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Abstract

The paper proposes a new type of small-world networks of cells with chaotic behavior. This network consists of a regular
lattice of cells with constant 2K-nearest neighbor couplings and time-dependent on–off couplings between any other pair of
cells. In each time interval of durationτ such a coupling is switched on with probabilityp and the corresponding switching
random variables are independent for different links and for different times. At each moment, the coupling structure corresponds
to a small-world graph, but the shortcuts change from time interval to time interval, which is a good model for many
real-world dynamical networks. It is to be distinguished from networks that have randomly chosen shortcuts, fixed in time.
Here, we apply the Connection Graph Stability method, developed in the companion paper (“Connection graph stability
method for synchronized coupled chaotic systems”, see this issue), to the study of global synchronization in this network
with the time-varying coupling structure, in the case where the on–off switching is fast with respect to the characteristic
synchronization time of the network. The synchronization thresholds are explicitly linked with the average path length of the
coupling graph and with the probabilityp of shortcut switchings in this blinking model. We prove that for the blinking model,
a few random shortcut additions significantly lower the synchronization threshold together with the effective characteristic
path length. Short interactions between cells, as in the blinking model, are important in practice. To cite prominent examples,
computers networked over the Internet interact by sending packets of information, and neurons in our brain interact by sending
short pulses, called spikes. The rare interaction between arbitrary nodes in the network greatly facilitates synchronization
without loading the network much. In this respect, we believe that it is more efficient than a structure of fixed random
connections.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction and motivation for the model

In 1967, the social psychologist Milgram discovered the small-world phenomenon (popularly known as six
degrees of separation)[1]. He concluded that six was the average number of acquaintances separating any two
people in the world. In 1998, Watts and Strogatz proposed a semi-random network, called a small-world[2].
This network is a regular coupled lattice (the “pristine world”) having a few additional randomly arising long-range
shortcuts. They conjectured that dynamical systems coupled in this way would display enhanced propagation speed,
synchronizability and computation power, as compared with regular lattices of the same size[3]. This model has
received a great deal of attention in the physical and mathematical literature[3–25]. The small-world effect has
been shown to be widespread in many human generated networks as well as biological networks, including the
WWW connections[9,10], social and scientific networks[3,11–13], epidemiological models[14–16], electrical
power grids[2,17], electronic circuits[18] and neural and biochemical networks[19,20].

Most theoretical studies were concerned with statistical and combinatorical properties of small-world networks
where the cells do not have individual temporal dynamics[3–8]. Dynamical processes on small-world networks
were studied relatively little and mainly by means of computer simulation. In particular, it was shown numerically
that small-world connections may drastically improve synchronization properties of networks of limit-cycle and
chaotic oscillators[17,20–24]. In turn, synchronization in networks of periodic and chaotic oscillators with different
regular and random coupling configurations has been intensively studied.1

More recently, significant progress in the study of the relation between the addition of random shortcuts and the
synchronization properties of networks was made by Barahona and Pecora[25]. They applied the Master Stability
function approach[27] to the study of local synchronization in small-world networks and showed, through numerics
and analysis, how the addition of random shortcuts improves network synchronizability. The connection matrixG

was initially chosen at random, and then fixed forever. This is the usual approach to defining the small-world
networks. Within this approach, the statistics of the connection matricesG were translated into the statistics of the
synchronization thresholds.

In this paper, we study small-world networks where the shortcuts change as a function of time. Instead of randomly
choosing the shortcuts and leaving them fixed, we randomly choose the shortcuts, leave them fixed for an interval
of timeτ, and then randomly choose another set of shortcuts, leave them again for a lapse of timeτ fixed, etc. More
precisely, our probabilistic model is the following. During each time interval of lengthτ, every possible shortcut is
turned on with probabilityp, independently of the switching on and off of the other shortcuts, and independently of
whether or not it has been turned on during the previous time interval. Furthermore, we assume that the switching
time τ is small with respect to the characteristic synchronization/desynchronization time of the coupled system.

This way of transforming a network with fixed couplings, the “pristine world”, into a time-varying small-world
network can always be applied. We call it the “blinking model”. In this paper, we shall concentrate on the impor-
tant example where the pristine world is a ring of 2K-nearest neighbor coupled chaotic oscillators. The methods
developed here, however, are more generally applicable. In this paper, we also introduce and study a purely random
“blinking” network, where the fixed connections of the pristine world are absent and the short on–off interactions
arise between any pair of cells.

The blinking model is indeed of practical importance. In practice, often collections of subsystems that are
organized into a network actually interact only sporadically. This is true in biology as well as in technology.
Neurons in the brain send out electrical signals in the form of spikes and most of the interaction with the other
neurons takes place during the arrival of the spikes at the connection points, the synapses. Since the spike duration

1 For the detailed description of the concept of chaotic synchronization and literature on synchronization in regular and random networks, the
reader is addressed to the companion paper[26].
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is usually small with respect to the interspike intervals, this is an important example of “blinking” interaction. In
fact, to fit the blinking model with the pristine world where the coupling is always on, the neural network must
be organized (and this is often true in reality) by both electrical and chemical synapses. In this case, the electrical
couplings (gap junctions) provide the constant local couplings between the neurons within the pristine world, and
the chemical ones (pulse couplings) ensure the global pulsatile connections such that they are responsible for the
blinking “random” interactions. At the same time, the purely random blinking model relates to networks of neurons
having only chemical synapses. Of course, the model is rather abstract, and the occurrence of spikes of different
neurons and at different times are not just independent random variables, and the spike durations are actually caused
by the dynamics of the individual neurons. Nevertheless, the distant node interaction is of intermittent nature.

