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Abstract. We present a qualitative analysis of a generic model structure that can simulate the bursting
and spiking dynamics of many biological cells. Four different scenarios for the emergence of bursting are
described. In this connection a number of theorems are stated concerning the relation between the phase
portraits of the fast subsystem and the global behavior of the full model. It is emphasized that the onset of
bursting involves the formation of a homoclinic orbit that travels along the route of the bursting oscillations
and, hence, cannot be explained in terms of bifurcations in the fast subsystem. In one of the scenarios, the
bursting oscillations arise in a homoclinic bifurcation in which the one-dimensional (1D) stable manifold of
a saddle point becomes attracting to its whole 2D unstable manifold. This type of homoclinic bifurcation,
and the complex behavior that it can produce, have not previously been examined in detail. We derive a
2D flow-defined map for this situation and show how the map transforms a disk-shaped cross-section of the
flow into an annulus. Preliminary investigations of the stable dynamics of this map show that it produces
an interesting cascade of alternating pitchfork and boundary collision bifurcations.

PACS. 05.45.-a Nonlinear dynamics and nonlinear dynamical systems

1 Introduction

Living cells depend on the existence of a cell membrane
that can maintain an appropriate intracellular environ-
ment and regulate the exchanges of ions and molecules
between the cell and its surroundings [1]. For many cell
types the membrane is excitable, or the membrane po-
tential exhibits complicated patterns of slow and fast os-
cillations associated with variations of the different ionic
currents.

The bursting and spiking dynamics of the membrane
potential is essential for the function of the cell as well
as for its communication with neighboring cells. It is well
known, for instance, that traveling electrical pulses are re-
sponsible for the propagation of information along nerve
fibers [2]. Fast potassium-controlled oscillations are im-
portant for the transmission of signals between nerve and
muscle cells and thus for the contractions of the striated
muscles [3], and slower, calcium-controlled oscillations are
involved in the contractions of smooth muscle fibers [4]
as well as in the function of rhythmogenic nerves [5]. It
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has also been demonstrated that the excretion of insulin
from pancreatic β-cells depends on the fraction of time
that the cells within an islet of Langerhans spend in the
spiking state. This fraction again varies with the concen-
tration of glucose in the extracellular liquid [6,7]. It is
obviously of interest to understand these phenomena in
detail, and over the years significant effort has been de-
voted to studying the ionic transport mechanisms of the
cell membrane.

With the introduction of patch clamping techniques [8]
it has become possible to measure the ionic currents
through the various channels as a function of the mem-
brane potential and in dependence on the concentrations
of ions and molecules. This has led to the formulation of
a variety of mathematical models describing the most im-
portant physiological processes for different cell types [9–
16]. Despite this effort, the biological mechanisms under-
lying the bursting behavior are not yet fully understood.
For pancreatic β-cells, for instance, it is not known in what
way calcium is involved in the slow dynamics [15]. It also
appears that regular bursting behavior only arises in clus-
ters of closely coupled β-cells. For isolated cells, stochastic
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effects associated with the opening and closing of potas-
sium channels tend to produce irregular spiking [17].

At the same time, a number of phenomenological mod-
els have been proposed [18]. Without direct relation to
concrete physiological mechanisms, such models aim at
reproducing the characteristic features of the bursting be-
havior. To the extent that the assumptions underlying the
phenomenological models are sufficiently general, these
models may be used to explain generic bifurcation scenar-
ios that can also be observed in the more realistic models.

The purpose of the present investigation is to perform
a more rigorous analysis of the mechanisms leading to
the onset of bursting. Recent studies [19–21] suggest that
there are a significant number of unresolved problems in
this area, particularly concerning the emergence of very
complicated dynamics in the transitions between burst-
ing and continuous spiking and between different bursting
states [22,23]. It is important to eliminate the widespread
misconception that the onset of bursting can be explained
in terms of bifurcations that occur in the fast subsystem.
Bursting emerges as a result of the creation of a homo-
clinic orbit traveling along the route of the bursting os-
cillations in the full system. The difficulty of the analysis
is connected with the fact that the smaller the parame-
ter µ describing the rate of change of the slow system is,
the finer the bifurcational structure of the model, and the
harder the computational problem will be.

Considering the Hindmarsh-Rose system and similar
classes of cell models, Wang [19] has proposed the combi-
nation of two different mechanisms to explain the genesis
of bursting. First, the continuously spiking state under-
goes a period-doubling transition to a state of chaotic fir-
ing, and this state is destabilized in a boundary crisis.
Bursting then arises through the realization of a homo-
clinic connection that serves as a reinjection mechanism
for the chaotic saddle. In this picture the bursting oscil-
lations are described as a form of intermittency with the
silent state corresponding to the normal turbulent phase
and the firing state to the laminar phase. Wang supports
his analysis by a calculation of the escape rate from the
chaotic saddle and outlines a symbolic dynamics formal-
ism to characterize the various bursting states. Wang’s
discussion is compelling in many ways and it agrees with
numerically obtained bifurcation diagrams, Poincaré sec-
tions and return maps. However, the essential question as
to how the homoclinic connection arises is left unanswered.

Terman [20,21] has performed a more complete and de-
tailed analysis of the onset of bursting oscillations. He has
obtained a two-dimensional (2D) flow-defined map for the
most complex scenario where the equilibrium point of the
full system falls close to a saddle point of the fast subsys-
tem, which has a homoclinic orbit. By means of this map,
Terman has proved the existence of a hyperbolic struc-
ture (a chaotic saddle) similar in many respects to a Smale
horseshoe. This represents an essential step forward in un-
derstanding the complexity involved in the emergence of
bursting. However, since Terman’s set is non-attracting, it
cannot be related directly to the observed stable bursting
phenomena. The reason for this result is that Terman in

his analysis of the flow-defined map restrains himself to
consider only half of the map and concentrates his anal-
ysis on the effects of rotations caused by the dynamics of
the fast subsystem. Neglecting as a first approach these
rotations we shall derive an explicit representation of the
full 2D map both for the symmetric and the asymmetric
case, and we shall prove that the map can produce an
attracting chaotic state.

