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The synchronous behaviour of interacting communities is studied in this paper. Each community is
described by a tritrophic food chain model, and the communities interact through a network with arbitrary
topology, composed of patches and migration corridors. The analysis of the local synchronization proper-
ties (via the master stability function approach) shows that, if only one species can migrate, the dispersal of
the consumer (i.e., the intermediate trophic level) is the most effective mechanism for promoting synchro-
nization. When analysing the effects of the variations of demographic parameters, it is found that factors
that stabilize the single community also tend to favour synchronization. Global synchronization is finally
analysed by means of the connection graph method, yielding a lower bound on the value of the dispersion
rate that guarantees the synchronization of the metacommunity for a given network topology.
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1. Introduction

In the last decades, many plant and animal populations have been shown to synchronize (i.e.,
to behave in unison) over large areas. Examples are aphids and butterflies [24,33,59], moths
[30,36,41], fish [47], crabs [27], birds [13,49], voles and mice [9,28], hares [47], squirrels [47,50],
sheep [23], arctic herbivores [45], early blooming forest floor species [44], as well as many others
[32,37]. Synchrony is the consequence of two independent factors: the dispersal of populations
among patches and the existence of common meteorological driving forces (Moran effect). The
theory is well established; see [10,29,42] for dispersal, [54] for the Moran effect, and [16] for
the mixed case.

The contribution that first revealed that populations can synchronize over large distances was
the study of fur returns of Canadian lynx to the Hudson Bay Company [20]. Since then, a great
effort has been devoted to this case study (see [12,21,40,50,57,58], just to mention a few), with
some of these contributions supporting the idea that the synchronization of Canadian lynx is
primarily due to global environmental fluctuations. However, some recent results [10,38,39] have

*Corresponding author. Email: rinaldi@elet.polimi.it

ISSN 1751-3758 print/ISSN 1751-3766 online
© 2009 Taylor & Francis
DOI: 10.1080/17513750802638381
http://www.informaworld.com

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
R
i
n
a
l
d
i
,
 
S
e
r
g
i
o
]
 
A
t
:
 
1
2
:
5
6
 
3
1
 
A
u
g
u
s
t
 
2
0
0
9



498 I. Belykh et al.

shown that networks of tritrophic food chain models can easily give rise to synchronization in the
absence of a common meteorological driving force, provided there is a sufficiently high dispersal.
This result and the discovery of a high gene flow of the Canadian lynx over distances of 3000 km
[56] suggest that, most likely, migration is a key factor for the spatial synchronization of the lynx
population.

This is why we concentrate in this paper on the case in which dispersal is the only cause of
synchrony. Thus, our metacommunity is characterized by three basic elements: a graph in which
nodes i and arcs (i, j) represent patches and dispersal flows between patches; a model describing
the dynamics of the population vector n(i) in patch i when isolated from the other patches; the
dispersal rates of each component of the population vector.

Depending upon the metacommunity model, various forms of synchronization are possible.
The strongest one is complete synchronization, which occurs when a synchronous solution
n(i)(t) = n(j)(t) for all i �= j and for all t exists and is stable. A slightly weaker form of synchro-
nization, called almost-complete synchronization, requires that the maximum difference between
populations is small. Much weaker but quite interesting forms of synchronization are phase
synchronization [11,14,38], out-of-phase synchronization [18,55], and intermittent synchroniza-
tion [15,25]. In general, when the parameters of a metacommunity are not too far from the
values giving rise to complete synchronization, i.e., when the parameters are in the so-called pre-
synchronization region, some weak form of synchronization is present and is revealed by various
spatio-temporal patterns.

In this paper, we first show how the available general theory of local synchronization [1,29,42]
can be used to discuss networks of food chains composed of resource, consumer, and predator
populations. The patch model we use is a standard tritrophic food chain model and the main result
is that the dispersal of the consumer population is much more effective than those of the other
populations in promoting synchronous behaviours. Then, we show how factors like competition,
interference, and cooperation among consumers or predators can be taken into account in order
to detect if they promote synchronization or if they oppose it. The results are consistent with a
general principle that stabilizing factors promote synchronization. Finally, the analysis is extended
to the study of global synchronization through the use of the general available theory [4–7] and
the role of stabilizing factors is assessed.

2. The metacommunity model

The metacommunity we consider in this paper is composed of N identical patches connected
through corridors, along which migration occurs in both directions. Each patch i (i = 1, 2, . . . , N)
is occupied by p populations whose abundances are the components of a p-dimensional vector
n(i). The metacommunity is described by

ṅ(i)(t) = f (n(i)(t)) + d
∑
j∈Si

H(n(j)(t) − n(i)(t)), i = 1, 2, . . . , N, (1)

where ṅ(i)(t) = f (n(i)(t)) is the patch model, namely the equation governing the dynamics of an
isolated patch; Si is the set of patches directly connected to patch i (i.e., the neighbourhood of i);
d is dispersal; and H = diag[h1, h2, . . . , hp] (with hl ≥ 0 for all l, and, without loss of generality,
maxl hl = 1) is the dispersion profile, i.e., a constant diagonal matrix specifying the propensity
of dispersing of all components of the population vector.