In technology, practical systems exist that can be modeled rather precisely by the blinking model. Packet switched
networks such as the Internet are an important example. Dynamical processes in the computers that are networked
through Internet interact by sending messages that are subdivided into packets and sent over the network. Both in the
network links and the computers themselves, they have to share the available communication time slots with many
other packets belonging to communications between different computers and/or different processes. The occurrence
of the other packets can be considered as independent, and the timeslots available for the communication between
specific processes can also often be considered independent, due to the congestion of the links by the other packets.
Thus, the blinking model may be appropriate in many different situations.

To refer to synchronization more specifically, let us remark the following. Processes may interact in order to
achieve many different goals, but in order to be able to interact in a controlled way, they need to refer to a common time
reference. In other words, the clocks that generate the local time for the computer need to be synchronized throughout
the network. This is done by sending information about each other’s time as packets through the network. In the Inter-
net system, this is done by means of the Network Time Protocol (NTP) used by time servers and their clients to syn-
chronize clocks, as well as automatically organize and maintain the time synchronization subnet itself[28]. In NTP,
one or more primary servers synchronize directly to external reference sources (national standards) by wire, radio
or calibrated atomic clocks. In practice, each NTP server synchronizes with several other servers in order to mitigate
outages and to increase precision. The limiting factor in the time accuracy of the local computer is the stability of the
local clock, which is usually implemented by an uncompensated quartz oscillator (a good temperature-compensated
oscillator is a relatively expensive component not likely to be found in cost-competitive computers). The synchro-
nizing signals (packets), that aim at reducing the timing errors, should be sufficiently frequent in order to guarantee
a sufficient precision of synchronization between the clocks, but, on the other hand, the network should not be
overloaded by these “administrative” messages. This is a trade-off between the precision of synchronization and
the traffic load on the network. To some extent, this frequent “blinking” network administration is a way to provide
reliable and precise functioning of the network composing of nonprecise elements. The packets arriving at a node
are used to control the local clock by means of Phase-Lock loops. The details of this control can be found in[28,29].

Another example of switched, i.e. “blinking”, networks of practical importance are pulse-width modulated power
converters[30].

The main objective of this paper is to study the synchronization properties of the small-world blinking model of
coupled periodic or chaotic oscillators. Applying the Connection Graph Stability method, developed in the com-
panion paper[26], we obtain a rigorous bound for the coupling constant required to achieve global synchronization
and link it with probabilityp of shortcut switchings. This result shows that only a small probabilityp for shortcuts
is necessary to decrease the threshold coupling strength for complete synchronization in the blinking model.

The layout of this paper is as follows. First, inSection 2, we describe the blinking model and derive the averaged
model. Then, inSection 3, we study synchronization in this averaged model which is obtained by adding to
the pristine world (the ring of 2K-nearest neighbor coupled oscillators) an additional global coupling. We show
that this global coupling addition significantly improves the synchronization properties of the network and give a
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rigorous bound for the coupling strength necessary for synchronization of all the oscillators. InSection 4, we show
that the study of the blinking model dynamics can be relieved by averaging such that the threshold for complete
synchronization in the blinking model is the same as the threshold in the averaged model for almost all (all, except
for a set of probability zero) instances of the fast shortcut switching random process. It is proven for the blinking
model that a few random shortcut additions significantly lower the synchronization threshold together with the
effective characteristic path length. The synchronization properties of the blinking small-world model are compared
with small-world networks with randomly chosen but fixed shortcuts, and it is shown that the blinking interaction
provides more reliable synchronization. Finally, a brief discussion of the obtained results is given.

2. Small-world networks with a time-varying coupling and the blinking model

The model of small-world networks that we propose consists of the pristine world (the regular locally coupled
lattice of oscillators) and a time-dependent on–off coupling between any other pair of cells.

Here we shall use the same notations for the networks of coupled oscillators as we have used in the companion
paper[26]. Hence we consider the network

ẋi = F(xi)+
n∑
j=1

εij (t)Pcxj, i = 1, . . . , n, (1)

wherexi = (x1
i , . . . , x

d
i ) is thed-vector of the coordinates of theith oscillator. Then×n connection matrixG(t) =

(εij (t)) is symmetric and has vanishing row-sums and nonnegative off-diagonal elements such thatεij = εji , εij ≥ 0
for i �= j, andεii = −∑n

j=1;j �=i εij , i = 1, . . . , n.
The matrixPc determines by which variables the oscillators are coupled. For simplicity, we assume that the

individual systems are only connected through the first state variablex1, i.e. the matrix

Pc =
(

1 0

0 0

)
,

where the first line and column correspond to the first state variable and the remaining lines and columns to the state
variablesx2 to xd . The generalization of all the results of the paper to connections between more than one, or even
all state variables is straightforward.

As the pristine world, we take a conventional network, a ring of 2K-nearest neighbor coupled oscillators. In this
case, the connection matrixG, corresponding to the blinking model, has the 2K adjacent diagonals with the coupling
constantsε and on–off time-dependent small-world connections parametersεirjr (t) standing in all remaining places
of the matrixG, wherer = 1,2, . . . , n(n− 2K − 1)/2.

To define the functionsεirjr (t)we divide the time axis into intervals of lengthτ. We assumeεirjr (t) to be binary sig-
nals that take the constant valueεwith probabilityp and the value 0 with probability 1−p in each time interval. Thus,
the blinking model is a dynamical system combined with a probability space(Ω,Σ,P) that is defined as follows.

An elementary eventω ∈ Ω is a semi-infinite sequence of binary vectors of dimensionn(n− 2K − 1)/2, i.e.

ω = (s(1), s(2), . . . ) =



s1,K+2(1) s1,K+2(2) . . .

s1,K+3(1) s1,K+3(2) . . .

...
...

sn−K−1,n(1) sn−K−1,n(2) . . .


