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Abstract

This paper elucidates the relation between network dynamics and graph theory. A new general method to determine global
stability of total synchronization in networks with different topologies is proposed. This method combines the Lyapunov
function approach with graph theoretical reasoning. In this context, the main step is to establish a bound on the total length
of all paths passing through an edge on the network connection graph. In particular, the method is applied to the study of
synchronization in rings of 2K-nearest neighbor coupled oscillators. A rigorous bound is given for the minimum coupling
strength sufficient for global synchronization of all oscillators. This bound is explicitly linked with the average path length of
the coupling graph. Contrary to the master stability function approach developed by Pecora and Carroll, the connection graph
stability method leads to global stability of synchronization, and it permits not only constant, but also time-dependent interac-
tion coefficients. In a companion paper (“Blinking model and synchronization in small-world networks with a time-varying
coupling,” see this issue), this method is extended to the blinking model of small-world networks where, in addition to the
fixed 2K-nearest neighbor interactions, all the remaining links are rapidly switched on and off independently of each other.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

During the last few decades the study of the dynamics of coupled nonlinear dynamical systems has generated a
rapidly growing interest in theoretical physics and other fields of science. The interest was mainly concentrated on
the spatiotemporal behavior of coupled systems and on related synchronization phenomena. Traditionally synchro-
nization of two limit-cycle systems means that their time evolution is periodic, with the same period and, perhaps, the
same phase. This notion of synchronization is not sufficient when the systems are chaotic. More recently, synchro-
nization of chaotic systems has been discovered[1–3] and since then it has become an important research topic in
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mathematics, physics, and engineering. Synchronization of two systems in this case means identical or functionally
related solutions, perhaps with a delay. Strong forms of synchrony in chaotic systems include complete[1–25]and
cluster[26–31]synchronization. Some weaker forms of synchronization of chaotic systems such as phase and lag
synchronization[32], bubbling synchronization[33], and generalized synchronization[34] were also reported. For
more references to synchronization in chaotic dynamical systems see[35].

Since early works were concerned with a small number of coupled oscillators, the increasing interest in synchro-
nization phenomena has led many researchers to consider synchronization in large networks of coupled systems with
different coupling configurations. One important question about these networks is that of complete synchronization:
What are the conditions for the stability of the synchronous state, especially with respect to coupling strengths and
coupling configurations of the network? This problem was intensively studied for networks of periodic dynamical
systems[36–40]and chaotic systems[4–14,17–22,24,25].

Typically, in networks of continuous time oscillators, the synchronous solution becomes stable when the coupling
strength between the oscillators exceeds a critical value. In this context, a central question is to find the bounds on
the coupling strengths so that the stability of synchronization is guaranteed. Most methods for determining stability
for synchronized chaotic systems developed independently by several research groups are based on the calculation
of the eigenvalues of the coupling matrix for different regular coupling schemes and a term depending mainly on
the dynamics of the individual oscillators[4,7,8,12,13,17–25]. A general approach to the local synchronization of
chaotic systems for any linear coupling scheme, called the master stability function, was developed in[12]. This
approach is based on the calculation of the maximum Lyapunov exponent for the least stable transversal mode
of the synchronous manifold and the eigenvalues of the connectivity matrix. Stronger global stability results for
synchronization in networks of diffusively coupled chaotic systems were obtained in[4,7,29,30]. In [17–19], an
analog of the master stability function for global synchronization of chaotic systems was proposed.

However, the eigenvalues of the coupling matrix can often be calculated only for simple coupling schemes
such as local coupling, star configuration, global coupling, etc. In more complicated networks, the calculation of the
eigenvalues becomes such a difficult task that it is rarely possible to obtain analytical bounds for the synchronization
thresholds.

Moreover, for networks of oscillators with a time-varying coupling (where the connectivity matrix is time-
dependent), the use of methods based on the eigenvalues of the connectivity matrix and the Lyapunov exponents is
often impossible (the linearized system becomes time-dependent and may fail to provide the stability results).

In this paper we have developed a new general method, which we call the connection graph based stability method,
to calculate upper bounds for global synchronization in complex networks of mutually coupled chaotic oscillators.
Within the framework of this method, we combine the Lyapunov function approach with graph theoretical reason-
ing. In this context the main step is to establish a bound on the total length of all paths passing through an edge in
the network connection graph. This method directly links synchronization with graph theory and allows us to avoid
calculating both the Lyapunov exponents and the eigenvalues of the coupling matrix. Furthermore, it guarantees
total synchronization from arbitrary initial conditions and not just local stability of the synchronization manifold.
Our method is also valid for networks with a time-varying coupling and can be extended to the study of global syn-
chronization in small-world networks with a time-varying coupling. This is the subject of the companion paper[41].

The layout of this paper is as follows. First, inSection 2, we state the problem under consideration. Then, in
Section 3, we present the connection graph based stability method for global synchronization in networks of coupled
chaotic oscillators. We first develop the general method and then apply it to several examples of concrete networks. In
Section 4, we apply our method to global stability of synchronization in rings of 2K-nearest neighbor coupled chaotic
oscillators. A rigorous bound is given for the minimum coupling strength necessary for global synchronization of all
the oscillators. This bound is explicitly linked with the average path length of the coupling graph. We also confirm
our theoretical results with numerical simulations of the rings of 2K-nearest neighbor coupled chaotic Lorenz
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systems. InSection 5, we compare our method with the master stability function. We show how the eigenvalues of
the coupling matrix can also be used in the context of our method for global synchronization. At the same time,
we show that the eigenvalue method fails in general for networks with time-dependent coupling coefficients for
which the connection graph stability method becomes the ultimate approach. InSection 6, a brief discussion of
the obtained results is given. Finally, inAppendix A, we show how global stability of synchronization depends
on the parameters of the individual oscillator by considering an example of coupled identical Lorenz systems. In
Appendix B, we prove that our method is applicable to the study of global stability of approximate synchronization
in networks of slightly non-identical oscillators. We also give an estimate for the corresponding synchronization
error and support the general results by an illustrative example of coupled non-identical Lorenz systems.

2. Problem statement

We consider the network

ẋi = F(xi)+
n∑
j=1

εij (t)Pxj, i = 1, . . . , n, (1)

wherexi = (x1
i , . . . , x

d
i ) is thed-vector containing the coordinates of theith oscillator. The non-zero elements of

thed × d matrixP determine which variables couple the oscillators. For clarity, we shall consider a vector version
of the coupling with the diagonal matrixP = diag(p1, p2, . . . , pd), whereph = 1,h = 1,2, . . . , s andph = 0 for
h = s+ 1, . . . , d. Note that all the results that obtained in this paper are also valid for other possible cases of scalar
and vector couplings between the oscillators.

LetG = (εij (t)) be ann×n symmetric matrix with vanishing row-sums and non-negative off-diagonal elements,
i.e. εij = εji , εij ≥ 0 for i �= j, andεii = − ∑n

j=1;j �=i εij , i = 1, . . . , n.
Therefore, we consider an arbitrary network of mutually coupled systems due to the symmetry of the coupling

matrix. The condition for vanishing row-sums is necessary for the existence of the synchronous state.
The matrixG defines a graph withn vertices andm edges. Here, the number of edgesm, from all possible

N = n(n−1)/2 links between the oscillators, equals the number of non-zero above diagonal elements of the matrix
G, εikjk > 0 for k = 1,2, . . . , m andεikjk = 0 for k = m+ 1, . . . , N. Thesem non-zero elements of the matrixG
represent both the structure of the coupling and the coupling strengths. The vertices of the graph correspond to the
individual oscillators and the edges to the off-diagonal elements ofG. Thus, the graph has an edge between nodei

and nodej if εij = εji > 0. We suppose that the graph is connected.
We admit an arbitrary time dependence in the coupling matrix even ift is not explicitly stated everywhere. All

constraints and criteria for the coupling matrix are understood to hold for all timest.
Our main objective is to obtain conditions of global asymptotic stability of synchronization in the system(1).

We want to determine threshold values for the coupling strength required for synchronization, and to reveal their
dependence on the number of oscillators, the coupling configuration, and the properties of the individual cell. In
particular, the intriguing question is how the synchronization thresholds are related to the average path length of the
graph.

