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I. STABILITY CONDITIONS FOR GENERALIZED SPLAY STATES

This part of the Supplementary Material provides the derivation of the stability condition (3) in the main text,
related to the system (1) with the �rst-order coupling (l=1). We consider a generalized splay state:

θj = ωt+ ϕj ,
1

N

N∑
j=1

eiϕj = 0, (S.1)

where ϕj ∈ [0, 2π], j = 1, ..., N are constant phases. To study the local stability of (S.1), from (1) with l = 1 we
derive the variational equations for the evolution of in�nitesimal perturbations δθj :

mδθ̈j + δθ̇j =
1

N

N∑
k=1

cos (∆jk + α) δθk, (S.2)

where ∆jk = ϕj −ϕk. We seek solutions of the linear system (S.2) with constant coe�cients in the form δθj = aje
λt.

This yields a system of algebraic equations:

baj +

N∑
k=1

ak cos (∆jk + α) = 0, j = 1, . . . , N, (S.3)

where b = −Nλ (mλ+ 1). System (S.3) has a nontrivial solution if its determinant

A (b) =

∣∣∣∣∣∣∣∣∣∣

b+ cosα cos (∆12 + α) cos (∆13 + α) . . . cos (∆1N + α)
cos (∆21 + α) b+ cosα cos (∆23 + α) . . . cos (∆2N + α)
cos (∆31 + α) cos (∆32 + α) b+ cosα . . . cos (∆3N + α)

...
...

...
. . .

...
cos (∆N1 + α) cos (∆N2 + α) cos (∆N3 + α) . . . b+ cosα

∣∣∣∣∣∣∣∣∣∣
= 0. (S.4)

To simplify the analysis of (S.4), we introduce the matrices

M (j1, j2, . . . , jn) =


cos (∆j1j1 + α) cos (∆j1j2 + α) . . . cos (∆j1jn + α)
cos (∆j2j1 + α) cos (∆j2j2 + α) . . . cos (∆j2jn + α)

...
...

. . .
...

cos (∆jnj1 + α) cos (∆jnj2 + α) . . . cos (∆jnjn + α)

. (S.5)

It is straightforward to show that
|M (j1, j2, . . . , jn)| = 0 for n ≥ 3. In fact, any matrix M (j1, j2, . . . , jn) may be written as the sum of two matrices

with rank 1: M = 1
2e
iαv†+c.c., where the vector v =

(
eiϕj1 , eiϕj2 , . . . , eiϕjn

)T
, rank

(
vv†
)

= 1. Therefore, rank(M) ≤ 2
yielding the zero determinant of M.
Taking into account that A (b) = |xI +M (1, 2, . . . , N)| , we obtain

A (b) = bN−2

b2 +N cosα b
∑
j<k

|M (j, k)|

. (S.6)
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Note that |M (j, k)| = sin2(∆jk), and therefore
∑
j<k

|M (j, k)| = N2

4

(
1− |R2|2

)
, where R2 is the second moment of

the Kuramoto order parameter: R2 = 1
N

N∑
k=1

e2iϕk . Thus, we obtain

A (x) = bN−2
[
b2 +N cosα b+

N2

4

(
1− |R2|2

)]
. (S.7)

We can now �nd all eigenvalues λ. There are N − 2 zero eigenvalues and N − 2 with λ = −1/m. The other four
eigenvalues can be found from the characteristic equation:

λ4 +
2

m
λ3 +

1

m

(
1

m
− cosα

)
λ2 − cosα

m2
λ+

1

4m2

(
1− |R2|2

)
= 0. (S.8)

so that

λ1,2,3,4 =− 1

2m

(
1±

√
1 + 2m

(
cosα±

√
|R2|2 − sin2α

))
. (S.9)

The criterion (S.9) is identical, up to a parameter re-scaling, to the one given in Corollary 9 in Berner et al., Chaos,
31, 073128 (2021) (Reference [47] in the main text).
To make the stability criterion more explicit and manageable, we prefer to use the Routh-Hurwitz stability criterion

to (S.8) by considering the corresponding Hurwitz matrix

H =


2
m − cosα

m2 0 0

1 1
m

(
1
m − cosα

)
1

4m2

(
1− |R2|2

)
0

0 2
m − cosα

m2 0

0 1 1
m

(
1
m − cosα

)
1

4m2

(
1− |R2|2

)
. (S.10)