 , (2)
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Fig. 1. The blinking model of shortcuts connections. Probability of switchingsp = 0.01, the switching time stepτ = 0.1.

wheresij (q) ∈ {0,1}. Theσ-algebraΣ of events is generated by the sets

Ω1
ij (q) = {ω|sij (q) = 1}, Ω0

ij (q) = {ω|sij (q) = 0} (3)

and the probabilityP is defined by

P(Ω1
ij (q)) = p, P(Ω0

ij (q)) = 1 − p (4)

and the requirement that the eventsΩσij (q) are independent for differenti, j and/orq. As usual, to the quantities
sij (q) the random variablesSij (q) are associated, defined by

[Sij (q)](ω) = sij (q). (5)

By hypothesis, all these random variables are independent and identically distributed.
Fig. 1shows the time-varying structure of shortcut connections in the blinking model of 30 coupled systems.
The meaning ofω is a switching sequence, i.e.ω indicates which of the remaining (nonpristine) links that are

turned at a given time interval. Thus, the time-dependent coupling constants are random variables defined by

[εij (t)](ω) =
{
ε if nodesiandj are connected in the pristine world,

εsij (q) if not, and if (q− 1) τ < t < qτ,
(6)

whereq numbers the time intervals.
The mean values ofεij for the remaining (shortcut) links are

ε̄ij = lim
t→∞

1

t

∫ t

0
εij (u)du = ε lim

q→∞
1

Q

Q∑
q=1

Sij (q). (7)

By the strong law of large numbers, for almost all switching sequencesω,

ε̄ij = εp. (8)

We will show inSection 4that, for almost all switching sequences, the threshold for complete synchronization in
the blinking model is the same as the threshold in the averaged model, where the remaining links are constant, with
valueεp. This property holds under the condition that the switching is fast enough compared with the transient
time of synchronization/desynchronization phenomenon. An explicit expression for this condition will be given.
The proof only concerns bounds on the synchronization thresholds, not the thresholds themselves, even though the
authors believe that the correspondence between the blinking model and the averaged model is much more general.
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Before starting the rigorous analysis of the blinking model, we study the synchronization properties of the averaged
model.

3. Auxiliary regular coupling scheme: the averaged model

We consider the regular coupled network by adding to the pristine world (the ring of 2K-nearest neighbor coupled
oscillators) an additional global coupling such that the coupling coefficientpε is added to all free places of the matrix
G,0 ≤ p ≤ 1. In this case, the network acquires an all-to-all coupling configuration with two different coupling
strengthsε andpε.

Note that in this auxiliary model, contrary to the blinking model, the parameterp is not a probability.
Fig. 2 illustrates this coupling scheme (forK = 1) which for an arbitraryK gives the averaged system matrix

Gmean

Gmean=




−g ︷ ︸︸ ︷
ε · · · εK pε · · · pε

︷ ︸︸ ︷
ε · · · εK

ε −g ε · · · ε︸ ︷︷ ︸K pε · · ·pε ε · · · ε︸ ︷︷ ︸K−1

ε ε −g ︷︸︸︷
ε... ε

K ︷ ︸︸ ︷
pε... pε

n−2K−1
ε... ε︸︷︷︸K−2

. . .
. . .

. . .
...︷︸︸︷

ε... ε
K−1

pε... pε
︷ ︸︸ ︷
ε · · · εK −g ε

ε... ε︸︷︷︸K pε · · · pε ε · · · ε︸ ︷︷ ︸K −g



, (9)

whereg = ε[2K + p(n− 2K − 1)] such that it preserves vanishing row-sums.

Fig. 2. All-to-all coupled network: the pristine world (here,K = 1) with the local coupling strengthε and the additional global couplingpε.
Here,p is small, such that the width of the links may be thought of as the coupling strength (a strong coupling within the pristine world and a
weak coupling for the remaining all-to-all links).
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In the matrixGmean, the 2K adjacent diagonals represent the pristine world (a ring of 2K-nearest neighbor coupled
oscillators) with the couplingε. The remainingn−2K−1 adjacent diagonals define the additional global coupling
with the couplingpε.

The use of this auxiliary coupling scheme is two-fold. First, the study of global synchronization in such a network
is interesting in itself, and allows us to show once more how effective the Connection Graph Stability method is.
Second, it represents the averaged model for the blinking model such that its synchronization properties are directly
connected with the stability of the synchronous state in the blinking model.

The main objective of this section is to determine the threshold value for the coupling strength required for syn-
chronization in this all-to-all globally coupled network with the coupling matrixGmean, and to reveal its dependence
on the number of oscillators and the structure of the network. In particular, the main question under study is how
the threshold coupling depends on the parameterp.

We start with the main equality of the Connection Graph Stability method[26] which provides the following
criterion for complete synchronization in this auxiliary network with matricesGmeanandPc

K∑
l=1

n∑
i=1

ε(X1
i,i+lmodn)

2 +
[n/2]∑
l=K+1

n∑
i=1

pε(X1
i,i+lmodn)

2 >
a

n

n−1∑
i=1

n∑
j>i

(X1
ij )

2. (10)

Here, as in the companion paper[26],X1
ij = x1

j − x1
i , i, j = 1, . . . , n are the difference variables, and the stability

parametera is defined by the individual oscillator dynamics and the matrixPc. As before, we consider only networks
that admit global synchronization and for which the parametera can be derived. Once again, we have supposed that
the coupling between the oscillators is only through the first variablex1 but a generalization to more than one is
easy.

This inequality is similar to that of the main example (the ring of 2K-nearest neighbor coupled oscillators) of the
companion paper except that the additional sum (the second left-hand side term) is present. This term provides the
contribution of the additional all-to-all coupling links.

To get rid of the presence of the dynamical difference variables in inequality(10) and hence to obtain the
synchronization thresholdε∗, we should bound the sum

∑n−1
i=1

∑n
j>i(X

1
ij )

2 by the sum


 K∑
l=1

n∑
i=1

(X1
i,i+lmodn)

2 + p
[n/2]∑
l=K+1

n∑
i=1

(X1
i,i+lmodn)

2


 .

