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Synchronization of Bursting Neurons: What Matters in the Network Topology
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We study the influence of coupling strength and network topology on synchronization behavior in
pulse-coupled networks of bursting Hindmarsh-Rose neurons. Surprisingly, we find that the stability of the
completely synchronous state in such networks only depends on the number of signals each neuron
receives, independent of all other details of the network topology. This is in contrast with linearly coupled
bursting neurons where complete synchrony strongly depends on the network structure and number of
cells. Through analysis and numerics, we show that the onset of synchrony in a network with any coupling
topology admitting complete synchronization is ensured by one single condition.
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Synchronized neuronal firing has been suggested as
particularly relevant for neuronal signal transmission and
coding. While its involvement in cortical processing is
somewhat controversial, the presence of synchronization
has been shown in special areas such as the olfactory
system or the hippocampal region [1]. Model studies of
neuronal synchronization can be separated in those where
threshold models of the integrate-and-fire type are used [2]
and those where conductance-based spiking and bursting
models are employed [3]. Bursting occurs when neuron
activity alternates, on a slow time scale, between a quies-
cent state and fast repetitive spiking. There has been much
work on mechanisms that produce such bursting [4]. In
contrast to coupled spiking neurons, whose synchronous
dynamics is relatively simple, interacting bursting neurons
may exhibit different forms of synchrony; including syn-
chronization of individual spikes, burst synchronization
when only the envelopes of the spikes synchronize, and
complete synchrony [5]. Typically, burst synchronization
arises at a low coupling strength whereas complete syn-
chrony, which involves both burst and spike synchroniza-
tion regimes, requires a stronger coupling. Models of
interacting bursting neurons often use one of two different
forms of coupling depending on whether the synapse is
electrical or chemical. In the first case, the coupling
through gap junctions is linear and directly dependent on
the difference of the membrane potentials. In the second
case, the coupling is pulsatile and often modeled as a static
sigmoidal nonlinear input-output function with a threshold
and saturation [6]. One important question about interact-
ing bursting neurons with such linear and pulsatile cou-
plings is that of complete synchronization: What are the
conditions for the stability of the completely synchronous
state, especially with respect to coupling strengths and
coupling configurations of the network? This problem
was intensively studied for linearly coupled networks of
bursting neurons [7,8], and more generally, of limit-cycle
and chaotic oscillators [9,10]. In particular, it has been
shown that synchrony in such networks strongly depends
on the structure and size of the network.
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The purpose of this Letter is to report a surprising find
regarding the synchronization of synaptically coupled net-
works of bursting neurons. Studying a network of pulse-
coupled Hindmarsh-Rose (HR) neurons [11], we discov-
ered that all that matters for the onset of complete syn-
chrony is the number of signals, k, received by each neu-
ron. This is independent of all other details of the network
structure. More precisely, the synchronization threshold is
inversely proportional to the number of incoming signals k.
This criterion applies to a neuronal network with any
coupling topology admitting complete synchrony. For
this property to be true, each neuron must receive signals
from k others, where k is uniform for all neurons. In this
work, we concentrate on networks of HR neurons exhibit-
ing square-wave bursting, which is very resistant to syn-
chronization. The single HR model can be linearly trans-
formed into the form _x�ax2�x3�y�z, _y � �a� �� �
x2 � y, _z � ��bx� c� z�, where x represents the mem-
brane potential, and y and z are associated with fast and
slow currents, respectively. Hereafter, the parameters are
chosen and fixed as follows: a�2:8, ��1:6, c�5, b�9,
� � 0:001. Consider now a network of n synaptically
coupled HR models. The equations of motion are the
following:

_xi � ax2i � x3i � yi � zi � gs�xi � Vs�
Xn
j�1

cij��xj�;

_yi � �a� ��x2i � yi; _zi � ��bxi � c� zi�;

i; j � 1; n:

(1)

Here, the neurons are identical and the synapses are fast
and instantaneous. The parameter gs is the synaptic cou-
pling strength. The reversal potential Vs > xi�t� for 8 xi
and 8 t, i.e., the synapse is excitatory. The synaptic cou-
pling function is modeled by the sigmoidal function
��xj� � 1=�1� expf���xj ��s�g� (a limiting version of
��xj� is the Heaviside function). This oft-used coupling
form was called fast threshold modulation by Somers and
Kopell [6]. The threshold �s is chosen such that every
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spike in the single neuron burst can reach the threshold (see
Fig. 1). Hereafter, �s � �0:25 and Vs � 2.

