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Abstract

Background: Stroke therapy is essential to reduce impairments and improve
motor movements by engaging autogenous neuroplasticity. This study uses
supervised learning methods to address a clinician’'s autonomous classification
of stroke residual severity labeled data towards improving in-home
robotics-assisted stroke rehabilitation.

Methods: Thirty-three stroke patients participate in in-home therapy
sessions using the Motus Nova robotics rehabilitation technology to capture
upper and lower body motion. The therapy session summary data is based on
high-resolution movement and assistance data and clinician-informed discrete
stroke residual severity labels. This arises from a final processed dataset of
32,902 patient sessions based on the maximum score per patient per session.
Four machine learning algorithms are used to classify stroke residual severity:
light gradient boosting, extra trees, deep neural networks, and classical
logistic regression. Their performance measures are evaluated to identify
which method maximizes stroke residual severity classification accuracy.

Results: We demonstrated that the light gradient boosting method provides
the most reliable autonomous detection of stroke severity. This method
achieved an average of 94% accuracy, measured using the Fl-score
performance measure with 10-fold cross-validation. All variables collected
from each patient session impact the model’s classification accuracy and
contribute to 95% of the explained variance.

Conclusion: We showed how objectively measured rehabilitation training
paired with machine learning methods can be used to identify the residual
stroke severity class with efforts to enhance in-home self-guided,
individualized stroke rehabilitation. As data from rehabilitation practices are
often of comparable size and nature to the data collected in our study, this
suggests that the light gradient boosting method should be considered a
standard, more efficient tool for this analysis.

Keywords: Stroke; Rehabilitation Robotics; Machine Learning; Artificial
Intelligence; Physical Therapy; Neuroplasticity
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Background
Stroke is a leading cause of mortality and dis-
ability worldwide, and the economic costs of
treatment and post-stroke care are substantial
[1]. In 2019, there were 12.2 million incident
cases of stroke, 101 million prevalent stroke
cases, and 6.55 million deaths from stroke [2].
The severity of a stroke can range from mild to
severe, with severe strokes often leading to long-
term disability or even death. Stroke rehabilita-
tion typically involves a team of healthcare pro-
fessionals, including doctors, nurses, therapists,
and other specialists. The specific goals and in-
terventions of stroke rehabilitation vary depend-
ing on the individual’s needs and abilities. They
may include physical therapy to improve mobil-
ity, occupational therapy to improve the abil-
ity to perform daily activities, speech therapy
to improve communication skills, and cognitive
therapy to improve memory, problem-solving,
and other cognitive abilities. This study takes
steps to make this goal of stroke patient recovery
in-home and autonomous via robotics-assisted
stroke rehabilitation and classifying stroke resid-
ual severity via machine learning methods.
Machine learning in healthcare and stroke re-
habilitation is not a new concept (see [3, 4,
5, 6] as notable examples of this vast research
field and [7] for a systematic review of ma-
chine learning methods for post-stroke rehabil-
itation recovery prediction). In particular, mul-
tiple studies have been performed to predict
outcomes in patient survival, locoregional re-
currences, and long-term outcomes in ischemic
stroke patients [8, 9]. Similarly, studies focused
on motor function have leveraged retrospec-
tive healthcare data and targeted predicting the
short- and long-term functional ability [10, 11,
12]. Such studies represent an exciting step for-
ward in stroke rehabilitation but have some lim-
itations. These limitations include the use of
healthcare data that is infrequently measured

y‘Correspondence: ibelykh@gsu.edu

! Department of Mathematics and Statistics, Georgia State
University, Atlanta, Georgia, USA

Full list of author information is available at the end of the article
i'Equa\l contributor

(sometimes entirely limited to admission data),
which can hamper the performance of models
that rely on large datasets for generalizability.
Similarly, most studies limit their scope to pre-
dicting short- and long-term outcomes and may
fail to capture some of the day-to-day changes
stroke survivors experience.

