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Abstract—We consider networks whose topology changes in
time according to a stochastic rule. While the literature gives
insight into the effects of fast stochastic connections, little is
known about the effects of slower switching on the evolution of a
network. We review recent analytical results on convergence prop-
erties of fast switching dynamical networks, including bounds on
the probability of converging towards an attractor of a multistable
network. We also discuss the advantages of slower switching over
fast switching, and consider an example in which slow switching
provides opportunities for network synchronization while fast
switching does not. It is shown that there is an optimal window
in which the switching frequency causes an unstable system to
stabilize.

I. INTRODUCTION

Networks of dynamical systems are common models for
various types of systems across many disciplines, including
physics, engineering, chemistry, biology, and even the social
sciences. The best known examples (and most studied) in-
clude Internet routers, genetic networks, ecological networks,
neuronal networks, and communication/social networks. A
great deal of attention has been focused on examining the
interconnectedness of the dynamical properties of the indi-
vidual nodes and those of the network topology. Specifically,
researchers have studied the interplay between these network
characteristics as they apply to causing synchronization within
the network, as synchronization is a key property among both
biological and technological networks (as it is observed in the
field and mathematical models). Given the already complex
nature of the issue, most studies have looked at networks
whose connections are fixed in time, or are governed by a
strict dynamical rule. Only very recently researchers have
considered networks with topology that evolves in time based
on a deterministic or stochastic rule [1]–[15]. This is currently
a hot research topic due to its potential in a variety of emerging
applications.

In many engineering and biological networks, the individ-
ual nodes that compose the network interact only sporadically
via short on-off interactions. Packet switched networks such
as the Internet are an important example. To model realistic
networks with intermittent connections, a class of dynami-
cal networks with fast on-off connections, called “blinking”
networks, was introduced in [1], [2]. These networks are
composed of oscillatory dynamical systems with connections
that switch on and off randomly; the switching time is fast,
with respect to the characteristic time of the individual node

dynamics. It was proved in [1] that global synchronization
occurs almost surely in a blinking network, provided that
coupling strengths are strong enough and the switching time
of blinking connections is fast.

This work focuses on the mathematical analysis and mod-
eling of dynamical networks whose coupling or internal pa-
rameters stochastically switch on and off, on a time scale that
is not necessarily fast. We review the recent results [1]–[5]
on blinking networks and study dynamical properties of a
switching network as a function of the switching frequency,
within and beyond the fast-switching limit.

II. ON-OFF DYNAMICAL NETWORKS: FAST SWITCHING
AND BEYOND

We consider the asymptotic dynamics of the general
continuous-time dynamical network with identically dis-
tributed independent random switching variables. The general
equation for the model network of n nodes has the following
form:

dxi
dt

= Fi(xi) +

n∑
j=1

εijgij(t)Exj , (1)

where the dynamics of the individual nodes are governed by
Fi(xi), and F is a set of differential equations that act on the
state vector, xi. gij is the component of G, the n × n zero
row-sum, connectivity matrix (Laplacian), that represents the
possible node-to-node connections (switches). E projects the
coupling onto the appropriate variable and εij is the coupling
strength between the i-th and j-th nodes. Building on the
theory established in [3], [4], we replace the non-zero entries
of G in the following manner, the i-jth entry (where i 6= j) of
G, gij , is replaced with sij . We shall call this new matrix G̃.
sij is a binary function that is either {1} with probability p
or {0} with probability 1− p, and is then chosen again (with
the same probabilities, p and 1 − p respectively) after some
time τ . To maintain the symmetry of G̃, we set sij = sji, and
lastly, we point out that the diagonal elements of G̃ are still
chosen to make G̃ a zero row-sum matrix. In simple terms, we
replace the edges in the graph represented by G with edges
that blink on and off randomly at discrete intervals of length τ .
The resulting graph at any time t is given by an Erdös-Rényi
graph of n vertices. The existence of an edge from vertex j
to vertex i 6= j is determined randomly and independently of
other edges (switches) with a given probability p. Thus, every
switch in the network is operated independently, according to



a similar probability law, and each switch opens and closes in
different time intervals independently. It is important to note
that we are considering a stochastic schematic such that there is
the possibility of a connection between any two nodes, which
is not always the case. One can decide which nodes they want
allow to be connected, and assign gij accordingly. Figure 1
gives an example of a “blinking” graph.

Fig. 1. Graph at two different time steps that fall in different discrete
intervals (recall the intervals are each of length τ ). In this graph, edges
could be between any two edges, and the probability of there being
an edge between two nodes is p = 0.5, and the coupling strength
along each edge is ε. In this example, τ = 0.1, which means that the
graph reconfigures itself after 0.1 time has passed.

Fig. 2. The graph of an averaged system, where there is an edge
between every node (10 in this example) in which the coupling along
each edge is just pε.

