashed curve) and the blinking system with switching times τ = 0.1 (blue), τ = 1 (green), and
τ = 5 (red). Synchronization takes place in the averaged system and in the blinking system for τ = 0.1 and
τ = 1, but not for τ = 5. Other parameters are the same as in Figure 2.

It may be surprising that the blinking system synchronizes since at each time instant only
about half of the connections between the Lorenz systems are active, which implies that most
of the time the network is disconnected. Nevertheless, as our example shows, the time-varying
interactions are sufficient to guarantee synchronization if they vary fast enough.

Another peculiarity of this example is that at each instant the synchronization subspace
D is invariant under the dynamics of the blinking system. Contrary to the averaged system,
this subspace is unstable most of the time. Later in the paper we shall generalize the results
of the example to all blinking dynamical systems with an attractor of the averaged system
that is an invariant set of the blinking system and make them more quantitative.

4. Second example: Coupled bistable systems. Consider the system of two bistable
systems coupled by a blinking connection

(4.1)
ẋ = f (x) + 1.6s (t) (y − x) ,
ẏ = 2f (y) + 1.6s (t) (x− y) ,

where f(x) = x(1− x2) and s(t) is a binary switching function as represented in the general
blinking system (2.1). We suppose that the switch is closed with probability p = 0.5.

The isolated bistable systems are described by

ẋ = f(x) and ẏ = 2f(y).

They both have two stable equilibrium points x = 1 and x = −1, and an unstable equilibrium
point x = 0.

When the switch is open (s(t) = 0), the two bistable systems do not interact and the
combined system has four stable and five unstable equilibrium points, namely all combinations
of x = −1, 0, 1 and y = −1, 0, 1. When the switch is closed, there remain only two stable
(x = y = −1, 1) and one unstable equilibrium (x = y = 0) points. The same is true for theD
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averaged system obtained from (4.1) by replacing the switching variable s(t) with its mean
p = 0.5:

ξ̇ = f (ξ) + 0.8 (η − ξ) ,
η̇ = 2f (η) + 0.8 (ξ − η) .

It is a gradient system. Its potential function is

V (ξ, η) =
ξ4

4
+

η4

2
− ξ2

10
− 3η2

5
− 4ξη

5
+

3

2
.

We have chosen the free constants in such a way that at the two minima, (1, 1) and (−1,−1),
the potential takes the value 0. As in any gradient system, along the solutions of the averaged
system the potential function decreases monotonically, except at the equilibrium points, where
it is constant. The potential function is therefore a Lyapunov function of the averaged system.
The two minima of V are, of course, asymptotically stable equilibria of the averaged system.
They are also asymptotically stable equilibrium points of the blinking system. Therefore, we
have an averaged system with two attractors which are also invariant sets of the blinking sys-
tem. This enables the convergence of the trajectories of the blinking system to the attractors
of the averaged system for fast switching.

It is not difficult to see that the square with the corners (1, 1), (1,−1), (−1,−1), (−1, 1) is
forward invariant under both the averaged and the blinking systems. We consequently shall
limit our attention to the dynamics in this square.

The blinking system has the two stable equilibrium points in common with the averaged
system. Therefore, the solution of the blinking system can converge to one of these equilibrium
points. If so, the question remains of whether it converges to the same equilibrium as the
averaged system when starting from the same initial state. In Figure 4 an initial state is chosen
close to the boundary between the attraction basins of the two stable equilibrium points of the
averaged system. Starting from this state, a solution of the blinking system and the solution
of the averaged system are shown. As expected, they converge to the same equilibrium point.
However, there is a small probability that for another switching sequence it converges to the
other equilibrium point (Figure 5). Practically, this happens only when the initial state is
close to the attraction basin boundary, as is the case in Figure 5. The faster the switching,
and the farther away from the basin boundary of the equilibrium points, the smaller is this
probability.

On the other hand, the convergence to the equilibrium point is exponentially fast not only
for the solutions of the averaged system but also for the solutions of the blinking system. This
is illustrated in Figure 6 by representing the potential function V as a function of time in a
semilogarithmic scale. Of course, when starting close to the attraction basin boundary, initially
convergence is slow, but then it picks up its asymptotic exponential speed. Remarkably, the
solution of the blinking system appears to have the same asymptotic exponential speed of
convergence, whereas, in general, we would expect a slower exponential speed.

In both examples of chaotic Lorenz systems and coupled bistable systems discussed so
far, the salient feature of the dynamics is the invariance of the averaged system’s attractor(s)
under the blinking system. In the following two examples this invariance property does not
hold anymore, and the trajectories of the blinking system cannot converge to the attractor ofD
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−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Figure 4. Trajectories of the averaged system (red smooth curve) and of the blinking system (blue irregular
curve) start from the same initial state and converge to the same equilibrium point (1, 1). The other asymptot-
ically stable equilibrium point at (−1,−1) is also marked by a solid circle. The third equilibrium point (0, 0) is
a saddle, marked by a cross. Its stable manifold in the averaged system is drawn with a black dashed line. It is
also the separatrix between the attraction basin boundaries of the two stable equilibrium points. The switching
period is τ = 0.01.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Figure 5. Same representation as in Figure 4 but for another switching sequence of the blinking system.
In this case the trajectory of the blinking system converges to the other stable equilibrium point. Note that the
initial state, which is identical for all trajectories in this figure and Figure 4, is close to the attraction basin
boundary.
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0 2 4 6 8 10
10

−15

10
−10

10
−5

10
0

10
5

time

V

Figure 6. Potential function V along a solution of the averaged system (red dashed curve) and the blinking
system (blue solid curve) as a function of time in a semilogarithmic plot. The initial state is the same as in
Figures 4 and 5. Since it is close to the attraction basin boundary, the potential function decreases only slowly
in the beginning. Both trajectories appear to have the same asymptotic exponential speed of convergence, but
the blinking trajectory is somewhat delayed with respect to the trajectory of the averaged system.

+

-

V

+

-
Ss(t)

E
R R

C

L

Ii

0

Figure 7. Switched boost power converter as an example of a blinking system.

the averaged system and can reach only a small neighborhood of it. In this case, the attractor
of the averaged system may be viewed as a ghost attractor for the blinking system.

5. Third example: Switching power converter. Consider the circuit of Figure 7. Its
function is to convert DC power at voltage E to DC power across the resistor R [22, 23].
The switch is usually operated periodically at a rather high frequency. This frequency and its
harmonics are filtered as much as possible. However, some parasitic frequency components
remain and pollute the network. Another possibility is to operate the switch stochastically.
The advantage is that the power of the parasitic components is distributed over a whole
frequency range, and therefore it is less disturbing than the narrow band parasitics in the
case of periodic switching. This is discussed in [22, 23], where, however, somewhat different
random switching schemes are used.D
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Let the switching variable be s = 1 when the switch is closed and s = 0 when the switch
is open. It can be seen that the diode is open for s = 1 and is a short circuit for s = 0. The
circuit equations are then

di
dt =

E
L − R0

L i− (1− s (t)) v
L ,

dv
dt = (1− s (t)) i

C − v
RC .

The corresponding averaged equation is

di
dt

dξ
dt =

E
L − R0

L ξ − (1− p) η
L ,

dη
dt = (1− p) ξ

C − η
RC .

The averaged system is asymptotically stable. The averaged DC-output voltage at its equi-
librium point is η = (1−p)R

(1−p)2R+R0
E and is adjustable by choosing p. It is larger than the input

voltage if R0 is sufficiently small and p is sufficiently large (this is the reason for calling the
circuit a boost converter). The mechanism that keeps the solution of the blinking and the
averaged system more or less together is the convergence to the equilibrium point in the aver-
aged system. Note that this equilibrium is not shared by the blinking system. In fact, when
both s = 0 (open switch) and s = 1 (closed switch), the system has a different asymptotically
stable equilibrium point (v = R

R+R0
E and v = 0, respectively). The consequence is that

the solution of the blinking system cannot converge to the equilibrium point of the averaged
system but approaches and then fluctuates around it (Figure 8). The fluctuations diminish in
size as the switching period τ decreases.

The next example represents a class of blinking dynamical systems possessing multiple
attractors that are not shared by the averaged and blinking systems.

6. Fourth example: Cellular neural network with blinking shortcuts. Consider a two-
dimensional array of locally coupled first-order linear systems with a piecewise linear output
function, known under the name of cellular neural networks (CNNs) [24]. Such networks can
perform many signal processing computations using their intrinsic nonlinear dynamics. One
way to implement this is to insert data as initial values of the states and to let the states
converge to an equilibrium point of the (multistable) network. The mapping from the initial
to the final states is the function performed by the network.

However, certain functions cannot be obtained directly using only local connections. This
is the case of the “winner-take-all” function, where the maximum among a given set of numbers
has to be determined. In a wider context, this task amounts to detecting a brightest target
spot, based on the given visual picture that can be represented as a matrix. The following
globally coupled network of one-dimensional systems realizes this function for a suitable choice
of the parameters a, d, and k [25]:

(6.1)

ẋi =− xi + (1− δ) yi − α

N∑
j=1

yj + κ,

yi = f(xi) =

⎧⎨
⎩

1 for xi > 1,
xi for −1 ≤ xi ≤ 1,
−1 for xi < −1.D
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0 0.5 1 1.5 2 2.5
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Figure 8. Upper panel: Trajectories in state space of the averaged (red smooth curve) and of an instance
of the blinking system (green irregular curve), starting from the origin. Lower panel: Distance D from the
equilibrium point as a function of time for the same trajectories of the averaged (red) and the blinking (green)
systems. Parameters are E = 1, R0 = 0.05, R = 4, L = C = 1, p = 0.5, and τ = 0.005.

Note that α is the coupling coefficient between any two individual systems i and j of the
network. Of course, instead of using an all-to-all coupling, computing the sum of all output
signals yi as an intermediate step would be a more efficient procedure. However, for our
purposes, we start with the CNN with all-to-all coupling.

The correct functioning of this network is the following. At time t0, the N given numbers
are loaded as initial conditions xi(0), i = 1, . . . , N . Suppose that the largest among these
numbers is xm(0). Then the state vector x evolves in time according to (6.1) and converges
to the equilibrium point x̄ such that x̄m ≥ 1 and x̄i ≤ −1 for i �= m. In terms of the outputs,
this means ȳm = f (x̄m) = 1 and ȳi = f (x̄i) = −1 for i �= m. Hence, the whole system must
have N asymptotically stable equilibrium points, one for each value of m, the index of the
state with the largest initial value. The state space is divided into the N basins of attraction
of these equilibrium points.

It is not difficult to see that it is not possible to design a “winner-take-all” CNN with only
local connections. In fact, suppose that the initial state of a locally connected CNN has two
local maxima, at cell i and at cell j, and these maxima are sufficiently far apart. Suppose that
at cell i the maximum is also global. If this network performs the “winner-take-all” function
correctly, there must be a stable equilibrium for which the output of the ith cell is +1 and all
other outputs are −1. However, when all cells are in saturation, the jth cell and the ith cell
do not interact. Then there will be another stable equilibrium where, in addition to the ith
cell, the jth cell has output +1, and again all other cells have output −1. Such an equilibriumD
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point is not compatible with the “winner-take-all” function.
On the other hand, local connections have an evident advantage when it comes to the

realization of the CNN as an integrated circuit. A way out of this dilemma is to use switched
connections instead as hardwired nonlocal connections and realize them by sending packets on
a communication network that is associated with the CNN. Such a communication network
has to be present anyway in order to charge the initial conditions and to read out the results.
Thus, we consider the blinking system [12]

ẋi = −xi + (1− δ) yi − α
N∑

j nearest
neighbor of i

yj +
α
p

N∑
j not nearest
neighbor of i

sij(t)yj + κ,

yi = f (xi),

where in each time interval (k − 1) τ ≤ t ≤ kτ sij(t) is constant, of value 1 with probability
p and of value 0 with probability 1− p. Its corresponding averaged system is system (2.2) as
the switching variables sij are simply replaced by their mean value p.

As a numerical example, we consider a blinking 4× 4 CNN (N = 16) that has the task of
determining the largest among the 16 numbers:

(6.2)

0.3644 0.3958 0.1871 0.2898
−0.3945 −0.2433 −0.0069 0.6359
0.0833 0.7200 0.7995 0.3205

−0.6983 0.7073 0.6433 −0.3161

In Figure 9, x3,3(t) and x4,1(t) are represented, for the blinking system, for the averaged system
and for two instances of the blinking system. Here, we use the double indices for x to indicate
the location of a given cell on the grid. The trajectory of one instance of the blinking system
follows the trajectory of the averaged system and approaches the corresponding equilibrium
point. The state x3,3 increases beyond the value 1, as it should, since the element (3, 3) in (6.2)
is the largest, whereas the state x4,1 decreases below −1. Thus, both the averaged system
with its all-to-all connections and this instance of the blinking system with its fixed local and
the switched nonlocal connections perform the “winner-take-all” function correctly. In the
case of the other instance of the blinking system the blinking trajectory converges to a wrong
equilibrium point.

The peculiarity of this system is that it has several attractors (stable equilibrium points),
but practically all the time, none of them is an equilibrium point of the blinking system.
Therefore, the trajectory of the blinking system cannot converge to an equilibrium point of
the averaged system, but it can only get close to it, as in the switched power converter (cf.
Figure 10).