A particular solution of Equation (1), called synchronous solution, is characterized by

n(1)(t) = n(2)(t) = · · · = n(N)(t) ∀t. (2)
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As a matter of fact, when Equation (2) holds, all the dispersal flows dH(n(j)(t) − n(i)(t)) in
Equation (1) vanish for all t , and the dynamics of each patch is simply governed by ṅ(t) = f (n(t)).
Notice that this is possible thanks to the assumption that all patches are identical. When
Equation (2) holds, the trajectory of system (1) is confined to a p-dimensional linear manifold
� called synchronization manifold. It is of utmost importance to assess whether the synchronous
solution (2) is stable, i.e., whether system (1) converges to (2) from any nearby initial state (in
which case we say that the metapopulation displays local synchronization) or from any state
(global synchronization). In the following two sections, we study these two problems with ref-
erence to thitrophic food chain metacommunities, where the components x, y, and z of the
three-dimensional population vector n are the abundances of resource, consumers, and predators
in the patch. The dynamics of the three populations in an isolated patch are described by

ẋ = rx
(

1 − x

K

)
− a1xy

1 + a1b1x
,

ẏ = e1
a1xy

1 + a1b1x
− m1y − a2yz

1 + a2b2y
,

ż = e2
a2yz

1 + a2b2y
− m2z,

(3)

where r and K are the net growth rate and carrying capacity of the resource, and (ai, bi, mi, ei),
i = 1, 2, are the attack rate, handling time, mortality rate, and efficiency of consumers (i = 1) and
predators (i = 2). Model (3) is known as the Rosenzweig–MacArthur model since it is the natural
extension to three trophic levels of the model proposed long ago by Rosenzweig and MacArthur
[53] for ditrophic food chains. Model (3) resembles some of the models proposed for the study of
the Canadian boreal forest [10,31] but is slightly simpler than them and has been deeply studied. In
particular, it can have a chaotic behaviour [26,34], but in relatively narrow ranges of its parameter
space [35]. Here the parameters are fixed at the following values (already used in the literature as
reference values):

r = 1.15, K = 1.07,

a1 = 5, b1 = 0.6, m1 = 0.4, e1 = 1,

a2 = 0.1, b2 = 20, m2 = 0.0037, e2 = 1,

(4)

Figure 1. The tea-cup chaotic attractor of the Rosenzweig–McArthur model (3), (4).
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because for these values the model has a chaotic attractor (Figure 1) and the discussion of the
possibility of synchronizing the metapopulation by suitably selecting the dispersal d is particularly
interesting.

3. Local synchronization

Through straightforward manipulations, Equation (1) can be rewritten as

ṅ(i)(t) = f (n(i)(t)) − d

N∑
j=1

gijHn(j)(t), i = 1, 2, . . . , N,

where the N × N connectivity matrix G = [gij ] describes the topology of the network composed
of patches and corridors. More precisely, for i �= j , gij = gji = −1 if patches i, j are directly
connected and gij = gji = 0 otherwise, whereas gii = − ∑

j �=i gij is the degree of patch i, i.e., the
number of corridors incident with i. To avoid degeneracies, we assume that any pair of patches is
connected either directly or through a chain of corridors. Thus G is a real, symmetric, irreducible
matrix. In addition, all off-diagonal elements are non-positive, and each row has a zero sum. As
a consequence, the eigenvalues λi of G are real and

0 = λ1 < λ2 ≤ λ3 ≤ · · · ≤ λN.

Given a network, i.e., a connectivity matrix G, the local stability of the synchronization man-
ifold � can be ascertained by looking at the evolution of the differences (n(i)(t) − n(1)(t)),
i = 2, 3, . . . , N , which are described, after neglecting the higher-order terms in the Taylor
expansion, by a p × (N − 1)-dimensional linear system with a time-varying Jacobian matrix
given by

J =

⎡
⎢⎢⎢⎢⎣

∂f

∂n
− d(g22 − g12)H · · · −d(g2N − g1N)H

...
. . .

...

−d(gN2 − g12)H · · · ∂f

∂n
− d(gNN − g1N)H

⎤
⎥⎥⎥⎥⎦ .

Through a suitable change of coordinates based on the eigenvectors of the matrix G, it can be
shown [29,42] that this Jacobian matrix is equivalent to a block-diagonal matrix with matrices
[∂f/∂n − dλiH ], i = 2, 3, . . . , N , on the diagonal. Such matrices describe the dynamics of the
metapopulation close to the synchrony manifold. Thus, if the largest Liapunov exponents of these
matrices, denoted by L[∂f/∂n−dλiH ], are negative, i.e.,

L[∂f/∂n−dλiH ] < 0, i = 2, 3, . . . , N, (5)

then the synchronous solution (2) is locally stable, i.e., the metapopulation synchronizes.
Equation (5) is a condition for local synchronization and, as such, it only guarantees the syn-

chronization of the metacommunity for initial conditions close to the synchronous solution (2).
This implies that, in principle, the existence of unstable invariant sets on the synchronization man-
ifold � could give rise to trajectories diverging from �, even if Equation (5) is met. Moreover,
parts of the synchronous solution (2) which are locally repelling (remember that the Liapunov
exponents are asymptotic averages) could give rise to bursting phenomena, which vanish in nom-
inal conditions but could persist indefinitely otherwise (e.g., when noise is acting on the system
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or a slight parameter mismatch among patches exists) [22] (see also [11] for a general discus-
sion). Having pointed out these criticalities, in the following we will consider Equation (5) as the
condition for local stability.

Given a metacommunity, conditions (5) can be easily checked by using any standard algorithm
(e.g. [46]) for the computation of the largest Liapunov exponent of each time-varying matrix

∂f

∂n
− λidH, i = 2, 3, . . . , N,

where ∂f/∂n is evaluated along a solution of ṅ = f (n). These matrices depend upon the patch
characteristics (patch model f and dispersion profile H ) and upon the product λid. Given f and
H , one can therefore consider the family of matrices

∂f

∂n
− εH,

with ε > 0 and denote by L(ε) the largest Liapunov exponent of each element of the family. The
function L(ε) is known as master stability function (MSF) [42], and is very useful for discussing
the impact of patch characteristics on the synchronization of the metapopulation.

