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Dynamics of Stochastically Blinking Systems. Part I: Finite Time Properties∗
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Abstract. We consider dynamical systems whose parameters are switched within a discrete set of values at
equal time intervals. Similar to the blinking of the eye, switching is fast and occurs stochastically
and independently for different time intervals. There are two time scales present in such systems,
namely the time scale of the dynamical system and the time scale of the stochastic process. If the
stochastic process is much faster, we expect the blinking system to follow the averaged system where
the dynamical law is given by the expectation of the stochastic variables. We prove that, with high
probability, the trajectories of the two systems stick together for a certain period of time. We give
explicit bounds that relate the probability, the switching frequency, the precision, and the length
of the time interval to each other. We discover the apparent presence of a soft upper bound for
the time interval, beyond which it is almost impossible to keep the two trajectories together. This
comes as a surprise in view of the known perturbation analysis results. From a probability theory
perspective, our results are obtained by directly deriving large deviation bounds. They are more
conservative than those derived by using the action functional approach, but they are explicit in the
parameters of the blinking system.
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1. Introduction. Dynamical systems that are externally driven by stochastic processes
are good models for many physical, biological, and engineering systems. The most obvious
examples are those obtained by the presence of noise, but in many other circumstances, e.g.,
in dynamical networks with randomly present links, such models are also pertinent (see [1, 2]
and the references therein). There are two time scales present in such systems, namely the
time scale of the dynamical system itself and the time scale of the stochastic process. In
this work, we suppose that the stochastic process is much faster than the dynamical system.
Hence, we expect the stochastically “blinking” system to behave like the averaged system,
where the dynamical law is simply averaged over the driving stochastic variables at each time
instant. What this exactly means is a nontrivial problem, and we contribute substantially to
its solution in this work.
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There is a long history and a large number of publications on the subject of averaging, i.e.,
on investigating under what conditions the solutions of a time-dependent dynamical system
follow the solutions of the time-averaged system. The technique of averaging applied to
perturbations of periodic solutions is more than 200 years old [3, 4, 5]. It was also developed for
deterministic perturbations of nonperiodic solutions about 60 years ago [6, 7]. More recently,
stochastic perturbations of periodic and nonperiodic solutions have caught the attention of the
research community [8, 9, 10, 11, 12, 13, 14]. Relevant recent books are [15] for deterministic
and [9, 11, 12] for stochastic time-dependence.

In this work, we consider general dynamical systems described by state equations driven by
identically distributed independent binary vector-valued random variables. This is a particu-
larly simple case, but it perfectly illustrates the main phenomena pertaining to stochastically
driven dynamical systems. It also is a good model for networks and circuits, where the links
are switched on and off randomly, i.e., networks that are random in time. The proof of
our main theorem, Theorem 3.1, shows that the results can be easily extended to a Markov
vector-valued process in discrete or continuous time. This will be discussed in the conclusions.
However, what mainly distinguishes our results from previous ones are explicit expressions for
bounds on various relevant probabilities. They depend directly on the dynamical system
parameters.

In the classical approach by Bogoliubov and Mitropolsky and many other authors (see,
for example, [7]) the system

(1.1)
dx

dt
= F1 (x, t) + εF2 (x, t, ε)

is considered, where ε is a small parameter and F1, F2 are bounded. This system is transformed
into a standard form of perturbation analysis,

(1.2)
dς

dt
= εG (ς, t) + ε2H (ς, t, ε) ,

where G and H are bounded, and the solution of (1.1) can be obtained from the solution of
(1.2) (cf. section 1.6 in [15]). It is then shown that the solution of (1.2) is close to the solution
of

(1.3)
dψ

dt
= εG (ψ, t) ,

starting from the same initial state, on a time scale of 1/ε (cf. Lemma 1.5.3 in [15], with
additional time scaling). Because of the small parameter ε, ψ varies slowly in time, much
more slowly than G as a function of time. Therefore, the solution of (1.3) is in turn close to
the solution of

dξ

dt
= εḠ (ξ) ,

starting from the same initial state, where Ḡ is a certain time-average of G (see Chapter 2 in
[15] for periodic time-dependence, and Chapter 4 for general time-dependence with existing
time-average). Again, the approximation is valid on a time scale of 1/ε.D
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The system we study in this paper, even when disregarding its stochasticity, is initially
not of the form (1.1). The only small parameter is the switching time constant τ . The state
equations can be written in the form

dζ

dt
= F

(
ζ,

t

τ

)
.

Scaling the time variable as u = t/τ and setting η (u) = ζ (τu), we get

dη

du
= τF (η, u) ,

which is in standard form. Therefore, we can conclude from classical averaging theory that
the solution of the system we consider is close to the solution of the time-averaged system if
the time-average of the sample path of the stochastic process satisfies certain conditions. Note
that this holds on a time scale of 1/τ for u, which corresponds to the time scale of 1 for t.

More interesting than statements for individual sample paths of the stochastic process
are probabilistic properties. It is known that under conditions of ergodicity of the stochastic
process the same property as in the deterministic case is valid with high probability. More
precisely, on a finite time interval, the solutions of the blinking system remain close to the
solutions of the averaged system starting from the same initial state, with a probability that
converges to 1 as τ → 0 [9]. In our case, the stochastic process is just a sequence of indepen-
dent identically distributed random variables, and so this result is applicable. However, in
this paper we shall prove a much stronger result which gives an explicit bound on the distance
between the solutions of the blinking and the averaged systems in terms of the system param-
eters and the length of the time interval. This result will reveal some unexpected phenomena.
In the literature, often much more general problems are studied, but the corresponding results
are weaker than the results of this paper. As a case in point, in [16] randomly switched dy-
namical systems are also considered, but the switching is not supposed to be fast with respect
to the time scale of the dynamical system, the switching times are random, and, in addition,
the system is perturbed by noise. Much effort has to be made to establish the existence and
the uniqueness of the solution as a continuous-time Markov process, which is rather trivial in
our case. Furthermore, the exponential growth of sample paths (corresponding to the expo-
nential deviation of the solution from the zero solution of the averaged system) has a rate that
depends on the bound of the right-hand side of the switched differential equation, whereas in
our case it depends on the Lipschitz constant of the averaged system, which is usually much
smaller.