That is, we have to determineb(n,K, p) such that

n−1∑
i=1

n∑
j>i

(X1
ij )

2 ≤ b(n,K, p)

 K∑
l=1

n∑
i=1

(X1
i,i+lmodn)

2 + p
[n/2]∑
l=K+1

n∑
i=1

(X1
i,i+lmodn)

2


 . (11)

From this, it will follow that the synchronization condition becomes

ε > ε∗ = a

n
b(n,K, p). (12)

Now, we have to calculateb(n,K, p).
Adding and subtracting the additional sumb(n,K, p)·p∑K

l=1
∑n
i=1(X

1
i,i+lmodn)

2 from the right part of inequality
(11), and taking into account the trivial equality
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p

K∑
l=1

n∑
i=1

(X1
i,i+lmodn)

2 + p
[n/2]∑
l=K+1

n∑
i=1

(X1
i,i+lmodn)

2 = p

n−1∑
i=1

n∑
j>i

(X1
ij )

2,

we obtain

n−1∑
i=1

n∑
j>i

(X1
ij )

2 ≤ b(n,K, p)

(1 − p)

K∑
l=1

n∑
i=1

(X1
i,i+lmodn)

2 + p
n−1∑
i=1

n∑
j>i

(X1
ij )

2


 .

Consequently, we have

n−1∑
i=1

n∑
j>i

(X1
ij )

2 ≤ b(n,K, p)(1 − p)
1 − pb(n,K, p)

K∑
l=1

n∑
i=1

(X1
i,i+lmodn)

2.

But we have proved in the companion paper[26] (cf. Example: ring of 2K-nearest neighbor coupled oscillators)
that

n−1∑
i=1

n∑
j>i

(X1
ij )

2 ≤ b(n,K)
K∑
l=1

n∑
i=1

(X1
i,i+lmodn)

2,

whereb(n,K) = (n/2K)3(1 + (65/4)(K/n)). Therefore, it is sufficient to chooseb(n,K, p) such that

b(n,K, p)(1 − p)
1 − pb(n,K, p)

= b(n,K)

which is equivalent to

b(n,K, p) = b(n,K)

1 + p(b(n,K)− 1)
.

Hence, we finally come to the following assertion.

Theorem 1. The upper bound for global synchronization in the averaged network with the connection matrixGmean

is

ε > ε∗ = a

n

b(n,K)

1 + p(b(n,K)− 1)
. (13)

Since, for the pristine world, the depth of nearest-neighbor interactionK is usually much smaller than the number
of nodesn(K � n), we can writeb(n,K) ∼= (n/2K)3 = L3(0), whereL(0) = n/(2K) is the average path length
of the coupling graph corresponding to the pristine world.

Therefore, we can rewrite the criterion(13)as

ε > ε∗ ∼= a

n

L(0)

1 + p(L(0)− 1)
. (14)

One can see fromEq. (14)that the thresholdε∗ decreases rapidly as a function of the parameterp.
As before, we conjecture that for networks for which the global stability parametera can be derived, the real

conditions for total synchronization obey the same laws of dependence on the number of oscillatorsn, the range of
the pristine worldK, and the parameterp, but with a lower constant thana.

We checked numerically the dependence(14) onp for the network(9) of 30 x-coupled Lorenz systems.Fig. 3
(top) shows the synchronization thresholdsε∗ calculated numerically for differentp (depicted by small circles).
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* K=1
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averaged model
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* K=1
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blinking model

Fig. 3. Dependence of the synchronization thresholds on the parameterp in the averaged network with the coupling matrixGmean(top) and on
the probabilityp of the shortcut appearance in the blinking model (bottom). The pristine world is a ring of 30 2K-nearest neighbor coupled
Lorenz systems. The switching time in the blinking modelτ = 0.1. The analytical curveε∗ = (a/n)L(0)/[1 +p(L(0)− 1)] (solid line) fits the
numerical data (small circles) remarkably well.

The analytical estimate(14) is fitted to the numerical data by adapting the constanta. The resulting curve fits the
data remarkably well. This numerical example confirms also that only a very weak additional all-to-all coupling
is required to significantly reduce the synchronization threshold and therefore to improve the synchronization
properties of the network.

After having studied synchronization in the averaged network, we can tackle the problem of synchronization in
the blinking model.

4. The blinking model: averaging and synchronization

In order to analyze the synchronization behavior of the blinking model, we use the old technique of averaging that
was developed for oscillating dynamical systems[31]. As in the companion paper[26], we consider the Lyapunov
function

V = 1

4

n∑
i,j=1

XT
ij ·H ·Xij, (15)

whereH is a suitable positive definite matrix (cf.Hypothesis 2). Due to our assumption that the individual oscillators
are coupled through the first state variable, and more precisely, through the difference variableX1

ij = x1
j −x1

i , i, j =
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1, . . . , n, and the matricesH andA (cf. [26]) have the form

H =
(
h 0

0 H̃

)
, A =

(
a 0

0 0

)
, (16)

where once again the first line and column correspond to the first state variable and the remaining lines and columns
to the state variablesx2 to xd , andh andd are suitable positive constants. SinceH is positive definite, its smallest
eigenvaluehmin is also positive.

In order to prove thatV(t) converges to zero, and therefore to prove the stability of synchronization in the blinking
model, we need a few hypotheses. Considering the individual system dynamics, we make the same basic hypotheses
(Hypotheses 1 and 2) as in[26].

Hypothesis 1. The individual systems are eventually dissipative, which implies that there is a compact invariant
setB such that, after some finite time, every solution is inB.