Our analysis proceeds along the following scheme: The
basic model and the corresponding assumptions are pre-
sented in Section 2. We consider a generic cell model in
the form of a 3D system of differential equations with two
fast and one slow variable. Section 3 presents a set of theo-
rems on invariant manifolds, cycles and simple homoclinic
orbits in generic systems of differential equations with a
single slow variable and discusses the relation between the
global dynamics of the full system and the phase portrait
of the fast subsystem. Based on these theorems, Section 4
presents four different scenarios for the onset of bursting
in our generic cell model. Although these scenarios may
appear similar to the scenarios described in the more con-
ventional analysis in which the model is decomposed into
a fast and a slow subsystem, we emphasize that each of
the transitions represents a bifurcation of the full 3D sys-
tem and is essentially different from the bifurcations of
the fast subsystem.

In the most interesting scenario, the emergence of
bursting oscillations is associated with a homoclinic bi-
furcation in which the 1D stable manifold of a saddle
point becomes attracting to its whole 2D unstable man-
ifold. This type of homoclinic bifurcation does not ap-
pear to have been examined in detail. In Section 5 we de-
rive a flow-defined map appropriate for this situation and
demonstrate how the map transforms a disk transverse
to the flow into an annulus. In Sections 6 and 7 explicit
forms for this two-dimensional map are obtained for the
symmetrical and asymmetrical cases. In good agreement
with our qualitative analysis of the cell model, the bifur-
cation diagrams of these maps display complicated sets if
bifurcations in the transition to chaotic bursting.

Considering the various codimension-1 bifurcations
that can occur in the fast subsystem, Hoppensteadt and
Izhikevich [24] have established a complete classification
of the so-called planar point-cycle fast-slow codimension-
1 bursters. The term point-cycle here refers to the case
where the silent state is an equilibrium point and the spik-
ing state a limit cycle. When the silent state is a small am-
plitude limit cycle, the burster is said to be of cycle-cycle
type. The word planar refers to the case when the fast
subsystem is two-dimensional. Although we shall refer to
the Hoppensteadt-Izhikevich classification in connection
with the four scenarios presented in Section 4, we empha-
size that the onset of bursting takes place via a homoclinic
bifurcation in the full system and not via a codimension-1
bifurcation in the fast subsystem. Hence, our four mecha-
nisms for the onset of bursting are not directly related to
the above classification.
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2 The cell model

Models of oscillating and bursting biological cells can often
be cast into the general form [11–13]

ẋ = P (x, y, z),
ẏ = Q(x, y),
ż = µ(R(x, y) − z),

(2.1)

where µ is a small positive parameter, and where the con-
tinuous functions P (x, y, z), Q(x, y), and R(x, y) have the
following properties:

1) The partial derivatives of P , Q, and R are suffi-
ciently smooth. In order to use bifurcation theory we need
at least P,Q,R ∈ C

3 for (x, y, z) ∈ R
3 (or (x, y, z) ∈ G ⊂

R
3).

2) The system of equilibrium conditions Q(x, y) = 0,
R(x, y) = z defines a function

z = R(x, y = q(x)) ≡ g(x). (2.2)

3) The equilibrium conditions P (x, y, z) = 0, Q(x, y) =
0 determine a branch of solutions with respect to z such
that

z = p(x, y = q(x)) ≡ f(x). (2.3)

Under these conditions, the equilibrium points of (2.1)
are given by the points of intersection of the functions (2.2)
and (2.3). The curve z = f(x) determines the equilibria of
the z-parameter family of fast two-dimensional systems

ẋ = P (x, y, z), ẏ = Q(x, y), z = const, (2.4)

obtained from (2.1) for µ = 0 and, through its crossing
points with the curve z = f(x), the function z = g(x)
determines the equilibria of the full system for µ > 0.

In the following analysis we assume that the function
f(x) has two critical points xc1 and xc2 such that

f ′ > 0, xc1 < x < xc2,

f ′ < 0, x < xc1, x > xc2, (2.5)

and that the curve g(x) intersects f(x) in a single point
xe. Within the region of interest, the cell model (2.1) then
displays a unique equilibrium point E(xe, ye, ze), where
ze = f(xe) = g(xe) and ye = q(xe). At least in an inter-
val around the equilibrium point, we require that g has a
larger slope than f .

We finally assume that the divergence of the two-
dimensional vector field F (P,Q) changes sign so that

σ(x) ≡ divF|z=f(x) > 0, xH1 > x > xH2,

σ(x) < 0, x < xH1, x > xH2, (2.6)

where the values xH1,2 correspond to a pair of Hopf bifur-
cations of the equilibrium point for the fast system (2.4).
The Hopf bifurcations may be sub- or supercritical, and
one or both of the bifurcations may fall outside the region
of interest (x, y, z) ∈ G. In the case of a subcritical Hopf

bifurcation at xH1, the generated unstable limit cycle is
assumed to stabilize in a saddle-node bifurcation at x+1.

A simple example of a model that satisfies the above
conditions is the well-known Hindmarsh-Rose system [18].
However, these conditions are also in accordance with typ-
ical biophysical models such as, for instance, the three-
variable Chay-Kaiser model [11]. The conventional anal-
ysis of this type of model [12] applies a decomposition of
the full system into a two-dimensional fast subsystem de-
scribed by equation (2.4) and a slow system accounting
for the variation of z. In relation to the fast dynamics, z
is then considered as a parameter that shifts the working
point forth and back. This approach is obviously inad-
equate, however, since it fails to account for some of the
most interesting aspects of the models, namely the appear-
ance of chaotic dynamics. Moreover, the onset of bursting
oscillations involves the formation of a homoclinic connec-
tion in the full model and, hence, cannot be explained in
terms of bifurcations that occur in the fast subsystem.

3 Manifolds and cycles for generalized cell
models

Consider the general system

ẋ = X(x, z) + µV (x, z, µ),
ẏ = µZ(x, z, µ), (3.1)

where x ∈ R
n describes the dynamics of an n-dimensional

fast subsystem, and z ∈ R
1 is a single slowly varying coor-

dinate. X, V and Z are assumed to be sufficiently smooth
vector, respectively, scalar functions, and µ > 0 is a small
parameter. Let us start by introducing some theorems con-
cerning the behavior of systems of the form (3.1), derived
originally by Belykh [25], in order to apply them to our
generic cell model (2.1).

For all z ∈ R
1 the reduced system

ẋ = X(x, z), z = const (3.2)

is assumed to have a set of equilibrium states x = xk(z)
with X(xk, z) = 0, k = 0, 1, 2, . . .