Generally speaking, the crucial discipline of probability theory involved in this paper is
large deviations. It concerns the exponentially fast decay of rare events in stochastic processes.
Using the notion of an action functional, it is in principle possible to determine the exact ex-
ponential rate of decay of such events. However, in the context of dynamical systems, this
involves the solution of a variational problem [10, 11]. We pursue in this and the companion
paper a simpler approach. It has the advantage that we can give a lower bound for the prob-
ability that the trajectories of the blinking and the averaged system remain within distance
ε during a time interval [0, T ] that is perfectly explicit in the dynamical systems parameters.
The relevant parameters are bounds and Lipschitz constants for the right-hand side (RHS)D
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of the state equations of the blinking and the averaged systems. Except, perhaps, for very
special cases, such results are not obtainable by the action functional approach. On the other
hand, our techniques do not yield the actual rates of exponential decay of the rare events, but
only lower bounds on them.

The work is presented in two closely related companion papers. In Part I we show that,
with high probability, the solution of the blinking system follows the solution of the averaged
system with a certain precision for a certain finite length of time if it starts from the same
initial condition. As a perturbation result this is well known. We add to this explicit bounds
that relate the probability, the switching time, the precision, and the length of the time interval
to each other. A surprising result that could not be obtained from the perturbation approach
is the apparent presence of a soft upper bound on the length of the time interval, beyond
which the solution of the blinking system can only follow the solution of the averaged system
with good precision for unreasonably fast stochastic driving.

In a companion paper (Part II) [2] we will discuss the asymptotic properties of the solutions
of the blinking system as time goes to infinity. The question we will address is whether and
how the solutions of the blinking system converge to an attractor of the averaged system.
Once again, we will give bounds on the various relevant probabilities that are explicit in the
dynamical systems parameters. As mentioned before, the action functional approach of large
deviation theory could give the precise exponential decays of the probabilities rather than
bounds for them as we derive, but explicit expressions for the precise rates seem out of reach.

2. Definition of the blinking and the averaged systems. We consider systems of time-
dependent ordinary differential equations of the form

(2.1)
dx

dt
= F (x (t), s (t)) , x ∈ R

N , F : RN+M → R
N , s (t) ∈ {0, 1}M ,

where the function s : [0,∞) → {0, 1}M is piecewise constant, taking the constant binary
vector value sk = (sk1 , . . . , s

k
M) in the time interval t ∈ [(k − 1) τ, kτ).

We call system (2.1) a blinking system, thinking of the piecewise constant binary signal
si (t) as a closing and opening eye lid. In this paper, we study the behavior of the solutions
of (2.1) starting at t = 0 in a finite interval of time. We call the binary vector-valued signal
s(t) the switching signal, and the sequence of binary vectors sk, k = 1, 2, . . . , the switching
sequence, since, in some of the examples we have in mind (see [2] for the examples), each
component ski of sk switches a connection in a circuit or network on (ski = 1) or off (ski = 0)
during the kth time interval.

Instead of considering system (2.1) for a particular switching sequence, e.g., a periodic
switching sequence, we consider the set of all possible switching sequences simultaneously,
supposing that switching is performed probabilistically. More precisely, we suppose that the
switching sequences are the instances of the stochastic process Sk, k = 1, 2, . . . , where all
random vectors Sk are independent and identically distributed, taking the value s ∈ {0, 1}M
with probability ps. Let us remark here that this is the simplest stochastic switching model,
which we have chosen because of its direct connection to time-dependent random networks,
where M links are independently turned on and off. The independence requirements can
be relaxed without changing much in the results and their proofs. The independence of theD
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Figure 1. Division of the time axis and type of functions sk(t).

components of the binary vector S(t) at a given time t is never used. Any random variable
with a finite number of possible values can be used instead. The independence of the vectors
S(t) and S(t∗) for different instants t and t∗ can be relaxed to a Markovian dependence with
only minor changes that are detailed in the conclusions.

Similarly, we introduce the continuous time stochastic process S(t) defined by

S(t) =
∞∑
k=1

Sk 1[(k−1)τ,kτ)(t)

and consider simultaneously all solutions of (2.1) by writing

(2.2)
dx

dt
= F (x (t), S (t)) .

Here, F (x (t), S (t)) is also a stochastic process, and therefore (2.2) represents a system of
random differential equations. However, thanks to the fact that S(t) is piecewise constant (cf.
Figure 1), we avoid the technical difficulties of stochastic differential equations [9]. Neverthe-
less, the solutions of (2.2) are also stochastic processes. For simplicity, we shall not distinguish
in our notation between the random variable and its instance and denote both by x(t). The
context will make it clear which one we mean in each case.

System (2.1) inherently has two time scales, the switching period τ and the time scale
of the dynamics of the nonswitched system, i.e., the system with constant s. We limit our
attention to the case where switching is fast with respect to the time scale of the nonswitched
system dynamics (this statement will be made more precise later). Our intuition tells us that
in this case the effect of switching is the same as if the time-dependent system (2.1) were
replaced by the averaged system.D
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Definition 2.1. The averaged system associated with the time-dependent system (2.1) is
defined to be

(2.3)
dx

dt
= Φ(x (t)) ,

where

(2.4)
Φ(x) = E (F (x, S))

=
∑

s∈{0,1}M
F (x, s) ps.

In (2.4) we have omitted the upper index k for the switching variables, since in each time
interval they have the same probability distribution.

We expect that if we switch fast enough, i.e., if τ is sufficiently small, then a solution of
blinking system (2.1) follows closely the solution of the averaged system (2.3) when starting
from the same initial state x(0). Indeed, the following general theorem is a reformulation of
the “Statement” in section 3.2 of the book [9].

Theorem 2.2. Let the following two conditions be satisfied:
• for any x ∈ R

N the expectation E ‖F (x, S)‖ <∞,
• ∃L > 0 such that for any x, x̃ ∈ R

N and for any s ∈ {0, 1}M

‖F (x, s)− F (x̃, s)‖ ≤ L ‖x− x̃‖ .

Then for any precision ε > 0 and time interval length T > 0, and for any pair of solutions
of the blinking and the averaged system, starting from the same initial state x (0) = ξ (0), the
probability that for all times t ∈ [0, T ]

‖x (t)− ξ (t)‖ ≤ ε

converges to 1 as the switching time τ → 0.
We expect that with decreasing τ we can take a lower ε or a higher T , or with fixed ε and

T the probability gets closer to 1. However, Theorem 2.2 does not give explicit information
on the relation between the three parameters. To be fair, in [9], much more general stochastic
processes are considered and many other interesting properties of the solutions are derived.
However, these properties are always asymptotic in the limit τ → 0, whereas we aim at explicit
bounds for τ .