This study aims to overcome these limitations
by quantifying the progress of patient improve-
ment via day-to-day in-home therapy sessions
using the Motus Nova robotics rehabilitation
technology [13] that captures upper and lower
body motion. The Motus Hand and Motus Foot
are robotic therapeutic devices designed to be
used by stroke survivors with residual upper and
lower extremity impairments at home without
needing help from a clinician or caregiver. The
Motus Hand and Motus Foot engage the affected
wrist or ankle of the user, guiding them through
various therapeutic exercises targeting various
functional tasks (e.g., gross motor control, fine
motor control, and precision tracking). Earlier
versions of the technology have been shown
to have clinically significant improvements in
depressive symptoms, functional independence,
upper extremity use in functional tasks, distance
walking, and gait speed [14, 15, 13].

Utilizing machine learning promises to have a
central role in rehabilitation decision-making in
determining if patient therapy is improving. Ma-
chine learning is the methodology that allows
computers to learn from experience. By con-
structing and training supervised classifiers to
learn decision rules from data, automatic solu-
tions can be exploited to make predictions on
new data [16, 17]. Like in many healthcare, dis-
ease, or machine learning research applied in a
clinical setting, labeling of patient data by a
clinician is necessary [3]. This study applies the
same heuristic methodologies. Our goal is to use
supervised machine learning methods to address
a clinician’s autonomous classification of stroke
residual severity labeled data towards improving
in-home robotics-assisted individualized stroke
rehabilitation.
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Methods

Study Design

The Motus Hand and the Motus Foot each con-
sist of two major components: a peripheral (see
the bottom panel of Fig. 1 for a close-up of
the Motus Hand peripheral) that the patient at-
taches to their affected limb and an interactive
console that guides their therapy routine and as-
sessment using a video game interface. The pe-
ripherals have a pneumatic actuator that can dy-
namically provide assistance/resistance by fill-
ing an air muscle in the peripheral that moves
the wrist/ankle joint. The wrist/ankle joint of
the peripheral has an embedded angle and pres-
sure sensor that transmits live angle and pres-
sure data to the console. This allows the con-
sole to give the user immediate visual feedback
of their movement through avatars in a video
game on the screen. The therapeutic video game
activities can provide a dynamic feedback loop
consisting of in-game goals (ships to shoot or
coins to collect, for example) that drive user
movements, which correspond to movement on-
screen, which allow the console to react and set
new goals/obstacles. This feedback loop is de-
signed to promote sensory-motor function.

A therapy session with the Motus Hand or
Foot consists of stretching, gross motor control,
fine motor control, and endurance exercises, de-
pending on the patient’s needs. This process is
depicted in Fig. 1 where a Motus Hand user is
playing “Cosmic Tennis,” a gross motor control
exercise that plays like the classic arcade game
Pong [18]. The user’s wrist/ankle movement cor-
responds to the movement of the paddle on the
right-hand side of the screen, and the goal is to
hit the ball back and forth to score on the Arti-
ficial Intelligence (ATI)—controlled opponent.

The Motus Hand and Foot collect high-
resolution angle and pressure data from sensors
embedded in the wrist /ankle joints and the pres-
sure management system. This high-resolution
data is collected at a frequency of 30—50 Hz, and
stored in a time series database. Other informa-
tion collected during a therapy session includes
score, peripheral type (Motus Hand or Motus

Foot), current game, etc. (see Table 1 for a full
list of data collected). For this study, data was
collected from 33 stroke patients, with a total of
32,902 therapy sessions.

Figure 1 Patients do therapy sessions with the Motus
Hand or Motus Foot using a pneumatically-driven
exogenous robotic device worn on the affected
hand/arm/foot (the Motus Hand is depicted in the
bottom panel). The peripheral acts as a game
controller (through an angle sensor embedded in the
wrist joint) that allows users to play therapeutic video
games that dynamically adapt to their needs and
provide the requisite assistance/resistance (computer
screen in the bottom panel).

To use the data collected during a therapy
session to classify a patient’s stroke residual
severity autonomously, each patient was given
a guided assessment with a clinician using the
Motus Hand or Foot to classify them as having
a High Range of Motion (ROM), Low ROM, or
No ROM.