Theorem 1. 1) Let the eigenvalues of the Jacobian ma-
trix Xx(xk(z), z) be separated from the imaginary axis for
z ∈ R

1. Then there exists a number µ0 > 0 such that
if µ ∈ (0, µ0), (3.1) has a unique one-dimensional in-
tegral manifold Jk(µ) = {x =

∼
xk (z, µ), z ∈ R

1} close
to the reduced manifold Jk(0) = {x = xk(z)} and with
x̃k(z, 0) = xk(z).

2) If the eigenvalues of Xx(xk(z), z) are to the left
(right) of the imaginary axis then the manifold J(µ) ≡
Jk(µ) is stable (unstable, respectively).

3) If m eigenvalues are to the left and n − m eigen-
values to the right of the imaginary axis then the man-
ifold J(µ) is of saddle type, and given by the intersec-
tion of the corresponding stable and unstable manifolds,
J(µ) ∈ W s(µ) ∩ W u(µ). Being continuous in the param-
eter µ, the manifolds W s(u)(µ) are close to the reduced
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Fig. 1. (a) Conditions of Theorem 2. . The stable and unstable
manifolds of the saddle branch J(0) for the fast subsystem
intersect along the homoclinic orbit Γ0. (b) Different forms
of homoclinic orbits Γµ to the saddle manifold J(µ) for the
full cell model, depending on the mutual arrangement of the
equilibrium point E and the homoclinic orbit Γ0. In case (2),
the equilibrium point has a homoclinic orbit Γµ close to the
homoclinic loop of the saddle point Oh.

manifolds W s(u)(0). This closeness is maintained outside
of a small neighborhood of J(µ) for pieces of W s(u)(µ)
corresponding to the finite time continuation by the flow.

4) The motion on Jk(µ) is defined by the first-order
equation

ż = µZ(xk(z, µ), z, µ). (3.3)

Theorem 2. 1) Let the saddle-type equilibrium point Oh =
{x0(z), z = z0} of the reduced system (3.2) have a homo-
clinic orbit Γ0 which is the transversal intersection of the
manifolds W s(0) and W u(0) :

dim(W s
M ∩W u

M ) = 1, (3.4)

where W
s(u)
M are the tangent manifolds to W s(u)(0) at the

point M ∈ Γ0. The system (3.1) then has the homoclinic
(doubly asymptotic) orbit Γµ to the manifold J(µ).

2) If the point Oh = {x0(z), z = z0} is an equilibrium
point of (3.1) then the saddle Õh existing after a pertur-
bation of (3.1) has the homoclinic orbit Γµ.

Figure 1(a) illustrates the conditions of Theorem 2.
, and figure 1(b) shows different types of homoclinic or-
bits to J(µ)(= J) depending on the mutual arrangement
of the equilibrium point E of (3.1) and the homoclinic
loop Γ0 of (3.2). In situation 2), Γµ is a homoclinic orbit
to the equilibrium point E, and Γ0 is a homoclinic or-
bit to the nearby saddle point Oh. Note that in the cases
where (3.1) has no equilibrium for Z(x, z, µ) > 0(< 0), the
one-dimensional manifold J(µ) is a trajectory of (3.1), and
Γµ is a homoclinic orbit for it. For example, if (3.1) is pe-
riodic in z and Z > 0, then J(µ) is a periodic orbit, and
the neighborhood of Γµ has a complex set of trajectories.

Let the reduced system (3.2) for all z ∈ R
1 have a limit

cycle L0 = {x = ζ0(t, z)} of period τ(z) = 2π/ω(z). For
simplicity we consider the 3-dimensional case of (3.1) for
which the vector x represents (x, y) ∈ R

2. Thus we denote
L0 = {x = ξ0(t, z), y = η0(t, z)} ∈ R

2, ζ0 = (ξ0, η0), and
X = (P (x, y, z), Q(x, y, z)) in (3.1). In accordance with
Belyustina and Belykh [26] we get the following assertion:

Theorem 3. Assume that for all z ∈ R
1 the characteristic

exponents of L0

h =
1

τ(z)

τ(z)∫
0

divX(ζ0(t, z)) dt 	= 0. (3.5)

Then for µ ∈ (0, µ0) the system (3.1) has a cylindrical
manifold Lµ = {x = ζ(ϕ, z, µ), z ∈ R1} stable for h < 0
and unstable for h > 0. The differential equation for Lµ

can be written in the form{
ϕ̇ = ω(z) + r(ϕ, z, µ),
ż = µZ(ζ(ϕ, z, µ), z, µ),

(3.6)

where ζ(ϕ, z, µ) → ζ0(ϕ, z) and r(ϕ, z, µ) → 0 for µ → 0
are both 2π-periodic in ϕ.

Note that the manifolds J(µ) and Lµ defined in these
theorems are unbounded in z. Hence, the theorems can-
not be applied directly to models like (2.1), where the
manifolds of the reduced system have edges. In order
to match Theorems 1. –3. to system (2.1) we use the
following standard “freezing” procedure. Instead of sys-
tem (3.1) we consider a system (3.1)0 coinciding with (3.1)
in the interval (z1, z2) and extended beyond this interval
by X(x, z) = X(x, z1) for z ≤ z1 and X(x, z) = X(x, z2)
for z ≥ z2. If the conditions of Theorems 1. -3. hold for
system (3.1) in the interval (z1, z2), then these conditions
hold for system (3.1)0 for ∀z ∈ R

1. Hence, if system (3.1)0
has the manifolds J(µ) and Lµ then those parts of these
manifolds that fall in the interval (z1, z2) serve as inte-
gral manifolds of system (3.1). In the following we shall
assume that such a procedure is used as we return to the
cell model (2.1).

Excluding two regions T1,2 around the critical points
of the function z = f(x) : T1,2 = {|f(xc1,2) − z| < ε(µ)},
where ε(µ) > 0 is small, we can distinguish three branches
of the equilibrium point curve in R

3 defined by equa-
tion (2.3). We denote the left, middle, and right branches
of the equilibrium curve of the fast system by J1(0), J0(0),
and J2(0), respectively.