In fact, if the isolated patch is chaotic, as model (3)–(4) is, then L(0) = L̄ > 0 (where L̄ is the
largest Liapunov exponent of the matrix ∂f/∂n), so that the only three types of MSFs that can be
found are the following:

(i) L(ε) > 0 for all ε > 0;
(ii) there exists an ε > 0 such that L(ε) = 0 and L(ε) < 0 for all ε > ε;

(iii) all other cases.

Type i MSFs guarantee that condition (5) cannot be satisfied, i.e., no metapopulation can syn-
chronize even for high dispersal. In contrast, type ii MSFs guarantee that all metapopulations can
synchronize provided the dispersal is sufficiently high, i.e.,

d >
1

λ2
ε. (6)

The threshold value ε/λ2 depends upon the network G through the eigenvalue λ2, which is
very high (λ2 = N ) in fully connected networks and very small in weakly connected ones (e.g.,
λ2 � 1/N2 in a circular lattice), but the threshold also depends upon the patch characteristics
(f, H) through ε. Finally, for a type iii MSF, some (but not all) metapopulations can synchronize
if dispersal can be suitably selected. Generally speaking, there will be one or more intervals where
L(ε) is negative, i.e., intervals

(ε′
1, ε

′′
1), (ε

′
2, ε

′′
2), . . . , with ε′

1 < ε′′
1 ≤ ε′

2 < ε′′
2 ≤ . . . , (7)

such that L(ε′
i ) = L(ε′′

i ) = 0 and L(ε) < 0 for all ε′
i < ε < ε′′

i , i = 1, 2, . . .. Then in all networks
with

λN

λ2
<

ε′′
i

ε′
i

, (8)

for some i, the synchronous solution is stable for

1

λ2
ε′
i < d <

1

λN

ε′′
i , (9)

i.e., synchrony can be lost if dispersal is increased. It is worth noticing that Equation (8) is always
satisfied in fully connected networks, because in that case all positive eigenvalues of G coincide.
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The MSF of model (3)–(4) has been computed for the three dispersion profiles

H I = diag[1, 0, 0],
H II = diag[0, 1, 0],
H III = diag[0, 0, 1],

corresponding to the extreme cases in which only one of the three populations disperses, and the
result, shown in Figure 2, is quite interesting since the MSF is of type i, ii, and iii in cases I, II,
and III, respectively. This means that no metacommunity can synchronize if dispersal involves
only the resource, while any metacommunity can synchronize if only consumers disperse. No
counterexamples have been found to these rules, which, however, should not be taken as theorems.
In contrast, the fact that the MSF is of type iii when only predators disperse is not robust because
type ii MSFs have also been obtained for H = H III by varying the parameters of the patch model.
However, the result shown in Figure 2 is of interest because until now type iii MSFs have been
detected in very few chaotic oscillators [1].

Let us now show how one can detect the impact of a demographic parameter on synchronization.
For this, once the MSF L(ε) has been computed for a reference model (like model (3) with the
reference parameter values (4)), let us indicate with δ a positive variation of a parameter and
recompute the MSF L(ε, δ) for the perturbed model. Thus, L(ε, 0) is the MSF of the reference
model, i.e., one of the three functions described in Figure 2, and L(0, 0) = L̄.

If the reference MSF, L(ε, 0) is of type ii, then, by continuity, the MSF L(ε, δ) will also be of
type ii, provided δ is not too large. In other words, for sufficiently small parameter perturbations,
there exists a function ε(δ) such that L(ε(δ), δ) = 0. The functions L(ε, δ) and ε(δ) are sketched
in Figure 3 under the naive assumption that the MSF depends linearly upon ε and δ. Figure 3(a)
depicts the case of a so-called stabilizing parameter [52] (i.e., a parameter that reduces the Lia-
punov exponent L(0, δ) of a single isolated patch), while Figure 3(b) depicts the opposite case
of a destabilizing parameter (L(0, δ) increasing with δ). Figure 3(a) shows that ε(δ) decreases
with δ, so that the synchronization condition (6) can be satisfied with lower dispersal when δ

increases. For this reason, in the case of Figure 3(a), if the dispersal is fixed, then high values of
δ promote synchronization, i.e., δ is synchronizing. Conversely, in Figure 3(b), the function ε(δ)

is increasing and δ is desynchronizing. The conclusion is that in the case of type ii MSFs, the
synchronizing factors are nothing but the stabilizing factors.

Figure 2. The MSFs of the Rosenzweig–McArthur model (3)–(4) when the only dispersing species is the resource
(H = H I, type i), consumers (H = H II, type ii), or predators (H = H III, type iii).
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Figure 3. The sketch of a type ii MSF L(ε, δ) and of the function ε(δ): (a) δ is stabilizing; (b) δ is destabilizing.

The same conclusion does not hold for MSFs of types i and iii. In fact, if the reference MSF is of
type i, then it remains such for small parameter perturbations δ, so that the synchronization of the
metacommunity is not possible no matter if δ is stabilizing or destabilizing. In the case of type iii
MSFs, let us consider the first interval (ε′

1, ε
′′
1) defined in Equation (7) and, to simplify the notation,

let ε = ε′
1 and ε̄ = ε′′

1 . Then Figure 3 still makes sense for small values of ε and δ, so that the
minimum dispersal needed for synchronization, namely ε(δ)/λ2, decreases (increases) with δ if
δ is stabilizing (destabilizing). In contrast, no relationship can reasonably be established between
stabilizing factors and the loss of synchronization at high dispersal rates, because nothing can be
inferred on ε̄(δ). However, understanding what happens at high dispersal rates is not particularly
relevant in the context of metacommunities because it is known that many (if not all) populations
are characterized by very low dispersal rates.