To find an ideal classifier, we use to consider
the training and performance of four machine
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learning algorithms: a light gradient boosting
[19], extra trees classifier [20], deep neural net-
work [21], and multi-class logistic regression [22].
A practical model is then constructed using the
most common data measured in each session
based on the maximum score per session per pa-
tient. Unsupervised learning methods are then
applied to the final dataset, such as the corre-
lation matrix and principal component analy-
sis, to show that all variables collected are rele-
vant to the study. This includes a 10-fold cross-
validation on the final dataset with the mean
and standard deviation of accuracy from each
computational experiment. From here, the fol-
lowing metrics determine the model’s perfor-
mance, including the accuracy, precision, and
recall from the confusion matrix. The macro av-
erage Fl-score was used to judge the efficacy
of the models, as this is a multi-classification
problem [23], and as such, accuracy would be an
insufficient measure. Figure 2 provides a high-
level overview of the data collection, analysis,
processing, and modeling that produce the final
classification results.

Details of Data Collection

Throughout a therapy session using the Mo-
tus Hand or Motus Foot, live angle data (mea-
sured in degrees from a natural midpoint in
wrist/ankle placement) is collected from the sen-
sor embedded in the wrist or ankle joint at 30-
50 readings per second. This “raw” angle sen-
sor data is then stored in a high-resolution time
series database (InfluxDB [24]). In addition to
the high-resolution angle data, pressure readings
(measured in PSI) are taken from the pressure
management system at 30-50 measurements per
second.

Each therapy session for a patient includes a
selection of about 30 activities that focus on dif-
ferent types of motor function, including gross
motor control, fine motor control, flexor tone
reduction, endurance, reaction time, and track-
ing. A patient can participate in more than one
video game during a patient session. The score is
recorded and stored once the patient completes
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Figure 2 Concept diagram of the overall data analysis
and modeling. Data is gathered from 32,902 therapy
sessions using the Motus Hand and Motus Foot. The
data is processed and used in a supervised
machine-learning model to classify the stroke severity
of the patient. A total of 11 predictor variables
contribute to classifying stroke severity.

the video game. The scores for each game are not
necessarily standardized. This means a score of
100 in one game can represent a dramatically
different performance than a score of 100 in an-
other. The score is collected each time a player
performs an action in the game that would in-
crease or decrease the score, so this field is col-
lected more irregularly and infrequently than
angle and pressure data. That being said, we
show that the score does have a high contribu-
tion to the model performance (see Fig. 9 for a
full breakdown of feature importance). Gender
and other biometric data such as age, height,
and weight are not included in the patient de-
scription or the analysis.
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Table 1 Session Game Data Dictionary

[ Variable | Description [ Unit [ Example |
Frleq Maximum centripetal force generated moving in the downward direction | Newtons | -3.047709105
(computed from derivatives of angle data)
Fext Maximum centripetal force generated moving in the upward direction (com- | Newtons 3.251405759
puted from derivatives of angle data)
[ Nmov [ The number of completed movements [ integer [ 10 ]
[ Rmin | Absolute minimum angle detected by angle sensor during therapy session [ degrees | -25 |
[ Rmaz | Absolute maximum angle detected by angle sensor during therapy session [ degrees |  46.41941 |
[ tgame | Total time spent performing therapy during a session for that game [ seconds | 15 ]
[ Pmin | Minimum Pressure applied by the sensor in a patient session [ PSI [ -0.04511994 |
[ Pmaz | Maximum pressure applied by the sensor in a patient session [ PSI [ 10.30989 |
[ Pmean | Average pressure applied by the sensor in a patient session [ PSI [ 3.500553432 |
[ Score | Score achieved by patient per video game [ integer | 100 |
[ h | Peripheral type variable indicating the Hand or Foot [01 [ Hand |
[ Class | Designate stroke severity label for a patient by a clinician (High, Low, No) [ 0,1,2 ] High ]
[g | Unique identifier for each activity that is available on the Motus Hand/Foot [ integer | 4 |
P Anonymous identifier for each patient using the Motus Hand/Foot in this | integer 11
study
[ s [ Unique identifier for each session performed on the Motus Hand/Foot [ integer [ 782302348734 |