Theorem 1. can immediately be applied to the man-
ifolds J1(0) and J0(0). This implies that for µ > 0
there exists a stable manifold J1(µ) in the region {z >
f(xc1) + ε, x < xc1}, and in the region {f(xc1) + ε < z <
f(xc2) − ε, xc1 < x < xc2} there exists a saddle manifold
J(µ) = J0(µ) arising as an intersection of stable W s and
unstable W u manifolds. For J2(0), Theorem 1. does not
apply because the equilibrium point undergoes a Hopf bi-
furcation, and the theorem related to the so-called slow
passage effect has to be used [27] .
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Obviously, if the surface z = R(x, y) (ż = 0) intersects
the above manifolds in points outside T1,2, the regions
T1,2 can be considered as transition layers for the flow in
the neighborhood of Jk(µ), and the trajectories (including
J(µ)) pass these transition layers during times of the order
of 2ε(µ)/µ. On the other hand, if O = ({z = R(x, y)} ∩
Jk(µ)) ∈ T1,2, then the intersection point O is at the edge
of Jk, and specific phenomena may occur.

Now we exclude four additional transition regions TS =
{|zS−z| < ε(µ)}, where the subscript S = H1,H2,+1, and
h, and the values zS refer to the fast system Hopf, saddle-
node on a cycle, and homoclinic orbit bifurcations, respec-
tively. Again, ε(µ) > 0 is assumed to be small. Outside TS ,
Theorem 3. can be applied for the cylindrical manifolds
Lsµ and Luµ that have appeared from the reduced manifolds
formed by the z-family of stable, respectively, unstable cy-
cles of system (2.1) in the cases described as scenarios 2
and 4 in Section 4. The differential equations (3.6) for Lsµ
(or Luµ) can be rewritten in the form

{
ϕ̇ = ω(z) + r(ϕ, z, µ),
ż = µ(R(ξ(ϕ, z), η(ϕ, z)) − z) + µr̃(ϕ, z, µ),

(3.7)

where the functions r(ϕ, z, µ) and r̃(ϕ, z, µ) both vanish
at µ = 0.

Theorem 4. Given the integral

I(z) =
1

τ(z)

τ(z)∫
0

(R(ζ0(t, z) − z) dt, (3.8)

1) if I(z) 	= 0 then the manifold Lµ is transient for
the flow (2.1). Namely, for I(z) < 0 (> 0) all trajecto-
ries in Lµ are rotating in ϕ and increasing (decreasing,
respectively) in z.

2) if I(z) changes sign then the system (2.1) has a limit
cycle L0µ ∈ Lµ. This cycle is unique and stable (unstable)
in Lµ if I ′(z0) < 0 (> 0, respectively) for I(z0) = 0.

Proof. The system at the cylinder (3.7) can be trans-
formed into the form of a single first-order differential
equation

dz
dϕ

= µ
R(ζ0(ϕ, z)) − z

ω(z)
+ µr0(ϕ, z, µ), (3.9)

where limµ→0 r0 = 0. Applying the usual averaging
method, originally developed by Pontrjagin [28], instead
of (3.9) we obtain an equation written in terms of the time
variable

dz
dt

= µI(z). (3.10)

Then transitivity follows from dz/dϕ 	= 0 for I(z) 	= 0, and
zeros of I(z) define the limit cycles for which the stability
is determined by the derivative I ′(z). ��

For the unstable manifold Luµ we obtain similar results
except that in this case we have a saddle-type or a strongly
unstable cycle.

z 2

z 1

c

c

E

Fig. 2. Formation of a homoclinic orbit in the full cell model
according to scenario 1. The family of phase portraits of the
fast subsystem is shown as a parameter-z bifurcation diagram.
The dotted curve illustrates the route for the bursting oscil-
lations. We have argued for the emergence of these oscilla-
tions via a codimension-2 saddle-node bifurcation in the full
cell model.

Statement. Let the surface z = R(x, y) intersect the
curve z = f(x) defined by (2.3) in the point z = zh for
which the reduced system saddle Oh has a homoclinic or-
bit. Then, due to Theorem 2. , a saddle point Õh of the sys-
tem (2.1) with a function R(x, y) + c(µ) replacing R(x, y)
has a homoclinic orbit. Here, c(µ) is a constant (indepen-
dent of x and y) that vanishes for µ = 0.

4 Bifurcation scenarios for bursting
oscillations

Based on the above analysis we can present four different
scenarios for the emergence of bursting oscillations in the
generic cell model (2.1):

Scenario 1. Recall first our assumption of a unique equi-
librium point E(xe, ye, ze), where xe is determined by the
intersection f(xe) = g(xe), ye = q(xe), and ze = f(xe).
If xe = xc1, the simple picture of Figure 2 is realized.
Consider l = xe − xc1 as a bifurcation parameter. For
l = 0, E is a saddle-node (with two vanishing eigen-
values) and the equilibrium point has a homoclinic or-
bit traveling along the route: 1D unstable manifold of
E → T1 → U(J2(µ)) → T2 → U(J1(µ)) → E. Here,
U(Jk(µ)) denotes a small neighborhood of the manifold
Jk(µ). For l < 0, E is stable and attracts the whole phase
space, and for l > 0, E becomes a saddle point. A stable
limit cycle is then generated from the homoclinic orbit
that was born at the bifurcation point (for an overview
of the bifurcation scheme see Fig. 8(a), below). It is im-
portant to realize the difference between this transition
and the normal bifurcation for the birth of a limit cycle
via a saddle-node bifurcation. The basin of the cycle is the
whole 3D phase space except for the saddle point E and its
1D stable manifold. The route of the bursting oscillations
is indicated by the dotted curve in Figure 2.
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z
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Fig. 3. Emergence of bursting oscillations in the full cell model
following scenario 2. The family of phase portraits of the fast
subsystem is shown as a parameter-z bifurcation diagram. The
dotted curve illustrates the route of the bursting oscillations.

The above codimension-2 bifurcation also differs from
the usual bifurcation of a saddle-node with a homoclinic
orbit where a cycle is generated simultaneously with the
disappearance of two equilibrium points. In cases when
the condition that the slope of g is larger than the slope
of f does not hold, and the system (2.1) has two nearby
equilibrium points, one may observe all the peculiarities of
a Bogdanov-Takens bifurcation [27], including Hopf and
local homoclinic loop bifurcations. The transition T1 →
U(J2(µ)) with the isolated small limit cycle observed in
the Chay model [23] may be explained by this mechanism.