3. Connection graph based stability method

The synchronous state of the system(1) is defined by the linear invariant manifoldM = {x1 = x2 = · · · = xn}.
This invariant manifold has dimensiond and is often called the synchronization manifold.
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3.1. Step I: redundant stability system for the difference variables

Introducing the notation for the differences

Xij = xj − xi, i, j = 1, . . . , n, (2)

we obtain

Ẋij = F(xj)− F(xi)+
n∑
k=1

{εjkPXjk − εikPXik}, i, j = 1, . . . , n. (3)

To have the explicit presence ofXij inF(xj)−F(xi), we could have expressed the system(3)by its scalar components

Xi = (X
(1)
i , . . . , X

(d)
i ) andF = (F(1), F(2), . . . , F(d)) and applied the mean value theorem to each scalar variable

such thatF(h)(xj) − F(h)(xi) = DF(h)(x∗)Xij , whereh = 1, . . . , d andDF(h) is a d-column Jacobi vector of
F(x∗(t)), wherex∗(xi, xj) ∈ [xi, xj]. However, we prefer more compact vector notation for the function difference

F(xj)− F(xi) =
∫ 1

0

d

dβ
F(βxj + (1 − β)xi)dβ =

[∫ 1

0
DF(βxj + (1 − β)xi)dβ

]
Xij ,

whereDF is ad × d Jacobi matrix ofF .
Hence, we can write

Ẋij =
[∫ 1

0
DF(βxj + (1 − β)xi)dβ

]
Xij +

n∑
k=1

{εjkPXjk − εikPXik}, (4)

wherei, j = 1, . . . , n. Note that the JacobianDF can be calculated explicitly via the parameters of the individual
subsystem.

The difference equation system(4) hasn2 equations;n(n−1) of them are responsible for the transversal stability
of the corresponding synchronous modes (synchrony in the corresponding pair of oscillators). Clearly, the difference
system(4)contains surplus linearly dependent variables and is, strictly speaking, redundant. Taking into account the
obvious equalitiesXii ≡ 0 andXji = −Xij , one can reduce the number of variables toN = n(n− 1)/2. Moreover,
it is clear that onlyn− 1 difference variables from the remainingN = n(n− 1)/2 are linearly independent and can
be chosen to correspond to some tree of the coupling graphG. However, we consider all possible differencesXij

and this approach will allow us to estimate the synchronization thresholds in complex networks.
Using the technique developed in previous papers[4,29,30]for stability of the difference variable system where

only linearly independent combinations were taken into account; we study now the redundant stability system(4).
Adding and subtracting an additional termAXij from the system(4), we obtain the system

Ẋij =
[∫ 1

0
DF(βxj + (1 − β)xi)dβ − A

]
Xij + AXij +

n∑
k=1

{εjkPXjk − εikPXik}, (5)

wherei, j = 1, . . . , n and the matrixA = diag(a1, a2, . . . , ad), whereah ≥ 0 for h = 1,2, . . . , s, andah = 0 for
h = s+1, . . . , d. Note here that the choice of the matrixA is strictly defined by the matrixP = diag(p1, p2, . . . , pd);
we can add (subtract) the additional corresponding terms only in the coupled variables.

Our goal is to obtain conditions under which solutions of the coupled system(5) converge to 0 ast → ∞ and
its trivial equilibrium, corresponding to the synchronization manifold of the system(1), is globally asymptotically
stable.

The matrix−A is added to damp instabilities caused by eigenvalues with non-negative real parts of the Jacobian
DF. At the same time, the instability introduced by the positive definite matrix+A in Eq. (5)can be damped by
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the coupling terms. The positive coefficientsak are put in the matrixA at the place corresponding to the variables
by which oscillators are coupled, and therefore the desynchronizing influences of+ak can be compensated by the
negative coupling terms.

To go further, we should make some assumptions and introduce the auxiliary system

Ẋij =
[∫ 1

0
DF(βxj + (1 − β)xi)dβ − A

]
Xij , i, j = 1, . . . , n. (6)

This system is the system(5) for the difference variables where the coupling terms are excluded.
We assume that there exist Lyapunov functions of the form

Wij = 1
2X

T
ij HXij , i, j = 1, . . . , n, (7)

whereH = diag(h1, h2, . . . , hs,H1), h1 > 0, . . . , hs > 0, and the(d − s)× (d − s)matrixH1 is positive definite.
Their derivatives with respect to the system(6) are required to be negative

Ẇij = XT
ijH

[∫ 1

0
DF(βxj + (1 − β)xi)dβ − A

]
Xij < 0, Xij �= 0. (8)

This is a crucial requirement for the method. It implies that the auxiliary system can be globally stabilized, provided
the negative linear part’s parametersa1, a2, . . . , as are sufficiently large. In other words, this implies that oscillators
of the system(1) can synchronize when the coupling is made sufficiently large. In general this is not always
true. To solve the real problem of synchronization in a network of oscillators, given their individual dynamics
and coupling structure, one should start from the question of whether or not the requirement(8) holds. In fact,
many examples of linearly coupled dynamical systems satisfy this condition, and global synchronization arises
with increasing coupling. However, a few examples of coupled systems for which this is not the case were reported
[6,29]. Among them is a lattice ofx-coupled Rössler systems in which the stability of the synchronization regime
is lost with an increase of coupling such that the requirement(8) cannot be satisfied for this network and global
synchronization cannot be achieved. In a recent paper[29], we have linked this phenomenon to the equilibria
disappearance bifurcations. Indeed, the nature ofglobal synchronization is stronglydependenton the dynamical
properties of subsystems. Even if the coupled system always stays in a compact set and local synchronization
occurs, global synchronization can be absent due to the possible presence of different invariant sets lying outside
the synchronization manifold (in an extreme case, this is a multistability effect).

The conditions that guarantee the requirement(8) are based upon the individual node’s dynamics and the way the
oscillators are coupled (matrixP). The requirement(8)has to be proven for each particular situation (for the concrete
individual system and the matrixP). In fact, we have proved it for coupled Lorenz systems[30], double-scrolls
[4,25], non-autonomous chaotic pendulums[42], Hodgkin–Huxley-type models and variousP matrices.

The details of the proof of assumption(8) for the coupled Lorenz systems can be found in[30], however, as an
illustrative example we shall present its main steps inAppendix A. Using a similar argument, one can prove it for
many other coupled chaotic systems.

Before starting the study of the transversal stability of the synchronization manifold, we need also one additional
assumption on the eventual dissipativeness of the coupled system(1).

Assume that the individual systeṁxi = F(xi) is eventually dissipative, i.e. there exists a compact setB which
attracts all trajectories of the system from the outside. Therefore, there are no trajectories which go to infinity.
Note that most chaotic dynamical systems satisfy this assumption. Similar to[30], it can be shown that under this
assumption the whole coupled system(1) is eventually dissipative.

Now we can study global stability of the synchronization manifold by constructing the Lyapunov function for
the system(5) which hasn2 variables
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V = 1

4

n∑
i=1

n∑
j=1

XT
ij HXij , (9)

whereH is the matrix in(7).
The corresponding time derivative has the form

V̇ = 1

2

n∑
i=1

n∑
j=1

Ẇij + 1

2

n∑
i=1

n∑
j=1

XT
ij AXij − 1

2

n∑
i=1

n∑
j=1

n∑
k=1

{εjkX
T
ji HPXjk + εikX

T
ikHPXij }. (10)

Our goal is to show the negative definiteness of the quadratic formV̇ . The first sumS1 is negative definite due to our
assumptions(6)–(8), so it remains to study the last two sums. Since the coupling matrixG is symmetric (X2

ii = 0,
X2

ij = X2
ji ), we can calculate the second sum as follows:

S2 =
n−1∑
i=1

n∑
j>i

AX2
ij . (11)

This sum is always positive definite and should be compensated by the third sum

S3 = −1

2

n∑
i=1

n∑
j=1

n∑
k=1

{εjkX
T
ji HPXjk + εikX

T
ikHPXij }. (12)

Renaming in the second term the summation indexi by j and vice versa, the second term becomes identical to the
first and we obtain

S3 = −
n∑
i=1

n∑
j=1

n∑
k=1

εjkX
T
ji HPXjk. (13)

UsingXjj = 0, we get

S3 = −
n∑
i=1

n−1∑
k=1

n∑
j>k

εjkX
T
ji HPXjk −

n∑
i=1

n−1∑
k=1

n∑
j<k

εjkX
T
ji HPXjk. (14)

Renaming in the second termj by k and vice versa, and using the symmetry ofε, we get

S3 = −
n∑
i=1

n−1∑
k=1

n∑
j>k

εjkX
T
ji HPXjk −

n∑
i=1

n−1∑
j=1

n∑
k<j

εjkX
T
kiHPXkj = −

n∑
i=1

n−1∑
k=1

n∑
j>k

εjk(X
T
ji +XT

ik)HPXjk. (15)

SinceXT
ji +XT

ik = [xT
i − xT

j + xT
k − xT

i ] = XT
jk, we obtain

S3 = −
n∑
i=1

n−1∑
k=1

n∑
j>k

εjkX
T
jkHPXjk = −

n−1∑
k=1

n∑
j>k

nεjkX
T
jkHPXjk. (16)

Thus we arrive at the conclusion that, in our case, the time derivativeV̇ < 0 if the quadratic form

S2 + S3 =
n−1∑
i=1

n∑
j>i

XT
ijH [A− nεijP ]Xij (17)
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is negative definite. This is the case if the following inequality holds.

n−1∑
i=1

n∑
j>i

εijX
T
ij HPXij >

1

n

n−1∑
i=1

n∑
j>i

XT
ij HAXij . (18)

Recalling that the matricesA = diag(a1, a2, . . . , as,0, . . . ,0) andP = diag(p1, p2, . . . , ps,0, . . . ,0), and that
the vector variablesXij = {X(1)ij , . . . , X

(d)
ij }, we finally come to the following basic assertion.