The results we have just pointed out are very important for various reasons. First, because
they allow one to infer a property of a metacommunity (synchronization) from a property of
a single community (stabilizing or destabilizing demographic parameter). This implies that the
impact of a demographic factor on the emergence of collective dynamics (like synchronization)
can reasonably be conjectured on the basis of observations or experiments performed on a single
patch. Second, the results reinforce a recent analogous conclusion [16], namely that biological
chaos is an obstacle for the synchronization of metacommunities through the Moran effect. In other
words, the idea that stabilizing (destabilizing) factors are synchronizing (desynchronizing) seems
to be valid in general and not only for the case examined in this paper dealing with synchronization
due exclusively to dispersal. Finally, the bridge we have established between local (i.e., patch)
chaos and global (i.e., network) synchronization reinforces an important evolutionary conjecture
[17], namely that biological evolution drives local dynamics towards the edge of chaos and global
dynamics towards weak forms of synchronization.

Obviously, the conclusions drawn from Figure 3, which depicts a naive and simplified interpre-
tation of an MSF, cannot be argued to hold in general, even if the same conclusions can obviously
be obtained (through the implicit function theorem) under a slightly more general assumption,
namely that L(ε, δ) is decreasing with respect to ε and decreasing (increasing) with respect to δ

when δ is stabilizing (destabilizing). Thus, it makes sense to check whether the results derived
from Figure 3 hold for particular classes of metacommunities, and this is, indeed, what we do in
the following for our class of tritrophic food chains.

Instead of studying the effects on synchronization of the parameters appearing in the patch
model (3), we now try to see if some demographic phenomena that are not taken into account in
the Rosenzweig–MacArthur model (3) are synchronizing or desynchronizing. More precisely, we
consider six phenomena, namely competition, interference, and cooperation among consumers
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504 I. Belykh et al.

or predators, and we measure with a small positive parameter δ the relevance of the phenomena.
Obviously, for δ = 0, we obtain model (3) where, indeed, the six phenomena are neglected. For
δ �= 0, one or two equations of model (3) must be modified as specified below.

(1) Intraspecific competition among consumers. In agreement with the derivation of the classical
logistic equation ẋ = rx(1 − x/K) (see resource equation in the absence of consumers),
the intraspecific competition among consumers can be dealt with by introducing an extra-
mortality proportional to y2 in the consumer equation, which becomes

ẏ = e1
a1xy

1 + a1b1x
− m1y − a2yz

1 + a2b2y
− δy2.

(2) Intraspecific competition among predators. Consistently with the previous case, we perturb
only the predator equation, which becomes

ż = e2
a2yz

1 + a2b2y
− m2z − δz2.

(3) Interference among consumers. Interference among individuals feeding on a common
resource is usually taken into account by lowering the functional response of the individ-
uals, as proposed in [2]. Thus, interference among consumers requires to modify the first two
equations of model (3) as follows:

ẋ = rx
(

1 − x

K

)
− a1xy

1 + a1b1x + δy
,

ẏ = e1
a1xy

1 + a1b1x + δy
− m1y − a2yz

1 + a2b2y
.

(4) Interference among predators. Consistently with the previous case, we modify the last two
equations of model (3) in the following way:

ẏ = e1
a1xy

1 + a1b1x
− m1y − a2yz

1 + a2b2y + δz
,

ż = e2
a2yz

1 + a2b2y + δz
− m2z.

(5) Cooperation among consumers. If cooperation enhances predation, we can simply multiply
the consumer functional response by a factor greater than 1, which is here written as (1 +
δy/(y + y0)), where the parameter y0 is fixed (y0 = 0.3 in our numerical analysis). This
means that abundant consumers predate (1 + δ) times more than scarce consumers. Thus, the
first two equations of model (3) must be modified as follows:

ẋ = rx
(

1 − x

K

)
− a1xy

1 + a1b1x

(
1 + δ

y

y + y0

)
,

ẏ = e1
a1xy

1 + a1b1x

(
1 + δ

y

y + y0

)
− m1y − a2yz

1 + a2b2y
.
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(6) Cooperation among predators. Similarly to the previous case, the modified consumer and
predator equations are (z0 = 9 in our numerical analysis):

ẏ = e1
a1xy

1 + a1b1x
− m1y − a2yz

1 + a2b2y

(
1 + δ

z

z + z0

)
,

ż = e2
a2yz

1 + a2b2y

(
1 + δ

z

z + z0

)
− m2z.

In order to make the remaining part of this section more attractive, this is a good point for
conjecturing, on a purely intuitive background, which factors are synchronizing and which are
desynchronizing. For doing this, one can use the idea previously pointed out, i.e., stabilizing
(destabilizing) factors are synchronizing (desynchronizing). Thus, for example, one might imagine
that stronger predators can be more effective in keeping their prey under control, thus avoiding
large fluctuations of the consumer population. This means that one should be inclined to imagine
that factor 6 (i.e., cooperation among predators) should be a stabilizing factor and, hence, also a
synchronizing factor. Before proceeding, the reader is invited to make his/her own guess for each
of the six above factors.