By the Routh-Hurwitz stability criterion, the variational equations (S.2) are stable if

2

m
− cosα > 0, |R2|2 − 1− cosα

(
2

m
− cosα

)
> 0. (S.11)

The �rst inequality is always ful�lled, given m > 0 and the considered range of repulsive coupling α ∈ (π/2, π). The
second equality yields the condition (3) in the main text (with |R2| ≡ r2). This completes the proof.
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II. CYCLOPS STATES IN NETWORKS WITH N = 101

This part of the Supplementary Material provides evidence that symmetric cyclops states are the prevalent states
in large networks (1).

(a)

(b)

Supplementary Figure 1: (a) The onset of a stable cyclops state in the system (1) for N = 101, m = 1.0, ω = 1.0, α = 1.6. (b)
Cyclops state in the system (1) with second harmonic for N = 101, m = 1.0, α = 1.6, ε2 = 0.01, α2 = 0.1. Colors indicate the
sines of phases di�erences, sin (θn(t)− θ51(t)). The initial conditions are chosen in the form of a randomly perturbed cyclops
state (addition to the phases is a uniformly distributed random variable on a segment [−0.5, 0.5]).

Supplementary Figure 2: Histograms for a numerically calculated PDF of the (r1, r2) distribution for N = 101, m = 1.0,
ω = 1.0, K2 = 0, K3 = 0 and α = 1.75 (a), α = 1.80 (b), α = 1.90 (c), α = 1.95 (d), α = 2.00 (e), α = 3.10 (f). Cyclops states
with a maximum r2 are the prevalent rhythms in (b), (c), and (d).
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III. THE ADDITION OF THE SECOND HARMONICS INDUCES A STABLE TWO-CLUSTER STATE
IN THE NETWORK WITH N = 10

Supplementary Figure 3: The role of the second harmonic in stabilizing a two-cluster state in the system (1) with N = 10,
m= 1.0, ω= 1.7, α= 3.1. The system with only the �rst-order coupling (K2 = 0) evolves into a generalized splay state with
r1 =0 from random initial conditions for 0<t<500. Switching on the second harmonic with K2 =0.008 and α2 =0.2 induces a
stable two-cluster state (500<t<2000). (a) Colors indicate sin (θn(t)−ωt). (b) The corresponding values of r1 and r2.

IV. CYCLOPS STATES IN NETWORKS OF NONIDENTICAL OSCILLATORS

Here, we demonstrate that cyclops states are resistant to intrinsic frequency detuning. We consider the system of
nonidentical Kuramoto-Sakaguchi phase oscillators with inertia

mθ̈j + θ̇j = ωj +
1

N

N∑
k=1

l∑
q=1

Kqsin [q (θk − θj)− αq], (S.12)

where intrinsic frequencies ωn are uniformly distributed random variables on the interval [Ω1,Ω2]. This system is
identical to the original system (1) except for the frequency mismatch. As demonstrated in Supplementary Fig. 4,
cyclops states emerge robustly in the system (S.12) when the coupling function includes both the �rst and second
harmonics. It should be noted that although the phases of the oscillators within each coherent cluster may not perfectly
align due to frequency mismatches, they remain relatively close to each other (as seen in Supplementary Fig. 4a,c).
Additionally, the instantaneous frequencies of all oscillators are equal (as depicted in Supplementary Fig. 4b).

Supplementary Figure 4: Stable cyclops state in system (S.12) with mismatched frequencies ωj (evenly distributed over the
interval [Ω1,Ω2] with Ω1 = 0.998, Ω2 = 1.002) for N = 11, m = 1.0, K1 = 1, α1 ≡ α = 1.8, K2 = 0.1, α2 = 0.2. (a) Time series

for the sines of the phase di�erences, sin (θj(t)− θ6(t)). (b) Instantaneous frequencies θ̇j(t). (c) Phases θj(t)− θ6(t) at various
time instants (t1 = 9000, t2 = 10000).
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Supplementary Figure 5 illustrates the robustness of the cyclops state in the network of Supplementary Figure 4 as
a function of frequency detuning δ.