Theorem 1 (main inequality).Under the assumption on the eventual dissipativeness of the individual oscillator
system and the assumption(8), the synchronization manifold of the system(1) is globally asymptotically stable if
the following inequality holds

m∑
k=1

εikjkX
2
ikjk

>
a

n

n−1∑
i=1

n∑
j>i

X2
ij , (19)

wherem is the number of non-zero elements in the coupling matrixG andXikjkk = 1, . . . , m are defined by links
where the coupling coefficients are present.

Hereafter, theXikjk stand for the scalarsX(l)ikjk , l = 1, . . . , s, anda stands for the parametersa1, . . . , as such that

in the inequality(19)we haves similar inequalities for the scalarsX(l)ikjk .

Standing for the scalarsX(l)ij , theXij are possible difference variables of the system(4) lying above the principal
diagonal of the matrixχ, i.e

χ =




0 X12 X13 · · · · · · X1n

0 X23 X24 · · · X1n

. . . X33 · · · X3n

. . .
. . .

...

0 Xn−1,n

0



.

Remark 1. The parametera is defined by the dynamics of the individual oscillator. For many chaotic systems,a

can be found analytically. For some chaotic systems it can be expressed explicitly through the parameters of the
individual oscillator (seeAppendix Afor the calculation of the parametera for networks(1) of x-coupled Lorenz
systems).

Such a calculation gives only sufficient conditions for the requireda, and therefore it can give large overestimates.
However, such estimates are useful for a rough estimation of the range of coupling strength required for synchro-
nization. They guarantee the stability of the synchronization regime and solve rigorously the problem of whether
synchronization occurs in a concrete network with increasing coupling or not.

Obviously,Theorem 1does not give immediately the bounds for the synchronization thresholds, since the unknown
and time-dependent difference variables are still present. The next step is to eliminate them. In the trivial case of
global coupling this is straightforward.
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Example 1 (Global coupling). Assume that allεikjk (t) ≥ ε > 0, k = 1, . . . , n(n− 1)/2 for all ik, jk ∈ {1, . . . , n}
and for allt, i.e the coupling is present in every link. Hence, due toTheorem 1, the bound on the synchronization
threshold is

ε(t) > ε∗ = a

n

∑n−1
i=1

∑n
j>i X

2
ij∑n−1

i=1
∑n

j>i X
2
ij

= a

n
.

This estimate is well-known for oscillators with mean field coupling.

To get rid of the variablesXij andXikjk in the inequality(19) and, therefore, to obtain the bounds for the synchro-
nization thresholds for different network configurations, one should find a projection of the redundant system ofn

linearly dependent equations{Xij , i, j = 1, . . . , n} onto the system{Xikjk , k = 1, . . . , m}. This is the second step
in our approach.

3.2. Step II: mapping of the redundant system onto the coupling configuration

We now determine under what conditions onε, a, andn, inequality(19)

m∑
k=1

εk(t)X̃
2
k >

a

n

n−1∑
i=1

n∑
j>i

X2
ij (20)

holds. Here,X̃k = Xikjk andεk = εikjk ,m ≥ n− 1.
First we introduce the notion of a basic coupling combination. A maximal linearly independent subset of the

variablesX̃k is called coupling combination. Since the coupling tree is connected and theXikjk satisfy Kirchhoff’s
voltage laws, the subgraph corresponding to a basic coupling configuration is a tree. In some coupling graphs,
the tree is unique, such as in a star configuration or in a 1D nearest neighbor interaction. Usually, there are many
different trees.

We shall express all difference variablesXij , i, j = 1, . . . , n through the coupling configuration variablesX̃k,
k = 1, . . . , m, and then to get rid of the presence of the dynamical variablesXij andX̃k in the main inequality(20).

For any pair of nodes(i, j), choose a path from nodei to nodej and denote it byPij . We definek ∈ Pij to mean
that edgek belongs to the pathPij and we denote byz(Pij ) the length ofPij , i.e. the number of edges inPij . Note
that if the pathPij passes along the nodesi, m1,m2, . . . , mν, j thenXij = Xi,m1 +Xm1,m2 +· · ·+Xmν,j . Therefore,
we can write

X2
ij =


∑
k∈Pij

±X̃k



2

≤ z(Pij )
∑
k∈Pij

X̃2
k, (21)

where we have applied the general inequality from elementary calculus(c1 + c2 +· · · cn)2 ≤ n(c2
1 + c2

2 +· · ·+ c2
n).

Hence, the right-hand sum inEq. (20)is finally majorized as follows:

n−1∑
i=1

n∑
j>i

X2
ij ≤

m∑
k=1


n−1∑
i=1

n∑
j>i;k∈Pij

z(Pij )


 X̃2

k. (22)

Substituting the estimate(22) to the inequality(20), we derive the conditions

εk(t) >
a

n

n∑
j>i;k∈Pij

z(Pij ) for k = 1, . . . , m. (23)
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This concludes the connection graph stability method for synchronization of coupled systems, bringing us to the
following main result of this paper.

Theorem 2. Under the assumptions ofTheorem 1, the synchronization manifold of the system(1) is globally
asymptotically stable if

εk(t) >
a

n
bk(n,m) for k = 1, . . . , mand for allt, (24)

wherebk(n,m) = ∑n
j>i;k∈Pij

z(Pij ) is the sum of the lengths of all chosen pathsPij which pass through a given
edgek that belongs to the coupling configuration.

The criterion ofTheorem 2is applied as follows.

• Step1: Choose a set of paths{Pij |i, j = 1, . . . , n, j > i}, one for each pair of verticesi, j. Determine their lengths
z(Pij ), the number of edges comprising eachPij .

• Step2: For each edgek of the connection graph determine the sumbk(n,m) of the lengths of allPij passing
throughk.

Remark 2. For a certain choice of pathsPij we obtain for eachεk a certain lower bound(24). If, in a given coupled
network, all lower bounds on the coupling strengthsεk are satisfied,Theorem 2guarantees total synchronization.
Often, all coupling strengths in a network are equal, i.e.εk = ε for all k. In this case the lower bound forε is
ε∗ = maxk(a/n)bk(n,m). This amounts to determining the edgek such that the sum of the lengths of all paths
throughk is maximal.

Remark 3. The number of possible choices of paths is normally huge. However, most of these choices are clearly
suboptimal. Usually, one takes forPij the shortest path from vertexi to vertexj. Sometimes, however, a different
choice of paths can lead to smaller lower bounds(24).

We shall now illustrate our criterion by applying it to three different networks. Once again, in each case we first
have to choose a pathPij from any nodei to any other nodej > i and then determinebk(n,m) for all k. We shall
start with the simplest coupling configuration.

Example 2 (Star-configuration). This is a well-studied coupling scheme where the network has a central hub
position (this node is marked as the first one) and all other nodes are linked to this node.Fig. 1a illustrates this
coupling scheme. In this case, we have the coupled system(1) with then× n coupling matrix

G =




−g ε12 ε13 · · · ε1n

ε12 −ε12 0 · · · 0

ε13 0 −ε13 · · · 0
...

...
...

. . .
...

ε1n 0 0 · · · −ε1n



,

whereg = (ε12 + ε13 + · · · + ε1n).

To find an upper bound for the synchronization thresholds, we shall follow the steps of the above study. Let edge
k link the central node 1 and nodel, l = 2, . . . , n. Then from node 1 to nodel there is only one path consisting of
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Fig. 1. (a) Star-coupled nodes. (b) Ring of diffusively coupled systems.

the only edgek ≡ l− 1 and thus the path lengthz(P1,l) = 1. From nodei > 1 (i �= l) to nodel there is also only a
single path consisting of the edgesi− 1 andk ≡ l− 1 and thus with path lengthz(Pi,l) = 2. Therefore,

n∑
j>i;k∈Pij

z(Pij ) = z(P1,l)+
l−1∑
i=2

z(Pi,l)+
n∑

j=l+1

z(Pl,j) = 1 + 2(l− 2)+ 2(n− l) = 2n− 3,

and we arrive at the following conclusion.

Statement 1. The synchronization condition(24) for the star-coupled network becomes

ε1j(t) > ε∗ = a
2n− 3

n
for j = 2, nand for allt. (25)

Obviously, to provide complete global synchronization of all nodes in the star-coupled network, the weakest of all
coupling strengthsε1,j must satisfy the condition(25).

It follows from (25) that if the number of oscillatorsn is large enough, then the bound for the synchronization
threshold isε∗ ∼= 2a. Hence, the synchronization threshold in such a large network does not depend on the number
of oscillators.
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Note that the least eigenvalue of the matrixG for a star matrix with unit entries and−(n − 1) in the upper left
corner equalsγ = −1 [13]. Therefore, the thresholds obtained by our method for this simple network are similar
to those coming from the eigenvalues of the coupling matrix.