Another basic remark is that Theorem 2.2, as well as the theorem we will prove in this
paper (Theorem 3.1), never guarantees a uniform approximation of the solution of the averaged
system by a solution of the blinking system over the whole time interval [0,∞). The question
of the infinite time interval will be discussed in the companion paper [2]. Briefly, the result
is the following. Except in special circumstances, eventually the solutions of the blinking
and the averaged systems will always drift apart. However, when a solution of the averaged
system converges to an attractor, the solution of the blinking system will in general approach
the same attractor. What that exactly means depends on the circumstances. In [2], we will
distinguish four different classes of behavior and obtain explicit bounds for each one.D
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3. Basic assumptions and inequalities. For convenience we make the following, not very
restrictive assumptions.

Hypothesis 1.
1. The function F that defines the blinking system (2.1) is locally Lipschitz continuous

in x, the first N arguments, and continuous in s, the last M arguments.
2. For any switching signal s(t) and any state x0 there exists exactly one trajectory x(t)

of the blinking system with x(0) = x0, defined for 0 ≤ t < ∞. Similarly, there exists
a unique trajectory ξ(t) of the averaged system

dξ

dt
= Φ(ξ(t)) ,

defined for 0 ≤ t <∞, for a given initial state ξ(0) = ξ0.
3. There is a connected and compact, i.e., closed and bounded, region Ω in R

N such that
all trajectories of the blinking system and of the averaged system starting in Ω remain
in Ω.

We shall consider only solutions of the blinking and the averaged systems that start in
Ω and therefore remain in Ω. If the blinking and the averaged systems are dissipative for
sufficiently large state vectors, then there exists such a region Ω with the additional property
that all solutions reach Ω in finite time.

The continuity of F implies that F is bounded on Ω, and Definition 2.1 implies the same
for Φ. Define constants

(3.1)

BF = max
x∈Ω, s∈{0,1}M

‖F (x, s)‖ <∞,

BΦ = max
x∈Ω

‖Φ (x)‖ <∞,

where ||.|| denotes the Euclidean norm. Similarly, the local Lipschitz continuity implies the
existence of the Lipschitz constants LF and LΦ on Ω, which satisfy by definition

(3.2)
‖F (x, s)− F (y, s)‖ ≤ LF ‖x− y‖ for x, y ∈ Ω, s ∈ {0, 1}M ,
‖Φ (ξ)− Φ (η)‖ ≤ LΦ ‖ξ − η‖ for ξ, η ∈ Ω.

It is not difficult to see that
BΦ ≤ BF , LΦ ≤ LF .

We can now formulate the main result of this paper. It implies Theorem 2.2, but in contrast
to Theorem 2.2, it gives an explicit lower bound for the probability that the trajectory of the
blinking system stays close to the trajectory of the averaged system during a given time
interval. Obviously, this probability depends on the length of the time interval, the maximal
distance between the two trajectories, the switching time, and the dynamical systems between
which the stochastic switching takes place. However, as far as the dynamical systems are
concerned, only the bounds and Lipschitz constants introduced in (3.2) are needed, and they
can be deduced explicitly from the state equations.

Theorem 3.1. Suppose that Hypothesis 1 holds. For any precision ε > 0, time interval
length T > 0, and probability 0 < P0 < 1, the solutions of the blinking system and of the
averaged system satisfy

(3.3) ‖x (t)− ξ (t)‖ ≤ εD
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for all times t ∈ [0, T ] with probability at least Pclose = 1 − P0 if the switching frequency τ is
sufficiently small such that

(3.4) τ ≤ τ0 =

(
ε

C (T )

)3

· 1

ln (2D · TC (T ))− ln (εP0)
· 1

DB2
F

,

where N is the dimensionality of the blinking system,

(3.5) C (T ) =
(
eLΦt − 1

) 2

LΦ
+

2

LFΦ
,

and

(3.6)
LFΦ =

LFBF + LΦBΦ

BF +BΦ
,

D = N (LFBF + LΦBΦ) .

Proof. The complete proof of Theorem 3.1 is given in the appendix. Here, we give a short
narrative that underlies the main ideas of the proof. For the convenience of the reader, we
refer to the corresponding parts of the complete proof.

Let x(t) be a trajectory of the blinking system, and ξ(t) be the solution of the averaged
system, defined also for t ≥ 0, that starts from the same initial state ξ(0) = x(0). To bound
the distance between the two solutions probabilistically, we proceed in two steps.

In the first step (cf. Lemma 6.2 in the appendix), we show that in a time interval [t, t+Δt]
the distance cannot increase more than αΔt for α = BF + BΦ. This is a rather trivial and
conservative bound that always holds. We also prove a more subtle bound, namely that during
a time interval of length Δt the distance does not increase by more than a factor 1+LΦΔt plus
a constant 2λΔt. This inequality does not hold always, but only with a probability 1 − Pλ.
Here, λ is a free parameter, which is chosen later in the proof in a suitable way, much smaller
than α. Clearly, Pλ tends to 1 as λ goes to 0, and to 0 as λ goes to α

2 . Furthermore, Pλ

depends on the ratio Δt
τ . Δt is also a free parameter that is chosen later in the proof, much

larger than τ .
In the second step, we divide the positive time axis into intervals of length Δt. For each

nonnegative integer q we introduce as an auxiliary random variable Zq, the distance between
the trajectories of the blinking and the averaged systems at time t = qΔt. Depending on the
switching sequence, the increase from Zq to Zq+1 satisfies the more subtle bound derived in
the first step of the proof, or does not satisfy it. In the latter case, only the crude bound can
be applied. Combining the bounds on Zq+1 − Zq for q = 0, 1, . . . , Q leads to a probabilistic
bound on ZQ (cf. Lemmas 6.3 and 6.4 in the appendix) depending on Δt, λ, and the number
m among the Q increments where the subtle bound does not hold. This step needs a rather
detailed analysis of the stochastic process Zq, q = 0, 1, 2, . . . , because the increments Zq+1−Zq

for different q are not independent, and in fact Zq is not even a Markov process. In fact, the
difference between the trajectories of the blinking and the averaged systems, x(t) − ξ(t), is
a vector-valued Markov process, but the application of the Euclidean norm to this difference
destroys the Markov property.

Applying a union bound for the probability that m > 0 (Lemma 6.5 in the appendix), we
get a probabilistic bound for ZQ that still depends on Δt and λ but is independent of m. InD
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fact, it corresponds to m = 0. Now, in order to obtain a probabilistic bound on the distance
between the trajectories of the blinking and the averaged systems that is valid in the whole
time interval [0, T ] and not only at the instants QΔt, Q = 0, 1, . . . , we use, to interpolate
between those instants, the crude bound that is always valid. Then, we choose the value of Δt
that gives the smallest bound, which is now proportional to λ (Lemma 6.6 in the appendix).
The proof is completed by relating λ to ε.