In order to detect the impact of all factors on synchronization, we have systematically computed
the largest Liapunov exponent L(ε, δ) on a 25 × 25 grid for each one of the six factors and
for H = H II (dispersing consumer) as well as for H = H III (dispersing predator). Thus, our
analysis has required the computation of 2 × 6 × 25 × 25 = 7500 largest Liapunov exponents of
a 3 × 3 time-varying Jacobian matrix, which have been computed with a standard algorithm [46].
Obviously, in none of the examined cases the MSF L(ε, δ) is linear in ε and δ (as in Figure 3),
neither it is monotone (recall that, in chaotic regions, there are always thin subregions of regular
behaviour where the largest Liapunov exponent drops to zero). However, the statement stabilizing
(destabilizing) factors are synchronizing (desynchronizing) factors turns out to be true in all cases.
The result of the analysis is that four factors, namely 1, 3, 4, and 6 (i.e., intraspecific competition
and interference among consumers; interference and cooperation among predators), are stabilizing
and hence synchronizing, while the remaining two, namely 2 and 5 (i.e., intraspecific competition
among predators; cooperation among consumers), are destabilizing and hence desynchronizing,
no matter which is the dispersing population. Figure 4 shows one example of the first class,
namely the case of interference among dispersing consumers: the MSF is of type ii and the
two functions L(0, δ) and ε(δ) qualitatively recall those reported in Figure 3(a) even if they are
not monotonically decreasing. However, it is fully justified to summarize Figure 4 by saying that
consumer interference is a synchronizing factor. Similarly, Figure 5 shows the case of intraspecific

Figure 4. The MSF for the case of interference among dispersing consumers (H = H II, factor 3: interference among
consumers).
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506 I. Belykh et al.

Figure 5. The MSF, for low values of ε and δ, for the case of intraspecific competition among consumers when predators
disperse (H = H III, factor 1: Intraspecific competition among consumers).

Figure 6. The MSF for the case of cooperation among dispersing consumers (H = H II, factor 5: cooperation among
consumers).

competition among consumers with dispersing predators. Again the functions L(0, δ) and ε(δ)

resemble only vaguely to those of Figure 3(a) but still the result is that intraspecific competition
among consumers is a synchronizing factor. Finally, an example of a desynchronizing factor is
shown in Figure 6.

4. Global synchronization

In this section, we show how general results on global synchronization can be applied to the meta-
community (1). Most methods for global synchronization of periodic and chaotic oscillators are
based on the eigenvalues of the connectivity matrix and on the dynamics of the single oscillator
[3,8,19,43,62,63]. An alternative approach, called connection graph method (CGM) [4], com-
bines the Liapunov function approach with graph theoretical arguments. The method guarantees
synchronization from arbitrary initial conditions and not just local stability of the synchronous
solution (2).

It is worth noting that if global synchronization is guaranteed for a value of the dispersal d, it
is also guaranteed for all higher values (the proof follows from the Liapunov function argument
discussed in the Appendix; further details can be found in [4]). This is in contrast with local
synchronization which can be lost by increasing dispersal, as shown in case iii of Figure 2. The
CGM states that a value of the dispersal that guarantees global synchronization in a network
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can be predicted from the threshold for global synchronization in the simple two-patch network.
More precisely, the main theorem of the CGM [4] can be formulated for the metacommunity (1)
as follows.

The global synchronization of the metacommunity (1) is guaranteed if the dispersal d exceeds
the value

d∗ = 2d(2)

N
max

1≤k≤m
zk, (10)

where d(2) is a dispersal that guarantees global synchronization of two coupled patches with
the same dispersal profile H , N is the number of patches, and m is the number of corridors in
the network. Given one path Pij from each patch i to each patch j (with i < j), the quantity
zk associated to each corridor k = 1, 2, . . . , m is the sum of the lengths of all the paths Pij

containing corridor k.

The first step is to find the dispersal d(2) that guarantees the global synchronization of two coupled
patches. An analytical derivation of d(2) for the patch model (3)–(4) is given in Appendix.

The second step is to calculate the quantities zk , which only depend upon the network topology.
This calculation is straightforward and can be performed as follows. We first choose one path
Pij from each patch i to each patch j with i < j (typically, the shortest path) and determine
the length |Pij | of the path, i.e., the number of corridors in Pij . Then, for each corridor k of the
network, we calculate the sum zk of the lengths of all Pij ’s containing k. Finally, in accordance
with Equation (10), we determine the corridor with the maximum zk .

For example, for the metapopulation network depicted in Figure 7, assuming d(2) has
already been computed (see Appendix), we only need to calculate zk for the seven corridors
k = a, b, . . . , g in order to obtain the bound (10). For that, let us first choose the paths between
the nodes. Our choice is P12 = a, P13 = ab, P14 = f , P15 = ag, P16 = f ed, P23 = b, P24 = af ,
P25 = g, P26 = bc, P34 = cde, P35 = bg, P36 = c, P45 = e, P46 = ed, P56 = d. Thus, the sum
of lengths of all the paths containing corridor k is

k = a : za = |P12| + |P13| + |P15| + |P24| = 1 + 2 + 2 + 2 = 7,

k = b : zb = |P13| + |P23| + |P26| + |P35| = 2 + 1 + 2 + 2 = 7,

k = c : zc = |P26| + |P34| + |P36| = 2 + 3 + 1 = 6,

k = d : zd = |P16| + |P34| + |P46| + |P56| = 3 + 3 + 2 + 1 = 9,

k = e : ze = |P16| + |P34| + |P45| + |P46| = 3 + 3 + 1 + 2 = 9,

k = f : zf = |P14| + |P16| + |P24| = 1 + 3 + 2 = 6,

k = g : zg = |P15| + |P25| + |P35| = 2 + 1 + 2 = 5,

Figure 7. Example of a network configuration. A set of paths connecting each pair of nodes is the following: P12 = a,
P13 = ab, P14 = f , P15 = ag, P16 = f ed , P23 = b, P24 = af , P25 = g, P26 = bc, P34 = cde, P35 = bg, P36 = c,
P45 = e, P46 = ed , P56 = d.
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so that the maximum of zk is zd = ze = 9. Hence, according to Equation (10), the global
synchronization of the network is guaranteed if d is larger than

d∗ = 2d(2)

6
9 = 3d(2).