As the next example, we consider another well-studied coupling configuration (Fig. 1b).
Let the nodes of the coupling graph be numbered from 1 ton and let thekth edge link the nodesk andk+1(modn).

Example 3 (Ring of diffusively coupled oscillators). The coupling matrixG is

G =




−(ε12 + ε1n) ε12 0 0 ε1n

ε12 −(ε12 + ε23) ε23 0 0

0 ε23
. . .

. . . 0

0 0
. . .

. . . εn−1,n

ε1n 0 0 εn−1,n −(ε1n + εn−1,n)



. (26)

From any nodei to any other nodej > i there are exactly two paths on the ring. We take asPij the shorter path
from i to j. When the two paths are of equal length, we take both, with a weighting factor of 1/2. This is a slight
extension of the method. In fact, inequality(21) is replaced by

X2
ij = 1

2


∑
k∈Pij

±X̃k



2

+ 1

2


∑
k∈P̃ij

±X̃k




2

≤ z(Pij )

2

∑
k∈Pij

X̃2
k + z(P̃ij )

2

∑
k∈P̃ij

X̃2
k,

wherePij andP̃ij are the two paths fromi to j. Thus, the fact to consider two paths fromi to j is compensated
by dividing the path length by 2. This type of extension will be used more intensively for the 2K-nearest neighbor
coupling later in the paper.

Suppose that a path extends, from a given edgekm− edges in counterclockwise direction andm+ edges in
clockwise direction.

To apply the general estimate

εk(t) >
a

n

n∑
j>i;k∈Pij

z(Pij ) for k = 1, . . . , m, (27)

we must calculate the sum lengthbk(n,m) of all paths passing through edgek.
The length of the path ism− +m+ + 1. The constraints arem− ≥ 0,m+ ≥ 0, and

m− +m+ + 1 ≤ [ 1
2n].

Here, [ξ] is the integer part ofξ. Hence, we have in the case wheren is odd, and thus the two paths fromi to j are
never of equal length,

n∑
j>i;k∈Pij

z(Pij ) =
[n/2]−1∑
m−=0

[n/2]−1−m−∑
m+=0

(m− +m+ + 1) = 1

3

[n
2

]3 + 1

2

[n
2

]2 + 1

6

[n
2

]

= 1

3

(
n− 1

2

)3

+ 1

2

(
n− 1

2

)2

+ 1

6

(
n− 1

2

)
=

(
n3

24
− n

24

)
.



170 V.N. Belykh et al. / Physica D 195 (2004) 159–187

In the case of evenn, we get

n∑
j>i;k∈Pij ;|Pij |<n/2

z(Pij )+
n∑

j=i+n/2;k∈Pij

1

2
z(Pij )+

n∑
j=i+n/2;k∈P̃ij

1

2
z(P̃ij )

=
n/2−2∑
m−=0

n/2−2−m−∑
m+=0

(m− +m+ + 1)+ n

2

1

2

n

2
= n3

24
− n2

8
+ n

12
+ n2

8
= n3

24
+ n

12
,

where we have used that every edgek belongs to exactly one of the two lengthn/2 paths from nodei to nodei+n/2,
and thati can take all values from 1 ton/2.

Thus we come to the following assertion.

Statement 2. Complete synchronization is globally stable in the ring ofn nearest neighbor coupled oscillators,if
the following inequality holds for all coupling constantsε and all timest

ε(t) > ε∗ =



a

(
n2

24
− 1

24

)
for oddn,

a

(
n2

24
+ 1

12

)
for evenn.

(28)

Note thatε∗ depends quadratically on the number of oscillatorsn. At the same time, the conventional method for
calculating the eigenvalues of the coupling matrixG and the parametera required for global synchronization gives
a similar result for the upper boundε∗ = c n2 under the condition that the number of oscillatorsn is sufficiently
large. Here,c < a/24 is a parameter. This law has been proposed and discussed in[25].

Within the framework of our method, the total length of all paths passing through each edge belonging to the
connection graph must be calculated. This can be quite a laborious task for networks with complicated coupling
schemes. However, once the calculation scheme is constructed, an explicit bound can be obtained (for more com-
plicated cases one can use MAPLE). In following, we will study global synchronization in rings of 2K-nearest
neighbor coupled oscillators (Section 4) and in more complicated networks (companion paper[41]).

4. Example: ring of 2K-nearest neighbor coupled oscillators

The objective of this section is to apply our method to the study of global synchronization inn oscillators that
are coupled in a ring with 2K-nearest neighbors.Fig. 2shows this coupling scheme.

The study of global synchronization in such a network is of significant importance for several reasons. First,
this lattice represents the main coupling schemes, such as locally, non-locally, and globally coupled networks, for
differentK. In fact, whenK = 1 we have a ring of locally coupled oscillators, and whenK = [n/2] it becomes
a globally coupled network. Second, this network is often used as a pristine world (regular coupled lattice) for
small-world systems[24,43–45]such that the knowledge of its synchronization properties is important for the study
of small-world systems. In the companion paper, devoted to synchronization in small-world networks, we will also
use this network as the pristine world.

Synchronization in such a ring of 2K-nearest neighbors coupled oscillators was previously studied by Barahona
and Pecora[24]. They obtained an estimate of the local synchronization threshold value for such a network (under
the assumptionK � n).
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Fig. 2. Ring of 2K-nearest neighbor coupled oscillators. Each oscillator is connected to its neighbors out to some rangeK. Here,n = 30 and
K = 3.

In this section we will show the effectiveness of our method for tackling the problem of synchronization in this
network. We will analytically obtain good estimates for the threshold coupling values needed for global synchro-
nization for any range ofK (the results are also valid for time-dependent couplings). Moreover, we will show
explicitly the connection between these synchronization thresholds and the average path length of the coupling
graph.

For this network,G is a banded circulant matrix, similar to(26), having non-zero elements only on the main
diagonal and on the 2K adjacent diagonals:εii ≡ −2Kε and εij = εji = ε for j = i + 1 modn, j = i +
2 modn, . . . , j = i + Kmodn and 1≤ i ≤ n. This matrix is similar to[24]. In other words, we assume that the
interconnection coupling is

εij =
{
ε for 1 ≤ |j − i| modn ≤ K,

0 otherwise.
(29)

Hence, criterion(19) for complete synchronization becomes

ε(t)

K∑
γ=1

n∑
q=1

X2
q,q+γ modn >

a

n

n−1∑
i=1

n∑
j>i

X2
ij . (30)

In this study, we shall follow the steps of the study of the ring of diffusively coupled oscillators (Example 3), which
is a particular case of our network forK = 1.

In order to apply criterion(30), we derive an inequality of the form

n−1∑
i=1

n∑
j>i

X2
ij ≤ b(n,K)

K∑
γ=1

n∑
q=1

X2
q,q+γ modn. (31)

Actually, this inequality will be deduced inK separate, but similar steps that are to be combined in the end.
In the first step, we choose the following pathPij from vertexi to vertexj > i on the connection graph.
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Fig. 3. PathPij from vertexi to vertexj. It is composed of as manyK-nearest neighbor edges as possible, plus one additionalγ-nearest neighbor
edge. The verticesi andj are such that the path fromi to j in clockwise direction is shorter than the path in counter-clockwise direction.

If j − i ≤ [n/2], we take successivelyK-nearest neighbor edges from vertexi to vertexi + K, from i + K to
i+ 2K, etc. until the vertexi+ µK, where

µ =
[
j − i

K

]
,

and [ξ] indicates the integer part ofξ. If j �= i + µK, we complete the pathPij by the singleγ-nearest neighbor
edge, whereγ = j − i− µK (seeFig. 3).

If j− i > [n/2], we take successivelyK-nearest neighbor edges from vertexj to j+Kmodn, fromj+Kmodn
to j + 2Kmodn, etc. until the vertexj + µKmodn, where

µ =
[
i− jmodn

K

]
.

Again, if necessary the singleγ-nearest neighbor edge from vertexj+µKmodn to vertexi completes the pathPij

(seeFig. 4).
If j = i+ µK, respectivelyi = j + µK, the path length isµ, otherwiseµ+ 1. We shall always use the bound

µ+ 1 for the path length.
Having chosen the paths, we now can apply formula(22). Let us now take as edgeK a specificK-nearest neighbor

edge, from nodeq to q+K.
Suppose that there arem−K-nearest neighbor edges in pathPij preceding edgek andm+K-nearest neighbor

edges inPij following edgek, if we move in clockwise direction (seeFig. 5).
The constraints form− andm+ are

m− ≥ 0, m+ ≥ 0, m− +m+ + 1 ≤ [ 1
2n].