Furthermore, there is a nonzero probability that it will approach the wrong equilibrium
point, as illustrated in Figure 10. This depends on how close the second largest initial state is
and how small τ is. Reducing τ , the solution of the blinking system initially follows the solution
of the averaged system more closely and thereby has a lower probability of approaching the
wrong equilibrium point. It also remains closer to the equilibrium point at larger times. This
point is illustrated in Figures 11 and 12, where τ is 10 times smaller than in Figure 9.D
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Figure 9. Trajectories for two instances of the 4×4 “winner-take-all” blinking CNN, with α = 1, δ = 1.11,
κ = −13.89, τ = 0.001, p = 0.1 (irregular blue and green curves), together with the trajectory of the averaged
system (smooth red curve). The trajectory of the averaged system always approaches the correct equilibrium
point, whereas the trajectories of the blinking system may or may not reach it, depending on the instance of the
switching process. Upper panel: Trajectories corresponding to the cell (4, 1) whose initial condition does not
have the maximal value. Lower panel: Trajectories corresponding to the cell (3, 3) whose initial condition has
the maximal value.
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Figure 10. Mean square deviation from the correct equilibrium point as a function of time. Smooth
red curve: averaged system trajectory converges exponentially fast to the correct equilibrium point. Irregular
blue curve: blinking system trajectory approaches the correct equilibrium point but does not converge to it.
Parameters are as in Figure 9.
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Figure 11. Same as Figure 9 for a single trajectory of the blinking system that approaches the correct
equilibrium point. Main difference: τ = 0.0001, i.e., 10 times smaller than for Figure 9.
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Figure 12. Mean square deviation from the correct equilibrium point as a function of time for the trajectory
of Figure 11.

There is even a nonzero probability that after having approached the correct equilibrium
point it will escape towards another equilibrium point of the averaged system. However, this
last probability is much smaller than an initial approach to the wrong equilibrium point, so
that it can be neglected in practice. In fact, in practice, once the trajectory of the blinking
system is sufficiently close to a stable equilibrium point of the averaged system, a decision is
taken and the system is stopped.D
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7. Analysis of the blinking system: Basic assumptions. We now return to the analysis
of the asymptotic behavior of a general blinking system (2.1) and its relation to the solution
of the averaged system (2.2), starting from the same initial state.

We will prove four general theorems regarding the asymptotic dynamical behavior of the
blinking system. Each of the four above examples illustrates one of the theorems. The order
of the theorems is opposite to the order of examples, as it is more convenient to start from the
most general case (Theorem 8.3, the fourth example) and to proceed to the most constrained
case (Theorem 11.1, the first example).

As in the companion paper [21], we make the following, not very restrictive, hypotheses.
Hypothesis 1.
(a) The function F that defines the blinking system (2.1) is locally Lipschitz continuous

in x (the first N arguments) and continuous in s (the last M arguments).
(b) For any switching signal s(t) and any state x0 there exists exactly one trajectory x(t)

of the blinking system with x(0) = x0, defined for 0 ≤ t < ∞. Similarly, there exists
a unique trajectory ξ(t) of the averaged system

dξ

dt
= Φ(ξ(t)) ,

defined for 0 ≤ t < ∞ for a given initial state ξ(0) = ξ0.
(c) There is a connected and compact, i.e., closed and bounded, region R in R

N such that
(i) all trajectories of the blinking and averaged systems starting in R remain in R; (ii)
all trajectories of the blinking and averaged systems starting outside of R reach R.

Thus, all interesting dynamics take place in R and, in particular, all attractors lie in R. In
what follows, we shall restrict our attention to trajectories in R. The continuity of F implies
that F and Φ are both bounded on R.

8. General case (Case 1): Multiple attractors are possible; their invariance for the
blinking system is not required. The information processing CNN (the fourth example) is a
case in point.

We now consider an attractor of the averaged system (2.2)–(2.3) and a solution of the
averaged system that converges to it. The question is in what sense and under what conditions
a solution of the blinking system (2.1) that starts from the same initial conditions converges to
the attractor. Instead of an attractor, we shall use the less restrictive notion of an attracting
set.

Definition 8.1. An attracting set A of a dynamical system is a compact connected set such
that

• any trajectory starting in A remains in A, and
• any trajectory starting sufficiently close to A converges to A.

Let us remark that an attractor has to satisfy the additional constraint that it contains a
dense trajectory.

Hypothesis 2. The averaged system (2.2) has an attracting set A with a corresponding
Lyapunov function W . More precisely, we assume that there is a twice continuously differen-
tiable function W : RN → R such that the following hold:

(a) There is a constant V1 and a connected component C1 of the level set {x | W (x) ≤ V1 },D
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contained in R and containing A, such that for any x ∈ C1

W (x) ≥ 0 and x ∈ A ⇔ W (x) = 0.

(b) For any x ∈ C1 we have

∂W

∂x
(x) Φ (x) ≤ 0

and

∂W

∂x
(x)Φ (x) = 0 ⇔ x ∈ A.

(c) The sets

C1∩
{
x ∈ R

N | W (x) ≤ V
}

are compact and connected for 0 ≤ V ≤ V1.
Remark 8.1. The requirement that the Lyapunov function should be 0 exclusively on A

may seem not realizable in many situations. In particular, if A is a chaotic attractor, W cannot
be 0 on A and positive elsewhere. In this case, a larger attracting set A, which contains the
attractor of the chaotic system, has to be chosen. In the first example, the trajectories of the
averaged system converge to the chaotic attractor located in the diagonal subspace, but as an
attracting set, the diagonal subspace, or rather its intersection with R, has to be chosen.

Note that for any solution ξ(t) of the averaged system

(8.1)
d

dt
W (ξ (t)) =

∂W

∂x
(ξ (t))Φ (ξ (t)) .

Thus, within the region C1 the functionW decreases strictly along any solution of the averaged
system, except in the attracting set A, where it remains constant. This implies, in particular,
that all solutions of the averaged system starting in C1 converge to A. The question is then
what happens to the solution of the blinking system. Note that if the level set {x | W (x) ≤ V1 }
is not connected, then in connected components other than C1 there are other attractors, or
even solutions, diverging to infinity.

We proceed in two steps. The aim of the first step is to show that the Lyapunov function
also decreases along solutions of the blinking system. Actually, because of the stochastic nature
of switching, this is not always true. The Lyapunov function may increase temporarily, but
the general tendency is to decrease. This can be expressed by showing that after a certain time
Δt the Lyapunov function decreases with high probability. In the second step, we analyze the
behavior of the blinking system for large times. We show that W decreases either to 0 or to
a small value with high probability.

For the purpose of formulating Theorem 8.3, it is convenient to introduce, in addition
to the functions F and Φ that give the time derivative of the states of the blinking and the
averaged systems, the four functions DFW : RN+M → R, D2

FW : RN+2M → R, and DΦW ,
D2

ΦW : RN → R that give the first time derivative and a kind of second time derivative of the
Lyapunov function W along solutions of the blinking and the averaged systems.D
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Definition 8.2. Define the functions DFW, D2
FW, DΦW, D2

Φ by

DFW (x, s) =
N∑
i=1

∂W
∂xi

(x)Fi (x, s),

D2
FW (x, s̃, s) =

N∑
i,j=1

[
∂2W

∂xi∂xj
(x)Fi (x, s̃)Fj (x, s) +

∂W
∂xi

(x) ∂Fi
∂xj

(x, s̃)Fj (x, s)
]
,

DΦW (x, s) =

N∑
i=1

∂W
∂xi

(x)Φi (x),

D2
ΦW (x) =

N∑
i,j=1

[
∂2W

∂xi∂xj
(x) Φi (x) Φj (x) +

∂W
∂xi

(x) ∂Φi
∂xj

(x)Φj (x)
]
,

and introduce their bounds on R

BWΦ = max
x∈R

|DΦW (x)|,(8.2)

LBWΦ = max
x∈R

∣∣D2
ΦW (x)

∣∣,
BWF = max

s∈{0,1}M
max
x∈R

|DFW (x, s)|,

LBWF = max
s,s̃∈{0,1}M

max
x∈R

∣∣D2
FW (x, s̃, s)

∣∣ .
Note that these constants can be explicitly formulated via the parameters of the general

blinking system (2.1).
The following theorem expresses the behavior of the blinking system in the most gen-

eral case where the averaged system (2.2) may have multiple attractors that are in general
noninvariant under the blinking system.

Theorem 8.3 (Case 1: possible multiple attractors/noninvariance). Suppose Hypothesis 1 is
satisfied and the averaged system (2.2) has an attracting set A with a corresponding Lyapunov
function W , satisfying Hypothesis 2. Choose V0 such that 0 < V0 < V1, and let

(8.3)

−γ = max
x∈C1, V0≤W (x)≤V1

DΦW (x),

Δt = γ
2(LBWF+LBWΦ) ,

α = BWF +BWΦ,

c = 1
64(LBWF+LBWΦ)B2

WF
,

where the various expressions are defined in Definition 8.2. Suppose that

(8.4) V1 − V0 ≥ 3γ2

4 (LBWF + LBWΦ)

and that τ is sufficiently small, such that

(8.5) 2e
2α+ γ

γ
exp

(
−cγ3

τ

)
≤ 1−

√
e

3
.
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Consider the two open regions (see Figure 13)

(8.6) U0 = {x | W (x) < V0 + γΔt} ∩ C1, U∞ = {x |W (x) > V1 + αΔt} .
Consider a solution x (t) of the blinking system with W (x (0)) = V1 and x (0) ∈ C1 (the
connected component of the level set {x |W (x) ≤ V1 } containing the attracting set A). Then
the following hold:

(a) The probability P direct
escape that the solution x (t) of the blinking system reaches U∞ before

reaching U0 is bounded by

(8.7) P direct
escape ≤

36α2

γ2
exp

(
−cγ3

τ

)
.

Inversely, the probability that the solution x (t) of the blinking system reaches U0 before
reaching U∞ is at least

(8.8) P direct
attraction ≥ 1− 72α2

γ2
exp

(
−cγ3

τ

)
.

(b) Let Tattraction be the time for the solution of the blinking system to enter U0 through
its boundary and Tremain be the time it remains in

(8.9) Ū0+ =

{
x

∣∣∣∣W (x) ≤ V0 +

(
3

2
γ + α

)
Δt

}

after reaching U0. These times are random variables with the properties

(8.10) P

(
Tattraction ≤ 2

V1 − V0

γ

)
> 1− 8 (V1 − V0)

(LBWF + LBWΦ)

γ2
exp

(
−cγ3

τ

)

and

(8.11) P (Tremain > T ) > 1− 4T
(LBWF + LBWΦ)

γ
exp

(
−cγ3

τ

)
.

Proof. The complete proof of Theorem 8.3 is given in the appendix. Here, we give a short
narrative that underlies the main ideas of the proof. For the convenience of the reader, we
refer to the corresponding parts of the complete proof.

As mentioned above, the proof is divided into two steps. In the first step, we consider the
trajectories of the blinking and averaged systems, starting from the same initial condition at
t = 0. Function W , being a Lyapunov function for the averaged system, decreases strictly
along the trajectory of the averaged system. This is not necessarily true along the trajectory
of the blinking system. However, if we can give a sufficiently small bound for the difference
between the values of W along the two trajectories, we can ensure that W also decreases in
the blinking system. Along this line, we give two bounds on their difference after some time
Δt that can be thought of as an intermediate scale: large with respect to the switching time
and small with respect to the time it takes the averaged system to get close to its attractor.
The more conservative bound (cf. Lemma 13.2(a) in the appendix) is always valid, whereasD
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( )
( )

2

0
WF WΦ

γ
W x = V +

2 LB + LB

( )x 0 =
( )x t

( )ξ t

( )W x = 0 ( ) 0W x = V

0U

1C

( ) 1W x = V +αΔt ( ) 1W x = V

( )ξ(t)
d

W < -γ
dt

U

( )ξ 0

Figure 13. Illustration of Theorem 8.3. Trajectory of the averaged system (regular red line) reaches its
attractor at which W (x) = 0. The attractor of the averaged system is neither unique nor invariant under the
blinking system. This attractor acts as a ghost attractor for the blinking system whose trajectory (irregular
blue line) reaches a small neighborhood U0 of the ghost attractor in time Tattraction with probability P direct

attraction.
Subsequently, it may, after some time Tremain, go far away from the ghost attractor, but the probability that it
happens in a given lapse of time can be made arbitrarily small by decreasing the switching period τ . Initially,
the trajectory of the blinking system may also escape from the attraction basin C1 right away and move toward
another attractor in U∞ (not shown) with probability P direct

escape. This probability approaches 0 when τ → 0.

the closer bound (cf. Lemma 13.2(b) in the appendix) holds only with a certain probability.
A lower bound for this probability is given in Lemma 13.1 (see the appendix) and is based
on the Hoeffding bound for large deviations of sums of independent random variables. The
closer bound allows proving that W decreases in the blinking system for most switching
sequences, whereas the larger bound limits its increase for the exceptions (cf. Lemma 13.3 in
the appendix). In order to make it precise, we need W to decrease uniformly per unit time in
the averaged system (Ẇ (ξ) ≤ −γ < 0). This is possible only outside of a neighborhood of the
attractor. At this point, we have a freedom to choose this neighborhood as a level set of W
(W (ξ) < V0)), where V0 can be chosen arbitrarily within 0 < V0 < V1. This choice determines
constant γ. A suitable choice of Δt, taken in Lemma 13.3 (see the appendix), guarantees the
decreasing of W in the blinking system due to the closer bound.

