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This paper presents an analysis of the invariant manifolds for a general family of locally
coupled map lattices. These manifolds define the different types of full, partial, and anti-
phase chaotic synchronization that can arise in discrete dynamical systems. Existence of
various invariant manifolds, self-similarity as well as orderings and embeddings of the mani-
folds of a coupled map array are established. A general variational equation for the stability
analysis of invariant manifolds is derived, and stability conditions for full and partial chaotic
synchronization of concrete coupled maps are obtained. The general results are illustrated
through examples of three coupled two-dimensional standard maps with damping.
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1 INTRODUCTION

During the last 10-15 years, coupled maps and
coupled map lattices (CMLs) have come to play an
essential role in the theory of dynamical systems as

objects for which different properties of complex
temporal and spatio-temporal behavior can be
studied [1-11]. Among the most interesting phe-
nomena that can arise in coupled map systems, full
and partial synchronization, on-off intermittency,
attractor bubbling, and riddled basins of attraction

have been studied in numerous papers for different
dynamical systems and from different points of
view [1,5-7,9-11]. These phenomena are directly
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related to the existence of stable linear invariant
manifolds to which the trajectories of the synchro-
nous modes of groups (or clusters) of CML ele-
ments are restrained.
Our objective in the present paper is to study

cluster synchronization and invariant manifolds for
the general family ofcoupled identical and regularly
arranged maps. A simple example of such a CML is
the one-dimensional array ofone-dimensional maps

i f(xi) + [g(xi-1) 2g(xi) + g(xi+l )], (1)

where i-- l, 2,..., N represents the discrete space
coordinate, and a bar over the variable x denotes
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next iteration, f: R -+ R is the nonlinear map
associated with the individual element, and
g" RI+ R is a coupling function, with c being a
measure of the strength of the coupling. For
g(x) x, the system (1) reduces to the much studied
diffusively CMLs [3,5,9], and for g(x)=f(x) we

recover the so-called nonlinearly CMLs as studied,
for instance, by Kaneko [1].
We have recently described a family of stable

invariant manifolds for diffusively coupled systems
of differential equations [13]. An example of such a

system is a regular chain of coupled Rossler osci-
llators. The invariant manifolds serve as a frame
for the possible dynamical behaviors of the coupled
systems in phase space, defining in particular the
various types of synchronized behavior that can

occur. In the present paper we consider the exis-
tence and stability of the invariant manifolds
that define the various states of partial synchro-
nization (or cluster dynamics) for an array of ele-
ments of general multi-dimensional maps with
local coupling.

Given the multi-dimensional single map
F: R’ -- R

and for a nonlinear Kaneko-type coupling with

G Ep(F(xi_l) 2F(xi) + F(xi+,)).

In the form (2), the CML is locally coupled due
to the assumed combination of three neighboring
vector variables in the interaction term. However,
as G may be an arbitrary function satisfying a set of
symmetry conditions similar to (3), our analysis
may be extended to include long-range coupling. In
this case the matrix Ep, which serves to pick up the
combination of coupled vector variables, will have
nonzero elements far from the main diagonal.
As previously noted, our aim is to study global

aspects of the dynamics of the map T related to the
existence and stability of invariant manifolds defi-

ning the possible cluster synchronizations of the
individual elements. Throughout the study we shall
assume zero-flux boundary conditions, i.e.,

x0 x and Xu XN+ (4)

The boundary conditions obviously play an essen-

tial role with respect to which manifolds can exist
and be stable.

2=F(x), xERm,

we consider the N-dimensional array of identical
elements having identical dynamics defined by the
single map F and with interaction with the neigh-
boring elements through the coupling function G,
i.e., we consider the N m-dimensional map T:

i F (xi) + G(xi-1, xi, Xi+l ), (2)

where i--1,2,...,N. As before, the bar denotes
next iterate (now of the vector variable x), and e is a
measure of the coupling strength. The function

G(u, v, w) is assumed to be symmetric and to satisfy
the conditions

G(u, u, u) O, G(u, v, w) G(w, v, u). (3)
Similarly, to the function g(x) in the simple array

of one-dimensional maps (1), the coupling function
g allows for both a linear diffusive coupling with

G Ep(Xi_l 2xi-[- Xi+l),

2 MAIN INVARIANT MANIFOLDS

Let us start by introducing the definition of an

n-dimensional invariant manifold M of an arbitrary
k-dimensional map :

2-(x), xeR, ’R-R.
First we note that any/-dimensional manifold in Rk

is defined by the map

x C(u), C R - R ,
where u E R is taken as the vector of coordinates in
the manifold, and x- C(u) is a graph determining
the/-dimensional manifold in R k.