The following corollary is a reformulation of Theorem 3.1.
Corollary 3.2. Inequality (3.4) in Theorem 3.1 can be rearranged to give a bound on the

probability Pclose that the trajectories of the blinking and averaged systems stay ε-close during
time interval T for a given switching frequency τ . That is, solving inequality (3.4) for P0

yields

Pclose = 1− P0 ≥ 1− 2D · T · C (T )

ε
· exp

(
−ε

3

τ
· 1

C (T )3DB2
F

)
.

Analyzing more closely the proof of Theorem 3.1 (cf. Lemma 6.6 in the appendix), one
obtains the following stronger bound.

Corollary 3.3. Under the hypotheses of Theorem 2.2, for any precision ε > 0, time interval
length T > 0, and probability 0 < P0 < 1, the solutions of the blinking system and of the
averaged system satisfy

‖x (t)− ξ (t)‖ ≤ C (t)

C (T )
ε

for all times t ∈ [0, T ] with probability at least Pclose = 1− P0, if τ ≤ τ0, where τ0 is given by
(3.4) and

C (t) =
(
eLΦt − 1

) 2

LΦ
+

2

LFΦ
.

Remark 3.1. The main variation of the bound on the switching time comes from the term
( ε
C(T ))

3. It can be seen from (3.5) that there are basically two cases to distinguish:

1. T is small, up to 1/LΦ: C (T ) varies little, between 2
LFΦ

and 2(e−1)
LΦ

+ 2
LFΦ

. Therefore

τ0 ∼ ε3.

2. T is large with respect to 1/LΦ: In this case, C (T ) ≈ eLΦT 2
LΦ

, and therefore

τ0 ∼ ε3e−LΦT .

This fact is illustrated in Figure 2, where for small intervals [0, T ] the threshold for τ varies
little, but for large intervals the threshold for τ drops dramatically. One can interpret T = 1

LΦ

as a soft threshold beyond which the solution of the averaged system is almost impossible to
approximate by the blinking system.

4. Example: Blinking chaotic system. In order to test the conjecture that the solutions
of the blinking system follow closely the corresponding solutions of the averaged system, we
take the hardest case, namely systems with chaotic behavior. Such systems have only unstable
solutions, so there is an intrinsic mechanism to drive solutions apart, which should make it
difficult for the blinking system to follow the averaged system.D
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10
−2

10
−1

10
0

10
1

10
−13

10
−12

10
−11

10
−10

10
−9

T

τ 0

Figure 2. Threshold τ0 as a function of the length T of the time interval [0, T ], calculated via (3.4) Choice
of parameters: ε = 0.1, P0 = 0.1, LΦ = 0.1, LFΦ = 0.2, D = BF = 1. Note the presence of a soft upper
bound for the time interval T beyond which the two trajectories can be kept together only by switching almost
infinitely quickly.

We consider the Lorenz system that is described by the following nonlinear system of
differential equations:

(4.1)
ẋ = σ (y − x),
ẏ = rx− y − xz,
ż = −bz + xy.

The customary choice of parameters σ = 10, b = 8/3, r = 28 leads to chaotic behavior. We
now create a blinking system by switching the parameter r between r = 28 and r = 33 with
probability p = 0.5. Hence, the averaged system is again a Lorenz system, with r = 30.5.

The behavior of the deterministic Lorenz systems with the three different values is illus-
trated in Figures 3 and 4. The trajectories immediately drift apart from the common initial
state, but they are generally of the same nature.

The comparison between the blinking and averaged systems is done in Figures 5 and 6.
Clearly, for a short period the two solutions evolve close to each other. The length of this time
interval is almost not affected when τ decreases by an order of magnitude. The closeness of the
two solutions is enhanced when τ decreases, but by much less than one order of magnitude.

Of course, the trajectory of the blinking system varies with the instance of the switching
sequence. In Figure 7, the mean value of the x-component of the solution of the blinking
system over 100 randomly chosen switching sequences as well as the standard deviation are
represented. All solutions start from the same initial condition. Note that after some time
the different solutions of the blinking system become uncorrelated, and their mean gets close
to 0. Finally, the initial behavior of the solutions of the blinking system depends also on the
initial condition. In order to diminish its influence, we have calculated the average distanceD

ow
nl

oa
de

d 
06

/2
0/

13
 to

 1
31

.9
6.

25
3.

20
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DYNAMICS OF BLINKING SYSTEMS. PART I 1017

Figure 3. Orbits of the Lorenz system (4.1) with r = 28 (green), r = 30.5 (blue), and r = 33 (red), starting
from the same initial state that is close to the attractor. The orbits are similar in nature but not coinciding.

0 2 4 6 8 10
−20

0

20

0 2 4 6 8 10
−20

0

20

0 2 4 6 8 10
−20

0

20

time

Figure 4. x-component of the trajectories of the Lorenz system with r = 28 (upper panel), r = 30.5
(middle panel), and r = 33 (lower panel), starting from the same initial state (−6.5763,−11.3758, 16.2133).
The trajectories immediately drift apart.
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0 2 4 6 8 10
−20

0

20

0 2 4 6 8 10
−20

0

20

0 2 4 6 8 10
−50

0

50

time

Figure 5. x-component of the trajectories of the averaged system (upper panel), the blinking system with
τ = 0.001 and r = 28 (middle panel), and the difference of the x-components of the blinking system and the
averaged system (lower panel). Clearly, the two solutions drift apart after some finite time.

0 0.5 1 1.5 2 2.5 3
−4

−2

0

2

0 0.5 1 1.5 2 2.5 3
−4

−2

0

2

time

Figure 6. Difference of the x-components of the blinking system and the averaged system, with τ = 0.001
(upper panel) and τ = 0.0001 (lower panel). The upper panel represents the same data as the lower panel in
Figure 5, but at a higher vertical resolution and for a shorter time interval. Clearly, faster switching reduces
the difference between the solutions of the averaged and blinking systems, but it does not substantially increase
the interval of time during which the two solutions are close.
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0 1 2 3 4 5
−20

0

20

0 1 2 3 4 5
−20

0

20

0 0.5 1 1.5 2
0

5

time

Figure 7. x-component of the solution of the averaged system starting from the initial state
[−10.1667,−4.7473, 36.6089] (upper panel). Mean value of the x-component of 100 solutions of the blink-
ing system starting from the same initial condition, but differing in the switching sequence (middle panel).
Standard deviation of the first component of the 100 solutions of the blinking system from the first component
of the solution of the averaged system (lower panel). Switching time τ = 0.001 (blue (dashed) curve), switching
time τ = 0.0001 (red (solid) curve).