In the second step, we consider the trajectory of the blinking system x(t) starting from
region C1 (cf. Hypothesis 1). We decompose the time axis into intervals of length Δt. Depend-
ing on the switching sequences, either function W decreases from qΔt to (q + 1)Δt or it may
increase in accordance with the bounds derived in the first step. Combining the bounds across
the different intervals, we can prove that with high probability the trajectory of the blinking
system reaches neighborhood U0 of the averaged system attractor, and with low probability
it escapes from region U∞. This proof is not straightforward, as the events to which theD
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closer bound can be applied in various intervals are not independent. To cope with this, we
introduce the auxiliary random variables Zq (s) = W (x (qΔt)), q = 0, 1, 2, . . . . Even though
the trajectory of the blinking system evaluated at multiples of Δt, x (qΔt) is a vector-valued
Markov chain, function W , applied to it to obtain stochastic process Zq, destroys the Markov
property. For this reason, a more detailed analysis of process Zq is performed in Lemmas 13.4
and 13.5.

In this way, we obtain the lower bound for the probability of reaching neighborhood U0 of
the attractor and the upper bound for the probability of escaping to region U∞ from domain
C1 (cf. Theorem 8.3(a)).

The proof of Theorem 8.3(b) also relies on the detailed analysis of stochastic process Zq. In
this way we obtain a probabilistic upper bound on the time to reach U0. Once the trajectory
of the blinking has reached U0, it wiggles around the attractor of the averaged system (the
ghost attractor). However, it remains in neighborhood Ū0+, slightly larger than U0 for a long
time. Indeed, a probabilistic lower bound for this time is obtained.

Remark 8.2.
(a) This general theorem is in all four cases applicable. However, when the attractor

is an invariant set of the blinking system, a stronger theorem will be proved, which
guarantees actual convergence to the attractor.

(b) By decreasing the switching period τ , the probability of escaping from the region C1

before reaching U0 can be made arbitrarily small.
(c) If the averaged system has no other attractor than A, or if all attractors of the aver-

aged system lie in the attracting set A, eventually almost every solution reaches U0.
Typically, in such a case the Lyapunov function W is defined in the whole space, the
level set {x |W (x) ≤ V1 } is connected and thus identical to C1, and Theorem 8.3 gives
information only on the time needed to reach U0. This case will be treated in more
detail in Theorem 9.1.

(d) In the case of multistability, i.e., when there is an attractor outside of A, there is always
a nonzero probability of reaching a neighborhood of this attractor before reaching U0.
It can be made arbitrarily small by increasing the speed of switching. The region C1 is
necessarily contained in the basin of attraction of A in the averaged system. Actually,
in general, it will be distinctly smaller than the basin of attraction. Nevertheless,
we can show that by switching sufficiently fast, the solution of the blinking system
that starts in the basin of attraction of A of the averaged system will again with
high probability reach a small neighborhood of A without leaving the basin. In fact
this result is obtained by combining Theorem 3.1 from the companion paper [21] and
Theorem 8.3. According to Theorem 3.1 for finite time from [21], the solution of the
blinking system will follow the solution of the averaged system for some time, getting
to C1 or at least closer to C1. In the latter case, Theorem 3.1 from [21] can be applied
repeatedly, until C1 is reached. Then Theorem 8.3 can be invoked.

(e) Note that the upper bound P direct
escape and the lower bound P direct

attraction do not imply that
the sum of the two probabilities sums up to 1, as one would expect. Therefore, the
trajectories of the blinking system that never reach U0 or U∞ might have positive
probability. However, this is just a technical consequence of the way of deriving the
bounds. Furthermore, this probability could not be larger than P direct

escape, and the caseD
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that this probability vanishes is compatible with the bounds. The same technical
detail will reappear in Theorem 9.1.

(f) At first sight, it is not evident what the role of the constraint (8.4) is and whether it
seriously limits the applicability of the theorem. A closer examination shows that this
condition can always be satisfied by reducing the size of V0, which will diminish the
value of γ, which in turn needs a smaller switching time τ .

9. Case 2: Unique attracting set; not necessarily invariant for the blinking system.
We now strengthen Hypothesis 2 to adapt it to the case where A is the unique attractor or
attracting set of the averaged system or where all attractors of the system are contained in
the attracting set A. The switching power converter (the third example) is a case in point.

Hypothesis 3. The level set {x |W (x) ≤ V1 } is connected and thus identical to C1 intro-
duced in Hypothesis 2. It contains the compact attracting region R introduced in Hypothesis
1; i.e., we have

x ∈ R ⇒ W (x) ≤ V1.

This implies that any solution of the blinking and the averaged systems after a finite time T
(depending on the solution) satisfies

W (x (t)) ≤ V1 for t ≥ T.

Note that if Hypothesis 3 is not satisfied because a level set of the Lyapunov function W
is not connected, there are necessarily several disjoint attracting sets and we are back to Case
1.

This more restrictive hypothesis allows us to formulate the stronger theorem.
Theorem 9.1 (Case 2: unique attractor/noninvariance). Under Hypotheses 1, 2, and 3 con-

sider any solution x (t) , t ∈ [0,∞ ), of the blinking system. Let W be the Lyapunov function
introduced in Hypothesis 2 and V1 be the positive constant introduced in Hypothesis 3. As in
Theorem 8.3, choose V0 such that 0 < V0 < V1, and let

(9.1)

−γ = max
V0≤W (x)≤V1

DΦW (x),

c = 1
64(LBWF+LBWΦ)B2

WF
,

U0 =
{
x
∣∣∣W (x) < V0 +

γ2

2(LBWF+LBWΦ)

}
.

Then the following properties hold:
(a) If the switching time τ satisfies

(9.2) τ <
cγ3

ln
[
D (V1−V0)

γ2

] ,
where

(9.3) D = 8 (LBWF + LBWΦ) ,

then the solution x(t) almost surely reaches the neighborhood U0 of A in finite time.D
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(b) Let x ∈ R, and assume that (9.2) holds. Suppose that W (x (0)) ≤ V1, and let, for all
natural numbers n, P1(n) be the probability that it takes at least time 2nV1−V0

γ to reach
U0. Then

(9.4) P1 (n) ≤ exp

(
−n

[
cγ3

τ
−ln

[
D
(V1 − V0)

γ2

]])
.

(c) Suppose that x (0) ∈ R. The probability that at time t the solution satisfies

(9.5) W (x (t)) > V0 +
8γ2

D

is bounded by D
γ2V1 · exp(− cγ3

τ ) for t ≥ 2
γV1.

Proof. The complete proof of Theorem 9.1 is given in the appendix. As before, we give a
short narrative that refers to various parts of the complete proof. Here, we employ the same
technique developed for the proof of Theorem 8.3. To prove that the trajectory of the blinking
system for almost all switching sequences reaches neighborhood U0 of the ghost attractor, we
give an upper bound for the probability that the trajectory, starting from outside of U0, will
not reach U0 at least until time T + nQΔt for an arbitrary integer n. Here, Δt is chosen
as in the proof of Theorem 8.3 and Q is the minimum number of time steps Δt it takes the
trajectory to get into U0 in accordance with the stricter bound from Lemma 13.5 (see the
appendix). This upper bound for the probability converges to 0 as n → ∞ (cf. (13.85)).
This implies that with zero probability the trajectory never reaches U0, or, equivalently, with
probability 1 it reaches U0. This completes the proof of Theorem 9.1(a). The short proof of
Theorem 9.1(b) immediately follows from the bound obtained in part (a).

To prove part (c), we exploit the same probabilistic bounds for the time the trajectory
reaches U0 (cf. part (b)) and the time it remains in neighborhood Ū0+ (cf. Theorem 8.3(b).
Beyond the combined time interval, the trajectory escapes from Ū0+; however, in this case the
trajectory does not get lost in a region for which we have no assumptions about its behavior, as
opposed to the assumptions for Theorem 8.3 dealing with multiple ghost attractors. Therefore,
we use the current state of the escaped trajectory outside Ū0+ as the initial condition and
apply the bounds for reaching U0 and remaining in Ū0+ again. Hence, for any given time we
can give an estimate on the probability that the trajectory is in Ū0+. Actually, for technical
reasons this argument is carried out not for Ū0+ itself but for a slightly different neighborhood
of the ghost attractor (cf. (9.5)). This concludes the sketch of the proof for part (c).

Remark 9.1.
(a) Part (a) of Theorem 9.1 expresses the fact that almost all trajectories of the blinking

system get arbitrarily close to the attractor of the averaged system, provided switching
is fast enough. This actually implies that almost all trajectories of the blinking system
visit infinitely often any neighborhood of the attractor. Part (b) says that with high
probability the trajectories of the blinking system reach such a neighborhood rather
fast. Of course, the smaller the neighborhood, the longer the time necessary to reach
it.

(b) While trajectories of the blinking system get arbitrarily close to the attractor of the
averaged system, they do not stay close forever. However, their excursions far fromD
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the attractor are relatively rare. In fact, part (c) ensures that at any given time,
with high probability the trajectory of the blinking system is close to the attractor.
By switching faster, one can force the trajectories of the blinking system to stay with
high probability even closer to the attractor. The quantitative aspect of this property is
somewhat obscured in Theorem 9.1 by the implicit dependence of the two parameters
V0 and γ. Close to a hyperbolic attractor, V0 and γ are proportional. Supposing
proportionality, we get a statement of the following form:
If for V0 close to zero γ ∼ V0, then there exists a constant K such that the probability

that W (x (t)) > V0 is bounded by K
V 2
0
exp(− cγ3

τ ). This probability can be made as

small as desired by increasing the speed of switching.

10. Case 3: The attractor or attracting set is invariant under the blinking system;
there may be other attractors. In the special case when the attractor or attracting set A of
the averaged system is an invariant set of the blinking system, convergence of the solutions of
the blinking system to A is possible. In this section, we give the conditions and the precise
formulation when this happens. The property that the set A is invariant under the dynamics
of the blinking system implies that the Lyapunov function W vanishes along any trajectory
of the blinking system within A. We strengthen this property somewhat in Hypothesis 4 by
requiring not only that the derivative of W along any solution of the blinking system that
approaches A converge to zero but that the derivative be bounded by W multiplied by a
constant. In other words, we assume that the derivative of the logarithm lnW is bounded.
The bistable system (the second example) is a case in point.

Hypothesis 4. Suppose the averaged system (2.2) has an attracting set A with a corre-
sponding Lyapunov function W satisfying Hypothesis 2. Introduce the following functions,
similar to Definition 8.2, but using instead of the Lyapunov function its logarithm. It is well
defined as long as W (x) �= 0. Introduce

DF lnW (x, s) =
N∑
i=1

∂ lnW

∂xi
(x)Fi (x, s) ,

D2
F
lnW (x, s̃, s) =

N∑
i,j=1

[
∂2 lnW

∂xi∂xj
(x)Fi (x, s̃)Fj (x, s) +

∂ lnW

∂xi
(x)

∂Fi

∂xj
(x, s̃)Fj (x, s)

]
,

DΦ lnW (x) =

N∑
i=1

∂ lnW

∂xi
(x)Φi (x) ,

D2
Φ lnW (x) =

N∑
i,j=1

[
∂2 lnW

∂xi∂xj
(x) Φi (x)Φj (x) +

∂ lnW

∂xi
(x)

∂Φi

∂xj
(x) Φj (x)

]
.

These functions could diverge to infinity when approaching A. We require that this is not the
case, and that the following constants are finite

BlnWΦ = sup
x∈R,W (x)�=0

|DΦ lnW (x)|,

LBlnWΦ = sup
x∈R,W (x)�=0

∣∣D2
Φ lnW (x)

∣∣,(10.1)
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BlnWF = max
s∈{0,1}M

sup
x∈R,W (x)�=0

|DF lnW (x, s)|,

LBlnWF = max
s,s̃∈{0,1}M

sup
x∈R,W (x)�=0

∣∣D2
F lnW (x, s̃, s)

∣∣.
In addition, we require that there be a positive constant γ such that

(10.2) sup
x∈C1, 0<W (x)≤V1, x/∈A

DΦ lnW (x) = −γ < 0,

where C1 and V1 are defined in Hypothesis 2.
The following theorem describes the behavior of the blinking system in the case of multiple

attractors of the averaged system that are invariant under the blinking system.
Theorem 10.1 (Case 3: nonunique attractor/invariance). Under Hypotheses 1, 2, 3, and 4

consider a solution x(t) of the blinking system that starts at a point x (0) ∈ C1 (the connected
component of the level set {x | W (x) ≤ V1} containing A). Let

−γ = sup
x∈C1, 0<W (x)≤V1, x/∈A

DΦ lnW (x),

α = BlnWF +BlnWΦ,

Δt = γ
2(LBlnWF+LBlnWΦ) ,

c = 1
64(LBlnWF+LBlnWΦ)B2

lnWF
,

where the constants B and LB are defined in (10.1) and C1 and V1 are defined in Hypothesis 2.
Suppose that τ is sufficiently small such that

(10.3) 4e
2α+ γ

γ
exp

(
−cγ3

τ

)
≤ 1−

√
e

3
.

Consider the open region

U∞ = {x | lnW (x) > lnV1 + αΔt} .
Then the following hold:

(a) The probability Pescape that the solution x (t) of the blinking system reaches U∞ is
bounded by

(10.4) Pescape ≤ 36α2

γ2
· exp

(
−cγ3

τ

)
.

(b) The probability that the solution x (t) of the blinking system converges to A is at least

(10.5) Pconvergence ≥ 1 − 216α2

γ2
· exp

(
−cγ3

τ

)
.