DEFINITION The l-dimensional manifold M is

an invariant manifold of the k-dimensional map
(x) iffor any x M the image g)(x) M.

The map la4 may be written in the form of the
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equation C(gt) g(C(u)), u R which must have a

solution with respect to ft being a map t- @(u)
acting in M, #" M -+ M.

Let now I be an m x m unit matrix

(1 0)
and let C be an N x n block matrix such that each
element of C is either the m x m zero matrix or the
unit matrix/, and each row of C contains only one
matrix I. Let X= (x, x2,..., XN)T denote a column
vector, then the system (2) may formally be written
as a multi-dimensional map

x- r (x). (5)

(2) For n= 1, U=x we obtain the "diagonal"
manifold M(N, 1) with the single map (1) in it
due to the symmetry (3). In this case we have
one cluster spatial dynamics exhibiting full
synchronization of the array when the spatial
sites are "all doing the same thing at the same

moment, even though it is chaotic motion" [7].

The manifold M(N, n) for < n < N corresponds
to cluster synchronization when all elements ofeach
of n clusters are identical in their dynamics.

Let us hereafter study the problem of the
existence of invariant manifolds for the map T.

It turns out that for the system (2) we can relate
the first n coordinates of vector X to the variables
in the manifold M(N,n). Thus, we put uj=xj,

j 1,2,..., n, in the vector U.
Denote the unit n x n block matrices as

From the general Definition we obtain the
definition of a linear manifold of the map (5).

DEFINITION 2 If there exists an integer n [1, N],
a column vector U-- (u, u2, un )T, where U/ Rm,
j-- 1,2,..., n, and a correspondence matrix C such
that the map under T under the linear transformation

X- CU (6)

attains the form of n compatible equations
Cgt T( Cu), i.e., only n out of the N equations in (6)
are linearly independent, then the map T has an

n x m-dimensional invariant manifold M(N, n) with
the coordinates (u l, u2, un) in it.

The manifold M(N,n) defines n synchronous
clusters of the array, such that the nonzero elements
of the matrix C pick out those elements from the
array that form the n clusters and define the size of
each cluster.
As an example, we immediately introduce two

well-known clusters:

(1) For n N, U X, C is the unit matrix, and we
obtain the manifold M(N, N) being the phase
space of the map T. Hence, the system (2) has
N independent elements (N clusters).

and let int() denote the integer part of .
THEOREM The map T has an invariant manifold
M’(N, n) with n int((N + 1)/2),

MC(N,n) {xi XN-i+l,

i- 1,2,...,int((N+ 1)/2)}.

The correspondence relation (6) has theform

for even N--2n and the form

X-CU- 0 I
o

U

for odd N 2n-1.
The dynamical system in the invariant manifold

M’(N, n) is defined by the system (2) where N stands

for int((N+ 1)/2) with zero-flux boundary conditions

(4) for even N, and with nonsymmetrical boundary
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conditions

x0 Xl, xn+l xn_ (7)

for odd N 2n-1.

Proof The proof of the theorem is straightfor-
ward by substitution of X= CU into (2) with the
condition (3).
The manifold M’(N, n) has the central symmetry

with respect to the middle of the array and cor-

responds to the clustering in pairs (one central
element for odd N is a separate cluster).

THEOREM 2 Let N=r.n, where r and n are

arbitrary integers. Then the map T has an invariant

manifold

Ma(N,n) {xi+znj x-i+l+znj xi,

i= 1,2,...,n,j= 1,2,...,r}.

The correspondence matrix C has the form

C--(E,,E,...,,,E,R,...)T

times

The dynamical system in the invariant manifold
Ma(N,n) is defined by the system (2), where N
stands for n with zero-flux boundary conditions (4).