Clinician Labeling

Our supervised learning method requires clinician-
labeled data to train a classifier for labeling
stroke residual severity appropriately. While
these labels are quite broad, the labeling process
is hardly a simple algorithm. At the clinician’s
discretion, quantitative and qualitative factors
must apply an appropriate label. By using the
potentiometer [25] embedded in the wrist/ankle
joint of the Motus Hand/Foot, clinicians can
gather data on the patient in Table 2. We de-
fine a patient as “Assisted” or “Passive” based
on the most arduous assessment performed on
the patient. An “Assisted” patient was able to
undergo an assessment that used assistance to
maximize their active range of motion. A “Pas-
sive” patient had little to no active movement,
and a passive range of motion assessment was
given to determine their passive range of motion.
The Low ROM label is mixed between the as-
sisted and passive. Notice that all patients who
are classified with a high ROM (low residual
stroke severity) were assisted by the clinician.
This is important when noticing that patients
with ID 2085 and 1781 (blue) have a similar to-
tal range of motion (R,in + Rmaz), but patient

ID 1781 requires clinician assistance to reach
their maximum ROM. However, there is ambi-
guity in some labels. For example, take patient
ID 2356 (red), where it can be argued that the
patient should have a high stroke residual sever-
ity (corresponding to low/no ROM) given the
low total range of motion with the assistance.
This is where the clinician has other outside
factors that contribute to the final labeled clas-
sification of a patient.

Data Harmonization

To create a more manageable dataset for the la-
beling task, we generate summary statistics of
the high-resolution data for each activity per-
formed during a therapy session. First, we re-
move outliers from the raw time series data.
Then, summarize the angle (relative to a refer-
ence midpoint in degrees) and pressure (in PSI)
using the following variables: R,,;,, the mini-
mum ROM for a game; R,,.:, the maximum
ROM for a game; R,,cqn, the mean ROM for a
game; P,,;,, the minimum pressure for a game;
Ffier, the maximum centripetal force generated
while moving downward; F..;, the maximum
centripetal force generated while moving up-
ward, Pp,qz, the maximum pressure for a game;
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[ ID [ Rmaz | Rmin | Assessment | Classification |
2054 30 3 Passive No
1495 37 -20 Passive No
2058 50 -24 Passive No
2273 21 -16 Passive No
[2085 [ 40 [ -15 [ Passive | No |
2098 44 -9 Passive No
1864 28 -12 Passive No
1859 45 -17 Passive No
1479 45 -20 Passive No
1865 30 -15 Passive No
2128 34 -10 Passive No
1838 33 -15 Passive No
2183 41 -16 Passive No
2040 37 -18 Passive No
2097 43 -18 Passive Low
[2356 [ -3 | -17 [ Assisted ] Low |
2356 -3 -17 Assisted Low
1688 52 -23 Assisted Low
1876 b4 -12 Passive Low
2029 46 -20 Passive Low
1458 30 -18 Passive Low
1113 33 -20 Assisted High
2262 38 -13 Assisted High
1637 10 -12 Assisted High
2282 8 -16 Assisted High
[1781 [ 39 [ -15 [ Assisted | High |
2360 10 -18 Assisted High
2035 41 7 Assisted High
1799 48 1 Assisted High
2191 40 -20 Assisted High
1974 38 -6 Assisted High
2004 41 -20 Assisted High
2179 49 12 Assisted High
1470 20 -16 Assisted High

Table 2 Example patient label table assessed by a
clinician using a potentiometer [25]. Note that the final
label is at the clinician’s discretion and could be based on
qualitative factors not accounted for in the test.