More precisely, with probability at least 1− 216α2

γ2 · exp(− cγ3

τ ) the convergence is expo-
nentially fast according to

(10.6) W (x (t)) ≤ K exp
(
−γ

4
t
)
,

where K = V1 exp(
(α+ γ

4 ) γ

2(LBlnWF+LBlnWΦ)).D
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Proof. The complete proof is given in the appendix. As in the previous sketches of the
proofs, we give the main reasoning below.

The proof closely follows that of Theorem 8.3. It starts with Lemmas 13.6, 13.7, 13.8,
13.9, and 13.10, which are analogous to Lemmas 13.1, 13.2, 13.3, 13.4, and 13.5, except that
the logarithm of the Lyapunov function lnW is used instead of W . As far as the value of γ
is concerned, in this case it is imposed by Hypothesis 4. Furthermore, its meaning is that the
logarithm lnW of the Lyapunov function of the averaged system decreases at least linearly in
time with coefficient γ. This corresponds to an exponential decrease of W with rate at least
γ. This contrasts with the assumption of Theorem 8.3 that γ expresses the linear rate of the
decreasing of W along the trajectory of the averaged system outside neighborhood U0.

The derivation of the bound on the probability that the trajectory escapes to region U∞ is
completely analogous to the corresponding proof for Theorem 8.3. This completes the proof
of part (a).

The lower bound on the probability of convergence to the attractor is derived in a similar
way to the bound on the probability of direct attraction (8.8) in Theorem 8.3. The difference
between the assumptions made in the two theorems is that the probabilistic bound on the
decrease of function W in the present case is valid along the entire trajectory of the blinking
system, whereas in the case addressed by Theorem 8.3 it is valid only as long as the trajectory
stays outside of the ghost attractor’s neighborhood U0. Nevertheless, the proof that in the
present case function lnW (x(t)) almost never becomes larger than lnW (x0)− γ

4 t is analogous
to the corresponding proof that the trajectory of the blinking system almost never remains
trapped in the region between U0 and U∞. This proof in the present case leads to the lower
bound for the convergence to the attractor. This concludes part (b).

11. Case 4: Unique attractor; invariant for the blinking system. We now suppose that
Hypotheses 1, 2, 3, and 4 are valid; i.e., the attractor A is unique or all attractors are contained
in the attracting set A. Furthermore, A is invariant under the blinking system. Finally, the
compact absorbing region R is contained in the level set {x |W (x) ≤ V1 } of the Lyapunov
function W . From this we can conclude that if the switching time is sufficiently short, almost
all solutions of the blinking system converge exponentially fast to A. The synchronization of
coupled Lorenz systems (the first example) is a case in point.

Theorem 11.1 (Case 4: unique attractor/invariance). Under Hypotheses 1, 2, 3, and 4 con-
sider any solution x (t) , t ∈ [0,∞ ), of the blinking system. Let W be the Lyapunov function
introduced in Hypothesis 2 and V1 be the positive constant introduced in Hypothesis 3. Let

−γ = sup
x∈C1, 0<W (x)≤V1, x/∈A

DΦ lnW (x),

α = BlnWF +BlnWΦ,

c = 1
64(LBlnWF+LBlnWΦ)B2

lnWF
,

where the constants B and LB are defined in (10.1). Suppose that τ is sufficiently small such
that

2e
2α+ γ

γ
exp

(
−cγ3

τ

)
≤ 1−

√
e

3
.
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Then the solution almost surely converges to A exponentially fast with exponential speed at
least γ

4 ; i.e., for almost all switching sequences there is a constant K such that for all t ≥ 0

(11.1) W (x (t)) ≤ K exp
(
−γ

4
t
)
.

If W (x (0)) ≤ V1, then with probability at least

(11.2) Pconst ≥ 1− 180α2

γ2
· exp

(
−cγ3

τ

)

the following constant K is sufficient for (11.1):

(11.3) K = V1 exp

( (
α+ γ

4

)
γ

2 (LBlnWF + LBlnWΦ)

)
.

Proof. The complete proof is given in the appendix. As in the proof of Theorem 10.1,
we show that lnW (x(t)) is almost never larger than lnW (x0)− γ

4 t for infinitely many times
t = QΔt, Q = 1, 2, 3, . . . . In contrast to Theorem 10.1 the probabilistic bound on the
decrease of lnW along the trajectory of the blinking system is valid everywhere since the
attractor of the averaged system is unique. This implies the convergence to the attractor of
the blinking system and the existence of constant K such that W (x (t)) ≤ K e−

γ
4
t for almost

all switching sequences (cf. (13.141) in the complete proof). In the same way as in the proof
of Theorem 10.1(b) it is shown that the constant K with high probability is smaller than the
value (11.3). The lower bounds on the probabilities in the two theorems are the same if one
discounts for the probability of escaping to U∞ that is present in Theorem 10.1 but absent in
Theorem 11.1.

12. Conclusions. We have studied the asymptotic dynamics of general blinking systems
with identically distributed independent random switching variables. Four distinct classes
of blinking dynamical systems have to be distinguished. Two properties differentiate them:
single or multiple attractors of the averaged system and their invariance or noninvariance
under the dynamics of the blinking system.

In the most constrained class (Case 4), the averaged system has a single global attractor
or attracting set A which is invariant under the blinking system. We have proved that if the
switching period τ is smaller than an explicitly given bound, the trajectories of the blinking
system for almost all switching sequences converge to A. This bound depends on the expo-
nential speed of convergence γ in the averaged system. In fact, the crucial ratio τ/γ3 has to
be small. Furthermore, the trajectories of the blinking system converge to the attractor also
exponentially fast, and the speed of convergence is slower than γ but of the same order of
magnitude. As an example, we have used a blinking network of diffusively coupled identical
Lorenz systems where connections are stochastically switched on and off, similar to networks
considered in our previous paper [11]. The averaged system is obtained by replacing each
blinking connection with a static link, corresponding to the averaged blinking connection. If
the connections of the averaged network are strong enough [5], the diagonal subspace corre-
sponding to completely synchronized solutions is an attracting set. It is also an invariant setD
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of the blinking system at each time instant. In our example, most of the time the blinking
network is disconnected; nevertheless, synchronization in the fast blinking system takes place
for almost all switching sequences.

In the case where the attractor or attracting set A is invariant under the blinking system
but there may be other attractors (Case 3), we have proved the following properties of the
blinking system. Its trajectories converge to A with a probability that can be made arbitrarily
close to 1 by decreasing the switching period. Again, the crucial ratio is τ/γ3, where γ is the
exponential speed of convergence to A in the averaged system. Below a certain threshold
for the switching period, the trajectories of the blinking system that converge to A almost
surely converge exponentially fast. Again, the speed of convergence is slightly slower than γ.
The exceptional trajectories that do not converge to A, in general, escape from the attraction
basin of the attractor. As an illustrative example, we have considered two bistable systems
coupled by a blinking connection. The blinking connection implies that the two systems are
part of the time uncoupled, and part of the time are coupled with a certain coupling strength
d. The averaged system yields a coupled system with static connections of lower coupling
strength pd, where p is the probability that the coupling is turned on. As a consequence, the
averaged system has two asymptotically stable equilibrium points as attractors. They are also
attractors of the blinking system at each time instant; however, their basins of attraction are
different. The faster the switching, the more unlikely it is that the blinking system and the
averaged system converge to two different attractors.

In the case where the attractor of the averaged system is unique but not invariant under
the blinking system (Case 2), we have proved the following theorem (Theorem 9.1). For any
choice of a small neighborhood U0 of the attractor, the trajectories of the averaged system
approach the attractor with a minimum linear speed γ > 0. We have limited our analysis to
the linear speed because in any case the trajectories of the blinking system cannot converge
to the attractor and can reach only a small neighborhood of it. Therefore, the attractor of the
averaged system acts as a ghost attractor for the blinking system. The linear speed goes to
zero when approaching the attractor as opposed to the exponential speed. As the switching
period is small enough, the trajectory of the blinking system almost surely reaches a certain
neighborhood of the attractor in finite time. This threshold is essentially proportional to
γ3. With probability close to 1, the trajectories of the blinking system reach U0 in a short
time. They may leave U0 from time to time, but the probability that at any given time they
are far from the ghost attractor is very small. As an illustrative example, we have chosen a
stochastically switched DC-DC power converter. The averaged system is linear with a globally
asymptotically stable equilibrium point. The blinking system is switched between two linear
systems that both have a globally asymptotically stable equilibrium point but different from
the averaged system and different from each other. Therefore, the unique attractor of the
averaged system is not invariant under the blinking system. Nevertheless, in accordance with
Theorem 9.1 the trajectories of the blinking system rapidly approach a neighborhood of the
equilibrium point of the averaged system (ghost attractor) and stay close to the ghost attractor
while stochastically wiggling around.

Finally, in the case where the attractor of the averaged system is neither unique nor
invariant under the blinking system (Case 1), we have derived the following results. As in
the previous case, we choose a small neighborhood U0 of the ghost attractor of the blinkingD
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system and a subregion of its basin of attraction such that the linear speed γ of convergence of
the averaged system is uniformly positive. The probability that the trajectory of the blinking
system reaches U0 rapidly can be made arbitrarily close to 1 by decreasing the switching
period. Subsequently, it may after some time go far away from the ghost attractor, but the
probability that it happens in a given lapse of time can be made arbitrarily small. For both
probabilities we find once more τ/γ3 to be essential. An illustrative example for this case
is an information processing CNN. It consists of a regular planar array of linear first-order
dynamical systems with nonlinear output functions. This network has static connections
between nearest neighbors and blinking connections between nodes that are spaced farther
apart. It has many asymptotically stable equilibrium points. The information processing
is performed by the dynamics of the network, more specifically by the time evolution from
the initial network state to the corresponding equilibrium point. The network is designed to
perform a winner-take-all function, i.e., to determine the maximum component of the initial
network state. This function cannot be performed by solely static local connections, and the
blinking connections are necessary. If the switching is fast, the trajectory of the blinking
network reaches the correct ghost equilibrium point as long as the initial state components
are sufficiently distinct; otherwise, the initial state vector is too close to the basin boundary
between two (the correct and a wrong ghost) equilibria. Furthermore, the trajectory of the
blinking system stays sufficiently long in a small neighborhood of the correct ghost equilibrium
point such that the information can be read out.

Figure 14 summarizes the general results for all four cases. The comparison of the explicit
thresholds for the switching period and various probabilities with the effective properties of the
blinking systems in the case of the four examples will be published elsewhere. In particular,
note that the exponential rate of convergence to the attractor we obtained, when it is invariant
under the blinking system, is not the actual one but just a lower bound. The precise rate
could in principle be computed by determining the action functional and solving a variational
problem [34]. However, our lower bound is given as an explicit expression in easily determined
system parameters, which seems to be out of reach for the action functional method.

We have chosen binary vector–valued identically distributed independent random variables
that are constant in a small time interval as the driving stochastic process for the blinking
system. Thus, we have deliberately restricted the blinking system to a very specific form,
as far as its probabilistic nature is concerned; however, its dynamical systems nature is very
general. This setting is adapted to a network of interconnected dynamical systems, where
the connections are stochastically switched on and off. Our results can easily be extended to
blinking systems driven by a Markov vector process in discrete or continuous time, instead
of sequences of independent random vectors. Indeed, there are only two places where the
specific nature of the driving stochastic process is used. The first is the probability of large
deviation of the sum or integral of random variables from its mean (cf. (13.5), (13.7), (13.10),
and (13.105), (13.107), (13.108)), where we have used Hoeffding’s inequality [39]. Similar
inequalities can be obtained for Markov processes in discrete or continuous time, and one
simply has to substitute in the formulas the quantities PWλ or PlnWλ by the corresponding
expressions. The second place where the nature of the stochastic process is used is when
combining the results on the decreasing of the Lyapunov function W or its logarithm lnW
during a time interval of length Δt for subsequent intervals on the time axis. Our proofsD
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Averaged
system

Blinking
system

Single global
attractor

Several attractors
(multistability)

Invariance
of the
attractors

Non-
invariance:
ghost
attractor(s)

Case 4Case 3

Case 2Case 1

Figure 14. Qualitative behavior of the blinking system’s trajectories in the four cases. Upper row: Tra-
jectories reach a neighborhood (the ghost attractor) of the same attractor as the averaged system. Lower row:
Trajectories converge to the same attractor as the averaged system. Left column: Property holds with high prob-
ability; however, there is a probability of escape to another attractor. The dashed line separates attraction basins
of two attractors in the averaged system. Right column: Property holds for almost all switching sequences. The
bounds on the probabilities are given in the four theorems.

remain valid as long as the solution x (t) is a vector-valued Markov process. If the driving
stochastic process has the Markov property, this is always the case.

13. Appendix. In this appendix, we give the details of the proofs for Theorems 8.3, 9.1,
10.1, and 11.1.

13.1. Theorem 8.3: Case 1, multiple ghost attractors.

13.1.1. Preliminary lemmas. We consider the trajectories of the blinking and averaged
systems, starting from the same initial condition at t = 0. We assume that the Lyapunov
function W of the averaged system (cf. Theorem 8.3) strictly decreases along the trajectory
of the averaged system. As discussed in the sketch of the proof for Theorem 8.3, we complete
the first step of the proof by deriving three lemmas to show that after a certain time Δt the
Lyapunov function decreases along the trajectory of the blinking system either to 0 or to a
small value with high probability.D
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First step. It follows that if x(t) is a solution of the blinking and ξ(t) a solution of the
averaged system, then, in addition to (8.1),

(13.1)

d2

dt2W (ξ (t)) = D2
ΦW (ξ (t)),

d
dtW (x (t)) = DFW (x (t) , s (t)),

d
dtDFW (x (t) , s̃) = D2

FW (x (t) , s̃, s (t)) .