Proof The proof of the theorem is straightfor-
ward as well.

COROLLARY For even N=2n the embedded

manifold Ma(N,n)=M(n,n), i.e., the manifold
Ma(N, n) may be considered as the phase space ofthe
original system (2) with hag’the original dimension.
Hence, Theorem 1 applies to T]M(N,n) for even N.

COROLLARY 2 For odd N-2n-1 the system (2)
is not self-similar in the manifold Ma(N, n) because

of asymmetric boundary conditions (7) and Theo-
rem 1 does not apply to TIM(N,n). Hence, for N=
p. 21, where p is an odd number, we obtain the fol-
lowing ordering of dimensions of the embedded
invariant manifolds."

p. 2k -+ p.2k- --+ p. 2

p+l-- P -- 2

The manifold Ma(N,n) has an alternating sym-
metry, and each of the n clusters has r elements such
that for even r the first and the last elements of the
array, xl and xv, belong to the same cluster and
Ma(N, n) has the central symmetry with respect to
the middle of array. Hence, for even r the manifold

Ma(N,n) is related to the manifold M’(N,n) of
Theorem 1. In this case, the recurrent rule of
Theorem is applicable to TIM.(N,n).

Remark For any composed number N, each
cofactor of N may stand for n and defines the
number of clusters. For example, the number,

N- 12-6.2-4.3-3.4,

and according to Theorem 2 we immediately
obtain three different manifolds Ma(12, 2),
Ma(12, 3) and Ma(12, 4).

FAMILIES OF EMBEDDED INVARIANT
MANIFOLDS

From Theorems and 2 it follows that indepen-
dently from the individual dynamics defined by the
single map F (x), the system of coupled maps
(2), i.e. the map T, has invariant manifolds with
the central symmetry M as well as manifolds
with the alternative symmetry M which exist due
to the symmetry of the coupling (3) and the
symmetry of the boundary conditions (4). The sig-
nificant feature of Theorems and 2 is the
recurrence due to self-similarity of invariant mani-
fold dynamics. Together with the permutation of
cofactors of N in Theorem 2 this allows us to
use these theorems as generating rules for obtain-
ing families of invariant manifolds and study-
ing their hierarchy. In this way we can determine
the different spatial-temporal dynamical regimes
of the complicated cooperative behavior of
coupled maps.

THEOREM 3 Let N-r .n, where r and n are

arbitrary integers greater than 1. Then thefollowing
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enclosures are valid."

M(N, N) Ma(N, n)

(9)

Proof For even r, Ma(N,n) has the central
symmetry and lies in MC(N, int((N+ 1)/2)) (M
coincides with M for r=2). The enclosure
mc(N, int((N+ 1)/2)) c ma(N, n) follows from
Theorem applied for the system in Ma(N,n)
being the system (2) where N stands for n (due to

self-similarity). The enclosure

m(N’int(n/12 ))Dm"(N, int(N+12
is valid because both manifolds have the central
symmetry with respect to the middle of the array
and because the upper part of matrix C is the unit
matrix E so that the first int((N+ 1)/2) sites of the
array belong to both manifolds.

COROLLARY If the maps TIM,(N,n) and\or
T{M,(N,int((n+l)/Z)) satisfy Theorems and2 with

M"(N, n) M(n, n),

M"(N, int(n+l

2 ’int 2"))’
then the enclosures (15) are extendable.

Now we list the rules of embeddings based on

Theorems 1-3.

Rule 1 If N is a prime number (N- 2, 3, 5, 7,...
then there exists an invariant manifold

M.(N, int(N/ 1))2
C M(N,N)

such that TIM,. has asymmetrical boundary condi-
tions (7) and Theorems 1-3 give only one next

embedded manifold M(N, 1) corresponding to

synchronization of all individual elements of the
array (2).

For example, if N= 7, then the dimensions of

embeddings follows as 7 4---+ 1.