For fixedm− andm+ there areK different pathsPij because the last edge can be aγ-nearest neighbor edge for
γ = 1, . . . , K − 1, or the last edge may be absent. In the last case, the path length is

z(Pij ) = m− +m+ + 1,
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Fig. 4. PathPij from vertexi to vertexj. It is composed of as manyK-nearest neighbor edges as possible, plus one additionalγ-nearest neighbor
edge. The verticesi andj are such that the path fromi to j in counter-clockwise direction is shorter than the path in clockwise direction.

whereas otherwise it is

z(Pij ) = m− +m+ + 2. (32)

We shall take always the value(32)as an upper bound. Thus, we obtain

n∑
j>i;k∈Pij

z(Pij ) ≤
[n/2]−1∑
m−=0

[n/2]−1−m−∑
m+=0

K(m− +m+ + 2)

= K

3

[ n

2K

]3 +K
[ n

2K

]2 + 2K

3

[ n

2K

]
≤ 1

24

n3

K2
+ 1

4

n2

K
+ n

3
.

Fig. 5. PathPij that contains theK-nearest neighbor edge from vertexq to vertexq+K. The path leads fromi to j in clockwise direction.
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Fig. 6. PathPij that contains theγ-nearest neighbor edge from vertexj − γ to vertexj. The path leads fromi to j in clockwise direction.

SinceK ≤ [n/2] we can write

n∑
j>i;k∈Pij

z(Pij ) ≤ 1

24

n3

K2

(
1 + 14

K

n

)
.

This inequality takes care of the contribution of theK-nearest neighbor edges ofPij to
∑

j>i X
2
ij .

Now consider as the edgek theγ-nearest neighbor edge from vertexj − γ to vertexj.
Let m− be the number ofK-nearest neighbor edges that precede edgek on pathPij if we move in clockwise

direction (seeFig. 6). Then we have the constraints

m− ≥ 0, m−K ≤ [ 1
2n].

For a givenm− there is a single pathPij and its length is

z(Pij ) = m− + 1.

Thus we obtain

n∑
j>i;k∈Pij

z(Pij ) ≤
[n/2]∑
m−=0

(m− + 1) = 1

2

([ n

2K

]
+ 1

) ([ n

2K

]
+ 2

)
≤ n2

8K2
+ 3n

4K
+ 1.

Using againK ≤ [n/2], we obtain

n∑
i�=j;k∈Pij

z(Pij ) ≤ 3n2

4K2
.

This inequality takes care of the contributions of theγ-nearest neighbor edges ofPij to
∑

j>i X
2
ij forγ = 1, . . . , K−1.

Combining all combinations, we obtain the bound

n−1∑
i=1

n∑
j>i

X2
ij ≤ 1

24

n3

K2

(
1 + 14

K

n

) n∑
i=1

X2
i,i+Kmodn +

K−1∑
γ=1

3n2

4K2

n∑
i=1

X2
i,i+γ modn. (33)
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This inequality is not yet of the required form(31) because the factorb(n,K) is different for theK-nearest edge
and theγ-nearest neighbor edge forγ = 1, . . . , K − 1. However, we can write similar inequalities, if we compose
the pathsPij instead ofK-nearest neighbor edges ofλ-nearest neighbor edges, for anyλ between 1 andK− 1. This
yields

n−1∑
i=1

n∑
j>i

X2
ij ≤ 1

24

n3

λ2

(
1 + 14

λ

n

) n∑
i=1

X2
i,i+λmodn +

λ−1∑
γ=1

3n2

4λ2

n∑
i=1

X2
i,i+γ modn

≤ 1

24

n3

λ2

(
1 + 14

K

n

) n∑
i=1

X2
i,i+λmodn +

λ−1∑
γ=1

3n2

4λ2

n∑
i=1

X2
i,i+γ modn. (34)

In order to be able to guarantee total synchronization for as low a coupling coefficient as possible, we shall use all
of these inequalities simultaneously. At the end, we need to come up with an inequality of the form(31). However,
in (34) there is a factor 1/λ2 that varies from inequality to inequality. Therefore, we multiply each inequality(34)
by λ2, and inequality(33)byK2, and add them all. Since the coefficients should add up to 1, instead of the factors
λ2 we shall useλ2/

∑K
m=1m

2 or, the slightly larger valueα(λ) = 3λ2/K3.
Indeed, since

K∑
λ=1

α(λ) =
K∑
λ=1

3λ2

K3
= 3

K3

(
K3

3
+ K2

2
+ K

6

)
≥ 1,

we can write

n−1∑
i=1

n∑
j>i

X2
ij ≤

K∑
λ=1


α(λ) n−1∑

i=1

n∑
j>i

X2
ij


 ≤

K∑
λ=1

α(λ)


 1

24

n3

λ2

(
1 + 14

K

n

) n∑
i=1

X2
i,i+λ +

λ−1∑
γ=1

3n2

4λ2

n∑
i=1

X2
i,i+γ




=
K∑
λ=1

[
1

8

n3

λ3

(
1 + 14

K

n

) n∑
i=1

X2
i,i+λ

]
+

K∑
λ=1


λ−1∑
γ=1

9n2

4K3

n∑
i=1

X2
i,i+γ




≤
K∑
λ=1

[
1

8

n3

λ3

(
1 + 14

K

n

) n∑
i=1

X2
i,i+λ

]
+
K−1∑
γ=1

[
9n2

4K2

n∑
i=1

X2
i,i+γ

]
.

Finally the sum
∑

j>i X
2
ij is estimated as follows:

n−1∑
i=1

n∑
j>i

X2
ij ≤ 1

8

( n
K

)3
(

1 + 65

4

K

n

) K∑
γ=1

n∑
i=1

X2
i,i+γ modn.

This inequality then leads to the sufficient condition for complete synchronization

ε(t) > ε∗ = a

n

( n

2K

)3
(

1 + 65

4

K

n

)
for all t.

The leading term in this rigorous bound is(n/2K)3. For largen/K, i.e. when the number of oscillators is large with
respect to the range of the interaction only this term matters. This can be expressed as follows.

Statement 3. Complete synchronization is globally stable in the ring of 2K-nearest neighbor coupled oscillators if
the following inequality holds for all coupling constantsε and all times t
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ε(t) > ε∗ = a

n

( n

2K

)3
(

1 + 65

4

K

n

)
. (35)

In particular, if n/K is large enough, then

ε > ε∗ = α

n

( n

2K

)3 = α

n
L3 (36)

is sufficient for complete synchronization.

Here,α is slightly larger thana, andL = n/2K is the average path length of the coupling graph for the ring of
2K-nearest neighbor coupled oscillators[43–45]. Therefore, the formulas(35) and (36)give an explicit dependence
of the synchronization thresholds on the average path length of the coupling graph.

In the general case of an arbitraryK ≤ [n/2] and a largen, we can also take into account only the leading term
with a correcting coefficientα = δa, δ > 1 such that the upper bound can be written as follows:

ε > ε∗ = α

n

( n

2K

)3
(37)

but in this caseδ may be as far off as 9.125.
Consequently, we obtain the following bounds for the coupling thresholds of global synchronization in the ring

of 2K-nearest neighbor coupled oscillators

ε > ε∗ = αn2

8K3
. (38)

One can check the effectiveness and generality of the estimate(38) for differentK. For one extreme case where
K = 1, the network is a ring of diffusively coupled oscillators and the estimate takes the form

ε∗ = 1
8αn

2.

One can see that this estimate gives the similar law of the dependence of the synchronization threshold on the
number of oscillators that was obtained for the ring of diffusively coupled oscillators (seeExample 3).

For another extreme case whereK = [n/2], all oscillators of the ensemble are globally coupled and the estimate
obeys the known lawε∗ = α/n and shows that the general estimate is effective for any range ofK.

Note that between these extremes there is a case withKconst ∼= n2/3, where the synchronization threshold is
constant and does not depend on the number of oscillators.

Once again, the bounds come from sufficient conditions and therefore they give overestimates for the coupling
strengths needed for global synchronization. Then the following question arises: if the dependence of the sufficient
synchronization coupling values onn andK has the form(38), then what is the dependence between the real
threshold coupling values under which global synchronization will arise?

We conjecture that the exact threshold for complete synchronization obeys the same law of dependence onn

andK, but with a lower constantβ thana which we obtained by stabilizing explicitly the individual oscillators. In
support of this claim, we have determined numerically the thresholds for complete synchronization as functions of
n for various values ofK and we have fitted a curve of the formβn2/8K3 to the data, by lettingβ vary (Fig. 7).
It can be seen that the deviation of the data from the fitted curve is very small, indeed. Recall once again that we
consider only the networks of oscillators admitting global synchronization with increasing coupling.