‖x (t)− ξ (t)‖ between the solution of the blinking system and the averaged system for 10
different initial states and for each of 100 switching sequences (see Figure 8). It can be
observed that initially the average distance grows slowly and then takes off exponentially, as
predicted by the explicit bounds. Afterwards, a saturation effect takes over. The exponential
take-off occurs only about two times later when the switching time is decreased by a factor 10.

5. Conclusions. We have investigated the finite time properties of the stochastically blink-
ing dynamical systems, previously introduced in our paper [1] in the context of network syn-
chronization. The results of this paper are not constrained by this context and are applicable
to any stochastically switched dynamical system in any dynamical regime.

More precisely, we have considered dynamical systems whose parameters are switched
within a discrete set of values at regular time intervals. Similar to the blinking of the eye,
switching is fast, and it occurs stochastically and independently for different time intervals.
There are two time scales present in such systems, namely the time scale of the dynamical
system and the time scale of the stochastic process. We have proven that any trajectory of the
blinking system closely follows the trajectory of the averaged system, starting from the same
initial condition, during a certain lapse of time T if the switching is fast enough. This has
already been shown by perturbation theory in a more general context of stochastic dynamical
systems [9]. Going beyond the perturbation results, we have given explicit relations among the
switching time, the distance between the two trajectories, and the length of the time interval
T in the forms of bounds on probabilities.D
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0 1 2 3 4 5
0

10

20

0 0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

1.5

time

Figure 8. Mean distance of 1000 blinking solutions from the averaged solution, for 10 different initial states
and 100 different switching sequences for each. Switching time τ = 0.001 (blue (dashed) curve), switching time
τ = 0.0001 (red (solid) curve). The lower panel is an enlarged version of the upper panel.

The starting point for the derivation of these bounds is a well-known large deviation bound
for sums of bounded independent random variables applied to the switching variables. From
this, we have derived probabilistic bounds on the distance between the two trajectories in
two steps. First, we have derived the bounds on these probabilities for a small time interval
[t, t + Δt], conditioned on the state at time t. Second, we have combined the bounds for
the small time intervals into a bound for the time interval [0, T ]. The resulting bound on the
probability distribution for the distance between the trajectories of the blinking and averaging
systems indicates the presence of a soft threshold for the time interval beyond which the two
trajectories can be kept together only by switching almost infinitely fast. This comes as a
surprise that was not predicted by perturbation theory even though the existence of the soft
threshold does not contradict the perturbation theory results. This threshold depends only on
the Lipschitz constant of the averaged system: the smaller the Lipschitz constant, the larger
the threshold.

More precise bounds that actually contain the precise exponential decay rates could be
obtained by applying the action functional approach of large deviation theory [10, 11], but
not in the form of explicit expressions in the dynamical system parameters except perhaps for
particularly simple systems.

Our method can also be applied when the switching sequences follow a Markov process,
instead of being independent binary random vectors. Indeed, there are only two places where
the specific nature of the driving stochastic process is used. The first is the probability of
large deviation of the sum or integral of random variables from its mean, where we have
used Hoeffding’s inequality [17]. Similar inequalities can be obtained for Markov processes
in discrete or continuous time, and one simply has to substitute the quantities PWλ by theD
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corresponding expressions in all formulas (cf. the appendix). The second place where the
nature of the stochastic process is used is when combining the results on the increasing of the
distance between the trajectories of the blinking and the averaged systems during an interval
of length Δt for subsequent intervals on the time axis. Our proofs remain valid as long as
the solution x (t) is a vector-valued Markov process. If the driving stochastic process has the
Markov property, this is always the case.

In a companion paper (Part II) [2], we study the relation between the trajectories of the
averaged and blinking systems when time goes to infinity, using similar methods combined
with the Lyapunov function approach. The two trajectories usually cannot stay together, but
they may converge to the same attractor.

6. Appendix. In this section, we give the details of the proof for Theorem 3.1. We first
prove the preliminary results contained in Lemmas 6.2–6.6 and then arrive at the actual proof
of Theorem 3.1.

6.1. Preliminaries: Large deviation bounds. We let x(t) be a trajectory of the blinking
system, and ξ(t) be the solution of the averaged system, defined also for t ≥ 0, that starts
from the same initial state ξ(0) = x(0).

By the weak law of large numbers [18], we have for all x and λ > 0 that

P

{∥∥∥∥∥ 1

K

K∑
k=1

(
F
(
x, Sk

)
− Φ (x)

)∥∥∥∥∥ > λ

}
→

K→∞
0,

Pλ (K) = max
x∈Ω

P

{∥∥∥∥∥ 1

K

K∑
k=1

F
(
x, Sk

)
− Φ (x)

∥∥∥∥∥ > λ

}
,(6.1)

Pλ,i (K) = max
x∈Ω

P

[∣∣∣∣∣ 1K
K∑
k=1

Fi

(
x, Sk

)
− Φi (x)

∣∣∣∣∣ > λ

]
,

where P refers to the probability underlying the stochastic process Sk of switching sequences.
These definitions of probabilities Pλ and Pλ,i play an essential role in what follows. Note that
Pλ (K) →

K→∞
0 and Pλ,i (K) →

K→∞
0 for any λ > 0, i = 1, . . . , N , and since {Sk} is a stationary

stochastic process, for any k0 ≥ 1

max
x∈Ω

P

⎧⎨
⎩
∥∥∥∥∥∥
1

K

k0+K∑
k=k0

F
(
x, Sk

)
− Φ (x)

∥∥∥∥∥∥ > λ

⎫⎬
⎭ = Pλ (K) ,(6.2)

max
x∈Ω

P

⎧⎨
⎩
∣∣∣∣∣∣
1

K

k0+K∑
k=k0

Fi

(
x, Sk

)
− Φi (x)

∣∣∣∣∣∣ > λ

⎫⎬
⎭ = Pλ,i (K) .

Various bounds, so-called large deviation bounds, can be found in the literature. Since the
random variables F (x, Sk) are bounded, we shall use the Hoeffding bound [17]: if Xk is a
sequence of independent random variables with P (ak ≤ Xk ≤ bk) = 1 and if X = 1

K

∑K
k=1Xk,D
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then

(6.3) P
(∣∣X − E

(
X
)∣∣ > λ

) ≤ 2 exp

(
− 2K2λ2∑K

k=1 (bk − ak)
2

)
,

where E
(
X
)
is the expected value of X. This leads to the following assertion.