Due to the nature of the coupling, the solutions of the coupled system also reach the compact invariant set
B̃ = B × B × · · · × B in finite time. On this set, all state variables and derivatives of state variables are bounded.
In particular, we deduce from the state equations for the difference variables

Ẋij =
[∫ 1

0
DF(βxj + (1 − β)xi)dβ

]
Xij +

n∑
k=1

{εjkPcXjk − εikPcXik} (17)

that

|V̇ | ≤ 1

2

∣∣∣∣∣∣
n∑

i,j=1

XT
ijH

[∫ 1

0
DF(βxj + (1 − β)xi)dβ

]
Xij

∣∣∣∣∣∣ + 1

2

∣∣∣∣∣∣
n∑

i,j,k=1

X1
ijh{εjkX

1
jk − εikX

1
ik}

∣∣∣∣∣∣
≤ C

2

n∑
i,j=1

‖Xij‖2 + ε

2

n∑
i,j,k=1

|X1
ij|h{|X1

jk| + |X1
ik|}, (18)

whereC = ‖H‖maxx∈B ‖DF(x)‖. Using the Cauchy–Schwarz inequality, we obtain

|V̇ | ≤ C

2hmin

n∑
i,j=1

XT
ijHXij + ε

2

√√√√n n∑
i,j=1

h(X1
ij)

2

√√√√n n∑
j,k=1

h(X1
jk)

2 + ε

2

√√√√n n∑
i,j=1

h(X1
ij)

2

√√√√n n∑
i,k=1

h(X1
ik)

2

≤ 1

Tsyn
V(t), (19)

where

Tsyn =
(

C

2hmin
+ nε

2

)−1

=
(‖H‖ maxx∈B ‖DF(x)‖

2hmin
+ nε

2

)−1

(20)

can be interpreted as the characteristic synchronization/desynchronization time constant of the coupled system.
Given the positivity ofV(t), this implies fort2 > t1

V(t1)e−(t2−t1)/Tsyn ≤ V(t2) ≤ V(t1)e(t2−t1)/Tsyn. (21)

Hypothesis 2. On the setB, the positive matrixH defines a quadratic Lyapunov functionW = (1/2)XTHX for the
difference variables of the individual system dynamics corrected by the term−AX. The derivative of this Lyapunov
function along any pair of solutionsx(t), y(t) of the individual systems satisfies,
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Ẇ = XT

[
H

(∫ 1

0
DF(βy + (1 − β)x)dβ − A

)]
X ≤ 1

Tstab
XTHX (22)

for some constantTstab, whereX(t) = y(t)− x(t).

In [26], only Ẇ ≤ 0 was required, which is slightly weaker than condition(22). The constantTstab can be
interpreted as the characteristic time for the solutions of the stabilized individual system to converge to each other.
Note that it depends on the choice ofA.

As shown in[26], the time derivative of the Lyapunov functionV has the form

V̇ = 1

4

d

dt


 n∑
i,j=1

XT
ijHXij


 + 1

2


 n∑
i,j=1

XT
ijAXij


 − 1

2

n∑
i,j,k=1

{εjkX
T
jiHPcXjk + εikX

T
ikHPcXij} (23)

and, combined with condition(22),

V̇ ≤ − 2

Tstab
V(t)+

n∑
i,j=1;j>i

[a− nεij(t)]h(X
1
ij)

2. (24)

Using inequality(11)obtained for the averaged system(1)–(9)and taking into account thatεij(t) = ε for the pristine
world links, we obtain

V̇ ≤ − 2

Tstab
V(t)+ ab(n,K, p)


 K∑
l=1

n∑
i=1

h(X1
i,i+lmodn)

2 + p
[n/2]∑
l=K+1

n∑
i=1

(X1
i,i+lmodn)

2




− nε
K∑
l=1

n∑
i=1

h(X1
i,i+lmodn)

2 − n
[n/2]∑
l=K+1

n∑
i=1

εi,i+lmodn(t)h(X
1
i,i+lmodn)

2. (25)

We now hypothesize that the averaged system synchronizes.

Hypothesis 3. The coupling between the oscillators is made sufficiently strong such that the condition for the bound
on the synchronization threshold(13) in the averaged system holds, i.e.

ε >
a

n

b(n,K)

1 + p(b(n,K)− 1)
= a

n
b(n,K, p). (26)

Under this hypothesis, we can write

V̇ ≤ − 2

Tstab
V(t)− n

[n/2]∑
l=K+1

n∑
i=1

(
εi,i+lmodn(t)− pa

n
b(n,K, p)

)
h(X1

i,i+lmodn)
2. (27)

While in previous applications of the Connection Graph Stability method, we required the expression in parenthesis
be positive for any timet, Hypothesis 3only requires a positivity in the mean.

We consider now inequality(27) in integral form, over some time interval [t, t + 0t], wheret is large enough
that the solution has reached the compact setB̃, and0t is to be specified later,
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V(t +0t)− V(t)≤ − 2

Tstab

∫ t+0t

t

V(u)du

− n
[n/2]∑
l=K+1

n∑
i=1

∫ t+0t

t

[
εi,i+lmodn(u)− pa

n
b(n,K, p)

]
h(X1

i,i+lmodn(u))
2 du

= − 2

Tstab

∫ t+0t

t

V(u)du

− n
[n/2]∑
l=K+1

n∑
i=1

∫ t+0t

t

[
εi,i+lmodn(u)− pa

n
b(n,K, p)

]
× h(X1

i,i+lmodn(t))
2 du

− n
[n/2]∑
l=K+1

n∑
i=1

∫ t+0t

t

[
εi,i+lmodn(u)− pa

n
b(n,K, p)

]
×h{(X1

i,i+lmodn(u))
2 − (X1

i,i+lmodn(t))
2} du

≤ − 2

Tstab

∫ t+0t

t

V(u)du

− n
[n/2]∑
l=K+1

n∑
i=1

h(X1
i,i+lmodn(t))

2
∫ t+0t

t

[
εi,i+lmodn(u)− pa

n
b(n,K, p)

]
du

+ nε
[n/2]∑
l=K+1

n∑
i=1

∫ t+0t

t

h|(X1
i,i+lmodn(u))