In Fig. 7, we see the synchronization threshold coupling valuesε∗ calculated numerically for a ring of 2K-nearest
neighborx-coupled chaotic Lorenz systems for differentn andK. These values are depicted by small circles. The
corresponding analytical curvesβn2/8K3 (solid lines) fit the numerical data in a least-squares sense. The estimates
are good even for small networks of oscillators and become more effective while the number of oscillators increases.
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Fig. 7. Dependence of the synchronization thresholdsε∗ on the number of oscillatorsn and on the depth of nearest-neighbor interactionK in the
ring of 2K-nearest neighbor coupled Lorenz systems. The analytical curvesβn2/8K3 (solid lines) for differentK fit the numerical data (small
circles) in a least-squares sense.
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5. Connection graph stability method versus the master stability function

As mentioned above, in previous works, the eigenvalues of the connection matrixG are used to establish the
local stability of the synchronization threshold. However, they can also be used in our context to obtain a criterion
for global synchronization in networks with aconstant time-independent matrixG. In fact, for our method, the
“full” quadratic form defined by the matrix of an all-to-all connection has to be bounded by a factor times the
quadratic form defined by the specific connection matrix (cf.Theorem 1). For time-invariant coupling coefficients,
the smallest such factor is given by the second largest eigenvalue of the coupling matrix. This can be seen as follows.

Because of zero row sums (providing the existence of the synchronization manifoldM), the quadratic form given
by the connection matrix,

∑m
k=1 εikjkX

2
ikjk

= ∑m
k=1 εikjk (xjk−xik )2 and the “full” quadratic form

∑n−1
i=1

∑n
j>i X

2
ij =∑n−1

i=1
∑n

j>i(xj − xi)
2 have the eigenvector(x1 = 1, . . . , xn = 1)T with eigenvalue 0 (corresponding to the

longitudinal direction along the synchronization manifold). In then − 1-dimensional orthogonal subspace to this
eigenspace,

V =
{
(x1, . . . , xn)|

n∑
i=1

xi = 0

}
,

the full quadratic form hasn− 1 coinciding eigenvaluesn and thus

m∑
k=1

εikjk (xjk − xik )
2 ≥ |λ2|‖x‖2 = |λ2|

n

n−1∑
i=1

n∑
j>i

(xj − xi)
2, (39)

whereλ2 is the second largest eigenvalue of the connection matrixG. Since for the eigenvalue 0 both sides of the
inequality(39)vanish, the inequality holds on the whole space.

The inequality obtained in this way is the best possible in this context of quadratic Lyapunov functions. Coming
from the sum of the path lengths, the estimate given inTheorem 2is somewhat suboptimal, but it has the advantage
that it can be obtained not only for regular, but also for quite irregular networks. Also, it allows us to link explicitly
the conditions for the stability of synchronization with the average path length of the coupling graph and to show
clearly the connection between graph theory and network dynamics.

Besides that, our method has a key advantage over the eigenvalue method in studying networks with time-dependent
coupling coefficients. Namely, within the framework of our method, the time-dependent coupling coefficients can
be handled without problems (cf.Eq. (2)), whereas inequalities in coupling coefficients do not necessarily result in
corresponding inequalities in eigenvalues. This implies that, in general, the eigenvalue methodcannot be applied
to networks with a time-varying coupling structure.

In fact, the master stability function[12] (the eigenvalue method) relies on the argument that the JacobianJcoupl

for the whole coupled system(1) can be diagonalized in a coordinate system that isolates the stability of the
synchronization manifold from the transverse directions. Namely, the procedure is the following. For clarity, we
shall consider the coupled system(1) with uniform coupling coefficientsε (G = εG̃). In this case its variational
equation on the synchronization manifold has the form

Ẋ = [J(t)+ εC]X,

whereX = (X1, X2, . . . , Xn), andXi = (ξ
(1)
i , . . . , ξ

(d)
i )T are the variations on theith node.J(t) = In ⊗ DF(t) and

C = G̃⊗ P aren · d × n · d matrices, and the matrix̃G has eigenvalues with negative real partsλ2, . . . , λn−1 and
one zero eignevalueλ1.
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Let the connectivity matrix̃G be constant (as assumed for the eigenvalue synchronization method), and letL̂ be
then× n matrix which diagonalizes̃G, i.e.L̂G̃L̂−1 = diag(λ1, λ2, . . . , λn). LetL = L̂⊗ Id . Therefore, applying
the linear transformationY = LX(X = L−1Y), one obtains

Ẏ = (LJ(t)L−1 + εLCL−1)Y,

whereLCL−1 is a block diagonal matrix withd × d blocks, andLJ(t)L−1 equalsJ(t) sinceJ(t) = I ⊗ DF(t) is
the same for each block since it is calculated on the synchronization manifold. Hence, we arrive at the following
diagonalized variation equation with each block having the form

Ẏ k = [DF(t)+ λkεP ]Yk, (40)

whereλk is an eigenvalue of̃G, k = 1, . . . , n. The first eigenvalueλ1 = 0 corresponds to the variation equation
within the synchronization manifold, and the others have negative real parts and determine the transverse directions.
Therefore, if the maximum positive Lyapunov exponentemax of the system

Ẏ k = DF(t)Yk

is smaller thanεmink=2,...,n|λk|, then all eigenmodes are stable and the synchronization manifold is locally stable
provided the couplingε is strong enough. This basically completes the eigenvalue approach.

However, if the connectivity matrix̃G is time-dependent, we have the following variational system

Ẋ = [J(t)+ εC(t)]X. (41)

To diagonalizeEq. (41), we have to take the similarity matrixL that is also dependent ont (eigenvalues of̃G are
time-dependent). Then the transformationY = L(t)X leaves us with the system

Ẏ = L̇(t)X+ L(t)Ẋ = [L̇L−1 + LJ(t)L−1 + εLC(t)L−1]Y, (42)

where as beforeLC(t)L−1 is the block diagonal matrix andLJ(t)L−1 = J(t). However, the additional terṁLL−1

is always present and, in general, is not diagonal such that in the general caseEq. (41)cannot be diagonalized and
the eigenvalue synchronization method is not applicable.

Indeed, if we transformEq. (42)as follows:

Ẏ = J(t)Y + L[L−1L̇+ εC(t)]L−1Y, (43)

and try to apply the eigenvalue method to this general situation, we have to provide two conditions: (i) the matrix
L−1L̇ + εC(t) hasn − 1 eigenvalues with negative parts (similar to the constant matrixG̃ case); (ii) the matrix
L(L−1L̇+εC(t))L−1 has a diagonal form with negative diagonal elements (except one that equals zero). Obviously,
these conditions do not always hold.

This also shows that one cannot use an intuitive but misleading conception that if the correspondingn − 1
eigenvalues of the whole coupled system JacobianM(t) = J(t) + εC(t) have negative real parts for all timest,
then the variational system is stable. Indeed, this statement is not, in general, true, by the same reasoning(Ẏ =
[L̇L−1 + LM(t)L−1]Y).

At the same time, our method based on graph theoretical reasoning can provide synchronization bounds for the
time-dependent coupling coefficients, and it becomes the ultimate tool for the study of global synchronization in
such networks.

As a trivial illustrative example, we consider the ring of 2K-nearest neighbor coupled oscillators, considered in
Section 4, where the coupling coefficientsε in Eq. (29)are time-dependent. Namely,ε stands forε(2+nij(t)), where
nij(t) is bounded noise,|nij(t)| < 1. For this time-dependent coupling, our method gives the same synchronization
bound(29), whereas the eigenvalue method fails to provide an analytically derived bound.
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Another prominent example of networks with time-dependent coupling coefficients is networks of pulse-coupled
bursting neurons. The coupling here is nonlinear and dependent on the arrival of the spikes. Although, this type
of coupling does not belong to the class of linearly coupled networks(1) considered in this paper, our method can
be extended to the study of the stability of bursting synchronization (this will be reported elsewhere). Once again,
there is no simple way to apply the eigenvalue method to such pulse-coupled networks.

6. Conclusions

We have developed a novel method for proving complete synchronization in networks of mutually coupled
cells of periodic or chaotic oscillators with arbitrary connection graphs. The method reveals a clear connection
between synchronization and graph theory. Criteria are developed that allow us to establish upper bounds on the
coupling strength necessary to achieve complete synchronization. The coupling strength may vary from pair to pair
of interacting cells and it may even depend on time. The bounds on the coupling strengths depend on the coupling
graph in general and on the number of cells in particular. The dependence of the bounds on the number of cells
is to a high degree of precision the same as the dependence of the real limit of complete synchronization that is
determined by numerical simulation. Only the multiplicative factor that is related to the dynamics of the individual
cells is higher in our rigorous bonds with respect to the factor obtained by numerical simulations.

In order to derive our results, we have used a quadratic form in the difference variables of all possible pairs of
cells. In order to show that this is a Lyapunov function for the difference variables, we have to calculate the following
graph theoretical quantity. We have to choose a path on the connection graph between any two vertices of the graph.
Then, for each edge of the connection graph, the sum of the path lengths of all paths containing this edge must be
determined. The coupling constant that guarantees complete synchronization is proportional to this sum.