Prcan, the mean pressure for a game. We fi-
nally pair these game-level summary statistics
with the number of movements performed in
the game (Ny0,), the maximum score in the
game (Score), and the total time spent play-
ing that game during a therapy session (fgqme)-
This transformation from high-resolution data
to game-level summary statistics provides a
much more manageable dataset to which we can
apply the clinician labels. A low ROM patient
(as labeled by the clinician) has little ROM dur-
ing each game throughout a session. Using this
idea, we construct a new dataset from each game

a patient plays during a session, with each row
having a unique (patient ID, session ID, game
ID) tuple. A summary of the data in a given row
in the described dataset is presented in Table 1.

After combining the data into this standard-
ized dataset, the data then requires sanitiza-
tion, analysis, and normalization. To sanitize the
data, we need to fill in missing values, correct
invalid sensor values, and throw out data that
did not represent a meaningful therapeutic ex-
ercise. The main variables with missing values
are: Ruin, Rmaz, and tgeme (game time). For
R,nin and R4z, there is often insufficient data
per patient per game to fill missing data points
with the patient-game average. We used this av-
erage when available and the global mean when
it was not. We used the global minimum value
for missing tgqme (game time) values.

To isolate games with insufficient activity to
draw meaningful conclusions, we restrict the
number of movements, Ny, performed during
a game. A “movement” is any change of direc-
tion recorded in the angle sensor after noise is
smoothed out of the time series. We remove any
activity with fewer than three movements, as
no significant therapeutic exercise can be per-
formed with fewer than three movements (under
assistance from the robotic Motus Hand/Foot).

Exploratory Data Analysis
It is well-known that proper data normaliza-
tion is critical for maximizing model perfor-
mance across machine learning applications and
methods [26]. Knowing the proper normaliza-
tion technique for each feature requires a cur-
sory dataset analysis. In Fig. 3, we show repre-
sentative distributions of the features that will
be input variables for our comparative model
analysis. While some variables are not normally
distributed, assuming the data is normally dis-
tributed is sufficient considering the results [27].
This study seeks to determine if there exists a
key indication variable that is a direct indicator
of stroke classification. We analyze the correla-
tion among the features in our dataset to iden-
tify potential redundancies. Then, we look at the
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Figure 3 Example of the distribution plots for four of the random variables separated by the class label from the
clinician. Subsequently, random variables are distributed normally, which is crucial for using the z-score when

principal component decomposition [28] to see if
the variation in the data can be meaningfully re-
duced to a lower dimensional space.

Correlation Matrix
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Figure 4 The correlation matrix does not include key
variables such as Patient ID, Session ID, Game ID, and
Start Time. Importance in dimensionality reduction
based on a greater than 0.9 threshold. As seen above,
Ffler and Fegt are highly negatively correlated.
However, these variables were both used in the
analysis.

The correlation matrix for the feature set, con-
structed by computing the correlation between
each pair of features in the dataset, is shown

in Fig. 4. Because a correlation matrix points
to potential relationships between features, it
can indicate the feasibility of dimensionality re-
duction when preparing a dataset for building
a classifier. If two variables are highly corre-
lated, i.e., Cor(X,Y) > 0.9, it suggests that we
can drop one of those variables from our anal-
ysis [29]. There exists a strong negative corre-
lation between Feyy and Flpeq, but intuitively,
we should not drop either one of the variables
in the analysis individually. The correlation be-
tween the game pressure mean, P,,cqn,, and game
pressure max, Py, 4., with the value of 0.80, indi-
cates that the Motus Hand or Foot applied more
pressure on average in each session; however, be-
cause this correlation fails to surpass the thresh-
old of 0.90 we do not drop either variable. Simi-
larly, the correlation (0.60) between game time,
tgame and game score, Score, is intuitive: the
longer a patient plays a game, the higher their
score. Unfortunately, this correlation also does
not meet the threshold for exclusion in the final
feature set. Given the inherent redundancy of
a correlation matrix, Cor(X,Y) = Cor(Y, X),
it suffices only to consider the upper triangular
portion of the matrix.
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Figure 5 Depiction of the principal components with
the explained variance ratio. As shown, 95% of the
explained variance is contributed by all principal
components. As a result, all variables are used in the
machine learning model for the analysis.