C � �cij� is the n� n connectivity matrix: cij � 1 if
neuron i is connected to neuron j, cij � 0 otherwise,
and cii � 0. Matrix C can be asymmetric such that both
mutual and unidirectional couplings are allowed. We re-
quire equal row sums k �

Pn
j�1 cij, i � 1; . . . ; n. This

requirement is a necessary condition for the existence of
the synchronous solution, namely, the invariance of hyper-
plane D � f�1�t� � �2�t� � � � � � �n�t�g, �i � �xi; yi; zi�,
and i � 1; n. In fact, the equal row-sum property implies a
network where each cell has the same number k of inputs
from other neurons. Synchronous behavior on the manifold
D is generated by the system:

_x � ax2 � x3 � y� z� kgs�x� Vs���x�;

_y � �a� ��x2 � y; _z � ��bx� c� z�:
(2)

Introducing the differences between the neural oscillator
coordinates �ij � xj � xi, �ij � yj � yi, �ij � zj � zi,
i; j � 1; . . . ; n in the limit when these differences are in-
finitesimal, we derive the stability equations for the trans-
verse perturbations to the synchronization manifold D:

_�ij � �2ax� 3x2��ij � �ij � �ij � kgs��x��ij

� gs�Vs � x��0
x�x�

�
k�ij �

Xn
h�1

fcjh�jh � cih�ihg

�
;

_�ij � 2�a� ��x�ij � �ij; _�ij � ��b�ij � �ij�: (3)

The derivatives are calculated at the point � � 0, � � 0,
� � 0, and fx�t�; y�t�; z�t�g corresponds to the synchro-
nous bursting solution defined via system (2). The first
coupling term S1 � �kgs��x��ij accounts for the number
of inputs k. At the same time, the contribution of the
second coupling term S2 � gs�Vs � x��0

x�x���� depends
on the coupling configuration. Note that the termPn

h�1fcjh�jh � cih�ihg is the same as for linear coupling
[9]. In terms of the original variables xi, the corresponding
coupling matrix G � C� kI is the Laplacian of the con-
nected graph, except for a sign change. It is well known
that G has one zero eigenvalue �1 and all other eigenvalues
have nonpositive real parts. If the coupling is mutual, G is
symmetric and all eigenvalues are real. For simplicity,
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FIG. 1. The synaptic threshold �s and square-wave bursting of
the HR model (left). The corresponding time series (right).
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suppose that the eigenvalue �2 with the largest real part
is simple. Then, applying the linear transformation that
diagonalizes G to Eq. (3), we obtain the stability equation
for the most unstable transverse mode:

_� � �2ax� 3x2��� �� � ���x��;

_� � 2�a� ��x�� �; _� � ��b�� ��;
(4)

where ��x��kgs��x��gs�Vs�x��0
x�x��k��2�. System

(4) is an analog of the Master Stability function [9] for
synaptically coupled networks (1). If �2 is not simple, then
we can write similar equations to system (4) for the vectors
spanning the corresponding blocks in the Jordan normal
form of G. The stability discussion, however, is essentially
the same. Consider now its application to basic network
configurations.

Globally coupled networks.—In this case, �2 � �n and
k � n� 1. Consequently, ��x� � kgs��x� � gs�Vs �
x��0

x�x�. The function ��x� together with its derivative
�0
x�x� is non-negative, and �Vs � x� is always positive