Rule 2 Let N-pk where p >_ 3 is a prime number
(for p- 2, see (8)). Then we obtain an ordering

M(N,p D M"(’,p D

"’ 2
D M(N, 1) (o)

which follows from Theorem 2 with the last step
from Rule 1. Due to Theorem 3, in accordance
with (9), the ordering (10) is composed as follows:

D M(N,p/-i) D M(p-i,p-i-) D...

pk-i + k-i,
2

DM k-i,
2

DM

i--0,1, ...,k- 1. (11)

Rule 3 Let N--q.pk, where p is a prime number
and q is an arbitrary integer. Then similarly to
Rule 2 we have an ordering

M(N,q.p) D Ma(’,q’pk-l) D
D Ma(’,q’p) D Ma(’,q) (12)

which is accompanied by an ordering analogous
to (11).
The last manifold Ma(N, q) in (12) has a continua-

tion of submanifolds depending on the number q.

kl k2Rule 4 In the general case N--Pl ,P2 e,

where all pj are prime numbers, for each cofactor
p;_ placed to the end (n- __P" in Theorem 2) the
branch of embedded manifolds is generated in
accordance with Rule 3. Each pair of such
branches is disjoint for higher dimensions and
may be merged at low dimensions of embedded
manifolds.

In what cases will the array of coupled maps (2)
have 2 clusters? According to our considerations
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the answer is the following, only

(1) if N is even, N-N’. 2, and system (2), there-
fore due to Theorem 2 has the manifold
Ma(N, 2) with the map

2.1 F(Xl) / c" G(Xl,Xl,X2),

2"2 F(x2) / " G(xl,x2, x2)
(13)

on it, or

(2) if number 3 is cofactor of N, N-N". 3, and
array (2) therefore due to Theorem 2 has the
manifold Ma(N, 3) with the map

21 F (x + e G(xl, Xl, x2),

2.2 F(x2) + e. G(x,x2, x3),

2.3 F (x3) + G(x2, x3, x3)

(14)

on it.
In turn, due to Theorem 1, the manifold Ma(N, 3)

has the submanifold MC(3, 2) with the map

2.1 F(x) + . G(xl,xl,x2),

22 F(x2) + e" G(xl,x2, xl)
(5)

on it.
Note that the map (13) due to (3) has the

symmetry x = x2. This situation was considered,
for instance, in [4].
As examples we list some cases of interesting

numbers of individual subsystems (1) composing
the array (2).

Example 1 Let the number of array elements
N= 15. In this case there exists the following
ordering of embedded manifolds:

D M(15, 3)

M(15, 2)

M(15, 15) D M(15,8)

Example 2 Let N-12. Then there exists an

ordering of embedded manifolds

M(12, 12)
D M(12, 4) D M(12, 2) D

D M(12, 6) D M(12, 3) D

D M(12, 1).
D M’(12,2)

TRANSVERSAL INVARIANT
MANIFOLDS

Let us consider the system (2) under the additional
conditions on the functions in (2) to be odd:

F(x) -F(x),
G(., , w) -G(-., , w).

(16)

In this case the system (2) is centrally symmetric
with respect to the zero point x- 0 which is a fixed
point of the map T.

THEOREM 4 Under conditions (4) and (16) with

zero-flux boundary conditions, the map (2) has an

n-dimensional invariant manifold MT(N,n) with

int((N / 1)/2) written in theform

MT (N, n) {x --XN_i+I, 1,2,..., n}

for even N--2n, and in theform

MT(N,n) {xi --Xu-i+l, i-- 1,2,...,n,

Xn+ 0}

for odd N-2n/ 1. The correspondence matrix

has the form C- column(E,-E) for even N and
C column(E, O,-) for odd N.

Proof The proof of the theorem follows from the
fact that the last n equations of (2) after the
substitution XN-i+I=Xi reduce to the first
n equations with the opposite sign of each term.
For odd N the function

G(x.,x.+, x.+) , G(x., O,- x.) 0
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and

F(x,+I)IMT F(O) O.

Hence 2n+lIMT O.

COROLLARY Theorem 4 can be applied to each
ordinary cluster in M(N, n) deriving from Theorems
and 2 and having zero-flux boundary conditions.

Hence, we obtain similar rules of generation of the

families of manifolds. For example, in the case

N 5 we obtain the manifold MT(5, 2) as well asfor
N= 15 besides the manifold MT(15, 7), the manifold
M(15, 5) has a transversal submanifold MT(15, 2).