If switching is fast compared to the oscillator’s intrinsic
time scale, it is natural to expect the switching system to
follow the averaged system, which is obtained from taking
the expectation of all of the stochastic variables (sij). This
amounts to replacing the non-zero entries of Gij (i 6= j) with
p and assigning the diagonal elements that preserve the zero
row-sum property of G. We denote the averaged system Φ.
Conceptually, this equates to connections between nodes that
are always present, but that are weaker than ‘on’ connections
(as a connection in Φ has coupling pε and a ‘on’ connection
in F has coupling ε) (see Fig. 2).

The relation between the dynamics of the stochastically
blinking network and its averaged analog is a non-trivial prob-
lem and a substantial contribution to its solution has been made
in the previous work [1]–[6], [9]. While averaging is a classical
technique in the study of nonlinear oscillators, averaging for
blinking systems needs some special mathematical techniques
for obtaining rigorous convergence proofs. Such techniques

have been developed for synchronization of blinking networks
of chaotic dynamical systems [1] and for the convergence of
the blinking network to an attractor [2]–[5].

It was proven [1], [6], in different contexts, that switching
networks (1) of coupled identical oscillators can synchro-
nize even if the network is insufficiently coupled to support
synchronization at every instant of time. In particular, it
was rigorously proven in [1] that, for almost all switching
sequences, the threshold for complete synchronization in the
blinking network is the same as the threshold in the averaged
model, where the remaining links are constant, with value pε.
In other words, the set of on-off shortcut switching sequences
that fail to force total synchronization has probability zero. For
this property to be true, the switching time τ must be much
smaller than the characteristic synchronization time Tsyn of
the network. This allows the use of averaging. The explicit
bound for the switching time τ that satisfies this requirement is
C1 exp

{
−C2Tsyn

Nε · 1τ
}
< 1 where C1 and C2 are functions of

the static network topology and the dynamics of the individual
node (their explicit dependences along with Tsyn are given in
[1]). The switching period τ appears only in the dominator of
the exponent. Therefore, the left-hand side of the inequality
decreases rapidly when τ decreases and the inequality can
always be satisfied for small enough τ.

The proof for global stability of complete synchronization
in network (1) involves the construction of a Lyapunov func-
tion for the difference (transverse) oscillators’ variables that
decreases along solutions of the blinking system. Actually,
because of the stochastic nature of the switching, this is not
always true. The Lyapunov function may increase temporar-
ily, but the general tendency is to decrease. Switching is a
stochastic process, therefore, the convergence properties also
have a probabilistic flavor. This can be expressed by showing
that after a certain time the Lyapunov function decreases with
high probability [1], [4] as long as the switching frequency is
sufficiently high.

In [3]–[5], rigorous theory for the behavior of stochastically
switching networks that blink rapidly was developed. There are
four distinct classes of switching dynamical networks. Two
properties differentiate them: single or multiple attractors of
the averaged system and their invariance or non-invariance
under the dynamics of the switching system. In the case of
invariance, one proves that the trajectories of the switching
system converge to the attractor of the averaged system with
high probability. In the non-invariant single attractor case,
the trajectories rapidly reach a ghost attractor and remain
close most of the time with high probability. In the non-
invariant multiple attractor case where the averaged network
is multistable and one of its attractors is not shared by the
switching network, the trajectory may escape to another ghost
attractor with small probability [3], [4]. The developed theory
allows deriving explicit bounds that connect the probability
of converging towards the ghost attractor, the switching fre-
quency, and the chosen initial conditions [3]–[5]. This theory
and its application to specific networks will be reviewed in the
talk.

There are circumstances for which not converging to the
averaged system is favorable, and the present theory is not able
to make definitive claims about the behavior of the stochastic



Fig. 3. Transversal Lyapunov Exponent for the stability of synchro-
nization in the 10-node network of Rössler systems, both averaged
(light) and static (dark). Note that increasing the coupling strength,
beyond a critical coupling strength ε∗ on the right side of the stability
well, makes synchronization unstable [16].

system beyond fast switching. This leads us to explore the
effects of not-fast-switching (where τ is not necessarily small)
on the dynamics of the network.

III. BEYOND FAST SWITCHING: AN EXAMPLE

We consider a network of ten coupled oscillators, whose
individual dynamics are governed by the Rössler equations
in the chaotic regime coupled through the x variables. The
blinking system is given by (2).

ẋi = −(yi + zi) +
n∑
j=1

εijsij(xj − xi)

ẏi = xi + ayi
żi = b+ zi(xi − c)

(2)

The static equivalent to the network we are considering (and
therefore, the basic structure of the averaged system) resembles
the complete graph of ten vertices, K10, see Fig. 2. Synchro-
nization in a network of x-coupled Rössler systems is known
[16] to destablize after a critical coupling strength ε∗, which
depends on the eigenvalues of the connectivity matrix, G. For
our uncoupled, not-averaged system, we turn to the Master
Stability Function [16] to give us an idea for the value of
ε∗. In the averaged system we set pε∗1 = ε∗, and see that
the critical coupling for the averaged system (ε∗1) is just the
critical coupling for the static, non-averaged system over the
probability of having an edge in the stochastic system, ε∗1 = ε∗

p
(see Fig. 3).