Finally we note that it does not matter for the present
scenario which type of attractor is located along the
right branch of curve z = f(x). The stable manifold
Lsµ may stand for J2(µ). Hence, in relation to the clas-
sification of point-cycle bursters introduced by Hoppen-
steadt and Izhikevich [24] this scenario describes the mech-
anism involved in the formation of so-called fold/circle,
circle/circle, Hopf/circle, subHopf/circle, fold/Hopf, cir-
cle/Hopf, Hopf/Hopf, and subHopf/Hopf bursters.

Scenario 2. Let the conditions of Figure 3 be real-
ized and let the bifurcation parameter be l = zH1 − ze.
For l < 0, E is a stable focus, and the edge of its two-
dimensional focus submanifold is a saddle-type cycle Csd

existing according to Theorem 4. . The basin of attrac-
tion for E is the whole phase space excluding Csd and
its cylindrical stable manifold. For l = 0, a homoclinic
orbit bifurcation, being simultaneously a subcritical Hopf
bifurcation, occurs. For l > 0, bursting oscillations explo-
sively arise and travel the route: TH1 → U(Ls

µ) → T+1 →
U(J2(µ)) → TH1, if the integral I(z) is positive for Ls0 (see
dotted curve in Fig. 3). As previously indicated, the tran-
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z c
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h

h
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Fig. 4. Family of phase portraits shown as a parameter-z bi-
furcation diagram for the conditions of scenario 3. The fast
subsystem displays a supercritical Hopf bifurcation at zH2 < zc

and a homoclinic loop bifurcation at zh > zc. The dotted curve
illustrates the route for the bursting oscillations in the full sys-
tem.

sition U(J2(µ)) → U(Lsµ) through the layer TH1 occurs
with the delayed loss of stability [27]. The general scheme
for such a transition, leading to so-called elliptic burst-
ing [29], will be presented in Figure 8(b). Note that in or-
der to satisfy the condition I(z) > 0, the larger part of Ls0
must be in the region z > R(x, y) of phase space. We omit
the details of this analysis referring to the complicated bi-
furcation sets described by Belyakov [30] and Arnold et
al. [27]. We emphasize only the following important fea-
ture: The bifurcation leading to the emergence of bursting
is not the Hopf bifurcation of the fast subsystem but the
formation of a homoclinic orbit traveling along the route
of bursting. A similar scenario was described in 1980 by
Belykh and Chertkov [31] for the Hodgkin-Huxley model.

Scenario 3. Here we assume that the conditions corre-
sponding to Figure 4 are realized and take the bifurcation
parameter l = ze − zh, with zh representing the point
of homoclinic bifurcation for the fast subsystem. In the
Hoppensteadt-Izhikevich classification [24], this scenario
describes the mechanism of formation of the so-called
fold/homoclinic, circle/homoclinic, Hopf/homoclinic, and
subHopf/homoclinic bursters. Note, however, that in this
classification the term homoclinic refers to a homoclinic
bifurcation in the fast subsystem.

It follows from results on system behavior in the tran-
sition regions (see Terman [21]) that for each small neg-
ative l < 0 there exists a value of µb(l) such that for
µ ∈ (0, µb(l)) the system (2.3) has a bursting oscillation.
The route of this bursting is Th → U(J1(µ)) → T1 →
U(Lsµ) → Th. We denote the inverse function to µb(l) by
l = lb(µ). For any small positive parameter l > 0, the
separating surface {R(x, y) − z = 0} cuts a small piece
of the homoclinic orbit for the fast system close to the
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Fig. 5. (a) For l = ze − zh > 0, part of the homoclinic loop for
the fast subsystem falls in the region where the contribution
to the integral I(zh) is negative. (b) Basic bifurcation diagram
for the transition from continuous spiking to bursting (as the
parameter l = ze − zh is reduced). µ �= 0 but small is the
parameter that characterizes the slow time scale. lh(µ) is a
curve of homoclinic bifurcations for the full system, and lsn(µ)
is a curve of saddle-node on cycle bifurcations.

saddle Oh (see Fig. 5(a)). The value of (R(x, y) − z) is
negative for this piece. Hence, the limit of the integral
I(zh) in (3.8), corresponding to integration along the ho-
moclinic loop (x, y) = ζ0(t, zh), becomes negative because
limz→zh τ(z) = ∞ and the larger part of the period τ(z)
for small l > 0 falls at the vicinity of Oh with negative
value of (R−z). On the other hand, for the values z some-
what less than zh, the integral I(z) is positive. Hence, for
any small l > 0 there exists a value µs(l) such that for
µ ∈ (0, µs(l)) the system (2.1) has a stable limit cycle at
Lµ corresponding to continuous spiking. Here, µs(l) de-
notes the inverse function of l = l(µs). We observe that
the integral I(zh) is similar to Mel’nikov’s function.

From Theorem 2. it follows that the system (2.1) has
a homoclinic orbit of E for l = lh(µ). As illustrated in
Figure 5(b),

lb(µ) < lh(µ) < ls(µ), (4.1)

and as a first result we conclude that a homoclinic or-
bit bifurcation occurs at the transition from continuous
spiking to bursting oscillations for µ = const > 0.

Now we note that the saddle Oh of the fast subsystem
has a negative saddle number σ = −λ + γ < 0, where
−λ and γ are eigenvalues of the linearized fast system at
Oh. This (and only this) property allows a stable limit
cycle to link to a homoclinic loop. For any µ > 0 and
for the assumed disposition of the curves z = f(x) and
z = g(x), the saddle E|l=0 = Oh of system (2.1) acquires
a positive eigenvalue µ+ = kµ + o(µ2) > 0 in addition to
the eigenvalues −λ + o(µ) and γ + o(µ). This eigenvalue
corresponds to an instability of E along the 1D saddle
manifold J0(µ).