Furthermore, the expectation

(13.2) E (DFW (x, S)) = DΦW (x) ,

and thus by the weak law of large numbers [38], for all x(t) and λ > 0,

(13.3) P

{∣∣∣∣∣ 1K
K∑
k=1

DFW
(
x, Sk

)
−DΦW (x)

∣∣∣∣∣ > λ

}
→

K→∞
0.

Hence, we can define

(13.4) PWλ (K) = max
x∈R

P

{∣∣∣∣∣ 1K
K∑
k=1

DFW
(
x, Sk

)
−DΦW (x)

∣∣∣∣∣ > λ

}
,

which has the property

(13.5) PWλ (K) →
K→∞

0 for any λ > 0,

and because of the stationarity of the stochastic process, we have also for each k0 ≥ 1

(13.6) PWλ (K) = max
x∈R

P

⎧⎨
⎩
∣∣∣∣∣∣
1

K

K+k0∑
k=k0+1

DFW
(
x, Sk

)
−DΦW (x)

∣∣∣∣∣∣ > λ

⎫⎬
⎭ .

Applying the Hoeffding inequality [39, 21], we get the following lemma.
Lemma 13.1. For any λ > 0, the following inequality holds:

(13.7) PWλ (K) ≤ 2 exp

(
− Kλ2

2B2
WF

)
.

Notice that

(13.8)

∫ t+Δt

t
[DFW (x, s (u))−DΦW (x)] du =

k0+K∑
k=k0+1

τ
[
DFW

(
x, sk

)
−DΦW (x)

]

if t = k0τ and Δt = Kτ and inequality (13.7) can be applied to bound the left-hand side of
(13.8). In order to be able to apply this bound to arbitrary positive real t and Δt, we again
extend the definition of PWλ (K) to noninteger K by

(13.9)

PWλ (K) = max
0≤α≤1

max
x∈R

P

⎛
⎝ 1

K

∣∣∣∣∣∣(1− α)DFW
(
x, S1

)
+

	K+α
∑
k=2

DFW
(
x, Sk

)

+(K + α− �K + α
)DFW
(
x, S	K+α
+1

)−KDΦW (x)

∣∣∣∣∣ > λ

)
.
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With this definition, on the one hand, (13.7) is valid for any real K > 0, and on the other
hand, for any t ≥ 0, Δt ≥ 0, λ > 0, x ∈ R we have

(13.10) P

(∣∣∣∣
∫ t+Δt

t
[DFW (x, s (u))−DΦW (x)] du

∣∣∣∣ > λ ·Δt

)
≤ PWλ

(
Δt

τ

)
.

The following lemma and its proof are similar to Lemma 6.2 in the appendix of the companion
paper [21].

Lemma 13.2. Consider a solution x(t) of the blinking system. Choose a time t ≥ 0 and the
solution of the averaged system with ξ (t) = x (t). Then the following hold:

(a) For any Δt ≥ 0,

(13.11) |W (x (t+Δt))−W (ξ (t+Δt))| ≤ αΔt,

where α = BWF +BWΦ.
(b) For any λ > 0 and Δt ≥ 0, the conditional probability that

(13.12) |W (x (t+Δt))−W (ξ (t+Δt))| ≤ LBWF + LBWΦ

2
Δt2 + λΔt

holds, given the value of x(t), is at least 1− PWλ

(
Δt
τ

)
.

Proof.
(a) We first prove the first part of the lemma:

(13.13)

|W (x (t+Δt))−W (ξ (t+Δt))|

≤
∣∣∣∣
∫ t+Δt

t

d

du
W (x (u)) du−

∫ t+Δt

t

d

du
W (ξ (u)) du

∣∣∣∣
=

∣∣∣∣
∫ t+Δt

t
DFW (x (u) , s (u)) dt−

∫ t+Δt

t
DΦW (ξ (u)) du

∣∣∣∣
≤ (BWF +BWΦ)Δt.

(b) Here, we prove the second part of the lemma:

(13.14)

|W (x (t+Δt))−W (ξ (t+Δt))|

≤
∣∣∣∣
∫ t+Δt

t
DFW (x (u) , s (u)) dt−

∫ t+Δt

t
DΦW (ξ (u)) du

∣∣∣∣
≤
∣∣∣∣
∫ t+Δt

t
[DFW (x (u) , s (u))−DFW (x (t) , s (u))] du

∣∣∣∣
+

∣∣∣∣
∫ t+Δt

t
[DFW (x (t) , s (u))−DΦW (x (t))] du

∣∣∣∣
+

∣∣∣∣
∫ t+Δt

t
[DΦW (ξ (u))−DΦW (ξ (t))] du

∣∣∣∣ .
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Using (13.1), the first and third terms can be rewritten as
(13.15)∣∣∣∣

∫ t+Δt

t
[DFW (x (u) , s (u))−DFW (x (t) , s (u))] du

∣∣∣∣
≤
∣∣∣∣
∫ t+Δt

t

[∫ u

t

d

dv
DFW (x (v) , s (u)) dv

]
du

∣∣∣∣
=

∣∣∣∣
∫ t+Δt

t

[∫ u

t
D2

FW (x (v) , s (v) , s (u)) dv

]
du

∣∣∣∣ ≤ LBWF
(Δt)2

2
;

∣∣∣∣
∫ t+Δt

t
[DΦW (ξ (u))−DΦW (ξ (t))] dt

∣∣∣∣ ≤
∣∣∣∣
∫ t+Δt

t

[∫ u

t

d

dv
DΦW (ξ (v)) dv

]
du

∣∣∣∣
=

∣∣∣∣
∫ t+Δt

t

[∫ u

t
D2

ΦW (ξ (v)) dv

]
du

∣∣∣∣ ≤ LBWΦ
(Δt)2

2
.

For the second term we apply (13.10) to obtain that with probability at least 1 −
PWλ

(
Δt
τ

)

(13.16)

∣∣∣∣
∫ t+Δt

t
[DFW (x (t) , s (u)) − DΦW (x (t))] du

∣∣∣∣ ≤ λΔt.

Combining (13.15) and (13.16) proves the lemma.
Lemma 13.3. For any V0 with 0 < V0 < V1, let

(13.17)

−γ = max
x∈C1, V0≤W (x)≤V1

DΦW (x),

Δt = γ
2(LBWF+LBWΦ) ,

λ = γ
4 ,

Ṽ0 = V0 + γΔt.

Then for any t ≥ 0 and for any solution x(t) of the blinking system the following hold:
(a) If x (t) ∈ C1 and Ṽ0 ≤ W (x (t)), the conditional probability that

(13.18) W (x (t+Δt)) ≤ W (x (t))− γ

2
Δt

holds, given x(t), is at least 1− PWλ

(
Δt
τ

)
.

(b) In general, for x (t) ∈ C1, the conditional probability that

(13.19) W (x (t+Δt)) ≤ W (x (t)) +
γ

2
Δt

holds, given x(t), is at least 1− PWλ

(
Δt
τ

)
.
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Proof.
(a) Consider a solution ξ (t) of the averaged system with ξ (t) = x (t). Then

(13.20) W (ξ (t+Δt)) = W (ξ (t)) +

∫ t+Δt

t
DΦW (ξ (u)) du.

By (13.17), DΦW (ξ (u)) ≤ −γ as long as W (ξ (u)) ≥ V0. On the other hand, if, for
some t < u < t + Δt, W (ξ (u)) = V0, then W (ξ (t+Δt)) < V0, and thus under the
condition V0 + γΔt ≤ W (x (t)) ≤ V1 in all cases

(13.21) W (ξ (t+Δt)) ≤ W (ξ (t))− γΔt.

Hence by Lemma 13.2, with the choices of parameters (13.17), we get under the con-
dition Ṽ0 ≤ W (x (t)) ≤ V1 with probability at least 1− PWλ

(
Δt
τ

)
(13.22)

W (x (t+Δt)) ≤ W (ξ (t+Δt)) + |W (x (t+Δt))−W (ξ (t+Δt))|
≤ W (ξ (t))− γΔt+ γ

2Δt = W (x (t))− γ
2Δt.

(b) If we do not require Ṽ0 ≤ W (x (t)), instead of (13.21) we have only

(13.23) W (ξ (t+Δt)) ≤ W (ξ (t))

and thus instead of (13.22)

(13.24) W (x (t+Δt)) ≤ W (x (t)) +
γ

2
Δt

with probability at least 1− PWλ

(
Δt
τ

)
.

Second step. For any choice of the initial state x(0) with 0 < W (x (0)) ≤ V1 and x (0) ∈ C1

(the connected component of the level set {x |W (x) ≤ V1 } containing the attracting set A),
for any choice of the constants τ > 0 and V0 with 0 < V0 < V1, and for the constants
γ, λ,Δt, Ṽ0 given by (13.17), we consider the following sequence of random variables on the
probability space of switching sequences:

(13.25) Zq (s) = W (x (qΔt)) , q = 0, 1, 2, . . . .

By Hypothesis 2, Z0 is concentrated on a single value that is smaller than or equal to V1.
Note that here again, as in the companion paper [21], the scalar stochastic process {Zq} is
not a Markov process, even though x (qΔt) is a vector-valued Markov process, because the
application of the function W destroys much of the information contained in the state x (qΔt).
However, according to Lemma 13.3 we have the deterministic bound

(13.26) W (x (t+Δt)) ≤ W (x (t)) + αΔt,

and under the condition W (x (t)) ≤ V1, the probabilistic bound is
(13.27)

P
(
W (x (t+Δt)) ≤ W (x (t))− γ

2
Δt
∣∣∣x (t) , Ṽ0 ≤ W (x (t)) ≤ V1

)
> 1− PWλ

(
Δt

τ

)
,
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and finally the probabilistic bound becomes

(13.28) P
(
W (x (t+Δt)) ≤ W (x (t)) +

γ

2
Δt |x (t) , 0 ≤ W (x (t)) ≤ V1

)
> 1− PWλ

(
Δt

τ

)
.

As for the finite time analysis [21], it is convenient to introduce auxiliary binary random
variables:
(13.29)

θq =

⎧⎨
⎩

1 if W (x (qΔt)) ≤ W (x ((q − 1)Δt))− γ
2Δt and Ṽ0 ≤ W (x ((q − 1)Δt)) ,

1 if W (x (qΔt)) ≤ W (x ((q − 1)Δt)) + γ
2Δt and 0 ≤ W (x ((q − 1)Δt)) < Ṽ0,

0 otherwise.

The following results correspond to Lemma 6.3 in the companion paper [21], but it is com-
plicated by the fact that the solution of the blinking system has to remain in the region
W (x (t)) ≤ V1, at least for the instants t = qΔt, q = 0, 1, . . ., for the bound (13.21) or (13.24)
to be applicable.

Lemma 13.4. Suppose the various constants are chosen as in Lemma 13.3, and suppose
that

(13.30) V1 − V0 ≥ 3

2
γΔt.

For any Q ∈ N, let σ = (σ1, . . . , σQ) ∈ {0, 1}Q be a binary vector of length Q and m =

Q−∑Q
q=1 σq be the number of zeros in this vector. Then the following hold:

(a) For m = 0,

(13.31)
P (θq = 1, Zq−1 ≤ V1 for q = 1, . . . , Q)

= P (θq = 1 for q = 1, . . . , Q) >
(
1− PWλ

(
Δt
τ

))Q
.

(b) For m > 0,

(13.32) P (θq = σq, Zq−1 ≤ V1 for q = 1, . . . , Q) ≤
[
PWλ

(
Δt

τ

)]m
.

Proof.
(a) It follows from Z0 ≤ V1 and θq = 1 for q = 1, . . . , Q that Zq ≤ V1 for q = 1, . . . , Q.

Indeed, from θq = 1 it follows that Zq < Zq−1 unless Zq−1 < Ṽ0. In this last case,
using (13.30), we get Zq ≤ Zq−1 +

γ
2Δt ≤ Ṽ0 +

γ
2Δt ≤ V1. Therefore,

(13.33) P (θq = 1, Zq−1 ≤ V1 for q = 1, . . . , Q) = P (θq = 1 for q = 1, . . . , Q) .

Furthermore,

(13.34)

P (θq = 1 for q = 1, . . . , Q)

=
∑

x((Q−1)Δt)

P (θq = 1 for q = 1, . . . , Q, x ((Q− 1)Δt)) ,

D
ow

nl
oa

de
d 

06
/2

0/
13

 to
 1

31
.9

6.
25

3.
20

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DYNAMICS OF BLINKING SYSTEMS. PART II 1067

where the summation is over (the finite number of) all possible values of x ((Q− 1)Δt).
Then

(13.35)

P (θq = 1 for q = 1, . . . , Q)

=
∑

x((Q−1)Δt)

P (θQ = 1 | θq = 1 for q = 1, . . . , Q− 1, x ((Q− 1)Δt))

× P (θq = 1 for q = 1, . . . , Q− 1, x ((Q− 1)Δt)) .