(the synapses are excitatory). Therefore ��x� is always
non-negative and the coupling term ���x��ij aims at
stabilizing the zero equilibrium of system (4); correspond-
ing to the synchronous solution. The function ��x�
strongly depends on whether the membrane potential x�t�
exceeds the threshold �s or not. In fact, kgs is a lower
bound of ��x� in the region x�t�>�s and strongly con-
tributes to the stability. At the same time, when x�t� is
below �s, the first term in ��x� rapidly decreases to zero,
and the second coupling term becomes decisive in a small
region close to x � �s. This region is defined by the pa-
rameter � [see Fig. 2 (left panel)]. Applying the Lyapunov
function method to the stability of system (4), similar to
[10], we prove that the synchronous state can be made
stable, provided the coupling gs is sufficiently strong. The
analysis shows that the major part of the quiescent (slow)
mode of the synchronous solution, where the contribution
of ��x� is negligible, lies in a stable zone. Here, the
derivative of the Lyapunov function is always negative,
i.e., where the solutions of the individual systems converge
to each other. On the other hand, the part of the bursting
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FIG. 2. The function ��x� and the corresponding synchro-
nous bursting. Globally coupled HR neurons (k � n� 1,
� � 10) (left). Ring of locally coupled HR neurons (k � 2,
� � 10) (right).
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FIG. 3. Synchronization thresholds g�s in a ring of 2K-nearest-
neighbor coupled HR neurons as functions of n for various
coupling configurations (different K). Markers: Simulation re-
sults. Solid line: Prediction of Eq. (5).
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solution that is the most difficult to synchronize favorably
lies in the region x�t� � �s, where the contribution of
��x� � kgs is strong and depends on k. Similarly, we
prove that the remaining spiking part of the synchronous
solution for x�t� � �s can be stabilized by increasing gs
under the constraint that ��x� is not the Heaviside function
(� is not too large). Hereafter, we postpone the detailed
proof [12] and give only the main result. Our stability
conditions give the following estimate for the synchroni-
zation threshold:

g�s � g�n�2�
s =k; (5)

where k � n� 1 and g�n�2�
s is a constant corresponding to

the synchronization coupling threshold between two mu-
tually coupled HR neurons (k � 1). The constant g�n�2�

s

comes from sufficient conditions and therefore gives an
overestimate for the real coupling strength that leads to
complete synchronization of two HR neurons: 2.94 pre-
dicted versus 1.285 actual for the above mentioned pa-
rameters and � � 10. However, using the numerically
obtained g�n�2�

s , we can predict the threshold g�s , for any
k, from Eq. (5), as shown in the numerical examples below.

Densely coupled networks.—The eigenvalue �2 of G for
such networks is very close to �k. For example, for a ring
of 2K-nearest-neighbor mutually coupled neurons, �2 �

�4
PK

l�1 sin
2 l�

n [13] with n � 10, K � 4, and k � 2K �

8, we obtain �2 � �7:976. Consequently, the function
��x� becomes close to kgs��x�. Therefore, if k is suffi-
ciently large, the bound for the synchronization threshold
will be nearly identical to that for globally coupled
networks.

Intermediately and sparsely coupled networks.—When
the number of links between the neurons in a network is
small, the eigenvalue �2 is also small such that the second
term in ��x�, �gs�Vs � x��0

x�x��k� �2� no longer favors
the stability. Consequently, the function ��x� takes nega-
tive values in the region close to the threshold �s and
defines the instability zone, where the coupling desynch-
ronizes the neurons. At the same time, the stability zone is
defined by the first term in �, kgs��x�, which is bounded
from below by kgs in the region x�t� � �s [cf. Figure 2
(right panel)]. Strictly speaking, while we are no longer
able to prove that the systems synchronize within the
framework of the Lyapunov function method, the slow-
fast structure of Eqs. (1) and (2) yields the following. The
excitatory coupling raises the x nullcline f�x� � ��x2 �
x3 � kgs�x� Vs���x� of system (2) such that the right-
branch attractor corresponding to spiking gradually moves
to the right from the threshold x � �s. Finally, it leaves the
zone where ��x� is negative (cf. Figure 2 (right)), provided
gs is large enough. Note that the raising of the nullcline and
the shift of the attractor are also governed by kgs [cf.
Equation (2)]. In the singular perturbation limit �� ! 0�,
the synchronous trajectory traverses the instability region
via fast jumps from the quiescent mode to repetitive spik-
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ing, and spends almost all its time in the stability regions.
As in the case of the global coupling, the first stability zone
corresponding to a major part of the slow motion along the
left branch of f�x� is always stable, whereas the stability of
the second zone corresponding to spiking is defined by kgs.
Hence, once again we see that condition (5) is a good
estimate for the synchronization threshold in sparsely and
intermediately connected networks. Consequently, the syn-
chronization threshold in locally synaptically coupled net-
works is constant; g�s � g�n�2�

s =2 for mutually nearest-
neighbor coupled neurons, and does not depend on the
number of neurons n. This is in sharp contrast with linearly
coupled networks where the coupling required for stable
synchronization has a quadratic dependence on n [10].
Collecting all the considered coupling topologies, we
come to the following assertion.