As µ+ is the smaller of the positive eigenvalues
(µ+, γ + o(µ)), and | − λ + o(µ)| > µ+, µ+ defines the
leading direction such that a saddle cycle with 2D stable
and 2D unstable manifolds is generated from the homo-
clinic loop [32] when l moves away from lh(µ). In case
of the opposite relation between the slopes of the sep-
arating surface {R − z = 0} and the equilibrium curve
z = f(x) (i.e., if f has a larger slope than g) E becomes

saddle
fixed point

fixed point
stable

manifold of E
1-d stable 

homoclinic
orbit

edge of W s

(a) (b)

before bifurcation after bifurcation

Fig. 6. Poincaré section to illustrate the homoclinic orbit bi-
furcation of a saddle cycle (curve lh(µ) in Fig. 5) that takes
place before the saddle-node on a cycle (curve lsn(µ) in Fig. 5)
in scenario 3. It is through this homoclinic bifurcation that the
bursting oscillations arise in the full model. The Poincaré sec-
tion represents the mapping of some cross section of the flow
onto itself. Also indicated is the edge of the 1D stable manifold
of the equilibrium point E which plays a significant role for the
behavior of the system.

a saddle which is stable along the manifold J0(µ) with a
negative eigenvalue µ− = −k′µ + o(µ) < 0. Here, |µ−| is
the smaller of (|µ−|, | − λ + o(µ)|). In this case, µ− de-
fines the leading direction at the 2D stable manifold of E
and, as γ + o(µ) > |µ−|, a saddle cycle is generated from
the homoclinic loop under variation of l. We can there-
fore postulate that there exists a saddle-node on a cycle
bifurcation (+1 multiplier) lsn(µ) at which the saddle and
stable cycles merge and disappear.

We conclude that the emergence of bursting oscilla-
tions cannot be related directly to a homoclinic orbit bi-
furcation of the fast subsystem. The only way to obtain
the transition via a homoclinic orbit of the fast system is
to change the parameters (l, µ) along the curve µ = µ0|l|ν ,
ν > 1. This is a way to a blue-sky catastrophe [33,34].

One may imagine that the saddle-node on a cycle bi-
furcation l = lsn(µ) gives rise to bursting in a straight-
forward manner. However, we exclude this possibility and
state that this saddle-node bifurcation occurs when the
saddle-node cycle has a homoclinic orbit. To confirm this,
we note that the 2D stable manifold of the saddle cy-
cle has an edge which is the stable 1D manifold W s of
the equilibrium point E corresponding to the eigenvalue
−λ + o(µ). Before the saddle-node bifurcation we meet
a homoclinic orbit bifurcation of the saddle cycle which
appears when the edge of the stable manifold of this cy-
cle touches its unstable manifold. This occurs when the
1D stable manifold of the equilibrium point E hits the
unstable manifold of the saddle cycle. As illustrated in
the Poincaré maps of Figure 6, the homoclinic bifurca-
tion leads to the emergence of a transversal intersection
of the stable and unstable manifolds of the saddle cycle. In
the present case, a hyperbolic structure in the neighbor-
hood of the homoclinic orbit does not appear but a motion
arises along the unstable manifold of the saddle cycle cor-
responding to bursting. Note that this homoclinic orbit
persists under variation of parameter l up to the value
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Fig. 7. Family of phase portraits for the fast subsystem as a
parameter-z bifurcation diagram for scenario 4. The route of
bursting oscillations for the full system is illustrated by the
dotted curve.

lsn(µ), and the saddle-node on a cycle bifurcation leads to
bifurcations of already existing bursting modes.

It is possible that the stable cycle does not reach the
saddle-node bifurcation but loses its stability via a multi-
plier −1 bifurcation (bifurcations via multipliers e±iϕ are
excluded because of the negative divergence of F in the
vicinity of E). In this case the oscillations may become
complicated due to period-doubling bifurcations, thus con-
firming Wang’s hypothesis [19]. However this scenario does
not affect the bifurcation responsible for the emergence of
bursting.

Scenario 4. We assume that the conditions correspond-
ing to Figure 7 apply for equation (2.4) and choose the
bifurcation parameter l = I(z+1) being the mean value of
ż along the saddle-node cycle defined by the integral (3.8).
In the Hoppensteadt-Izhikevich classification this scenario
corresponds to the formation of fold/fold cycle and cir-
cle/fold cycle bursters. For l < −ε(µ) < 0, where ε(µ) →
0, two cycles exist in the region zh < z < z+1, a stable
and an unstable one, defined by the roots of the equation
I(z) = 0 for Lsµ and Luµ in accordance with Theorem 4. .
The stable cycle determines the normal oscillations which
represent the steady state of the cell model (2.1).

For l > ε(µ), the mean value of
·
z at U(Lsµ) is posi-

tive, and all trajectories of (2.1) leave U(Ls
µ) via U(J2(µ))

through the layer T+1 to return to U(Lsµ) via the tran-
sitions U(J2(µ)) → U(Lsµ). Hence, for l > ε(µ), bursting
oscillations exist and follow the route shown by the dotted
curve in Figure 7. It is easy to verify that here we meet
the bifurcation of a saddle-node cycle having a homoclinic
orbit lying in the transversal intersection of its stable and
unstable manifolds. At first sight, this bifurcation looks
like the bifurcation in scenario 3 (see Fig. 8(c)). However,
as the saddle-node cycle in this case is far away from the
equilibrium point E, the complex limiting set of trajec-
tories that arise, producing chaotic bursting, differs from
that of scenario 3.

stability

(a)

(b)

stability bursting

bursting

EE

(c)

burstingsaddle-node + homo

Hopf + homo

oscillation saddle-node cycle
+ homo

Fig. 8. Schematic pictures to illustrate the emergence of burst-
ing oscillations in the various scenarios. (a) Scenario 1: Homo-
clinic orbit bifurcation of an equilibrium point undergoing a
simultaneous saddle-node bifurcation. (b) Scenario 2: Homo-
clinic orbit bifurcation of a saddle-focus under simultaneous
Hopf bifurcation. (c) Scenarios 3 and 4: Homoclinic orbit bi-
furcations of saddle cycles. In scenario 3, the homoclinic con-
nection passes close to the saddle equilibrium point. In scenario
4, it passes close to a saddle-node cycle for the fast subsystem.

Figure 8 provides a survey of the homoclinic bifurca-
tions involved in the above scenarios. In the first scenario
(Fig. 8(a)), the homoclinic bifurcation takes place for an
equilibrium point undergoing a simultaneous saddle-node
bifurcation. This is a codimension-2 bifurcation with two
simultaneously vanishing eigenvalues. In the second sce-
nario, the homoclinic orbit bifurcation occurs for a saddle-
focus undergoing a simultaneous Hopf bifurcation. Finally,
for scenarios 3 and 4 the homoclinic orbit bifurcation con-
nects the stable and unstable manifolds of a saddle cycle.
In scenario 3, the homoclinic connection passes close to
the saddle equilibrium point, and in scenario 4 it passes
in the vicinity of a saddle-node cycle. In all cases, the for-
mation of a homoclinic connection involves a bifurcation
of the full model.