Since θQ depends only on x (QΔt) and x ((Q− 1)Δt), and since x (qΔt) , q = 1, 2 . . .,
is a vector-valued Markov process, we get

(13.36)

P (θq = 1 for q = 1, . . . , Q, x ((Q− 1)Δt))

=
∑

x((Q−1)Δt)

P (θQ = 1 |x ((Q− 1)Δt))

×P (θq = 1 for q = 1, . . . , Q− 1, x ((Q− 1)Δt))

>
(
1− PWλ

(
Δt
τ

)) ∑
x((Q−1)Δt)

P (θq = 1 for q = 1, . . . , Q− 1, x ((Q− 1)Δt))

=
(
1− PWλ

(
Δt
τ

)) · P (θq = 1 for q = 1, . . . , Q− 1) .

Then inequality (13.31) follows by induction. Indeed, for Q > 0, inequality (13.36) is
the induction step and for Q = 1, it becomes

(13.37) P (θ1 = 1) >

(
1− PWλ

(
Δt

τ

))
,

which holds by (13.36).
(b) If σQ = 1, we simply use

(13.38)
P (θq = σq, Zq−1 ≤ V1 for q = 1, . . . , Q)
≤ P (θq = σq, Zq−1 ≤ V1 for q = 1, . . . , Q− 1) .

If σQ = 0, we write

(13.39)

P (θq = σq, Zq−1 ≤ V1 for q = 1, . . . , Q)

=
∑

x((Q−1)Δt)

P (θq = σq, Zq−1 ≤ V1 for q = 1, . . . , Q, x ((Q− 1)Δt)) ,

where the summation is over (the finite number of) all possible values of x ((Q− 1)Δt).
The condition ZQ−1 ≤ V1 is a restriction on this summation. Therefore,

(13.40)

P (θq = σq, Zq−1 ≤ V1 for q = 1, . . . , Q)

=
∑

x((Q−1)Δt)
W (x((Q−1)Δt))≤V1

[P (θQ = 0, θq = σq, Zq−1 ≤ V1 for q = 1, . . . , Q− 1, x ((Q− 1)Δt))]

=
∑

x((Q−1)Δt)
W (x((Q−1)Δt))≤V1

P (θQ = 0 |θq = σq, Zq−1 ≤ V1, q = 1, . . . , Q− 1)

·P (θq = σq, Zq−1 ≤ V1 for q = 1, . . . , Q− 1, x ((Q− 1)Δt)) .D
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Again, since θQ depends only on x (QΔt) and x ((Q− 1)Δt), and since x (qΔt) , q =
1, 2, . . ., is a vector-valued Markov process, we get

(13.41)

P (θq = σq, Zq−1 ≤ V1 for q = 1, . . . , Q)

=
∑

x((Q−1)Δt)
W (x((Q−1)Δt))≤V1

P (θQ = 0 | x ((Q− 1)Δt))

× P (θq = σq, Zq−1 ≤ V1 for q = 1, . . . , Q− 1, x ((Q− 1)Δt)) .

Using for each term in the sum the complement of (13.27) or (13.28), depending on
the value of W (x ((Q− 1)Δt)), we obtain
(13.42)

P (θq = σq, Zq−1 ≤ V1 for q = 1, . . . , Q)

≤
∑

x((Q−1)Δt)
W (x((Q−1)Δt))≤V1

PWλ

(
Δt
τ

) · P (θq = σq, Zq−1 ≤ V1, q = 1, . . . , Q− 1)

≤ PWλ

(
Δt
τ

)
P (θq = σq, Zq−1 ≤ V1 for q = 1, . . . , Q− 1) .

Again by induction, applying (13.27) or (13.28), depending on the value of the corre-
sponding σq, proves the lemma.

Lemma 13.5. For any V ≥ 0 and any integer Q with Q ≥ (V1 − V2)/Δt, we have

(13.43) P
(
Ṽ0 ≤ Zq−1 ≤ V1 for q = 1, . . . , Q, ZQ > V

)
≤

Q∑
n=m

(
Q
n

)[
PWλ

(
Δt

τ

)]n
,

where

(13.44) m =

⌊
Qγ

2α+ γ
− V1 − V

Δt
· 2

2α+ γ

⌋
+ 1

and �x
 is the integer part of x.
Proof. Suppose that θQ = σQ, . . . , θ1 = σ1, m = Q −∑Q

q=1 σq, and Ṽ0 ≤ Zq−1 ≤ V1 for
q = 1, . . . , Q. Then

(13.45) ZQ ≤ V1 − (Q−m)
γ

2
Δt+mαΔt.

Hence, if ZQ is to be larger than V , we must have

(13.46) m >
Qγ

2α+ γ
− V1 − V

Δt
· 2

2α + γ
.

D
ow

nl
oa

de
d 

06
/2

0/
13

 to
 1

31
.9

6.
25

3.
20

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DYNAMICS OF BLINKING SYSTEMS. PART II 1069

The smallest m satisfying (13.46) is (13.44). Therefore,

(13.47)

P
(
Ṽ0 ≤ Zq−1 ≤ V1 for q = 1, . . . , Q, ZQ > V

)
≤

1∑
σ1,...,σQ=0

Q−∑Q
q=1 θq≥m

P
(
θq = σq, Ṽ0 ≤ Zq−1 ≤ V1 for q = 1, . . . , Q,ZQ > V

)

≤
1∑

σ1,...,σQ=0

Q−∑Q
q=1 θq≥m

P
(
θq = σq, Ṽ0 ≤ Zq−1 ≤ V1 for q = 1, . . . , Q

)

≤
Q∑

n=m

(
Q
n

)[
PWλ

(
Δt
τ

)]n
.

13.1.2. Proof of Theorem 8.3. Having derived the lemmas, we are ready to give the
proof of Theorem 8.3.

Proof.
(a) We shall first prove the first part of the theorem. Let λ = γ

4 . Consider the set Sdirect
escape

of switching sequences such that the solution of the blinking system reaches U∞ before
reaching U0. For each such a switching sequence there must be an integer Q such that

(13.48) Ṽ0 ≤ Zq−1 ≤ V1 for q = 1, . . . , Q and ZQ > V1,

where Ṽ0 = V0 + γΔt. If this were not the case, then there would have to be a time t
(that is not a multiple of Δt) such that x (t) ∈ U∞ but

(13.49) Ṽ0 ≤ Zq ≤ V1 for q = 0, 1, 2, . . . .

Let the integer q be such that qΔt < t < (q + 1)Δt. Then

(13.50)
W (x (t)) ≤ W (x (qΔt)) + |W (x (t))−W (x (qΔt))|
≤ V1 + α (t− qΔt) < V1 + αΔt,

where we have used (13.11). But (13.50) is in contradiction with x (t) ∈ U∞. Hence,
there is an integer Q such that (13.48) holds, and therefore

(13.51) Sdirect
escape ⊆ S+ =

∞⋃
Q=1

{
s
∣∣∣Ṽ0 ≤ Zq−1 ≤ V1 for q = 1, . . . , Q and ZQ > V1

}
,

and thus
(13.52)

P direct
escape ≤ P (S+) ≤

∞∑
Q=1

P
(
Ṽ0 ≤ Zq ≤ V1 for q = 0, . . . , Q− 1 and ZQ > V1

)
.

Applying Lemma 13.5 for V = V1, we get

(13.53) P (S+) ≤
∞∑

Q=1

Q∑
n=m

(
Q
n

)[
PWλ

(
Δt

τ

)]n
,
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where m is given by (13.44). Hence, the double sum goes over all integer pairs (Q,n)
such that

(13.54) Q ≥ 1 and

⌊
Qγ

2α+ γ

⌋
+ 1 ≤ n ≤ Q ⇔ n ≥ 1 and n ≤ Q <

2α+ γ

γ
n.

Therefore, using the upper bound on binomial coefficients [40]

(13.55)

(
Q
n

)
≤
(
Qe

n

)n

,

we get

P (S+) ≤
∞∑
n=1

[
PWλ

(
Δt
τ

)]n 2α+γ
γ n∑

Q=n

(
Q
n

)
≤

∞∑
n=1

[
PWλ

(
Δt
τ

)]n 2α+γ
γ n∑

Q=n

(
Qe
n

)n

≤
∞∑
n=1

[
PWλ

(
Δt
τ

)]n (2α+γ
γ − 1

)
n
(
2α+γ

γ n
)n (

e
n

)n
(13.56)

≤ 2α
γ

∞∑
n=1

[
PWλ

(
Δt
τ

)]n
n
(
2α+γ

γ e
)n

= 2α
γ2

(2α+γ)ePWλ

(
Δt
τ

)
(
1− (2α+γ)

γ ePWλ

(
Δt
τ

))2 .

Application of (8.5) and (13.7) guarantees that the sum in (13.56) converges and leads
to (8.7).
In order to prove (8.8), we reason as follows. The solution x (t) of the blinking system
either reaches U∞ before reaching U0 or reaches U0 before reaching U∞ or never reaches
U∞ nor U0. The corresponding set of switching sequences is Sdirect

escape in the first case.

For the other two cases let us denote it by Sdirect
attraction and Strapped, respectively. Thus,

the set S of all switching sequences is decomposed into

(13.57) S = Sdirect
escape ∪ Sdirect

atttraction ∪ Strapped.

Another decomposition is

(13.58) S = S+ ∪ S− ∪ S0,

where S+ is given by (13.51) and

(13.59)
S− =

∞⋃
Q=1

{
s
∣∣∣ Ṽ0 ≤ Zq−1 ≤ V1 for q = 1, . . . , Q and ZQ < Ṽ0

}
,

S0 =
{
s
∣∣∣ Ṽ0 ≤ Zq−1 ≤ V1 for q = 1, 2, . . .

}
,

Since the solution corresponding to a switching sequence in Strapped is constrained
by Ṽ0 ≤ W (x (t)) ≤ V1 + αΔt rather than Ṽ0 ≤ W (x (t)) ≤ V1, we cannot claim
Strapped ⊆ S0. However, clearly Strapped ∩ S− = ∅, and therefore

(13.60) Strapped ⊆ S0 ∪ S+.D
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Now, for any Q ≥ 1,

(13.61)
S0 ⊆

{
s
∣∣∣ Ṽ0 ≤ Zq−1 ≤ V1 for q = 1, . . . , Q and ZQ ≥ Ṽ0

}
⊆
{
s
∣∣∣ Ṽ0 ≤ Zq−1 ≤ V1 for q = 1, . . . , Q and ZQ ≥ 0

}
,

and therefore, applying Lemma 13.5, for any Q ≥ 1,

(13.62)
P (S0) ≤

Q∑
n=m

(
Q
n

)[
PWλ

(
Δt
τ

)]n
,

m =
⌊

Qγ
2α+γ − 2V1

(2α+γ)Δt

⌋
+ 1.

If we choose

(13.63) Q ≥ 2V1

γΔt

√
4

e
,

then

(13.64) m> γ
2α+γ

(
Q− 2V1

γΔt

)
≥ γQ

2α+γ

(
1−√ e

4

)
= Qβ, where β = γ

2α+γ

(
1−√ e

4

)
.

Therefore, using again (8.5),

P (S0)≤
Q∑

n=m

(
Qe
n

)n [
PWλ

(
Δt
τ

)]n ≤
Q∑

n=m

(
Qe
Qβ

)n [
PWλ

(
Δt
τ

)]n

≤
∞∑

n=m

(
e
β

)n [
PWλ

(
Δt
τ

)]n
=
[
e
βPWλ

(
Δt
τ

)]m · 1

1− e
β PWλ

(
Δt
τ

) .(13.65)

The last equality holds because, using (8.5),

(13.66)
e

β
PWλ

(
Δt

τ

)
=

2α+ γ

γ
· e

1−√ e
4

PWλ

(
Δt

τ

)
≤ 1−√ e

3

1−√ e
4

< 1.

Since (13.65) holds for all Q satisfying (13.63) and when Q → ∞, also m → ∞ and the
right-hand side of (13.65) converges to 0. Hence, P (S0) = 0, and because of (13.60)
and (13.56)

(13.67) P (Strapped) ≤ 36α2

γ2
· exp

(
−cγ3

τ

)

and

(13.68) P direct
attraction = 1− Ptrapped − P direct

escape ≥ 1− 72α2

γ2
· exp

(
−cγ3

τ

)
.

This completes the proof of the first statement in the theorem.D
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(b) We shall now prove the second statement. Consider the set of switching sequences
such that

(13.69) θq = 1 for q = 1, . . . , Q with Q =

⌊
2 (V1 − V0)

γΔt

⌋
− 1.

Then

(13.70) Zq ≤ Zq−1 − γ

2
Δ t as long as Zq−1 ≥ Ṽ0.

Now, if ZQ−1 ≥ Ṽ0, then

(13.71) ZQ ≤ V1 −Q
γ

2
Δt ≤ V1 −

(
2 (V1 − V0)

γΔt
− 2

)
γ

2
Δt = V0 + γΔt = Ṽ0.

Hence, in any case,

(13.72) Tattraction ≤ QΔt ≤ 2 (V1 − V0)

γ
.