2 − (X1
i,i+lmodn(t))

2| du. (28)

Now,

1

2

d

dt
h(X1

ij)
2 = hX1

ij

[∫ 1

0
DF(βxj + (1 − β)xi)dβ

]
Xij + hX1

ij

n∑
k=1

{εjkPcX
1
jk − εikPcX

1
ik} (29)

and thus

1

2

∣∣∣∣ d

dt
h(X1

ij(s))
2
∣∣∣∣ ≤ C‖Xij‖2 + ε

n∑
k=1

h|X1
ij|{|X1

jk| + |X1
ik|}, (30)

where againC = ‖H | maxx∈B ‖DF(x)‖. Therefore, using the same derivation as for inequality(19), we get

[n/2]∑
l=K+1

n∑
i=1

h|(X1
i,i+lmodn(u))

2 − (X1
i,i+lmodn(t))

2|

≤ 1

2

n∑
i,j=1

h|(X1
ij(u))

2 − (X1
ij(t))

2| ≤ 1

2

∫ u

t

h

n∑
i,j=1

∣∣∣∣ d

dt
h(X1

ij(s))
2
∣∣∣∣ ds

≤
∫ u

t


C n∑

i,j=1

∣∣(Xij(s))
∣∣2 + ε

n∑
i,j,k=1

h|X1
ij(s)|{|X1

jk(s)| + |X1
ik(s)|}


 ds ≤ − 1

Tsyn

∫ u

t

V(s)ds. (31)

Inequality(31) leads to the following bound on the last term in inequality(28)
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[n/2]∑
l=K+1

n∑
i=1

∫ t+0t

t

h|(X1
i,i+lmodn(u))

2 − (X1
i,i+lmodn(t))

2|du
∣∣∣∣∣∣

≤ nε
(∫ t+0t

t

(∫ u

t

V(s)

Tsyn
ds

)
du

)
≤ nε 0t

Tsyn

∫ t+0t

t

V(u)du. (32)

The second term in inequality(28) is expanded as follows

− n
[n/2]∑
l=K+1

n∑
i=1

∫ t+0t

t

[
εi,i+lmodn(u)− pa

n
b(n,K, p)

]
h(X1

i,i+lmodn(t))
2 du

= −n
[n/2]∑
l=K+1

n∑
i=1

∫ t+0t

t

[εi,i+lmodn(u)− pε]h(X1
i,i+lmodn(t))

2 du− npV1(t)
[
ε− a

n
b(n,K, p)

]
0t, (33)

where

V1(t) =
[n/2]∑
l=K+1

n∑
i=1

h(X1
i,i+lmodn(t))

2 ≤ V(t). (34)

Suppose now thatt = Q1τ,0t = Qτ. Using the switching random variables, we obtain∫ t+0t

t

(εi,i+lmodn(u)− pε)du = τε

Q1+Q∑
q=Q1+1

(Si,i+lmodn(q)− p) = 0tε

Q

Q1+Q∑
q=Q1+1

(Si,i+lmodn(q)− p). (35)

As long as(1/Q)
∑Q1+Q
q=Q1+1(Si,i+lmodn(q)−p) is positive, its contribution to the derivative of the Lyapunov function

V is negative. If its value is slightly negative, we will still be able to prove that the Lyapunov function decreases
overall during the time interval0t, even though it may at some instants temporarily increase. If, however, its value
is too close to its minimum−γ, V may increase during the time interval0t. We now bound the probability of the
set of switching sequences where this last case takes place by a Chernoff bound[32,33]

P


 1

Q

Q1+Q∑
q=Q1+1

(Si,i+lmodn(q)− p) ≤ −γp

 ≤ e−Qpγ2/2 = e−(pγ2/2)0t/τ, (36)

whereγ is any constant between 0 and 1, to be chosen later. Consequently, if we define the following set of switching
sequences

Ω(Q1,Q, γ, i, l) =

ω

∣∣∣∣∣∣
1

Q

Q1+Q∑
q=Q1+1

(Si,i+lmodn(q)− p) ≤ −γp

 (37)

for 1 ≤ i ≤ n,K + 1 ≤ l ≤ [n/2], then

P(Ω(Q1,Q, γ, i, l)) ≤ e−(pγ2/2)0t/τ . (38)

If we define by

Ω(Q1,Q, γ) =
[n/2]⋃
l=K+1

n⋃
i=1

Ω(Q1,Q, γ, i, l), (39)
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the set of all switching sequences whose average value for the samples betweenQ1 + 1 toQ1 +Q is lower than
(1 − γ)p for at least one of its components, we obtain

P(Ω(Q1,Q, γ)) ≤ n2

2
e−(pγ2/2)0t/τ (40)

and for any switching sequenceω /∈ Ω(Q1,Q, γ) we get∣∣∣∣∣∣
[n/2]∑
l=K+1

n∑
i=1

∫ t+0t

t

[εi,i+lmodn(u)− pε]h(X1
i,i+lmodn(t))

2 du

∣∣∣∣∣∣ ≤ V1(t)0tεγp. (41)

Combining inequality(28)with inequalities(32), (33) and (41), we obtain, under the conditions:

(1) t ≥ t0, wheret0 is the time at which the solution reaches the compact setB̃ and subsequently remains in it;
(2) 0t = τQ;
(3) ω /∈ Ω(Q1,Q, γ);

the following estimate on the decrease of the Lyapunov functionV during the time interval0t

V(t +0t)− V(t)= − 2

Tstab

∫ t+0t

t

V(u)du+ nε 0t
Tsyn

∫ t+0t

t

V(u)du+ nV1(t)0tεγp

− npV1(t)
(
ε− a

n
b(n,K, p)

)
0t. (42)

Now we can make suitable choices of the free constants0t andγ.We can set these constants as follows:

0t = Tsyn

nεTstab
, γ = p

ε

(
ε− a

n
b(n,K, p)