Supplementary Figure 5: Persistence of cyclops states in system (S.12) with mismatched frequencies ωj distributed evenly
over the interval [ω − δ, ω + δ], where ω = 1.7 and δ is a frequency detuning. Other parameters N = 11, m = 1.0, K1 = 1,
α1 ≡ α = 1.8, K2 = 0.1, α2 = 0.2. Global maxima (circles) and minima (crosses) of order parameter r1 (green markers) and
r2 (red markers). The global maxima (represented by circles) and minima (represented by crosses) of the order parameters
r1 (green markers) and r2 (red markers) are displayed. For values of δ < δ∗, stationary cyclops states with a constant phase
di�erence within clusters remain stable. Increasing δ > δ∗ induces switching cyclops states with periodically rearranging clusters
as evidenced by the periodicity in the order parameters r1 and r2.

V. CYCLOPS STATES IN NETWORKS OF THETA-NEURONS

Here, we provide evidence that the cyclops state formation mechanism is not limited to Kuramoto networks and
is also common in neuronal networks whose dynamics exhibits two time scales and can be approximated by the
Kuramoto model with inertia. As a prime example, we consider a network of N identical theta-neurons coupled
through a global synaptic drive (see references [57-59] in the main text):

θ̇n = (1− cos θn) + η (1 + cos θn) + κ (1 + cos θn − ε+ ε cos 2θn) s(t), (S.13)

where n = 1, . . . , N is the index of the n-th neuron whose state is the phase angle θn, η > 0 is an excitability parameter
playing the role of a �xed input current. The nth-neuron is set to �re a spike when θn crosses π while increasing. The
last term on the right-hand side of (S.13) accounts for synaptic interactions. Parameter κ is the coupling strength
of the global synaptic drive. The mean population synaptic activity s(t) satis�es the relaxation equation [61]:

τ ṡ = −s+
1

N

N∑
n=1

P`(θn), (S.14)

where the function P`(θn) = p` (1− cos θn)
`
(` ∈ N) determines the sharpness of the pulsatile-type synaptic coupling,

and p` = 2`(`!)2
/

(2`)! is a normalization constant. The positive integer parameter ` de�nes the shape of P`(θn) so
that the pulse pro�le becomes more sharply peaked as ` increases, becoming δ-pulses in the limit `→∞.
Note that the system (S.13) with ε = 0 is the standard theta-neuron model [57-59]. We introduced two additional

terms proportional to the small parameter ε� 1 to the last term on the right-hand side of (S.13) to take into account
neuronal refractoriness [60,61] which results in decreasing the sensitivity of a neuron to stimulus from its pre-synaptic
partners in the time interval preceding the spike and for some time after it. In Sec. VII, we will demonstrate how these
terms naturally appear from the phase dynamics description of quadratic integrate-and-�re neurons. Notably, one of
the additional terms yields the second-order coupling term similar to the Kuramoto network (1). While the e�ect of
neuronal refractoriness in brain networks may be relatively weak, it induces the second-order coupling term similar
to the Kuramoto network (1) and can signi�cantly alter the dynamics of the network. Supplementary Figures 6-7
demonstrate that the activation of the second-order harmonics stabilizes a cyclops state, showing the same e�ect as
in the Kuramoto-Sakaguchi network with inertia (1) (see Fig. 4 in the main text).
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Supplementary Figure 6: The role of the second harmonics in stabilizing a cyclops state in system (S.13) with N = 11, η = 0.3,
τ = 0.8, κ = 0.2, ε = 0.04, ` = 5. The system with only the �rst-order coupling (ε = 0) evolves into a generalized splay state
with 〈r1〉 = 0 from random initial conditions for 0 < t < 750. Switching on the second harmonics with ε = 0.04 induces a
stable cyclops state (750 < t < 2000). (a) Colors indicate θn(t) − θ6(t). (b) Time-averaged phase di�erences 〈θn(t) − θ6(t)〉.
(c) The corresponding values of 〈r1〉 and 〈r2〉.

Supplementary Figure 7: Stabilization of a cyclops state in system (S.13) as in Supplementary Fig. 6 but for a di�erent set of
parameters: N = 11, η = 0.5, τ = 0.8, κ = 1.5, ε = 0.04, ` = 50. Note the stronger synaptic coupling κ and the breathing
cyclops state.