Thus, the set of switching sequences where (13.69) is satisfied contains the set of
switching sequences where (13.72) is satisfied. Hence,

(13.73)
P
(
Tattraction ≤ 2(V1−V0)

γ

)
≥ P (θq = 1 for q = 1, . . . , Q)

≥ (1− PWλ

(
Δt
τ

))Q ≥ (1−Q · PWλ

(
Δt
τ

)) ≥ 1− 4(V1−V0)
γΔt exp

(
− cγ3

τ

)
,

where we have used Lemma 13.4 and inequality (13.7).
To get probabilistic bounds on Tremain, it is convenient to reset the time to 0 after
reaching U0. Thus, we suppose that x (0) ∈ U0. Then, if

(13.74) θq = 1 for q = 1, . . . , Q,

it follows that

(13.75) Zq < Ṽ0 +
γ

2
Δt for q = 0, . . . , Q

because

(13.76)
Zq−1 < Ṽ0 ⇒ Zq ≤ Zq−1 +

γ
2Δt ≤ Ṽ0 +

γ
2Δt,

Ṽ0 ≤ Zq−1 ≤ Ṽ0 +
γ
2Δt ⇒ Zq ≤ Zq−1 − γ

2Δt ≤ Ṽ0 +
γ
2Δt.

Using (13.11), we get

(13.77) W (x (t)) < V0 +

(
3

2
γ + α

)
Δt for t ∈ [0, QΔt] ,

and thus Tremain ≥ QΔt. It follows that

(13.78)
P (Tremain > T ) > P

(
θq = 1 for q = 1, . . . ,

⌊
T
Δt

⌋)
>
(
1− PWλ

(
Δt
τ

))� T
Δt
 > 1− T

Δt2 exp
(
− cγ3

τ

)
,

which is inequality (8.11) after the substitution (8.3).
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13.2. Theorem 9.1: Case 2, single ghost attractor.

13.2.1. Proof. Define again

(13.79) Δt =
γ

2 (LBWF + LBWΦ)
.

(a) By definition of the attracting region R in Hypothesis 1, there is a time T ≥ 0 such
that

(13.80) x (T ) ∈ R for t ≥ T,

and thus

(13.81) W (x (t)) ≤ V1 for t ≥ T.

As in the proof of Theorem 8.3(b), define the integer Q to be

(13.82) Q =

⌊
2
V1 − V0

γΔt

⌋
− 1.

By (13.73), with probability at least 1− 4(V1−V0)
γΔt exp(− cγ3

τ ) the solution then reaches
U0 in a time not longer than QΔt. Hence, the set of switching sequences, for which
the trajectory has not yet reached U0 in time T + QΔt, has probability at most
4(V1−V0)

γΔt exp(− cγ3

τ ). Nevertheless, since the region R is invariant, these trajectories
satisfy

(13.83) W (x (T +QΔt)) ≤ V1.

They again with probability at least 1− 4(V1−V0)
γΔt e−

cγ3

τ reach U0 in an additional time
interval of length QΔt, etc. More precisely, we can write, thanks to the Markov
property of x (t),
(13.84)

P (x (t) /∈ U0, t ∈ [0, T + nQΔt])

=
∑

x((n−1)QΔt)

P (x (t) /∈ U0, t ∈ [0, T + nQΔt] , x ((n− 1)QΔt))

=
∑

x((n−1)QΔt)

P (x (t) /∈ U0, t ∈ [T + (n− 1)QΔt, T + nQΔt] | x (t) /∈ U0,
t ∈ [0, T + (n− 1)QΔt] , x ((n− 1)QΔt))

· P (x (t) /∈ U0, t ∈ [0, T + (n− 1)QΔt] , x ((n− 1)QΔt))

=
∑

x((n−1)QΔt)

P (x (t) /∈ U0,
t ∈ [T + (n− 1)QΔt, T + nQΔt] | x ((n− 1)QΔt))

· P (x (t) /∈ U0, t ∈ [0, T + (n− 1)QΔt] , x ((n− 1)QΔt))

≤
∑

x((n−1)QΔt)

4(V1−V0)
γΔt exp

(
− cγ3

τ

)
P (x (t) /∈ U0, t ∈ [0, T + (n− 1)QΔt])

≤ 4(V1−V0)
γΔt exp

(
− cγ3

τ

)
· P (x (t) /∈ U0, t ∈ [0, T + (n− 1)QΔt]).
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By repeated application of (13.84) we get

(13.85) P (x (t) /∈ U0 for 0 ≤ t ≤ T + nQΔt) ≤
(
4 (V1 − V0)

γΔt
exp

(
−cγ3

τ

))n

.

Since the expression in the parentheses is smaller than 1 by (9.2), we obtain

(13.86)
P (x (t) /∈ U0 for 0 ≤ t < ∞)

= lim
n→∞P (x (t) /∈ U0 for 0 ≤ t ≤ T + nQΔt) = 0,

which means that almost all trajectories reach U0 in finite time for any initial state.
This proves assertion (a).

(b) If the initial state already satisfies W (x (0)) ≤ V1, we can set T = 0 in (13.85), which
implies (9.4). This completes the proof of assertion (b).

(c) For q ≥ 1 and Ṽ0 = V0 + γΔt,

(13.87)
P
(
Zq ≤ V1 − mγ

2 Δt
) ≥ P

(
Zq ≤ V1 − mγ

2 Δt, Ṽ0 ≤ Zq−1 ≤ V1

)
+P

(
Zq ≤ V1 − mγ

2 Δt, 0 ≤ Zq−1 < Ṽ0

)
.

Since

(13.88)

{
s |θq = 1 and Ṽ0 ≤ Zq−1 ≤ V1 − (m− 1) γ

2
Δt

}
⊆
{
s | Zq ≤ V1 − mγ

2
Δt
}

for 1 ≤ m ≤ Q (for m > Q the result is useless),
(13.89)

P
(
Zq ≤ V1 − mγ

2 Δt, Ṽ0 ≤ Zq−1 ≤ V1

)
≥ P

(
θq = 1, Zq−1 ≤ V1 − (m−1)γ

2 Δt, Ṽ0 ≤ Zq−1 ≤ V1

)
=

∑
x((q−1)Δt)

P
(
θq = 1, Ṽ0 ≤ Zq−1 ≤ V1 − (m−1)γ

2 Δt, x ((q − 1)Δt)
)

=
∑

Ṽ0≤W (x((q−1)Δt))≤V1− (m−1)γΔt
2

P (θq = 1 |x ((q − 1)Δt))P (x ((q − 1)Δt)).

Applying (13.18), we get

(13.90)

P
(
Zq ≤ V1 − mγ

2 Δt, Ṽ0 ≤ Zq−1 ≤ V1

)
≥

∑
Ṽ0≤W (x((q−1)Δt))≤ V1− (m−1)γ

2
Δt

(
1− PWλ

(
Δt
τ

)) · P (x ((q − 1)Δt))

=
(
1− PWλ

(
Δt
τ

)) · P (Ṽ0 ≤ Zq−1 ≤ V1 − (m−1)γ
2 Δt

)
.

Instead of (13.88), we can write

(13.91)

{
s |θq = 1 and 0 ≤ Zq−1 ≤ V1 − (m+ 1) γ

2
Δt

}
⊆
{
s | Zq ≤ V1 − mγ

2
Δt
}
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for any m ≥ 1, and thus

(13.92)
P
(
Zq ≤ V1 − mγ

2 Δt, 0 ≤ Zq−1 < Ṽ0

)
≥ P

(
θq = 1, Zq−1 ≤ V1 − (m+1)γ

2 Δt, 0 ≤ Zq−1 < Ṽ0

)
.

For 1 ≤ m ≤ Q− 2,

(13.93) V1 − (m+ 1) γ

2
Δt ≥ Ṽ0,

and therefore

(13.94)

P
(
Zq ≤ V1 − mγ

2 Δt, 0 ≤ Zq−1 < Ṽ0

)
≥ P

(
θq = 1, 0 ≤ Zq−1 < Ṽ0

)
=

∑
x((q−1)Δt)

P
(
θq = 1, 0 ≤ Zq−1 < Ṽ0, x ((q − 1)Δt)

)
=

∑
0≤W (x((q−1)Δt))≤ Ṽ0

P (θq = 1 | x ((q − 1)Δt)) · P (x ((q − 1)Δt))

≥
∑

0≤ W (x((q−1)Δt))≤ Ṽ0

(
1− PWλ

(
Δt
τ

)) · P (x ((q − 1)Δt))

=
(
1− PWλ

(
Δt
τ

)) · P (0 ≤ Zq−1 < Ṽ0

)
,

where we have used (13.19).
Combining (13.90) and (13.94), the following inequality holds for q ≥ 1 and 1 ≤ m ≤
Q− 2:
(13.95)

P
(
Zq ≤ V1 − mγ

2
Δt
)
≥
(
1− PWλ

(
Δt

τ

))
· P
(
Zq−1 ≤ V1 − (m− 1) γ

2
Δt

)
.

Since we suppose x (0) ∈ R, R is invariant, and since by Hypothesis 3 W (x (0)) ≤ V1,
we have

(13.96) P (Zq ≤ V1) = 1 for q ≥ 0.

Applying now (13.95) iteratively, we obtain
(13.97)

P
(
Zq ≤ V1 − mγ

2
Δt
)
≥
(
1− PWλ

(
Δt

τ

))m

for q ≥ m and 1 ≤ m ≤ Q− 2.

We now rewrite this result. By the definition (13.82) of Q, for any n,

(13.98) V0 +
nγ

2
Δt > V1 − (Q− n+ 2) γ

2
Δt,

and therefore

(13.99)
P
(
Zq ≤ V0 +

nγ
2 Δt

) ≥ P
(
Zq ≤ V1 − (Q−n+2)γ

2 Δt
)

≥ (1− PWλ

(
Δt
τ

))Q−n+2
for q ≥ Q− n+ 2 and 4 ≤ n ≤ Q+ 1.D
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For n = 4,

(13.100)

P (Zq > V0 + 2γΔt) = 1− P (Zq ≤ V0 + 2γΔt)

≤ 1− (1− PWλ

(
Δt
τ

))Q−2 ≤ (Q− 2)PWλ

(
Δt
τ

)
for q ≥ Q− 2

≤ 2V1
γΔtPWλ

(
Δt
τ

)
for q ≥ Q− 2.

This can be rewritten, using (13.7), as

(13.101)
P
(
W (x (qΔt)) > V0 +

γ2

LBWF+LBWΦ

)
≤ 8(LBWF+LBWΦ)V1

γ2 exp
(
− cγ3

τ

)
for q ≥ Q− 2.

To get a probabilistic bound on the deviation from the attractor not only for times
that are multiples of Δt but for all positive t, we note that at any time, in particular
in the time interval (0,Δt), W (t) ≤ V1, and therefore we can apply (13.101) to any
time-shifted solution; i.e., we can set x(t) for 0 < t < Δt 0 as a new initial condition
and apply (13.101) to the new solution. From this we obtain assertion (c).

13.3. Theorem 10.1: Case 3, multiple invariant attractors.

13.3.1. Preliminary lemmas. The proof of Theorem 10.1 closely follows that of Theorem
8.3. It starts with preliminary lemmas that are analogous to Lemmas 13.1, 13.2, 13.3, 13.4,
and 13.5, except that the logarithm of the Lyapunov function lnW is used instead of W . We
start off with discussing some properties of the blinking and averaged systems in the case
where the attractors of the averaged system are invariant under the blinking system.

Equation (10.1) implies that along any solution within R of the blinking system the fol-
lowing inequalities hold, as long as W (x (t)) �= 0:

(13.102)

∣∣∣∣ ddt [lnW (x (t))]

∣∣∣∣ ≤ BlnWF and

∣∣∣∣ ddtDF lnW (x (t) , s̃)

∣∣∣∣ = LBlnWF .

Equations (10.1) and (10.2) imply that along any solution of the averaged system with 0 <
W (x (0)) ≤ V1

(13.103) −BlnWΦ ≤ d

dt
[lnW (ξ (t))] ≤ −γ and

∣∣∣∣ ddtDΦ lnW (ξ (t) , s̃)

∣∣∣∣ ≤ LBlnWΦ.

The first equations of (13.102) and (13.103) can be rewritten as

(13.104)

∣∣ d
dt [W (x (t))]

∣∣ ≤ BlnWFW (x (t)),

−BlnWΦW (ξ (t)) ≤ d
dt [W (ξ (t))] ≤ −γW (ξ (t)).

Note that the first inequality is possible only if A is an invariant set of the blinking system.
On the other hand, if W is twice continuously differentiable with a positive definite Hessian
and F is continuously differentiable with respect to x with a nonsingular Jacobian matrix on
A, then Hypothesis 4 is satisfied.

Given Hypothesis 4, all properties of the time dependence of W previously proved during
the first step now carry over to lnW .D
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We still need to extend the probabilities of exceptional mean values from W to lnW . We
define for integer values of K

(13.105) PlnWλ (K) = max
x∈R

P

{∣∣∣∣∣ 1K
K∑
k=1

DF lnW
(
x, Sk

)
−DΦ lnW (x)

∣∣∣∣∣ > λ

}

and for noninteger K

(13.106)

PlnWλ (K)

= max
x∈R

P

{∣∣∣∣∣ 1K
[ 	K
∑

k=1

DF lnW
(
x, Sk

)
+ (K − �K
)DF lnW

(
x, S	K
+1

) ]

−DΦ lnW (x)

∣∣∣∣∣ > λ

}
.

Because of the stationarity of the process, by analogy to (13.10), for any t ≥ 0, Δt ≥ 0, λ >
0, x ∈ R we have

(13.107) P

(∣∣∣∣
∫ t+Δt

t
[DF lnW (x, s (u))−DΦ lnW (x)] du

∣∣∣∣ > λ ·Δt

)
≤ PlnWλ

(
Δt

τ

)
.