Another informative approach for analyzing
the potential for dimensionality reduction in
a feature set is principal component analysis
(PCA). Principal components are new variables
constructed as linear combinations of the ini-
tial variables. These particular linear combina-
tions ensure that the new variables (i.e., prin-
cipal components) are uncorrelated and that
as few components as possible contain most of
the information from the initial variables. Ex-
plained variance is a statistical measure of how
much variation in a dataset is attributable to
each principal component (eigenvectors) gener-
ated by the PCA method [30]. Explained vari-
ance thus allows us to rank the components in
order of importance and to focus on the most
important ones when interpreting the results of
our analysis.

In Fig. 5, we show the explained variance
each principal component contributes to the to-
tal variation in the feature set. No component
can be described as dominant, as none accounts
for more than 20% of the variance in the initial
data set. Given this and the results from our

correlation analysis, we can conclude that all 11
variables are needed for the analysis.

Model Description
Here, we provide a brief overview of the models
compared in the Results.

Logistic regression is a classical statistical
technique for binary classification. The tech-
nique consists of mapping the probability of an
event happening to a logistic curve with the
model inputs as dependent variables. Logistic
regression is still widely used and is a common
first model when performing classification be-
cause it is easy to implement and interpret.

Gradient Boosting Decision Tree (GBDT) is a
widely-used machine learning algorithm due to
its efficiency, accuracy, and interpretability [19].
In essence, the algorithm uses smaller “weaker
classifiers” with a number of leaves. By taking a
weighted average of these several “weaker clas-
sifiers,” we then can construct a “stronger clas-
sifier” [31]. By training several weaker models,
this process is known as AdaBoosting. It results
in a stronger model by adding more leaves to the
decision tree and taking a weighted combination
of these weaker models, where the weights are
determined by the performance [32].

The Deep Feed-Forward Neural Network (DNN)
is a high-performance deep learning model with
varying hidden layers. Several architectures were
tested on the training dataset to see if there
was an increase in performance by adding hid-
den layers (from four to eight) or a reduction in
nodes in each input layer [33]. The reLU activa-
tion function was implemented into the model
instead of the sigmoid function. Both were tried.
Accuracy results from the computational exper-
iment could surpass 80%, regardless of adding
more layers, changing the hidden layer input
size, or changing the activation function. The
DNN used in the accuracy score of Fig. 6 has
three hidden layers with the input size of the
hidden layers as (8,5, 8), respectively.

The Extra Trees Classifier (ETC) is an ensem-
ble learning method for classification. Ensemble
learning is a machine learning technique that
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combines the predictions of multiple individual
models to produce a more accurate and robust
final prediction. The basic idea is to train multi-
ple models independently, each with a different
algorithm or set of hyperparameters, and then
combine their predictions at the end [34]. This
is similar to the AdaBoosting concept with light
gradient boosting, where models can be com-
bined by averaging or weighting their predic-
tions [35]. The model uses entropy as the split-
ting criterion for the trees, with 100% of the
features considered at each split. The maximum
number of leaf nodes for each tree is 87,17, and
the model is comprised of 42 trees [35].

Results

Our computational experiments compare the
performance of different machine learning meth-
ods and find the best model for identifying
stroke residual severity. The original harmonized
dataset (described in Table 1) contained all the
scores, the minimum and maximum ROM, and
minimum and maximum pressure, and we took
the maximum score per game per session. Be-
cause of the smaller dataset, the training and
testing were split on the 80/20 principle, where
20% of the data was the testing data.

Table 3 shows a 10-fold cross-validation of each
machine learning classification algorithm with
Fig. 6 as a visual display of a single accuracy
measure. k-fold cross-validation is used to ver-
ify that a high-accuracy model is not necessar-
ily overfitting the training data. The data set
is then randomly divided into 10 different sub-
sets, or “folds” [36]. Each of these folds is then
used as the training data, while another is used
as the testing data for fitting a new model. We
then take the mean and standard deviation of
the model accuracy across the 10 folds.