Before delving into the exploration of “not-fast-switching,”
we must first discuss the invariant attracting set of our network
(both stochastic and averaged). The invariant set is a three
dimensional manifold, characterized by xi = xj , yi = yj , and
zi = zj for i, j = 1, 2, . . . , n. We refer to this as the synchro-
nization manifold, and the dynamics along the manifold are
characterized by the the dynamics of the uncoupled system.

We find that the system behaves like the averaged system,
even close to the critical value ε∗ ≈ 0.9, for τ ≤ 0.01. Notice
that for all values of τ on the range τ ∈ [0.1, 3] we observe
synchrony for ε = 0.8, which is in the synchrony window

Fig. 4. The effects of varying τ for three different coupling strengths,
ε = 0.8, ε = 1, and ε = 1.2. These are coupling strengths for
which the averaged system is stable, barely unstable, and unstable
respectively (cf. Fig. 3). Notice the bell-shaped curve corresponding to
an optimal range of non-fast switching 0.6 < τ < 2.2 (“the window
of opportunity”), where synchronization in the stochastic network
becomes stable with high probability, whereas synchronization in
the corresponding averaged system is unstable (ε = 1). Probability
calculations are based on 1000 trials.

(the stability well) seen in Fig. 3. What is startling about this
observation is that there is synchrony even for τ = 3, which
is somewhat unexpected, because the individual nodes spend a
fair amount of time uncoupled. Looking further, we consider
a wide range of values for τ in Fig. 4 and see that for a
value of ε > ε∗, we can observe synchrony in the stochastic
system, even when synchrony is not present in the averaged
system. We find that this optimal window for τ is actually
quite large, with synchrony appearing with a high probability
(PSynchrony > 0.5) around τ = 0.6. Moreover, we see that
the system synchronizes consistently until around τ = 2.2
While for τ > 2.5, we see that the system is once again
unstable. If the system spends a large portion of its time with
either coupling that is destabilizing, or entirely uncoupled.
Both of these scenarios would result in a system that fails
to synchronize. This gives us the impression that making the
system stochastic, in some way, reforms the graph given in
Fig. 3. We then observe that for ε = 1.2, which corresponds
to the ∇-laden curve in Fig. 4, that there is synchrony for no
values of τ in the range that we consider. While this tells us
that for the network topology we are considering, there is a
critical ε∗ such that no switching frequencies can synchronize
the system.

IV. CONCLUSIONS

An important research problem is to develop a rigorous
theory for understanding and dynamical networks beyond fast
switching. We have used an example to show that connections,
that are only present with some probability p in a complex net-
work, can stabilize synchronization even in a normally unstable
regime. We have explored the possibilities when the time scale
for the stochastic process does not approach 0, and showed
that so call “slow switching” or “not-fast-switching” can be
favorable, compared to fast switching, when one does not want
to follow the dynamics of the averaged system. We have also
shown that switching cannot be too slow, as this can make the
system even more unpredictable. This gives the impression
that there is some window for each system for which we
have a sense of “controlled unpredictability.” Moreover, this



phenomenon also seemed to pop up in [5] when we were
analyzing an entirely different system whose parameters blink
stochastically (i.e, not a network with stochastic connections).
We named this controlled unpredictability, “windows of oppor-
tunity,” to further emphasize that there seem to consistently be
favorable conditions in which the stochastic and deterministic
parameters match up appropriately, and allow the system to
behave favorably, against all odds.

While the numerical results alone give us plenty of insight
as to the effects of stochastic coupling in dynamical networks
(and how stochastic connections can actually be favorable
to static ones), we are currently working on developing an
analytical approach to this problem. Namely, examining (i)
what creates this phenomenon of synchrony in systems that
are unstable when the connections are static; (ii) the role the
network topology in the averaged system in how it effects
the possibilities present in the stochastic system. Are there
topologies for which there is an optimal value τ∗ for which
the stochastic system synchronizes consistently for any value
of ε, even when the averaged system has a finite window (ε ∈
[ε1, ε2]), outside of which there is no synchrony? What is the
optimal switching frequency and rewiring strategy for a desired
performance objective? What are critical feedback mechanisms
linking the adaptation of complex network structure and dy-
namics of switching networks? In particular, can the network
topology be designed to vary, according to a Markov stochastic
process, such that the (multistable) network converges to the
desired mode with high probability that can be explicitly given
apriori? The work which gives explicit analytical insights into
these complicated issues is in preparation.
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