For the case of Figure 7 we may mention another sim-
ple bifurcation leading to the emergence of bursting which
is related to the location of equilibrium point E at the
right branch of the curve z = f(x) such that the surface
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Fig. 9. When the integral I(z) of equation (3.8) vanishes, a
stable or unstable limit cycle oscillation may exist in the mani-
fold Lµ of scenario 4. The stability of these cycles is determined
by I ′(z), and a stable cycle corresponds to continuous spiking
in the cell model. If the cycles disappear, e.g., in a saddle-node
bifurcation, bursting oscillations may arise.

{z = R(x, y)} intersects the stable manifolds Lµ as shown
in Figure 9. Applying Theorem 4. we obtain that if the
integral I(z) has a zero z1: I(z1) = 0, I ′(z1) < 0, then
the limit cycle Lµ(z1) attracts almost all phase space of
system (2.1) and continuous spiking occurs. When, under
a shift of the separating surface {z = R(x, y)}, the cy-
cle Lµ(z1) disappears (for example, by merging with a
saddle cycle) and I(z) becomes positive, then bursting
arises. Hence we find that the transition from continuous
spiking to bursting oscillations takes place via a saddle-
node on a cycle “hidden” bifurcation which has no relation
to bifurcations of the fast subsystem.

5 2D-model map for homoclinic bifurcations

In the above analysis of scenario 3 we have shown how the
onset of bursting oscillations can be related to bifurcations
within the framework of the following general picture:

A smooth vector field F on R
3 has a unique saddle

equilibrium point E such that the linearized flow at E
has three real eigenvalues, one negative −λ < 0 and two
positive γ, µ > 0, satisfying λ > γ � µ > 0 (here −λ, γ, µ
stand for −λ + o(µ), γ + o(µ), µ+).

Written in the basis of the corresponding eigenvectors,
the linearization of F is

ẋ = −λx,

ẏ = y,

ż = µz,

(5.1)

where λ > 1 � µ > 0. For simplicity, we have maintained
the old notation for the new variables. At the same time,
we have rescaled the time variable t → γt. Hence, x corre-
sponds to the tangency of the 1D stable manifold W s and
the plane (y, z) to the 2D unstable manifold W u at E.

Let us define a disk D = {x = x0, ‖w‖ < r} transverse
to the flow and intersecting the 1D stable manifold W s

of the equilibrium point at a distance x0 from E. Here,
‖w‖ is the norm of the vector w = (y, z). As illustrated in
Figure 10, we may picture D as the top disk in a cylindrical
half-neighborhood U(E) with the boundary δU = D ∪
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Fig. 10. Flow of the vector field around the saddle equilibrium
point E with one negative and two positive eigenvalues. The
figure illustrates the construction of a return map of the disk D
into itself. The point O is mapped via the equilibrium point E
and the curve l0 into the inner boundary l of the annulus A, and
the circumference of D is mapped into the outer boundary L of
A. For parameters where ϕD ∈ D, the map has an attracting
state.

D0 ∪ d. Here, d = {‖w‖ = r} denotes the cylindrical side
of U(E), and D0 = {W u | ‖w‖ < r} is a piece of the
two-dimensional unstable manifold of E.

We assume that almost all trajectories starting near
E will return to U(E) via a transverse intersection of the
top disk D. This assumption is supported by our analyses
(Sects. 2 and 3) of the behavior of the trajectories of the
cell model for small values of the parameter µ defining
the ratio of the fast to the slow time constant in equa-
tion (2.1) and in a small range of the bifurcation param-
eter l near the homoclinic bifurcation in scenario 3. The
assumption is also supported by the detailed analyses per-
formed by Terman [20,21]. Exceptions are, of course, tra-
jectories starting from the equilibrium point or from a
point on its stable manifold W s.

With the above assumption we can conclude that tra-
jectories starting from a point on the cylindrical side d
of U(E) will return to the top disk D whatever their
particular route in phase space is, either they perform
a single fast oscillation or they travel through a slow
phase near the silent state and hereafter burst into a
series of spikes. Hence, these trajectories define a map
S : d → D. In particular, a point on the circumference
L0 = {x = x0, ‖w‖ = r} of D will be mapped into a
closed curve L = {x = x0, ‖w‖ < r} embedded in D. The
map S represents the global properties of the system. The
form of this map will depend on the precise structure of
the cell model as well as on the assumed parameters.

To derive the flow-defined map ϕ : D → D we also
need the map T : D → d that describes how trajectories
starting in a point of D are mapped onto the cylindrical
surface d. For the sake of simplicity we assume this map
to be determined by the linear flow (5.1) near the equilib-
rium point. However, this flow has a singularity in E: The
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flow-defined image of the point O = W s ∩ D for t → ∞
is the equilibrium point E. To remove this singularity we
apply the method of extension by continuity. Hence, we
represent the image of O by the closed curve l0 = {d∩W u}
that forms the boundary of D0, i.e., TO = l0.

The equilibrium point E is the only singular point for
the flow. By virtue of the theorem of smooth and contin-
uous variation of the trajectories with their initial condi-
tions [27], the global map S will be smooth and continu-
ous. After we have removed the singularity in E, the local
map T is also smooth and continuous. Hence, the com-
bined map ϕ = ST will be a diffeomorphism. The image
l = Sl0 will be a closed curve embedded in D. It is also
obvious that TL0 = L0. For the Poincaré map ϕ = ST
the images l = ϕl0 and L = ϕL0 are therefore both closed
curves embedded in D, and we immediately obtain the im-
portant result that the image of D is an annulus A = ϕD
bounded by the curves L along the outside and l along the
inside periphery.