The computation of maxk zk for various network topologies can be found in [4–7].
Let us now discuss the connections between local and global synchronization. Since the latter

implies the former, it is obvious that, when searching for global synchronization, one can a priori
exclude case i of Section 3 (see Figure 2). But also case iii can be excluded: as a matter of fact,
even if condition (9) can be met for a given network, the resulting local synchrony is certainly
not global since it is lost by increasing the dispersal d, thus violating the main result of the CGM
(see above).

Therefore, for the metacommunity (1) to be globally synchronizable, it is necessary that the
MSF is of type ii, i.e., L(ε) < 0 for all ε > ε > 0. For the food chain model (3)–(4), we have seen
that this happens when H = H II = diag[0, 1, 0], i.e., when the consumer is the only dispersing
species. But the MSF turns out to be of type ii also when H = H 0 = diag[1, 1, 1], i.e., when
the three populations disperse equally, since it can be shown that in this case L(ε) = L − ε.
The analysis presented in the Appendix actually relates to this latter situation, but can easily be
extended to the case H = H II.

From the above discussion, it is also clear that no relationship exists between ε and d∗, the
lower bounds of the dispersal d guaranteeing local and global synchronization, respectively,
except the obvious condition ε ≤ d∗ (actually, in most cases the value of d∗ resulting from the
Liapunov function approach – see Appendix – is very conservative and thus it is much larger that
ε). As a consequence, when one considers the effects on global synchronization of the parameter
variations (δ �= 0) analysed in Section 3, no conclusions can be a priori drawn just on the basis
of the results obtained for local synchronization. It is certainly reasonable to expect that what
favours the local synchronization should also favour the global one. This is true for factors 1,
3, 4, and 6 (i.e., intraspecific competition and interference among consumers; interference and
cooperation among predators – see also Section 3 and the Appendix), which make both ε and d∗
decrease when δ increases from 0. But the opposite happens for the destabilizing factor 2 (i.e.,
intraspecific competition among predators), which also makes d∗ decrease, whereas ε increases
with δ. This factor, therefore, makes local synchronization more difficult to achieve but enhances
the global one.

5. Concluding remarks

Synchronous behaviour of plant and animal populations over large areas is a well-documented
phenomenon, while the role of all factors involved in it is not fully understood yet. In this paper,
we have studied the problem assuming that each community is composed of three populations
(resource, consumer, and predator) whose dynamics are governed by a standard Rosenzweig–
MacArthur model with parameters in the region of chaotic behaviour. The communities interact
through a network with arbitrary topology, composed of patches – where the communities live –
and corridors – along which migration occurs.

The local and global stability of the synchronous state have been studied. As far as the former
is concerned, the MSF approach [1,29,42] has shown that, under the assumption that only one
species migrates, the dispersal of the consumer is the most effective mechanism for promoting
synchrony. Several factors not included in the Rosenzweig–MacArthur model have also been
considered, such as competition, interference, and cooperation among consumers and predators,
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in order to assess their role in synchronization. The results, generally speaking, say that the factors
stabilizing the single community also tend to favour synchronization. This allows one to infer a
property of the metacommunity (i.e., the effect of a demographic parameter on synchronization)
from a property of the single community (i.e., the effect of the same parameter on the single patch
community).

Global synchronization has been analysed by means of the CGM [4–7], which, given the
network topology, allows one to derive a lower bound for the dispersal rate along corridors that
guarantees synchronization. It is worth noticing that both the MSF approach and the CGM can
be extended to directed networks [7,42], where migration along corridors is possible only in one
direction, thus allowing one to study important problems like those related with seed dispersal
due to wind.

Perhaps more promising, however, is the particularization to the case of slow–fast metacommu-
nities where special forms of synchrony can be studied through the singular perturbation approach
[51]. This would allow, for example, the study of synchronization of insect-pest outbreaks in
forest [30].

Finally, it should be emphasized that our study has not exploited particular properties of specific
network topologies, so that our findings are valid in general. Special attention could be deserved
to networks which are of particular interest. An important example are small-world networks [61]
where the introduction of a few long-range connections (in addition to the corridors connecting
nearby patches) is generally believed to enhance synchronization [1,11,60], although this has been
questioned recently in some specific ecological contexts [48].
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Appendix A. Global synchronization of the two-patch network

In this appendix, we discuss the global synchronization of the metapopulation (1), (3) in the special case N = 2, i.e.,
when there are only two coupled patches. For the sake of clarity, we choose the dispersion profile H 0 = diag[1, 1, 1], i.e.,
we assume that the three populations disperse equally, but the extension of the analysis to the case of generic dispersal
profiles is straightforward. We first need to check the boundedness of the solutions, namely that no trajectories of the
system go to infinity.