VI. RELATING THE THETA-NEURON NETWORK (S.13) TO NETWORK (1)

The close resemblance between the simulation results of the theta-neuron network and the original Kuramoto-
Sakaguchi model of 2D phase oscillators should not be surprising, as the two models are directly related. More
speci�cally, the theta-neuron system (S.13) can be reduced to the original phase model (1). The basic steps of
such a reduction are as follows. First, one can use the transformation of dynamical variables given by the relation
tan

(
θn
/

2
)

=
√
η tan

(
φn
/

2
)
. This transformation converts the θ-description of the neuron population into another

phase representation. The φ-representation is equivalent to the θ-description in that φn is de�ned to lie in the interval
[−π, π] and the n-th neuron spikes when φn passes π. However, in the model (S.13), cells receive constant common
external input η > 0 and all units are in the oscillatory regime. As a result, each phase φn rotates uniformly in the
absence of interaction between the cells, making the φ-representation more convenient for further analysis and the
derivation of a Kuramoto-type model approximation. Through this process, we obtain the governing equation for the
introduced dynamical variables φn, which coincides with the Winfree model in the fast relaxation limit for the mean
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synaptic activity s(t) (τ → 0), i.e. in the case of instantaneous coupling [61]. Finally, we assume that the synaptic
coupling is weak, allowing us to separate the time scales such that φn(t) can be written as the sum φn(t) = ϑ(t)+ϕn(t)
of a fast, free-running rotation with period π

/√
η described by ϑ(t) and slow phase drifts produced by interaction

through synaptic stimulus described by the set of slow variables ϕn(t). The slow variables ϕn(t) can be considered
constant over time scales that are comparable to the period of the fast rotation. By applying the method of averaging,
we can derive the Kuramoto-Sakaguchi model of 2D phase oscillators from (S.13). It is noteworthy that the resulting
pairwise interaction function in the Kuramoto-Sakaguchi model (1) contains both the �rst-order and second-order
harmonics (the latter being proportional to ε). A detailed derivation and technical aspects of the described approach
will be presented elsewhere.

VII. DERIVING THE THETA-NEURON NETWORK (S.13) FROM QUADRATIC
INTEGRATE-AND-FIRE NEURONS

Here, we demonstrate that the theta-neuron model (S.13) can be derived from a network of quadratic integrate-
and-�re (QIF) neurons, implying that cyclops states may also occur in QIF networks. We have not explored cyclops
states in QIF networks in this study, but it is an area of future research.
We consider a globally coupled network of N identical QIF neurons (n = 1, 2, . . . , N) [61]:

v̇n = v2n + η + κjn (t) if vn < vth,

vn = vr if vn ≥ vth,
(S.15)

where η is an applied constant current, κ is a common synaptic weight controlling the total strength of synaptic
inputs, and jn (t) is a time-varying input drive. When the membrane potential vn of the nth neuron reaches the
threshold value vth, the neuron generates a spike and its voltage is reset to vr. We consider the limit vth = −vr →∞.
In the absence of other inputs (jn(t) = 0), the applied current η = 0 places the system at a saddle-node bifurcation,
responsible for the onset of tonic (periodic) �ring.
As discussed above, the sensitivity of a neuron to stimulus from other cells may decrease before and after the spike

due to refractoriness. This can be modeled by the following expression for the recurrent input:

jn(t) = F (vn)s(t), s(t) =
1

N

N∑
n=1

∑
k\tkn<t

∫ t

−∞
dt̃Gτ (t− t̃)δ

(
t̃− tkn

)
. (S.16)

Here, s(t) is the mean synaptic activation, tkn is the time of k-th spike of the n-th neuron, δ(t) is the Dirac delta
function, and Gτ (t) is the normalized synaptic activation caused by a single presynaptic spike with time scale τ , e.g.,
Gτ (t) = e−t/τ/τ . The function F (vn) describes the sensitivity of the n-th neuron to stimulus from its presynaptic
partners. We de�ne F (vn) as

Fn (v) = 1− 4ε v2n
/(

1 + v2n
)
. (S.17)

The transformation vn (t) = tan
(
θn (t)

/
2
)
[57] converts the membrane potential description of the QIF model (S.15)

into a phase description, leading to the phase equation

θ̇n = (1− cos θn) + η (1 + cos θn) + κ (1 + cos θn) (1− 2ε (1− cos θn)) s(t), (S.18)

which coincides with (S.13).