Furthermore, Hoeffding’s inequality [39] gives the following statement for this case.
Lemma 13.6. For any λ > 0,

(13.108) PlnWλ (K) ≤ 2 exp

(
− Kλ2

2B2
lnWF

)
.

As before, we proceed in two steps. In the first step, we show that the Lyapunov function
lnW decreases with high probability after a certain time Δt. In the second step, we analyze
the behavior of the blinking system for large times.

First step.
Lemma 13.7. Consider a solution x(.) of the blinking system with switching period τ .

Choose a time t ≥ 0 and the solution of the averaged system with ξ (t) = x (t) /∈ A. Then the
following hold:

(a) For any Δt ≥ 0,

(13.109) |lnW (x (t+Δt))− lnW (ξ (t+Δt))| ≤ (BlnWF +BlnWΦ)Δt.

(b) For any l > 0 and Δt ≥ 0, the conditional probability that

(13.110) |lnW (x (t+Δt))− lnW (ξ (t+Δt))| ≤ LBlnWF + LBlnWΦ

2
Δt2 + λΔt

holds, given the value of x(t), is at least 1− PlnWλ

(
Δt
τ

)
.

Proof. The proof is identical to the proof of Lemma 13.2, except that W has to be replaced
everywhere by lnW .D
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Lemma 13.8. Let

(13.111) Δt =
γ

2 (LBlnWF + LBlnWΦ)
and λ=

γ

4
;

then for any t ≥ 0 and for any solution x(.) of the blinking system with 0 < W (x (t)) ≤ V1

and switching period τ , the conditional probability that

(13.112) lnW (x (t+Δt)) ≤ lnW (x (t))− γ

2
Δt

holds, given x(t), is at least 1− PlnWλ

(
Δt
τ

)
.

Proof. Consider a solution ξ (·) of the averaged system with ξ (t) = x (t). Then, by (10.2),
one obtains

(13.113) lnW (ξ (t+Δt)) = lnW (ξ (t)) +

∫ t+Δt

t
DΦW (ξ (u)) du ≤ lnW (x (t))− γΔt.

Using (13.110) and (13.111), we get

(13.114)
lnW (x (t+Δt)) ≤ lnW (ξ (t+Δt)) + |lnW (x (t+Δt))− lnW (ξ (t+Δt))|

≤ lnW (x (t))− γΔt+ γ
2Δt.

Second step. For any choice of the initial state x(0) with 0 < W (x (0)) ≤ V1, for any
choice of the switching period τ > 0, and for the constants γ, λ, and Δt given by (10.2) and
(13.111), we consider the following sequence of random variables on the probability space of
switching sequences:

(13.115) Zq (s) = lnW (x (qΔt)) , q = 0, 1, 2, . . . .

By hypothesis, Z0 is concentrated on a single value that is smaller than or equal to lnV1.
Again, {Zq} is not a Markov process. We again introduce the additional random variables

(13.116) θq =

⎧⎨
⎩

1 if lnW (x (qΔt)) ≤ lnW (x ((q − 1)Δt))− γ
2Δt and

0 < W (x ((q − 1)Δt)) ≤ V1,
0 otherwise.

Lemma 13.9. Suppose the various constants are chosen as in Lemma 13.8. Let σ =
(σ1, . . . , σQ) ∈ {0, 1}Q be a binary vector of length Q and m = Q −∑Q

q=1 σq be the num-
ber of zeros in this vector. Then, for m > 0,

(13.117) P (θq = σq, Zq−1 ≤ lnV1 for q = 1, . . . , Q) ≤
[
PlnWλ

(
Δt

τ

)]m
.

Proof. The proof is the same as the proof of Lemma 13.4(b), except that V1, W , and PWλ

have to be replaced by lnV1, lnW , and PlnWλ and that no lower bound constraint has to be
observed for Zq.

Lemma 13.10. For any V ≥ 0 and any Q ∈ N, we have

(13.118) P (Zq−1 ≤ lnV1 for q = 1, . . . , Q, ZQ > lnV ) ≤
Q∑

n=m

(
Q
n

)[
PlnWλ

(
Δt

τ

)]n
,
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where

(13.119) m =

⌊
Qγ

2α+ γ
− lnV1 − lnV

Δt
· 2

2α+ γ

⌋
+ 1

and �x
 is the integer part of x and α = BlnWF +BlnWΦ.
Proof. The proof is the same as the proof of Lemma 13.5, except that V1, V , and PWλ

have to be replaced by lnV1, lnV , and PlnWλ and that no lower bound constraint has to be
observed for Zq.

13.3.2. Proof of Theorem 10.1.
Proof. Let λ = γ

4 .
(a) Consider the set Sescape of switching sequences such that the solution of the blinking

system reaches U∞. By the same argument as in the proof of Theorem 8.3(a), substi-
tuting lnW for W and disregarding the lower bound on W , for each such switching
sequence there must be an integer Q such that

(13.120) Zq−1 ≤ lnV1 for q = 1, . . . , Q and ZQ > lnV1.

Therefore

(13.121) Sescape ⊆ S+ =
∞⋃

Q=1

{s | Zq−1 ≤ lnV1 for q = 1, . . . , Q and ZQ> lnV1 } ,

and thus
(13.122)

Pescape ≤ P (S+) =

∞∑
Q=1

P (Zq ≤ lnV1 for q = 0, . . . , Q− 1 and ZQ> lnV1) .

Applying Lemma 13.10 for V = V1, we get

(13.123) P (S+) ≤
∞∑

Q=1

Q∑
n=m

(
Q
n

)[
PlnWλ

(
Δt

τ

)]n
,

where

m =

⌊
Qγ

2α+ γ

⌋
+ 1.

As in the proof of Theorem 8.3(a), it follows from (10.3) (which implies (8.5)) and
(13.108) that the sum in (13.123) converges and is bounded by (10.4).

(b) We apply Lemma 13.10 for V = V1 exp(−Q
4 γΔt). Then

(13.124)

P
(
Zq−1 ≤ lnV1 for q = 1, . . . , Q, ZQ > lnV1 − Q

4 γΔt
)

≤
Q∑

n=m

(
Q
n

)[
PlnWλ

(
Δt
τ

)]n
,
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where

(13.125) m =

⌊
Qγ

2 (2α+ γ)

⌋
+ 1.

Consider the set S0 of switching sequences such that there exists a natural number Q
such that Zq−1 ≤ lnV1 for q = 1, . . . , Q and ZQ > lnV1 − Q

4 γΔt, i.e.,

(13.126) S0 =

∞⋃
Q=1

{
s|Zq−1 ≤ lnV1 for q = 1, . . . , Q, ZQ > lnV1 − Q

4
γΔt

}
.

Then

(13.127)

P (S0) ≤
∞∑

Q=1

P
(
Zq−1 ≤ lnV1 for q = 1, . . . , Q, ZQ > lnV1 − Q

4 γΔt
)

≤
∞∑

Q=1

Q∑
n=m

(
Q
n

)[
PlnWλ

(
Δt
τ

)]n
,

where m is given by (13.125).
The double summation over n and Q has the constraints

(13.128) Q ≥ 1 and

⌊
Qγ

2 (2α+ γ)

⌋
+ 1 ≤ n ≤ Q ⇔ n ≥ 1 and n ≤ Q <

2 (2α+ γ)

γ
n.

Following the same path as in the proof of Theorem 8.3(a), we obtain the bound

(13.129) P (S0) ≤ 4α+ γ

γ
·

2(2α+γ)
γ e · PlnWλ

(
Δt
τ

)
(
1− 2(2α+γ)

γ e · PlnWλ

(
Δt
τ

))2 .
Applying (10.3), (13.108), and γ ≤ α, we obtain

(13.130) P (S0) ≤ 180α2

γ2
· exp

(
−cγ3

τ

)
.

Let S− denote the following set of all switching sequences:

(13.131) S− =

{
s

∣∣∣∣ ZQ ≤ lnV1 − Q

4
γΔt for all Q ∈ Z+

}
.

Then, if S denotes the set of all switching sequences,

(13.132) S\S− =
∞⋃

Q=1

{
s

∣∣∣∣ ZQ > lnV1 − Q

4
γΔt

}
.

If for a switching sequence s we have ZQ > lnV1−Q
4 γΔt, then either we have Zq ≤ lnV1

for q = 0, . . . , Q − 1 and ZQ > lnV1 − Q
4 γΔt, or for some 1 ≤ q ≤ Q − 1 we have

Zq > lnV1. This implies

(13.133) S\S− ⊆ S0 ∪ S+,D
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and thus

(13.134)
P (S\S−) ≤ P (S0) + P (S+)

≤ 216α2

γ2 · exp
(
− cγ3

τ

)
.

This is equivalent to

(13.135) P (S−) > 1− 216α2

γ2
· exp

(
−cγ3

τ

)
.

Suppose now that a switching sequence s ∈ S− . Then, for any t > 0, we can write
t = (q + μ)Δt, with 0 ≤ μ < 1, and thanks to (13.102) we get

(13.136)
lnW (x (t)) ≤ lnW (x (qΔt)) + αμΔt ≤ lnV1 − q

4γΔt+ αμΔt

= lnV1 − q+μ
4 γΔt+ μ

4γΔt+ αμΔt = lnV1 − γ
4 t+

(
α+ γ

4

)
Δt.

This, together with (13.135), implies part (b) of the theorem.

13.4. Theorem 11.1: Case 4, unique invariant attractor.

13.4.1. Proof of Theorem 11.1.
Proof. We again define

(13.137) Δt =
γ

2 (LBlnWF + LBlnWΦ)
.

To prove the almost sure convergence with exponential speed to A, we suppose that x (0) ∈ R,
and thus x (t) ∈ R and W (x (t)) ≤ V1 for all t ≥ 0. This is no restriction of generality since
if the initial state lies outside of R, the region R is reached in a finite time. This additional
time does not change the exponential speed of convergence.

Consider the set of switching sequences for which the speed of convergence to A is not
exponential with exponential speed at least γ

4 :

(13.138) Sexponential =
{
s | ∃K such that for all t ≥ 0 W (x (t)) ≤ K exp

(
−γ

4
t
)}

.

Actually, it is sufficient to impose the bound on a sequence of equally spaced discrete time
instants, e.g.,

(13.139) Sexponential =
{
s | ∃K such that for all Q ≥ 1 W (x (QΔt)) ≤ K exp

(
−γ

4
QΔt

)}
,

because due to (13.102) it follows from W (x (qΔt)) ≤ K exp
(− γ

4 qΔt
)
and 0 ≤ μ < 1 that

(13.140)
lnW ((q + μ)Δt) ≤ lnW (qΔt) + αμΔt ≤ lnK − γ

4 qΔt+ αμΔt
= lnK − γ

4 (q + μ)Δt+
(
α+ γ

4

)
Δt,

and thus for all t ≥ 0

(13.141) W (t) ≤ K̃ exp
(
−γ

4
t
)
,

D
ow

nl
oa

de
d 

06
/2

0/
13

 to
 1

31
.9

6.
25

3.
20

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1082 MARTIN HASLER, VLADIMIR BELYKH, AND IGOR BELYKH

where

(13.142) ln K̃ = lnK +
(
α+

γ

4

)
Δt.

Now we restrict ourselves to the switching sequences satisfyingW (x (QΔt)) ≤ K exp
(− γ

4QΔt
)

asymptotically for Q → ∞ with the constant V1:

(13.143) S̃exponential =
{
s | ∃M such that for all Q ≥ M W (x (QΔt)) ≤ V1e

γ
4
QΔt

}
.

Clearly, S̃exponential ⊆ Sexponential, and if S denotes the set of all switching sequences,

(13.144)

S\S̃exponential= {s | for all M ≥ 1 ∃Q ≥ M such that W (x (QΔt))}
> V1 exp

(−γ
4QΔt

)
=

∞⋂
M=1

∞⋃
Q=M

{
s
∣∣W (x (QΔt)) > V1 exp

(−γ
4QΔt

)}
,

and thus

(13.145)

P
(
S\S̃exponential

)
= lim

M→∞
P

⎛
⎝ ∞⋃

Q=M

{
s
∣∣W (x (QΔt)) > V1 exp

(−γ
4QΔt

)}⎞⎠
≤ lim

M→∞

∞∑
Q=M

P
({

s
∣∣W (x (QΔt)) > V1 exp

(−γ
4QΔt

)})
.

Since W (x (t)) ≤ V1 for all t ≥ 0,

(13.146)

P
(
S\S̃exponential

)
≤ lim

M→∞

∞∑
Q=M

P
(
ZQ > lnV1 − Q

4 γΔt
)

= lim
M→∞

∞∑
Q=M

P
(
Zq−1 ≤ lnV1 for q = 1, . . . , Q, ZQ > lnV1 − Q

4 γΔt
)
.

In the proof of Theorem 10.1 it has been shown that

(13.147)

∞∑
Q=1

P

(
Zq−1 ≤ lnV1 for q = 1, . . . , Q, ZQ > lnV1 − Q

4
γΔt

)
< ∞,

which implies that P (S\S̃exponential) = 0, and thus

(13.148) P (Sexponential) ≥ P
(
S̃exponential

)
= 1− P

(
S\S̃exponential

)
= 1.

This indeed proves that for almost all switching sequences the solution of the blinking system
converges exponentially fast to A with exponential speed at least γ

4 . The fact that for all t ≥ 0

(13.149) W (x (t)) ≤ K exp
(
−γ

4
t
)

with K given by (11.3) and probability given by (11.2) has already been shown in the proof
of Theorem 10.1.D
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