Figure 7 presents the confusion matrix of each
of the supervised learning methods. Generally, a
confusion matrix is used to represent the algo-
rithm’s performance visually. Each row of the
matrix represents the instances in an actual
class, while each column represents the instances

in a predicted class, or vice versa. We represent
the percentage over the exact numeric number
for display purposes. Three performance met-
rics come from the confusion matrix: precision,
recall, and the F1l-score. Accuracy measures the
proportion of predicted positives that are truly
positive. Recall measures the proportion of pre-
dicted negatives that are truly negative. The F1-
score is the harmonic mean of the precision and
recall [23]. In this case, this is macro-averaging
(treating all classes equally important). A full
breakdown of the performance measures (pre-
cision, recall, and Fl-score) is shown in Table
4. Tt is important to notice that while the Ex-
tra Tree Classifier has a comparable accuracy
(picking the correct label) with the Light Gra-
dient Boosting (LGB) method, LGB performs
reliably better than all of the other models when
also weighing false positives and false negatives
(precision, recall, and Fl-score). Remarkably,
the LGB model best fits the dataset with more
than a 50% improvement compared to the clas-
sical method, such as the logistic regression.

Classifier Accuracy Scores

Extra Trees

Log Reg

DNN_
0.0 02 08 1.0

04 06
Accuracy Score

Figure 6 Accuracy score for each machine learning
model. The LGB and Extra Trees Classifier have the
greatest accuracy score. See Table 3 for the depiction
of the cross-validation to prevent over-fitting [36].
Note that accuracy alone is not the best illustration for
the performance of a machine learning model. LGB is
chosen as the final model in extension for future work.

Discussion

We have demonstrated that machine learning
can identify stroke residual severity. We have
addressed several challenges arising in health-
care applications of machine learning, such as
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Table 3 10-Fold Cross-Validation Mean Scores with
Standard Deviation

[ Classifier [ Mean | Std |
[ Extra Trees [ 96.40% [ 0.4% |
[ Light Gradient Boosting | 94.0% | 0.4% |
[ Neural Network [ 71.70% [ 0.7% |
[ Logistic Regresssion [ 61.20% [ 0.5% |
Table 4 Performance Measures
[ [ Precision | Recall [ Fl-score ]
Extra Trees
Low 95.44% 92.83% 94.12%
High 94.46% 91.10% 92.75%
No 94.55% 97.04% 95.78%
LGB
Low 96.80% 95.61% 96.20%
High 96.49% 94.97% 95.73%
No 96.70% 97.83% 97.26%
DNN
Low 74.34% 64.94% 69.32%
High 61.93% 28.27% 38.82%
No 71.64% 87.71% 78.86%
Log Reg
Low 59.61% 37.61% 46.12%
High 48.77% | 8.27% | 14.15%
No 61.71% 89.42% 73.02%

processing data that contains different physical
quantities, errors in sensory data, and ambigu-
ous classifications based on human error.

In previous studies, the algorithms most fre-
quently used among the included models were
linear and logistic regressions, confirming a
preferable choice toward more conventional and
interpretable methods rather than more com-
plex and advanced ones [37, 38]. Unfortunately,
with the nature of our data, these methods
presented with poor accuracy (less than 80%),
and consequently, we considered different ap-
proaches. We showed that the LGB method pro-
vides substantially high accuracy, albeit on a rel-
atively small dataset. The method provides ad-
ditional advantages that make it an ideal classi-
fier for online autonomous stroke residual sever-
ity classification: it is an easy model to transfer.
It requires (relatively) little computational re-
sources.