)
. (43)

With this choice of0t andγ, we get

V(t +0t)− V(t) ≤ − 1

Tstab

∫ t+0t

t

V(u)du < 0. (44)

Using the lower bound of inequality(21) in the integral, we get

V(t +0t) ≤ V(t)− V(t)

Tstab

∫ t+0t

t

e−(u−t)/Tsyn du = V(t)

(
1 − Tsyn

Tstab

(
1 − e−1/nεTstab

))
. (45)

Setting

αcontr = − ln

(
1 − Tsyn

Tstab

(
1 − e−1/nεTstab

))
, αexp = 0t

Tsyn
= 1

nεTstab
, (46)

we conclude from inequalities(45) and (21)that

V(Q1τ +Qτ) ≤
{
V(Q1τ)eαexp if ω ∈ Ω(Q1,Q, γ),

V(Q1τ)e−αcontr if ω /∈ Ω(Q1,Q, γ).
(47)

This is true for anyQ1 ≥ Q0 = t0/τ, wheret0 is the time when the solution reaches the compact invariant setB̃.
The numberQ, on the other hand, is fixed by

Q = 0t

τ
= Tsyn

τ

1

nεTstab
. (48)
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Now, we define the new random variablesS̃m,m = 0,1,2, . . . by

S̃m(ω) =
{
αexp if ω ∈ Ω(Q0 + mQ,Q, γ),

−αcontr if ω /∈ Ω(Q0 + mQ,Q, γ).
(49)

Since they are based on different switching times for differentm, they are independent. They are equally distributed,
with common mean valuẽE. Furthermore,

V(Q0τ +Mτ) ≤ V(Q0τ)eM((1/M)
∑M−1
m=0 S̃m). (50)

By the strong law of large numbers, for almost all switching sequences,

1

M

M−1∑
m=0

S̃m → Ẽ forM → ∞. (51)

This implies that forM → ∞
V(Q0τ +Mτ) → 0 if Ẽ < 0 (52)

for almost all switching sequences. Thanks to condition(21) this finally implies for almost all switching sequences
that fort → ∞

V(t) → 0 if Ẽ < 0. (53)

Now we have to express the conditionẼ < 0. Using condition(40), we obtain

Ẽ= αexpP(Ω(Q0,Q, γ))− αcontr(1 − P(Ω(Q0,Q, γ))

= −αcontr + (αexp − αcontr)P(Ω(Q0,Q, γ)) ≤ −αcontr + (αexp − αcontr)
n2

2
e−(pγ2/2)0t/τ

= −αcontr + (αexp − αcontr)
n2

2
e−(pγ2/2)(Tsyn/τ)(1/nεTstab) (54)

and the condition becomes(
αexp

αcontr
− 1

)
n2

2
e−(pγ2/2)(Tsyn/τ)(1/nεTstab) < 1. (55)

Collecting all hypotheses and all inequalities, we obtain the main theorem for the synchronization bounds in the
blinking model(1) and their connection to the bounds in the averaged system(1)–(9).

Theorem 2. Consider the blinking model described by

ẋi = F(xi)+
n∑
j=1

εij(t)(x
1
j − x1

i ), i = 1, . . . , n, (56)

where xi = (x1
i , . . . , x

d
i ), F : Rn → Rn is a C1-function, εij(t) = εji(t) = ε > 0 for |j − i| modn ≤ K and all t,

and εij(t) = εji(t) = εSij(q) for (q− 1)τ ≤ t < qτ for all remaining pairs (i, j). Here, Sij(q) is a random variable
that takes the value 1 with probability p and 0 with probability 1 − p.

The random variables Sij(q) are assumed to be all independent. To each realization ω of this stochastic process
S(1), S(2), . . . , whereS(q) = {Sij(q), i = 1, . . . n, j = i + lmodn, l = K + 1, . . . , [n/2]}, i.e. to each switching
sequence ω, there corresponds a time-varying system described by Eq. (56).
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Suppose in addition that the network satisfies Hypotheses 1–3.
Then for a sufficiently small switching period τ, and for almost all switching sequences, the system synchronizes

completely for any choice of initial conditions.
More precisely, synchronization for almost all switching sequences takes place if the switching period τ is such

that the inequality(
αexp

αcontr
− 1

)
n2

2
e−(pγ2/2)(Tsyn/τ)(1/nεTstab) < 1 (57)

is satisfied, where αcontr and αexp are given by Eq. (46), γ by Eq. (43), Tsyn by Eq. (20)and Tstab in Hypothesis 2.

Remark 1. The switching period appears only in the denominator of the exponent in condition(57). Therefore, the
left-hand side ofEq. (46)decreases rapidly whenτ decreases and the condition can always be satisfied for small
enoughτ.

Remark 2. What matters is thatτ is small enough compared toTsync, i.e. that the switching is rapid with respect
to the synchronization/desynchronization time.

Remark 3. The parametera is somewhat artificial since it is not directly given by the problem, but it is needed in
the proof. If we choosea close to the limit such thatHypothesis 2is satisfied,Tstab will be large, and switching
will have to be rapid in order to guarantee synchronization. The same is true, if we chooseε just slightly above
(a/n)b(n,K, p) which causesγ to be small. In fact, for a sufficiently large fixedε, there is a certain margin fora,
and an optimal value could be sought in view of guaranteeing synchronization for switching as slow as possible.
We have not performed this optimization.

To conclude,Theorem 2proves that for almost all (all, except for a set of probability zero) instances of the fast
switching random process, when the switching timeτ is rapid with respect to the synchronization timeTsync of
the network, the threshold for complete synchronization in the blinking model is the same as the threshold in
the averaged model with the matrixGmean, where the remaining links are constant, with valuep. Therefore, for
sufficiently smallτ/Tsyn (cf. condition(57)) and

ε > ε∗ = a

n

L3(0)

1 + p(L3(0)− 1)
(58)

for almost all switching sequences, complete synchronization of all the oscillators in the blinking model is globally
stable. Here, the average path length in the pristine world (L(0)) isL(0) = n/2K.