We have showed how to determine this quantity for four examples, namely for all-to-all coupling, star coupling,
next nearest neighbor coupling in a ring and 2K-nearest neighbor coupling in a ring. Especially the last example is
highly non-trivial, but our method allows one to achieve an excellent result with only moderate effort.

It should be emphasized that our results guarantee global synchronization of all cells based on a method that is
completely rigorous. This contrasts with the recently published results that prove local stability of the synchronization
manifold by calculating analytically the eigenvalues of the coupling matrix and numerically the transversal Lyapunov
exponents. Being based partially on numerical calculations, these results usually provide a bound that is closer than
ours to the “real” limit of total synchronization. However, it is remarkable that both approaches, and the purely
numerical results as well, lead to practically the same dependence of the bounds for complete synchronization on
the number of cells and on the depth of nearest neighbor interactions. The main difference is a higher multiplicative
constant for our stronger, but more conservative Lyapunov function approach.

Note that we can also use the eigenvalues of the connectivity matrix for the Lyapunov function approach (cf.
Section 5). In this way we may obtain, in the case of constant connection matrices, a better bound for the global
synchronization threshold than with the connection graph stability method. However, this eigenvalue based method
may be difficult to apply for irregular graphs, it gives a less direct relation to graph theoretical quantities and in
general it fails for time-dependent coupling coefficients.

We are convinced that our approach will lead to more non-trivial results. In a companion paper we will give such
results for small-world networks.

We have assumed from the beginning that the connection matrix is symmetric, i.e. that the coupling from cellj

to cell i has the same strength as the coupling from celli to cell j. While total synchronization in networks with
non-symmetric coupling is still possible in many cases, our method is not directly applicable in this context. This
problem remains a subject for future work.
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Finally, one should remark that the method is valid for networks of slightly non-identical oscillators. In this
case, perfect synchronization cannot exist anymore, but approximate synchronization is still possible and therefore
similar global stability conditions of approximate synchronization can be derived by means of the presented method
and the technique developed in[30]. In Appendix B, we present the details of how the method can be applied to
networks of slightly non-identical oscillators.

Our approach can also be extended to the study of synchronization in coupled map lattices with linear and
nonlinear coupling, including, in particular, the case of the Kaneko-type non-local coupling. The method can also
be applied to the study of synchronization in networks of strongly pulse-coupled bursting cells. Obviously, all the
above mentioned cases are subjects for future study.

Acknowledgements

IB and MH acknowledge the financial support of the Swiss National Science Foundation through Grant No.
2100-065268. VB acknowledges the financial support as Visiting Professor at the Laboratory of Nonlinear Systems
of the Swiss Federal Institute of Technology (EPFL). This work was also supported in part by INTAS (Grant
No. 01-2061) and RFFI (Grant No. 02-01-00968). Christopher Cianci is acknowledged for critical reading of the
manuscript.

Appendix A

In this appendix, we give the details of the proof of the assumption(8) for the network(1) of x-coupled Lorenz
systems[30] (we have knowingly chosen a scalar version of the coupling which is the most difficult case from the
stabilization point of view). The coupled system reads

ẋi = σ(yi − xi)+
n∑
j=1

εij(t)xj, ẏi = rxi − yi − xizi, żi = −bzi + xiyi, i = 1, . . . , n (A.1)

for which the matrixP = diag{1,0,0} and the vector(xi, yi, zi) stands for the vectorxi from (1). σ, r, andb are
standard parameters. All other notations are similar to those of the system(1). Recall thatεii = − ∑n

j=1;j �=i εij, i =
1, . . . , n.

To prove that the condition(8) is true for the coupled system(A.1), we shall follow the steps of our previous
study[30].

(a) The individual non-perturbed Lorenz system (εij ≡ 0) is eventually dissipative and has an absorbing domain

B =
{
x2 + y2 + (z− r − σ)2 <

b2(r + σ)2

4(b− 1)

}
.

Hence, the coordinates of the attractor of the individual Lorenz system are estimated to be bounded by

|ϕ| < b(r + σ)

2
√
b− 1

, ϕ = x, y, (z− r − σ). (A.2)

It can be easily shown[30] that the estimates(A.2) are valid for the coordinates of each oscillator of the coupled
system(A.1).

(b) The auxiliary system(6) written for the difference variablesXij = xj − xi, Yij = yj − yi, andZij = zj − zi of
the coupled system(A.1) and having the matrixA = diag{a,0,0}, takes the form
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Ẋij = σ(Yij −Xij)− aXij, Ẏij = (r − U
(z)
ij )Xij − Yij − U

(x)
ij Zij,

Żij = U
(y)
ij Xij + U

(x)
ij Yij − bZij, i, j = 1, . . . , n, (A.3)

whereU(ξ)ij = (ξi + ξj)/2 for ξ = x, y, z are the corresponding sum variables, and the extra auxiliary system’s
term−aXij stands for the contribution of the coupling term in the original system for the differences. In the
system(A.3), we got rid of the cross terms with the help of the formula

ξjηj − ξiηi = U(η)(ξj − ξi)+ U(ξ)(ηj − ηi).

To show that the trivial equilibrium of the auxiliary system(A.3) becomes globally stable provided the parameter
a is sufficiently large, we consider the Lyapunov function candidates(7) with the unit matrixH = I,

Wij = 1
2X

2
ij + 1

2Y
2
ij + 1

2Z
2
ij, i, j = 1, . . . , n. (A.4)

Their derivatives with respect to the system(A.3) are calculated as follows:

Ẇij = −[(a+ σ)X2
ij + (U(z) − r − σ)XijYij + Y2

ij − U(y)XijZij + bZ2
ij]. (A.5)

Therefore, applying the Silvester criterion for negative definiteness of the quadratic forms, we obtain the conditions
a+ σ > 0,

∣∣∣∣∣∣
a+ σ 1

2(U
(z) − r − σ)

1
2(U

(z) − r − σ) 1

∣∣∣∣∣∣ > 0, and

∣∣∣∣∣∣∣∣∣

a+ σ 1
2(U

(z) − r − σ) −1
2(U

(y))

1
2(U

(z) − r − σ) 1 0

−1
2(U

(y)) 0 b

∣∣∣∣∣∣∣∣∣
> 0.

(A.6)

Taking into account the estimate(A.2) for the coordinatesU(y) andU(z), we finally obtain the following sufficient
condition for negative definiteness of the quadratic forms:

a > a∗ = b(b+ 1)(r + σ)2

16(b− 1)
− σ. (A.7)

Therefore, under this condition, the trivial solution of the auxiliary system(6) is globally asymptotically stable and
the condition(8) is true for networks ofx-coupled Lorenz systems.

This completes the proof.

Appendix B. Synchronization in networks of non-identical oscillators

Using the theory developed for lattices of locally coupled oscillators with parameter mismatch[30], we show here
how the method can be applied to the study of global synchronization in a complex network of mutually coupled
slightly non-identical systems.

Let us consider such a network that can be modeled by the general coupled system(1)with an additional mismatch
term

ẋi = F(xi)+ µfi(xi)+
n∑
j=1

εij(t)Pxj, i = 1, . . . , n, (B.1)
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whereµ is a scalar parameter, andfi : Rd → Rd is a smooth mismatch function. Recall thatxi = (x1
i , . . . , x

d
i ) is a

vector. All other notations are similar to those of the system(1).
Obviously, perfect synchronization is not possible in the network(B.1) and only approximate synchronization

can be observed. We say that globalδ-synchronization arises in the system if theδ-neighborhood of the synchronous
manifoldM = {x1(t) = x2(t) = · · · = xn(t)}, that is invariant when the coupled systems are identical,

‖xi(µ, t)− xj(µ, t)‖ < δ(µ), i �= j, i, j = 1, . . . , n, lim
µ→0

δ(µ) = 0

becomes globally stable. Now we should prove that the main statements of the connection graph stability method
are directly applicable to the study of global stability ofδ-synchronization.

We assume that each individual subsystem of the network(B.1) is eventually dissipative and has an absorbing
domainBi(µ) for some region of the parameterµ. Similar to the identical system case, one can show that the entire
coupled system(B.1) has the absorbing domainB(µ) that is a topological product ofBi(µ), i = 1, . . . , n.

The redundant stability system for the difference variables(4) written for the system(B.1)has an extra mismatch
term and takes the form

Ẋij =
[∫ 1

0
DF(βxj + (1 − β)xi)dβ

]
Xij + µēij +

n∑
k=1

{εjkPXjk − εikPXik}, i, j = 1, . . . , n, (B.2)

whereēij = [fj(xj)− fi(xi)]|B(µ) is a mismatch difference calculated within the absorbing domainB(µ).
Here we follow the steps of the identical oscillator study, except that we add and subtract two additional terms

AXij andH−1CXij from the system(B.2)

Ẋij =
[∫ 1

0
DF(βxj + (1 − β)xi)dβ − A+H−1C

]
Xij + {µēij −H−1CXij} + AXij

+
n∑
k=1

{εjkPXjk − εikPXik}, (B.3)

where the matricesA,H are identical to those of the systems(5) and (8). The matrixC = diag(c1, . . . , cd). The
linear termH−1CXij, with negative sign, is added to compensate the contribution of the mismatch termµēij for Xij

not too small. At the same time, the positive term+H−1CXij can be damped by the appropriate choice of the values
of the matrixA in the negative term−AXij. Finally, the contribution of the positive term+AXij can be compensated
by making the coupling sufficiently strong. This implies that to provide global approximate synchronization of
non-identical systems, the coupling strength should be made stronger than for identical synchronization.