Light Gradient Boosting
5 12 81 3000
T
2500
— 2000
(]
el 12 907 36
<- - 1500
- 1000
2 55 21 .
High Low
Predicted
Logistic Regression
3000
5 797 52 1270
I 2500
2000
£
38 200 79 676 _ 1500
<
- 1000
2 340 31 | s00
High Low No
Predicted
Figure 7 Confusion Matrices for LGB and Logistic
Regression. Considering the false negative column of
the No classification, it is seen that the LGB model
greatly improved this classification. This is especially
important when classifying a patient as having No
stroke severity when they are actually a High severity.
Mis-classifications can be particularly dangerous,
ranging from providing inadequate therapy to a
high-range-of-motion patient to injuring a
low-range-of-motion user with therapy designed for a
high-range-of-motion user.

Building an expanded and more sophisticated
dataset remains an area of further study. Real-
time processing of sensor data allows a classifier
to engage with a user online and recognize and
classify subtle changes in their motor function.
Subsequently, an up-to-date understanding of a
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Light Gradient Boosting Classification Report
Low 96.80% 95.61%

High 96.49% 94.97%
No 96.70% 97.83%
96.70% 96.70%
96.6%
96.70% 96.70%

recall

95.73%
97.26%
96.70%
96.40%
96.70%

f1-score

0.97

accura
ccuracy  0.96

macro avg

weighted avg

precision

High 48.77% 8.27% 14.15%

No 61.71% 89.42% 73.02%
60.96% 60.96% 60.96%
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Logistic Regression Classification Report
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Figure 8 Classification Report for Light Gradient
Boosting v.s. Logistic Regression to measure the
model performance based on each class’s accuracy,
macro average, and weighted average. As shown, the
LGB model is 73% better in terms of accuracy and
F1-score compared to the logistic regression model.

Feature Importances Light Gradient Boosting

Score
Pmean
Pmax
Pmm
tgame
Rmax
Rmm
Nmov
Fext
Fﬂex

0 1000 2000 3000 4000 5000 6000 7000

Figure 9 Feature Importances of each model
displaying which variables contribute the most to
the model. As shown, the F.;; and Fe,
contribute most to the model. Here, we also see
that the peripheral type (Hand or Foot) made the
least. This could be because only two patients
used the foot as a lower extremity. Interestingly,
the score variable contributed little compared to
the other variables in contrast to one's intuition.

patient’s motor function needs allows a clinician
(AI or otherwise) to prescribe personalized, tar-
geted interventions that will be the most im-

pactful. Real-time understanding of a patient’s
needs coupled with an in-home robotic therapy
device like the Motus Hand/Foot allows imme-
diate feedback. An Al in the therapeutic games
can detect patient needs like fatigue over the
course of a therapy session and adapt its strat-
egy accordingly.

Conclusion

Autonomous classification is becoming more im-
portant for successful rehabilitation as rehabil-
itation begins to move out of the clinical set-
ting. Still, it faces challenges with the accessibil-
ity and volume of appropriate clinical data for
training models and model access to user data
for classification.

By leveraging the in-home stroke rehabilita-
tion robotics provided by the Motus Hand and
Motus Foot, we have made significant progress
in addressing these issues that prevent adequate
training of an autonomous classification model.
With the data collected from self-guided in-
home therapy sessions, we could train a clas-
sification model to identify the stroke residual
severity in 33 patients. We compared four differ-
ent models: Extra Trees, Light Gradient Boost-
ing Method, Deep Feed-Forward Neural Net-
work, and Logistic Regression, finding the Light
Gradient Boosting Method to outscore the other
three with an average Fl-score of 94%. The
Light Gradient Boosting Method is a partic-
ularly powerful model for this case because it
combines interpretability and portability.

Because our model relies only on therapy ses-
sion summary statistics, the proposed method is
expected to be successful when applied to a wide
range of rehabilitation data sets of similar sizes.
Once trained, the model is highly portable and
can be integrated into similar rehabilitation set-
tings to provide an autonomous real-time clas-
sification of stroke residual severity. Addition-
ally, when paired with something like the Motus
Hand and Motus Foot technology, our classifier
provides the opportunity to develop personal-
ized training based on the stroke residual sever-
ity of the individual and adapt the therapy ex-
ercises to each patient’s needs. The efficacy of
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real-time classification and adaptation remains
a subject of future study.
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