Lemma 6.1.

(6.4) Pλ (K) ≤
N∑
i=1

P(λ/
√
N),i (K) ≤ 2N exp

(
− Kλ2

2NB2
F

)
.

Proof.

(6.5) Pλ (K) = max
x∈Ω

P

⎛
⎝ N∑

i=1

(
1

K

K∑
k=1

Fi

(
x, Sk

)
− Φi (x)

)2

> λ2

⎞
⎠ .

The sum over i can be larger than λ2 only if at least one term is larger than λ2/N . Hence

(6.6) Pλ (K) ≤ max
x∈Ω

N∑
i=1

P

⎛
⎝
(

1

K

K∑
k=1

Fi

(
x, Sk

)
− Φi (x)

)2

>
λ2

N

⎞
⎠≤

N∑
i=1

P(λ/
√
N),i(K).

Thus, by (3.1) and Hoeffding’s inequality (6.3), we have

Pλ,i (K) ≤ 2 exp

(
− Kλ2

2B2
F

)
,

which, by substituting into (6.6), yields the second inequality of (6.4).
In what follows, this lemma will be used for bounding

∥∥∥∥
∫ t

0
(F (x, s (u))− Φ (x)) du

∥∥∥∥ =

∥∥∥∥∥
K∑
k=1

τ
(
F
(
x, sk

)
−Φ (x)

)∥∥∥∥∥ ,
where this equality holds, provided that t = Kτ . Actually, we will need to bound
‖ ∫ t+Δt

t (F (x, s (u))− Φ (x)) du‖. Using (6.2), again Lemma 6.1 can be applied, as long as
both t and Δt are multiples of τ . If this is not the case, then we have to use the more general
form∫ t+Δt

t
(F (x, s (u))− Φ (x)) du = τ

(
1− t

τ
+

⌊
t

τ

⌋)(
F
(
x, s� t

τ �
)

− Φ (x)
)

+

k=� t+Δt
τ �∑

k=� t
τ �+1

(
F
(
x, sk

)
− Φ (x)

)
+

(
t+Δt

τ
−
⌊
t+Δt

τ

⌋)(
F
(
x, s� t+Δt

τ �+1
)
− Φ (x)

)
.
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Accordingly, we extend the definition of Pλ (K) to noninteger K as follows:

Pλ (K) = max
0≤α≤1

max
x∈Ω

P

(
1

K

∥∥∥∥∥(1− α)F
(
x, S1

)
+

	K+α
∑
k=2

F
(
x, Sk

)

+(K + α− �K + α�)F
(
x, S	K+α
+1

)
−KΦ (x)

∥∥∥∥∥ > λ

)
.(6.7)

It is not difficult to see that the bounds (6.4) remain valid and that

(6.8) P

(∥∥∥∥
∫ t+Δt

t
(F (x, s (u))− Φ (x)) du

∥∥∥∥ > Δt · λ
)

≤ Pλ

(
Δt

τ

)

for any t ≥ 0, Δt ≥ 0, λ > 0, x ∈ Ω.

6.2. Important lemmas. In the following, we prove that the trajectory of the blinking
system and the trajectory of the averaged system stay close together for a certain interval
of time. We investigate in detail the relation between the switching time τ , the precision ε,
the length of the time interval T , and the probability that a solution of the blinking system
approximates with precision ε during a time interval of length T the solution of the averaged
system starting from the same initial state.

We proceed in two steps. First, we derive the bounds on these probabilities for a small
time interval [t, t +Δt], conditioned on the state at time t. Second, we combine the bounds
for the small time intervals into a bound for the time interval [0, T ]. That is, in the first step,
we prove that for some constant α > 0

‖x (t+Δt)− ξ (t+Δt)‖ ≤ ‖x (t)− ξ (t)‖ + αΔt.

In addition, we prove that the following inequality holds for a set of switching sequences with
probability at least 1− Pλ

(
Δt
τ

)
, where Pλ is given by (6.1) and (6.7):

‖x (t+Δt)− ξ (t+Δt)‖ ≤ (1 + LΦΔt) ‖x (t)− ξ (t)‖ + 2λΔt.

The probability Pλ goes to zero as the argument goes to infinity, which is the case when the
switching time goes to zero. In addition, typically 2λ is much smaller than α > 0.

In the second step, we prove that during a time T we have the inequality

(6.9) ‖x (t)− ξ (t)‖ ≤
[(
eLΦt − 1

) 2

LΦ
+

2α

LFΦ

]
· λ,

with a probability that converges to 1 as the switching time goes to zero, where the constant
LFΦ has a value between LF and LΦ. By an appropriate choice of λ, the LHS of (6.9) can be
made arbitrarily small during an arbitrarily long time interval with a probability arbitrarily
close to 1 if the switching time is small enough, as claimed by Theorem 2.2. However, the
dependence of the time interval on the switching time τ is far from uniform.

First step: We prove the following.D
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Lemma 6.2.
1. For any t,Δt ≥ 0

‖x (t+Δt)− ξ (t+Δt)‖ ≤ ‖x (t)− ξ (t)‖ + αΔt, where(6.10)

α = (BF +BΦ) .(6.11)

2. For any λ > 0, for t ≥ 0, for any value of x(t) (which depends on the switching
sequence), and for any Δt satisfying

(6.12) 0 ≤ Δt ≤ 2λ

LFBF + LΦBΦ
,

the probability that

(6.13) ‖x (t+Δt)− ξ (t+Δt)‖ ≤ (1 + LΦΔt) ‖x (t)− ξ (t)‖ + 2λΔt

holds is larger than 1− Pλ

(
Δt
τ

)
(cf. (6.1)).

Proof.
1. For any t, Δt ≥ 0

‖x (t+Δt)− ξ (t+Δt)‖

≤
∥∥∥∥x (t) +

∫ t+Δt

t
F (x (u) , s (u)) du − ξ (t) −

∫ t+Δt

t
Φ (ξ (u)) du

∥∥∥∥
≤ ‖x (t) − ξ (t)‖ +

∫ t+Δt

t
‖F (x (u) , s (u))‖ du +

∫ t+Δt

t
‖Φ (ξ (u))‖ du

≤ ‖x (t) − ξ (t)‖ + (BF +BΦ)Δt,

where we have used (3.1).
2.