A.1 Boundedness of the solutions of model (3)

We show that the analysis of the asymptotic behaviour of model (1), (3) for N = 2 can be restricted to a bounded region
of the positive orthant of the state space because such a region is an absorbing domain, in the sense that all trajectories
enter the domain in finite time and remain in it forever. Two connected patches of the kind (3) are described by:

ẋ(1) = rx(1)

(
1 − x(1)

K

)
− a1x

(1)y(1)

1 + a1b1x(1)
+ d(x(2) − x(1)),

ẏ(1) = a1x
(1)y(1)

1 + a1b1x(1)
− m1y

(1) − a2y
(1)z(1)

1 + a2b2y(1)
+ d(y(2) − y(1)),

ż(1) = a2y
(1)z(1)

1 + a2b2y(1)
− m2z

(1) + d(z(2) − z(1)),

ẋ(2) = rx(2)

(
1 − x(2)

K

)
− a1x

(2)y(2)

1 + a1b1x(2)
+ d(x(1) − x(2)),

ẏ(2) = a1x
(2)y(2)

1 + a1b1x(2)
− m1y

(2) − a2y
(2)z(2)

1 + a2b2y(2)
+ d(y(1) − y(2)),

ż(2) = a2y
(2)z(2)

1 + a2b2y(2)
− m2z

(2) + d(z(1) − z(2)),

(A1)

where e1 = e2 = 1 (see Equation (4)) in order to simplify the notation. Model (A1) is positive, in the sense that
x(i)(0), y(i)(0), z(i)(0) ≥ 0, i = 1, 2, implies x(i)(t), y(i)(t), z(i)(t) ≥ 0 for all t ≥ 0. This can be checked by noting,
for example, that ẋ(1) ≥ 0 when x(1) = 0 and all other variables are nonnegative (the same reasoning can be repeated for
all the other state variables).
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Consider the parameterized function

Vc = x(1) + y(1) + z(1) + x(2) + y(2) + z(2) − 2c,

where c is a constant parameter, and notice that the plane Vc = 0 is partly contained in the positive orthant if c > 0. The
time derivative of Vc along the trajectories of system (A1) is given by

V̇c = ẋ(1) + ẏ(1) + ż(1) + ẋ(2) + ẏ(2) + ż(2)

= rx(1)

(
1 − x(1)

K

)
− m1y

(1) − m2z
(1) + rx(2)

(
1 − x(2)

K

)
− m1y

(2) − m2z
(2),

so that, if m1 > m2 (as in Equation (4)), we can bound V̇c in the positive orthant as follows:

V̇c < rx(1)

(
1 − x(1)

K

)
− m2(y

(1) + z(1)) + rx(2)

(
1 − x(2)

K

)
− m2(y

(2) + z(2)).

Hence, if we fix c at a positive value, i.e., if we take a plane Vc = 0 intersecting the positive orthant, we can conclude
that, on the positive part of the plane where y(1) + z(1) + y(2) + z(2) = 2c − x(1) − x(2), V̇c satisfies the inequality

V̇c < rx(1)

(
1 − x(1)

K

)
− m2(c − x(1)) + rx(2)

(
1 − x(2)

K

)
− m2(c − x(2)).

Trivial computations show that V̇c is negative if c > c∗, with

c∗ = K

4rm2
(r + m2)

2

since, under the above condition, both polynomials rx(i)(1 − x(i)/K) − m2(c − x(i)) (i = 1, 2) are negative for all x(i) ≥
0. Thus, the conclusion is that the region in the positive orthant containing the origin and bounded by Vc∗ = 0 is an absorbing
domain, so that the analysis of the asymptotic behaviour of model (A1) can be restricted to the bounded region

0 ≤ x(i) ≤ c∗, 0 ≤ y(i) ≤ c∗, 0 ≤ z(i) ≤ c∗, i = 1, 2. (A2)

A.2 Global synchronization

System (A1) can be rewritten as

ẋ(1) = f (x(1)) − g(x(1))y(1) + d(x(2) − x(1)),

ẏ(1) = g(x(1))y(1) − m1y
(1) − g̃(y(1))z(1) + d(y(2) − y(1)),

ż(1) = g̃(y(1))z(1) − m2z
(1) + d(z(2) − z(1)),

ẋ(2) = f (x(2)) − g(x(2))y(2) + d(x(1) − x(2)),

ẏ(2) = g(x(2))y(2) − m1y
(2) − g̃(y(2))z(2) + d(y(1) − y(2)),

ż(2) = g̃(y(2))z(2) − m2z
(2) + d(z(1) − z(2)),

(A3)

where f (x(i)) = rx(i)(1 − x(i)/K), g(x(i)) = a1x
(i)/(1 + a1b1x

(i)), and g̃(y(i)) = a2y
(i)/(1 + a2b2y

(i)) for i = 1, 2.
Letting

X = x(2) − x(1)

2
, u = x(1) + x(2)

2
,

Y = y(2) − y(1)

2
, v = y(1) + y(2)

2
,

Z = z(2) − z(1)

2
, w = z(1) + z(2)

2
,

(A4)

we obtain the so-called difference system

Ẋ = 1

2
{[f (x(2)) − f (x(1))] − [g(x(2))y(2) − g(x(1))y(1)]} − 2dX,

Ẏ = 1

2
{[g(x(2))y(2) − g(x(1))y(1)] − [g̃(y(2))z(2) − g̃(y(1))z(1)]} − (m1 + 2d)Y,

Ż = 1

2
{[g̃(y(2))z(2) − g̃(y(1))z(1)]} − (m2 + 2d)Z.