Remark 1 In the case of odd N the manifold
MT(N, n) is the invariant submanifold of the zero

fixed point.

Remark 2 Similarly to the case of continuous
time dynamical systems coupled in an array, the
orbits in the transversal manifolds may be related
to anti-phase synchronous orbits.

The orderings described in Sections 3- 5 determine
the existence of all permitted manifolds and there-
fore all possible cluster structures defined by stable
linear invariant manifolds. They may also deter-
mine the order of cluster regime appearance with
changing coupling between the individual subsys-
tems of the array (2). Thus after having considered
the conditions for the existence of invariant mani-

folds, the main problem is to obtain the conditions
for their stability. That is the topic of Section 5.

STABILITY OF INVARIANT
MANIFOLDS

The Lyapunov local stability of an invariant mani-
fold M(N, n) implies that this particular manifold is
"observable" and hence that it corresponds to

partial synchronization of N elements distributed
in n synchronous clusters. Hereafter we present the
variational linear equations for the simple case

of system (2). We consider the one-dimensional
single map

2--f(x), f" R -+ R

and the CML with nonlinear coupling defined
by the scalar function g(x), g" R1--, Rl, i.e., we

consider the map (1) with zero-flux boundary
conditions (4).

Equation (1) may be written in the vector form.
Introducing the vectors

X-- (x1,x2, ...,XN)T,
a (X) (f(xl ),f(x2), ,f(XN))T,
Q(X) -(g(xl),g(x2),...,g(XN))T

and the coupling matrix

system (1) attains the form

2- a(X) + S. Q(X). (17)

As before we denote the vector of cluster coordi-
nates U- (Xl, x2,..., xn)T.

Let C be the matrix from Theorems and 2
(picking out the coordinates of X into a particular
cluster). Let us study the conditions of stability of
the manifold M(N, n).

Consider the variance vector Y- CU-X and its

image -C(2-a(X)- SQ(X). Since the upper
part of C is the identity matrix, the first n coor-

dinates of Y and Y are zeros. Preserving the
notations for Y and C having removed the first
n lines, for small Y we obtain the variational linear
equation

Y-[ax(CU) + SQx(CU)] Y- L(u) Y, (18)

where qx and Cx denote the vectors ofderivatives of

f and g, respectively. Y represents the difference
between coordinates (xn / 1, xn + 2,..., XN) and clus-
ter coordinates distributed by the correspondence
matrix C. The n-vector U in (18) is driven by the



252 V. BELYKH et al.

map in the manifold M(N, n)

U-(U)+SQ(U), (19)

where S is the matrix S with N replaced by n and
the last line in the matrix changed in the case of
asymmetrical boundary conditions.

Thus, the system of Eqs. (18) and (19) allows us to
calculate the Lyapunov exponents for each trajec-
tory from the limiting set filling out the attractors of
the system (19) and hence to characterize the local
stability of the manifold M(N,n). In the general
case of chaotic maps (19) it is hard to avoid
computation of the eigenvalues of the products of
matrices L(u) along trajectories of the map (19).
Nevertheless, it is possible to estimate the multi-
pliers for certain cases off(x) and g(x) in (1).

Example Let N= 3 and assume that we have an

array of 3 locally coupled one-dimensional maps.
Consider the two-dimensional manifold M(3, 2)=
{Xl x3}. In this case

C- 0
0

and

Y-CU-X- X2 X2
X1 X3 O)Xl x2

Then for (18) and (19), respectively we obtain

071 {f’(xl) e. g’(xl)]yl,

X f(xl) + e(g(x2) g(xl )),

X2 -f(.x2)+ 2c(g(xl) -g(x2)).

(20)

(21)

For the diagonal one-dimensional manifold

M(3, 1) {Xl x2- x3} we obtain for Yl Xl-X3,

Y2- x-x2 the following variational equations:

37 {fZ(x) c.

072 {f’ (Xl) 3. g’ (xl)]y2 + " g’(xl)Yl,
(22)

where Xl is driven by the single map 2-f(xl).
The embedding M(3, 1)C M(3, 2) implies that for

x-x2 in (21) Eq. (20) coincides with the first

equation in (22) both being driven by a single
map. On the other hand, the stability of the
diagonal x-x2 submanifold for (21) is deter-
mined by the second equation in (22) for y- 0.