‖ x (t+Δt)− ξ (t+Δt) ‖

≤
∥∥∥∥x (t) +

∫ t+Δt

t
F (x (u) , s (u)) du− ξ (t)−

∫ t+Δt

t
Φ (ξ (u)) du

∥∥∥∥
≤ ‖x (t)− ξ (t)‖+

∥∥∥∥
∫ t+Δt

t
[F (x (u) , s (u))− F (x (t) , s (u))] du

∥∥∥∥
+

∥∥∥∥
∫ t+Δt

t
[F (x (t) , s (u))− Φ (x (t))] du

∥∥∥∥+

∥∥∥∥
∫ t+Δt

t
[Φ (x (t))− Φ (ξ (t))] du

∥∥∥∥
+

∥∥∥∥
∫ t+Δt

t
[Φ (ξ (u))− Φ (ξ (t))] du

∥∥∥∥ .(6.14)

The fourth term on the RHS of (6.14) can be bounded by applying (3.2):∥∥∥∥
∫ t+Δt

t
[Φ (x (t)) − Φ (ξ (t))] du

∥∥∥∥ = ‖Φ (x (t)) − Φ (ξ (t))‖Δt
≤ LΦ ‖x (t)− ξ (t)‖Δt.D
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The second term can be bounded using both (3.1) and (3.2):

∥∥∥∥
∫ t+Δt

t
[F (x (u) , s (u))− F (x (t) , s (u))] du

∥∥∥∥ ≤ LF

∫ t+Δt

t
‖x (u)− x (t)‖ du

= LF

∫ t+Δt

t

∥∥∥∥
∫ u

t
F (x (v) , s (v)) dv

∥∥∥∥ du
≤ LFBF

∫ t+Δt

t

∫ u

t
dv du = LFBF

(Δt)2

2
.(6.15)

Similarly, for the fifth term,

(6.16)

∥∥∥∥
∫ t+Δt

t
[Φ (ξ (u)) − Φ (ξ (t))] du

∥∥∥∥ ≤ LΦBΦ
(Δt)2

2
.

Adding (6.15) and (6.16) and applying (6.12) yields the bound λΔt.
The third term is bounded, according to (6.8) with probability larger than 1 − Pλ

(
Δt
τ

)
,

by ∥∥∥∥
∫ t+Δt

t
[F (x (t) , s (u)) − Φ (x (t))] du

∥∥∥∥ ≤ Δtλ.

Collecting all these inequalities leads to (6.13).
Second step: For any choice of the initial state x(0) = ξ(0) in the region Ω, the constants

λ > 0 and τ > 0, and the constant Δt satisfying (6.12), we consider the following sequence of
random variables on the probability space of switching sequences:

(6.17) Zq (s) = ‖x (qΔt)− ξ (qΔt)‖ , q = 0, 1, 2, . . . .

The dependence of Zq(s) on the switching sequence s on the RHS of (6.17) is through
the solution x(qΔt) of the blinking system. For simplicity, we shall suppress the argument s
of Zq. Note that the stochastic process Zq is not a Markov process, even though x (qΔt) is
a vector-valued Markov process. In fact, the norm destroys a large part of the information
contained in the state vector. However, according to (6.10) we have the deterministic bound

Zq ≤ Zq−1 + αΔt for q = 1, 2, . . . ,

and according to (6.10) the bound

(6.18) Zq ≤ (1 + LΦΔt)Zq−1 + 2λΔt,

which holds with probability larger than 1 − Pλ

(
Δt
τ

)
for q = 1, 2, . . . . Actually, the second

part of Lemma 6.2 implies the stronger statement that the following conditional probability
has the uniform bound
(6.19)

P − a.s. (Zq ≤ (1 + LΦΔt)Zq−1 + 2λΔt |x ((q − 1)Δt)) > 1− Pλ

(
Δt

τ

)
for q = 1, 2, . . . .
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Note that we have used the Markov property of (x(qΔ t))q∈N . It is convenient to introduce
the auxiliary random variable

θq =

{
1 if Zq ≤ (1 + LΦΔt)Zq−1 + 2λΔt,
0 otherwise.

Lemma 6.3. Let σ = (σ1, . . . , σQ) ∈ {0, 1}Q be a binary vector of length Q, and m =

Q−∑Q
q=1 σq the number of zeros in this vector. Then

(6.20) P (θQ = σQ, . . . , θ1 = σ1) ≤
[
Pλ

(
Δt

τ

)]m
.

Proof. If σQ = 1, we simply use

(6.21) P (θQ = 1, θQ−1 = σQ−1, . . . , θ1 = σ1) ≤ P (θQ−1 = σQ−1, . . . , θ1 = σ1) .

If σQ = 0, we write

P (θQ = 0, θQ−1 = σQ−1, . . . , θ1 = σ1)

=
∑

x((Q−1)Δt)

P (θQ = 0, θQ−1 = σQ−1, . . . , θ1 = σ1, x ((Q− 1)Δt))

=
∑

x((Q−1)Δt)

P (θQ = 0 | θQ−1 = σQ−1, . . . , θ1 = σ1, x ((Q− 1)Δt))

×P (θQ−1 = σQ−1, . . . , θ1 = σ1, x ((Q− 1)Δt)),

where the summation is over (the finite number of) all possible values of x ((Q− 1)Δt). Since
θQ depends only on x (QΔt) and x ((Q− 1)Δt), and since x (qΔt) , q = 1, 2, . . . , is a vector-
valued Markov process, we get

P (θQ = 0, θQ−1 = σQ−1, . . . , θ1 = σ1)

=
∑

x((Q−1)Δt)

P (θQ = 0 | x ((Q− 1)Δt))P (θQ−1 = σQ−1, . . . , θ1 = σ1, x ((Q− 1)Δt)),

and applying the complement of (6.19),

P (θQ = 0 | x ((Q− 1)Δt)) ≤ Pλ

(
Δt

τ

)
,

we obtain

P (θQ = σQ, . . . , θ1 = σ1)

≤ Pλ

(
Δt

τ

) ∑
x((Q−1)Δt)

P (θQ−1 = σQ−1, . . . , θ1 = σ1, x ((Q− 1)Δt))(6.22)

= Pλ

(
Δt

τ

)
· P (θQ−1 = σQ−1, . . . , θ1 = σ1) .

Recursively applying (6.21) or (6.22), depending on the value of the corresponding σq, proves
the lemma.D
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Lemma 6.4. The following inequality holds true:

(6.23) ZQ ≤
[
eLΦ(Q−m)Δt − 1

]
· 2λ

LΦ
+ e

LΦ(Q−m)Δt
mαΔt P (· | θQ = σQ, . . . , θ1 = σ1) − a.s.,

where as before m = Q−∑Q
q=1 σq is the number of zeros in the binary vector σ = (σ1, . . . , σQ).