(A5)

To get rid of the variables x(i), y(i), z(i), i = 1, 2, we apply the mean value theorem, i.e., f (x(2)) − f (x(1)) =
fx(ξ1)(x

(2) − x(1)) = 2fx(ξ1)X, and g(x(2)) − g(x(1)) = gx(ξ2)(x
(2) − x(1)) = 2gx(ξ2)X, where x(1) ≤ ξi ≤ x(2), i =
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1, 2. At the same time, it follows from Equation (A4) that

x(1) = u − X, x(2) = u + X,

y(1) = v − Y, y(2) = v + Y,

z(1) = w − Z, z(2) = w + Z,

such that in Equation (A5)

[g(x(2))y(2) − g(x(1))y(1)] = [g(x(2))(v + Y ) − g(x(1))(v − Y )]
= [g(x(2)) − g(x(1))]v + [g(u + X) + g(u − X)]Y
= 2gx(ξ2)Xv + [g(u + X) + g(u − X)]Y,

and analogously

[g̃(y(2))z(2) − g̃(y(1))z(1)] = 2g̃y (η)Yw + [g̃(v + Y ) + g̃(v − Y )]Z,

where y(1) ≤ η ≤ y(2). Thus, system (A5) simplifies to

Ẋ = [fx(ξ1) − gx(ξ2)v − 2d]X − 1

2
[g(u + X) + g(u − X)]Y,

Ẏ = gx(ξ2)vX + { 1

2
[g(u + X) + g(u − X)] − g̃y (η)w − (m1 + 2d)}Y

− 1

2
[g̃(v + Y ) + g̃(v − Y )]Z,

Ż = g̃y (η)wY + { 1

2
[g̃(v + Y ) + g̃(v − Y )] − (m2 + 2d)}Z.

(A6)

Our goal is to obtain conditions under which the trivial equilibrium X = Y = Z = 0 (corresponding to the synchronous
solution x(1) = x(2), y(1) = y(2), z(1) = z(2)) is globally stable. This can be done by constructing a Liapunov function,
i.e., a smooth, positive definite function that decreases along trajectories of system (A6). Consider the Liapunov function

	 = 1

2
(X2 + Y 2 + Z2).

The time derivative of 	 along the trajectories of system (A6) is given by

	̇ = −[A11X
2 + 2A12XY + A22Y

2 + 2A23YZ + A33Z
2],

where

A11 = 2d − fx(ξ1) + gx(ξ2)v,

A12 = 1

4
[g(u + X) + g(u − X)] − 1

2
gx(ξ2)v,

A22 = 2d + m1 + g̃y (η)w − 1

2
[g(u + X) + g(u − X)],

A23 = 1

4
[g̃(v + Y ) + g̃(v − Y )] − 1

2
g̃y (η)w,

A33 = 2d + m2 − 1

2
[g̃(v + Y ) + g̃(v − Y )].

Thus 	̇ is negative along trajectories of system (A6) if the quadratic form S = A11X
2 + 2A12XY + A22Y

2 + 2A23YZ +
A33Z

2 is positive definite. To simplify the analysis, we split S as S = S1 + S2, where S1 = A11X
2 + 2A12XY + A22Y

2/2
and S2 = A22Y

2/2 + 2A23YZ + A33Z
2. Here, the coefficients A11, A22, and A33 depend on the dispersal d and favour

positiveness of the two quadratic forms S1 and S2. For S1 and S2 to be positive, A11, A22, and A33 must overcome the
contributions associated to the coefficients A12 and A23. This is achieved when the dispersal d exceeds a critical value.
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Applying the Sylvester criterion for positive definiteness of the two quadratic forms, we obtain the conditions

A11 > 0, A22 > 0, A33 > 0,
1

2
A11A22 > A2

12,
1

2
A22A33 > A2

23. (A7)

The functions that are present in the Aij ’s coefficients can be bounded as follows:

fx(ξ1) ≤ fx(0) = r, gx(ξ2)v ≥ 0, g̃y (η)w ≥ 0,

g(u + X) + g(u − X) ≤ 2g(c∗) <
2

b1
, (A8)

g̃(v + Y ) + g̃(v − Y ) ≤ 2g̃(c∗) <
2

b2
,

where we have exploited the bounds given in Equation (A2).
Using Equation (A8), we can replace Equation (A7) with more conservative conditions, setting A11, A22, A33 to their

lower bounds and A12, A23 to their upper bounds. We obtain

d >
r

2
, d >

1

2

[
1

b1
− m1

]
, d >

1

2

[
1

b2
− m2

]
,

(2d − r)

(
2d + m1 − 1

b1

)
>

1

2b2
1

, (A9)

(
2d + m1 − 1

b1

)(
2d + m2 − 1

b2

)
>

1

2b2
2

.

For the given set of parameters (4), it turns out that (2d − r) > (2d + m1 − 1/b1) and (2d + m1 − 1/b1) < (2d + m2 −
1/b2), so that the last two inequalities in Equation (A9) are met if

(
2d + m1 − 1

b1

)2

>
1

2b2
1

,

(
2d + m1 − 1

b1

)2

>
1

2b2
2

.

Since 1/b2
1 > 1/b2

2 (see Equation (4)), we finally obtain the condition

d > d(2) = 1

2

( √
2

2b1
− m1 + 1

b1

)
.

This inequality gives a bound for the dispersal d sufficient to make the quadratic form 	̇ negative definite. This, in turn,
guarantees the global stability of the synchronous state in the coupled system (A3) with parameters (4).

The same Liapunov approach can be extended to two coupled patches when the single patch is a Rosenzweig–MacArthur
model modified in order to include factors like intraspecific competition, interference, or cooperation, as done in Section 3.
In such a case, the difference system (A5) contains extra terms depending upon a parameter δ measuring the intensity
of the factor. It can be checked that the extra terms related to factors 1, 3, 4, and 6 (i.e., intraspecific competition and
interference among consumers; interference and cooperation among predators), which were shown to be stabilizing, but
also factor 2 (i.e., intraspecific competition among predators), which is destabilizing, contribute to the stability of the
origin of system (A5), thus favouring global synchronization. For example, factor 1 yields an extra term −2δvY to the
second equation of the difference system (A5). Since v = (y(1) + y(2))/2 is always nonnegative, the term −2δvY makes
the trivial equilibrium of system (A5) more stable and therefore lowers the critical value of the dispersal required for
global synchronization.
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