Note that even for this simple case we meet the
problem of how to choose the coupling function
g(x) in order to provide stability of the two-
dimensional manifold for some range of parameter
e and inside of this range to provide stability of the
manifold M(3, 1) for a smaller interval of e. We
need this stability since only in this case may partial
synchronization be realized (the manifold M(3, 2)
must be stable and the diagonal M(3, 1) must be
unstable). In the alternative case when the mani-
folds M(3, 1) and M(3,2) acquire their stability
exactly in the same region of parameter c, only the
dynamical regime of full synchronization exists.
We present two simple examples for sufficient

conditions of stability of (1) for N= 3.

Case 1 Let g(x)=f(x), and the map (1) becomes
a Kaneko-type map. Assume that both the single
map 2-f(x) and the map (21) are chaotic and
have the attractors A and A2 as limiting sets,
respectively.

If the conditions

max I1 el" If’(x) < 1,
xcA

max l1 3e If’(x) <
xcA

(23)

hold, then the manifold M(3, l) is globally asymp-
totically stable and full synchronization of the
individual subsystems occurs.

If the condition

max l- el" be’(x)l < (24)
xcA2

holds, then the manifold M(3, 2) is globally asymp-
totically stable and partial synchronization (syn-
chronization between the first and the third

element) arises.
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Note that if for both cases maxxcAl,2 f(X)l-
+ c > 1, where c is some positive parameter

needed for the single system be chaotic. Then
conditions (23) on the coupling parameter e take
a form

c c+2
<e< 0<c< (25)

c + 3(c / 1)’

and instead of condition (24) we have

c c+2
< e < (26)c+ (c+ 1)"

From (25) and (26) it follows that if for e > (c + 2)/
(3(c + 1)) the minimal multiplier of the trajectories
in A2 is greater than 1. Then chaotic partial
synchronization takes place, while full synchroniza-
tion is absent.

Case 2 Let g(x)=x the map (1) has linear
diffusive coupling, and N=3. Again assuming
that both the single map and the map (21) have
chaotic attractors il and i2, respectively, we

obtain the following sufficient conditions for full
synchronization

max If’(x) e < 1,
xCAl

max If’(x) 3e <
xCAl

(27)

and of partial synchronization

max If’(x) e < 1. (28)
xCA2

For the chaotic single map, the function f(x) must

have both positive and negative slopes. In this
case the sufficient conditions (27) and (28) seem to
be incompatible, and in order to solve the problem
of synchronization we need the detailed analysis
of both trajectories of attractors il and i: and
their Lyapunov exponents via systems (20)-(22)
for g(x)=x. In the case of three diffusively
coupled one-dimensional discontinuously expand-
ing maps having

f(x) (1 +/3)x(mod 1)

we obtain the following condition on stability of
full synchronization:

+2/3<e<
3

/3<1

and of partial synchronization

< e </3/2, /3<1;

/3>1.

Remark 1 For the purpose of estimation of
global stability of the manifold for large values of

Y]I it is possible to consider Eq. (18) with the
vector U replaced by a vector U(u) coming from
the Lagrange mean-value theorem.

Remark 2 The equations for stability of the
general system (2) can be derived in the similar
way where each element of the matrix L(u)
becomes an m x m matrix.

Finally, we discuss the stability of invariant
manifolds in the case of a number of individual
elements N-2k. The system (2) has the properties
of self-similarity of the manifolds MC(2k, 2-l),

Me(2, 2-J),..., MC(2,2) implying that the
map T M.(2,,,2,,.) is the same as the original map,
but with a phase space reduction by the factor 2j.