Proof.
1. m = 0: Applying (6.18) recursively, we get

ZQ ≤
Q∑

q=1

(1 + LΦΔt)
Q−q 2λΔt =

[
(1 + LΦΔt)Q − 1

] 2λ

LΦ

≤ [
eLΦQΔt − 1

] 2λ

LΦ
.

2. m > 0: Let σj1 = σj2 = · · · = σjm = 0 for 1 ≤ j1 < j2 < · · · < jm ≤ Q, whereas for all
other j, σj = 1. Then

ZQ ≤
Q∑

q=jm+1

(1 + LΦΔt)
Q−q 2λΔt+ (1 + LΦΔt)

Q−jm αΔt

+

jm−1∑
q=jm−1+1

(1 + LΦΔt)
Q−q−1 2λΔt+ · · · +

j2−1∑
q=j1+1

(1 + LΦΔt)
Q−q−m+1 2λΔt

+(1 + LΦΔt)
Q−j1−m+1 αΔt+

j1−1∑
q=1

(1 + LΦΔt)
Q−q−m 2λΔt

≤
[
(1 + LΦΔt)

Q−m − 1
] 2λ

LΦ
+
[
(1 + LΦΔt)

Q−j1−m+1

+ (1 + LΦΔt)
Q−j2−m+2 + · · ·+ (1 + LΦΔt)

Q−jm
]
αΔt.(6.24)

The RHS of (6.24) is largest for the smallest j1, . . . , jm, i.e., for jk = k, and we obtain the
bound that is independent of jk:

ZQ ≤
[
eLΦ(Q−m)Δt − 1

] 2λ

LΦ
+ eLΦ(Q−m)ΔtmαΔt.

Lemma 6.5.

(6.25) P

⎛
⎝ Q∑

q=1

θq < Q

⎞
⎠ ≤

(
1 + Pλ

(
Δt

τ

))Q

− 1 ≤ exp

(
QPλ

(
Δt

τ

))
− 1.

Proof. According to (6.20),

P

⎛
⎝ Q∑

q=1

θq < Q

⎞
⎠ ≤

Q∑
m=1

(
Q
m

)[
Pλ

(
Δt

τ

)]m
=

Q∑
m=0

(
Q
m

) [
Pλ

(
Δt

τ

)]m
− 1

≤
(
1 + Pλ

(
Δt

τ

))Q

− 1 ≤ eQPλ(Δt
τ ) − 1.
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Lemma 6.6. For arbitrary τ > 0, T > 0, and λ > 0, the probability Pτ,T,λ that

‖x (t)− ξ (t)‖ >
([
eLΦt − 1

] 2

LΦ
+

2

LFΦ

)
λ

for at least one value of t with 0 ≤ t ≤ T is bounded by

Pτ,T,λ ≤ exp

(
T

Δt
Pλ

(
Δt

τ

))
− 1,

where

(6.26) Δt =
2λ

LFBF + LΦBΦ
, LFΦ =

LFBF + LΦBΦ

BF +BΦ
.

Proof. Let

Q =

⌊
T

Δt

⌋
,

where �.� denotes the integral part. Consider a switching sequence s such that

θ1 (s) = θ2 (s) = · · · = θQ (s) = 1.

Then, according to (6.23) for q = 1, . . . , Q

Zq (s) ≤
[
eLΦqΔt − 1

] · 2λ

LΦ
;

i.e.,

‖x (t)− ξ (t)‖ ≤ [
eLΦt − 1

] · 2λ

LΦ
for t = 0, Δt, 2Δt, . . . , QΔt.

For the other values of t in the interval [0, T ], using (6.10), we get

‖x (t)− ξ (t)‖ =

∥∥∥∥x
(⌊

t

Δt

⌋
Δt

)
− ξ

(⌊
t

Δt

⌋
Δt

)∥∥∥∥ + α ·
(
t−

⌊
t

Δt

⌋
Δt

)

≤
[
exp

(
LΦ

⌊
t

Δt

⌋
Δt

)
− 1

]
· 2λ

LΦ
+ αΔt

≤ [
eLΦt − 1

] · 2λ

LΦ
+ αΔt.

Setting Δt to the upper limit in (6.12) and substituting the value (6.11) for α, we get

(6.27) ‖x (t)− ξ (t)‖ ≤
([
eLΦt − 1

] 2

LΦ
+

2

LFΦ

)
λ.

This implies that for any switching sequence s such that the inequality (6.27) is violated for
at least one value of t in the interval [0, T ], we must have

Q∑
q=1

θq (s) < Q.

Applying now (6.25), we obtain

Pτ,T,λ ≤ P

⎛
⎝ Q∑

q=1

θq (s) < Q

⎞
⎠ ≤ exp

(
QPλ

(
Δt

τ

))
− 1 ≤ exp

(
T

Δt
Pλ

(
Δt

τ

))
− 1.
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6.3. Proof of Theorem 3.1. Having derived the lemmas, we are ready to give the proof
of the main result, formulated in Theorem 3.1.

Proof. Choose

(6.28) λ =
ε

C (T )
.

Then, by Lemma 6.6 inequality (3.3) holds for all times t ∈ [0, T ] with probability at least

1− (
e

T
Δt

Pλ(
Δ t
τ

) − 1
)
, where Δt is given by (6.26). According to Lemma 6.1,

(6.29)
T

Δt
Pλ

(
Δt

τ

)
≤ 2

T

Δt
N exp

(
− Δt

τ

λ2

2NB2
F

)
.

For a given 0 < P0 < 1 choose τ0 such that the RHS of (6.29) equals P0/2. Explicitly,

τ0 =

(
ε

C (T )

)3

· 1

ln (2D · TC (T ))− ln (εP0)
· 1

DB2
F

,

where we have used (6.28), (3.6), and (6.26). It also implies that T
ΔtPλ(

Δ t
τ0
) < 1

2 , and therefore
for τ ≤ τ0

exp

(
T

Δt
Pλ

(
Δt

τ

))
− 1 ≤ T

Δt
Pλ

(
Δt

τ

)
exp

(
T

Δt
Pλ

(
Δt

τ

))
≤ 2

T

Δt
Pλ

(
Δt

τ

)
≤ P0.

Therefore, inequality (3.3) holds for all times t ∈ [0, T ] with probability at least Pclose = 1−P0

if the switching time satisfies τ ≤ τ0.
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