Statement.—The synchronization threshold estimate (5)
g�s � g�n�2�

s =k is valid for the networks (1) with any cou-
pling configuration (whether global or local, regular or
random, mutual or unidirectional) under the constraint
that each neuron has the same number of inputs k.

In support of this claim, we determine numerically the
threshold for complete synchronization as a function of k
for various coupling configurations (local, intermediate,
and global), and compare it to the value predicted by
Eq. (5). For g�n�2�

s , the value from simulation of two
mutually coupled HR neurons was used. This value is
g�n�2�
s � 1:285 for � � 10 and g�n�2�

s � 1:139 for � �
50. From the results shown in Fig. 3 it can be seen that
the prediction is nearly perfect. Note that even for large �,
when the synaptic function ��xi� approaches the Heaviside
function, the estimate (5) gives an excellent numerical
prediction.

To illustrate the power of condition (5) even further we
have simulated—in addition to the regular, mutually
coupled networks from Fig. 3—a series of randomly gen-
erated unidirectionally coupled networks of HR neurons
with uniform number of synapses as those shown in Fig. 4.
For all simulated networks, numerical results are nearly
identical to the analytical predictions of Eq. (5).

Finally, we have tested robustness of the synchroniza-
tion with respect to a mismatch in the synaptic strengths.
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FIG. 4. Ten networks of each type, (a) n � 9, k � 3;
(b) n � 9, k � 4; (c) n � 16, k � 4, were generated randomly.
The synchronization threshold for networks of type (a): g�s �
0:429 for � � 10, and g�s � 0:380 for � � 50; and of types (b)
and (c): g�s � 0:322 for � � 10, and gs � 0:285 for � � 50. All
the calculated thresholds coincide perfectly with g�n�2�

s =k.
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We have simulated networks of 20 neurons for the local,
intermediate, and global cases, introducing a mismatch in
the synaptic strengths around the average gs. Perfect syn-
chronization is no longer possible in these cases, due to the
absence of the synchronization manifold, and there is al-
ways an error in the synchronization. However, for a given
value of gs this error falls rapidly and then remains con-
stant when gs is further increased. This point can be seen as
the coupling threshold for the approximate synchroniza-
tion. In all simulated cases this value is nearly identical to
the synchronization threshold without mismatch as shown
in Fig. 3. The synchronization has been verified to be
robust for mismatches in gs of up to 5%.

The derivation of condition (5) mainly relies on two
properties of the coupled system: (i) the spiking state,
which is most resistant to synchronization, encircles the
right branch of the fast nullcline f�x�, where the contribu-
tion of coupling is strong; (ii) the quiescent state, which is
easy to synchronize, belongs to the left branch of f�x�.
These properties are typical for square-wave and parabolic
bursters, whose formation involves the two branches of
f�x�. Consequently, the synchronization condition (5) is
not restricted to the HR neuron, but is applicable to other
Hodgkin-Huxley-type neurons, exhibiting square-wave
and parabolic bursters. For example, two Sherman models
displaying square-wave bursting for the standard parame-
ters [7], synchronize at g�n�2�

s � 0:25 when synaptically
coupled with �s � �40, Vs � �10, and � � 50. The syn-
chronization thresholds in a larger network (1) of the
Sherman models correspond to the values predicted by
g�n�2�
s =k.
In summary, the single condition (5) ensures the onset of

complete synchronization in networks of synaptically
coupled bursting neurons (1) with any coupling topology
in which each neuron receives signals from k others. The
synchronization condition depends on the number of inputs
k and not on the connectivity matrix. The equal k constraint
18810
is often invalid for biologically relevant networks with a
complex structure where the number of inputs is not nec-
essarily constant, but if k is uniform for a group of neurons,
synchronization within this group of neurons can occur.
The synaptic strengths can also change as a result of pre-
and post-synaptic cell activity such that the inputs to the
neurons become equal only for a specific interval of time,
resulting in temporal approximate synchronization. This
work promises to allow an analytical treatment of even
temporal synchrony in bursting cells.
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