The auxiliary system forEq. (B.3)takes the form

Ẋij =
[∫ 1

0
DF(βxj + (1 − β)xi)dβ − A+H−1C

]
Xij, i, j = 1, . . . , n. (B.4)

Now we should show that the system(B.4) is globally stable. Applying the Lyapunov functionsWij (7) for Eq. (B.4),
we obtain

Ẇij = XT
ijH

[∫ 1

0
DF(βxj + (1 − β)xi)dβ − A

]
Xij +XT

ijCXij. (B.5)

We require that

Ẇij < 0, i, j = 1, . . . , n. (B.6)
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Similar toEq. (8), one has to prove this statement for each particular situation that is defined by the choice of the
concrete individual oscillator and by which variables the oscillators are coupled (through the matrixP). In most
cases this statement directly follows from the principal requirement(8).

Applying the Lyapunov functionV , defined inEq. (9), for the redundant system(B.3), we obtain

V̇ = S1 + S2 + S3 + Sdiff , (B.7)

whereS1 = (1/2)
∑n

i=1
∑n

j=1 Ẇij,S2 andS3 are the sums(11) and (12), respectively. The sum having the mismatch

difference term isSdiff = ∑n
i=1

∑n
j=1{µXT

ijHēij −XT
ijCXij}.

The sumS1 is negative definite due to the assumption(B.6). The sumsS2 andS3 coming from the identical
oscillator case are negative definite under the conditions ofTheorem 2, except thata is now dependent on(C,µ) .
Therefore, to obtain the conditions on the region of negative definiteness of the quadratic form(B.7), it remains to
study the quadratic sumSdiff .

The valuesē(l)ij , l = 1, . . . , d are bounded in the absorbing domainB(µ), i.e. |ē(l)ij | < ē(l). DenoteM(l) =
| ∑d

i=1 hliē
(i)]. Then the sumSdiff can be bounded as follows:

Sdiff <

n∑
i=1

n∑
j=1

d∑
l=1

{[µM(l) − cl|X(l)ij |]|X(l)ij |}.

Therefore,Sdiff < 0, and hence the entire suṁV < 0, for |X(l)ij | > µM(l)/cl, l = 1, . . . , d.

To obtain an estimate for the synchronization errorδ = maxl∈[1,d]X
l
ij(µ, t), l = 1, . . . , d, we should enclose the

domain{V̇ < 0} into some region bounded by a certain levelV0 of the Lyapunov function(9).
The enclosure{|X(l)ij | < µM(l)/cl, l = 1, . . . , d} ⊂ {V < V0} determines thaṫV is negative outside of the region

|X(l)ij | < vlµM
(l)

cl
, l = 1, . . . , d, (B.8)

where the constantsvl are defined by the levelV0.
Therefore, we arrive at the following assertion.

Statement B.1. If the assumption (B.6)holds (the corresponding parameter vectorA(µ,C) can be calculated) then
under the conditions of Theorem 2, approximate δ-synchronization in the coupled non-identical oscillator system
(B.1) is globally stable, where

δ = µ

[
max
l∈[1,d]

vl
M(l)

cl

]
, l = 1, . . . , d. (B.9)

The law of the(δ, ε) dependence is implicitly expressed via the dependence on(c1, . . . , cd). Indeed, while the
auxiliary parameterscl are increasing, the synchronization errorδ(c1, . . . , cd) decreases. At the same time, the
stability parameter vectorA, and therefore the synchronization thresholdε∗(c1, . . . , cd), should be augmented.
This is a trade-off between the synchronization precision and the lowest bound of the synchronization threshold.
Since we deal with sufficient conditions, it is often possible to choose some optimal valuesco

1, . . . , c
o
d .

We shall now make this general approach more concrete by considering an example of the network(A.1)–(B.1)
of x-coupled non-identical Lorenz systems:
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ẋi = (σ + σi)(yi − xi)+
n∑
j=1

εij(t)xj, ẏi = (r + ri)xi − yi − xizi,

żi = −(b+ bi)zi + xiyi, i = 1, . . . , n, (B.10)

whereσi, ri, bi are mismatch parameters that are assumed to be uniformly bounded|σi| < µ, |ri| < µ, and|bi| < µ.
All other notations are similar to those of the system(A.1).

Once again, we have chosen the scalar version of the coupling and mismatch parameters that are present inall
three equations of the Lorenz system. This is the most difficult case to prove the stability of synchronization and
to compensate mismatch instabilities arising in the three equations by increasing the coupling through a single
variable.

The coordinates of the coupled identical oscillator system(B.10) without mismatchµ = 0 are bounded due to
Eq. (A.2)(Appendix A).

Being similar toEq. (A.3)(except that three extra terms are present), the auxiliary system(B.4)–(B.10)with the
matricesH = I, A = diag(a,0,0), andC = diag(c, c, c) reads

Ẋij = σ(Yij −Xij)− aXij + cXij, Ẏij = (r − U
(z)
ij )Xij − Yij − U

(x)
ij Zij + cYij,

Żij = U
(y)
ij )Xij + U

(x)
ij Yij − bZij + cZij, i, j = 1, . . . , n. (B.11)

Similar to the identical Lorenz system study (seeAppendix A), one can show that the auxiliary system(B.11) is
globally stable if

a > a∗(c) = b2(r + σ)2(b− 2c + 1)

16(b− c)(b− 1)(1 − c)
+ c − σ, (B.12)

where 0< c < 1,0< c < b. Since the parameterb is assumed to be greater than 1 (in the original Lorenz system
b = 8/3) therefore the auxiliary parameterc must be chosen from the interval(0,1).

Now we show how to choose the parameterc and estimate the synchronization errorδ.
The errorδ depends on the mismatch functions

µf
(1)
i (xi, yi, zi) = σij(yi − xi), µf

(2)
i (xi, yi, zi) = rixi, µf

(3)
i (xi, yi, zi) = −bizi (B.13)

that are linear. Hence, the differencesē(l)ij = [f (l)j (xj, yj, zj)−f (l)i (xi, yi, zi)], l = 1,2,3 are also linear functions of
the coordinates of the coupled system(B.10), and they can be bounded via the absorbing domain(A.2). Therefore,
taking into accountEq. (B.13)and usingH = I, we obtain the estimate on the maximal mismatch function
difference,

M = max{ē(l)ij l = 1,2,3} = ē(1) = 2(b+ µ)(σ + r + 2µ)√
b+ µ− 1

. (B.14)

Thus the synchronization errorδ is estimated as follows:

δ = 4µ

[
(b+ µ)(α+ 2µ)√

b+ µ− 1

]
(B.15)

for the chosen auxiliary parameterc = 1/2. The constantswk, k = 1,2,3 from Eq. (B.8)are equal here to
√

2.
Now we should also usec = 1/2 in Eq. (B.12).

While the mismatch parameterµ is small, the estimate(B.15)presents a quasi-linear law of the dependence of
the synchronization errorδ on the mismatch coefficientµ.
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The relative synchronization errorδrel, expressed as the ratio of the maximal amplitudeAmax = max{xi, yi, zi, i =
1, . . . , n} of the oscillators can be estimated as follows:

δrel = 2
√

2µM

Amax
. (B.16)

Recall that we have also bounded the maximal valueM of the mismatch function difference byAmax, therefore the
estimate(B.16) takes the form

δrel = 2
√

2µ. (B.17)

Note that we do not requireδ(µ) to be small. The limit value of the error can be chosen as large as 30%. This gives
the limit of the maximal mismatch rateµ. In our sufficient conditions(B.17), this corresponds toµ = 0.16 that is
equivalent to 5% parameter mismatch(bij/b).

Concluding the proof of global stability ofδ-synchronization in the network(B.10), we come to the following
statement.

Statement 5. Approximate synchronization with the synchronization error δrel = 2
√

2µ is globally stable in a
network of coupled non-identical Lorenz systems (1)–(43)and(A.1)–(B.10)if

εk >
a

n
bk(n,m) for k = 1, . . . , m,

where a = b3(r + σ)2/8(b − 1/2)(b − 1) + 1/2 − σ, and bk(n,m) is defined by the coupling configuration and
determined in the conditions of Theorem 2.

Using similar arguments, one can also derive the stability conditions for synchronization in networks of other slightly
non-identical limit-cycle and chaotic systems.
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