For rather small coupling strength e, all elements of
the array are desynchronized. The changes in
system dynamics while parameter e increases may
occur in the following way. First the diagonal
M’(2k, 1) becomes stable relating to the trajectories
inside of the manifold Me(2, 2), i.e., for the map
TlM.(2,,2 though the manifold Mc(2k, 2) is unstable
with respect to the manifold M(2, 4), i.e. for the
map TlM.(2,,2). Then the pairs in array elements
(already "prepared" for full synchronization)
obtain additional stability with respect to the
manifold Me(2, 4) and so forth. At the last step,
when the manifold M(2,2k-l) becomes stable
(now with respect to phase space M(2, 2)), full
synchronization arises in a hard way. So in this
stabilization process of invariant manifolds, partial
synchronization is not observed for any coupling
parameter value and it is relevant to use the term



254 V. BELYKH et al.

conditional partial synchronization for the stability
of the manifold M"(2k, 2k-J) with respect to the map
T]MX21hU,-:/+ ’).

This gradual increase of stability of invariant
manifolds is a particular possible scenario of bifur-
cations leading to full synchronization. In the
general case this ordering may be broken at any
place. In this connection the problem arises to find
a map F and a coupling function G in (2) providing
the reverse ordering of stability for N=2 (or
N=p) such that manifold M(2/,2k-j+l)
becomes stable before the manifold M’(2’,2/-v)
does. This particular problem is within the general
problem of stability of any manifold M(N,n)
under the condition of simultaneous instability of

the diagonal M(N, 1), i.e. the problem of partial
(cluster) synchronization realization.

In the next section we exhibit this possibility for
example of coupled standard maps with damping.

6 EXAMPLE

Consider as a computational example of three
coupled two-dimensional standard maps with
damping [5,12]:

2i xi + yi + a sin xi + e (xi-1 2xi + xi+l

Pi A(yi + a sin xi) + 2 (xi- 2xi + xi+),
(29)

(a) (b) 1[ ?1
0.5

.."i!!!!f...,:":":’’""."..’..v. .:.r. 0.5
’’":’-

"""’

-.i:::,ii’

...........

0 2 3 4 5 6 0 2 3 4 5 6
X X

(c) 6: (d) 6

O0 2 4 6 O0
x

FIGURE Chaotic cluster synchronization of three coupled damped standard maps. Case cl #0, C2---0. (a) Lying in the stable
manifold M(3, 2) we observe the chaotic attractor in a projection onto (xl, Yl). (b) Chaotic attractor in the projection of variables
of the middle element (xz, y2). (c) Stable manifold M(3,2) defining the synchronization between the first and the last element of
the array. (d) Out of synchronization between the first (the last) and the middle element.
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:."::"",:’"i.

2 .5 a g.5 4 4.5 ’0 2 4 6
x x

2

(c) (d) 6

00--- 4 6
x

FIGURE 2 Chaotic cluster synchronization of three coupled damped standard maps. Case c--0, C20. (a) Chaotic attractor
in the projection on variables of the first map (x, Yl). (b) Chaotic attractor in the projection of variables of the middle element
(x2, Y2). (c) Stable manifold M(3, 2) which determines cluster chaotic synchronization. (d) Out of full synchronization.

2i(mod27r), i-1,2,3 with zero-flux boundary
conditions (3). This map has the manifold M(3, 2)
{Xl -x3, Yl- Y3} as well as the full synchronization
manifold M(3,1)--M(3,2)I{Xl--X2, Y--Y2}. We
have chosen the coupling matrix

thus excluding the terms with combination
(yi--2yi+ Yi+ ), in order to exhibit the difference
in dynamical behavior in the two cases:

(1) (e 0, 2 0) when the coupling term is placed
in the first equation of the two-dimensional
standard map, and Eq. (29) may be reduced

for )=0 to three coupled one-dimensional
circular maps;

(2) (El 0, E2 0) when the coupling is placed in
the second equation, i.e. in the proper place if
the single map is treated as a two-dimensional
discrete oscillator.

Figure illustrates chaotic partial synchroniza-
tion in the first case (parameters are a 2.4, , 0.3,
e =0.45). Note, that the unusual behaviors of the
trajectories in both clusters (x,y)=(x3,Y3) and
(xz, y2) are related to the imposed periodicity via

2i(mod 2r).
Figure 2 illustrates chaotic partial synchroni-

zation in the second case (parameters are a 1.8,
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A =0.6, e---0.89). The behavior of the clusters
confirm the oscillatory nature of the equations.
We omit the discussions of nontrivial bifurcation

sets of (29), using (29) as a particular example of the
existence ofa stable invariant manifold with chaotic
dynamics.
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