Forp = 0, the estimate(58)becomes the synchronization threshold for the pristine world, and forp = 1, it gives
the synchronization threshold for all-to-all coupling. For 0< p < 1, the dependence(58) of the synchronization
threshold onp reveals the reduction of the synchronization threshold such that the addition of a few small-world
connections (smallp) significantly improves the synchronization properties of the network (seeFig. 3(bottom)).

In Fig. 3 (bottom), we see the synchronization thresholdsε∗ calculated numerically for the blinking network of
30 x-coupled chaotic Lorenz systems, depicted by small circles. The curveε∗ = (a/n)L(0)/[1 + p(L(0) − 1)]
(solid line) is fitted to the numerical data, by lettinga vary. It can be seen that the deviation of the data from the
fitted curve is very small. Thus, the blinking interactions arising even with a very small probability significantly
lower the synchronization threshold. For example, forp = 0.01 andK = 1 (cf. Fig. 1) the threshold is reduced
from 175 to about 29.
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Let us now introduce the effective path length for our blinking model and its dependence on the probabilityp.
Recall that forp = 0, the threshold(58)becomes the synchronization threshold for the ring of 2K-nearest neighbor
coupled oscillators[26]

ε > ε∗ = a

n
L3(0). (59)

Rewriting the dependence(58) in the form similar toEq. (59), we introduce the effective path length of our model
of dynamical small worlds as follows:

L3(p) = L3(0)

1 + p(L3(0)− 1)
.

Therefore, the normalized effective path length has the following dependence on the probabilityp

L(p)

L(0)
= 1

(1 + (n3/8k3 − 1)p)1/3
. (60)

This formula clearly manifests the significant decrease of the characteristic path length under a small increase ofp

from 0 in the blinking model.

Remark 4. It is interesting to compare the small-world blinking model with the purely random blinking network,
where the fixed interactions of the pristine world are absent. If we introduce the effective path length for the purely
random blinking network, similarly toEq. (60), we obtainL(p) = 1/p. Thus, in this case, again the effective path
length decreases withp (for p = 0, this network is not connected and the effective average path is infinite).

However, the synchronization properties of the purely random blinking network are very poor. Indeed, the
synchronization threshold for such a network is

ε∗ = a

pn
.

For smallp, the network can synchronize only under a very strong coupling because only very few oscillators are
connected at any given time. Moreover, the time needed for synchronization is large.

This is in contrast to the small-world blinking model where all oscillators will synchronize under a moderate
coupling as long as condition(58)is satisfied, even ifp is very small. In fact, the pristine world connections guarantee
a connected graph of all nodes at all times.

Let us now discuss the synchronization properties of the blinking small-world model with small-world networks
with randomly chosen but fixed shortcuts that were studied numerically in[17,20–25]. Once again, the parameterp
in the blinking model represents the average fraction of time any shortcut connection is turned on. It also represents
the average fraction of shortcuts that are turned on at any given time.

In previous papers on synchronization in small-world networks, a fraction of shortcuts is initially chosen at
random and the shortcuts remain fixed for the rest of the time. In such an approach the synchronization threshold is
the mean value of the thresholds for all possible shortcut combinations. However, these thresholds strongly depend
on theparticular choice of the shortcuts. It was stated in[21,23,24]that a sufficient amount of randomly chosen
shortcuts will cause total synchronization. In other words, there exists a critical value of the probabilityp for which
the small-world network, obtained by adding any given shortcuts, will synchronize completely. This statement is
not always correct. It was shown in[25] that the addition of small-world links fixed in time does not necessarily
guarantee synchronizability. In fact, the addition of links filling out an entire row in the coupling matrixG produces
a tremendous increase of connectivity and a sharp reduction of the synchronization threshold. At the same time, the
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addition of coupling coefficients, located in the matrixG as a dense small “spot” and forming an all-to-all coupling
within a small subgroup, does not substantially reduce the synchronization threshold. The latter case is not very
likely to happen when there are many cells but it has nonetheless a nonzero probability for a finite number of cells.

On the contrary, when the critical probabilityp is reached in the blinking model, then almost surely the system
will synchronize, even for a finite number of cells. In other words, the set of on–off shortcut switching sequences
that fail to force total synchronization has probability zero. For this property to be true, necessarily the switching
timeτmust be much smaller thanTsyn, the characteristic synchronization time of the network. This allows the use of
averaging. In this context, for many technical applications, and, probably, for the coordinating brain functions, the
blinking effect of the shortcut appearance provides more reliable synchronization and global coordinating properties
than the networks with the small-world but fixed coupling structure.

5. Conclusions

A new type of dynamical small-world networks of chaotic cells has been proposed. For the first time for such
networks with a time-varying coupling configuration, mathematically rigorous bounds on the strength of the coupling
between the cells have been established that are sufficient to achieve complete synchronization independently of
the initial conditions.

Calculated by means of the Connection Graph Stability method, the synchronization thresholds have been explic-
itly linked with the average path length of the coupling graph and with the probabilityp. It shows the effectiveness
of our general synchronization approach, and once again clearly indicates the connection between graph theory
and network dynamics which makes intuitive sense. It is proven for the blinking model that a few random shortcut
additions significantly lower the synchronization threshold together with the effective characteristic path length.

We have shown that interactions between arbitrary nodes in a network that are only sporadic, and of a short
duration, are very efficient for achieving synchronization. In fact, the blinking interaction provides more reliable
synchronization than the networks with the small-world fixed coupling structure. The authors believe that this
will be used in various applications. Actually, interactions that are turned on and off is the mode of operation of
packet-switched networks. Biological systems also use this method of communication/interaction. Indeed, neurons
interact through electrical pulses, called spikes.
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