In general, the form of the annulus A will not be circu-
lar. By virtue of the complicated global dynamics of the
model and the possibility that a trajectory can perform
either a single spike or go through a complete bursting
phase before it returns to D, the annulus will be asym-
metric and folded. Consider points along some line on the
cylinder surface d. On this line we may locate a partic-
ular point starting from where the trajectory completes
precisely N rotations around the right-hand branch of the
equilibrium curve for the fast subsystem before it returns
to D. As the initial point gradually moves along the con-
sidered line, the rotation of the trajectory in phase space
before it returns to D may increase. As a result, the in-
tersection point with D will gradually change its angular
position. At the same time it also changes its radial po-
sition, and as the initial point continues to move along
the line, its image in D produces a spiral. For the whole
cylindrical surface, the image will be an annulus that is
folded in the form of a spiral. The number of rotations of
the spiral and the separation between the spiral arms are
controlled by the size of the cylinder and by the parameter
µ. The rotations of the trajectory around the right-hand
branch of the equilibrium curve has a finite amplitude,
and each rotation takes a finite time. For a finite (i.e.
non-vanishing) value of µ, the vertical shift of the trajec-
tory per rotation will also be finite. Hence, it is possible to
define the size and shape of the cylinder such that neigh-
boring points with different number of rotations of the
trajectory do not arise. This is precisely the problem that
Terman emphasizes [20,21]. However, in view of the fact
that the type of homoclinic bifurcation that we are facing
does not appear to have been previously analyzed in de-
tail, we have decided in the following analysis to neglect
the complexity associated with the rotations of the trajec-
tory during the bursting phase and assume the simplest
possible version of the global map S. As previously noted,
our goal is to show that the combined map ϕ can produce
stable chaotic bursting.

Let us pause for a moment to consider the unusual
properties of the Poincaré map ϕ : D → D. An essen-
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Fig. 11. Cross-sections for constructing the model map along
the trajectories of (5.1) in a small neighborhood of E. The
coordinate system has been shifted so that (0, 0, 0) represents
the saddle equilibrium point E and the directions x, y, and z
are the eigendirections at this point. x is the contracting direc-
tion, and y and z are the directions with positive eigenvalues.
The return map is obtained as a composition of the local map
T : D → d and the global map S : d → D.

tial aspect of this map is that it generates an annulus A
with a hole H0 whose external boundary l is the image
of the point O through the doubly unstable equilibrium
point E. The composition of this saddle point, that part
of its unstable manifold W u that connects it to l, and
the hole H0 defines a heart-formed trapping zone Ω. This
zone has the property that all trajectories starting within
Ω will remain there for ever. Trajectories from the out-
side can enter Ω through the hole H0. For O ⊂ A, the
image of A is an annulus surrounding H0 and having a
new hole ϕH0 ⊂ ϕA. For a sufficiently small neighbor-
hood U(O), ϕU(O) ∩ ϕH0 = O, and ϕU(O) ⊂ ϕA. Under
these conditions, the repeated image ϕkA is an “annulus”
with k + 1 holes.

As the parameters of the cell model are changed, the
position of the annulus A relative to the point O will also
change. In particular when O passes the curve l moving
from the hole H0 into the annulus A a homoclinic cycle
is generated as a fixed point for ϕ lying in A. In order
to understand the role of this bifurcation for the global
behavior of the system let us note that:

i) for O ∈ H0 (as illustrated in Fig. 10), the image
ϕA is an annulus lying in A and surrounding the hole
H0 ∪ ϕU(O), and

ii) for O ∈ l when the system attains a homoclinic
orbit of the saddle E, the annulus ϕU(O) is composed of
two parts: One part lies in ϕA and the other part lies in
ϕH0.

To construct a simplified version of our 2D map let us
consider the problem in a rectangular coordinate system.
As illustrated in Figure 11, U(E) = {0 ≤ x ≤ x0, |y| ≤
y0, |z| ≤ z0} is a half-neighborhood of the saddle E. We
denote the cross-section disk Dx = {x = x0, |y| ≤ y0, |z| ≤
z0} and the lateral area of U(E), d = d1

⋃
d2

⋃
d̃1

⋃
d̃2,

where d1,2 = {y = ±y0, 0 < x < x0, |z| < z0} and d̃1,2 =
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Fig. 12. Action of the map ϕ on the rectangle (topological

disk) Dx = {D1∪
∼
D1 ∪D2∪

∼
D2}. The iterate ϕM of a point

M ∈ D1∪
∼
D1 assimilates one turn along the route of the left

branch J1(µ) and the manifold Lµ, representing one burst of

oscillations. The iterate ϕM of a point M ∈ D2∪
∼
D2 represents

one turn near the homoclinic loop of the fast subsystem (i.e.,
one spike). Chaotic dynamics may be realized through mapping
of points from one region into the other.

{z = ±z0, 0 < x < x0, |y| < y0}. The point O = {x =
x0, y = z = 0} and its image l0 = l01

⋃
l02

⋃
l̃01

⋃
l̃02,

where l01,2 = {x = 0, y = ±y0, |z| < z0}, l̃01,2 = {x =
0, z = ±z0, |y| < y0}.

The local map T : Dx → d may be constructed via
the obvious solutions of (5.1) x(t) = x(0)e

−λt, y(t) =
y(0)e

t, z(t) = z(0)e
µt. For small U(E) this map is generic,

because (5.1) is the appropriate normal form. Our assump-
tion that the manifold W u returns to Dx implies the ex-
istence of the global map S : d → Dx with S being some
diffeomorphism defined by (2.1).

Let us use the rescaled variables (x/x0, y/y0, z/z0)
with the passage times τ = − ln y for the map T1,2 : Dx →
d1,2 and τ̃ = −(1/µ) ln y for the map T̃1,2 : Dx → d̃1,2
(in rescaled y and z). In terms of the new variables,
Dx = {x = 1, |y| ≤ 1, |z| ≤ 1}, d1,2 = {y = ±1, 0 ≤
x(τ) ≤ 1, |z(τ)| ≤ 1}, and d̃1,2 = {z = ±1, 0 ≤ x(τ̃) ≤
1, |y(τ̃)| ≤ 1}.

Then the map T may be written in the form

T1,2 : x(τ) = |y|λ, for |z| ≤ |y|µ;
z(τ) = |y|−µz,

T̃1,2 : x(τ̃) = |z|λ/µ, for |z| ≥ |y|µ;
y(τ̃) = |z|−1/µy.

(5.2)

We denote the regions of the disk Dx, where the map T has
different actions as D1(2) = {|z| ≤ |y|µ, y > 0 (y < 0)}
and D̃1(2) = {|z| ≥ |y|µ, z > 0 (z < 0)} (see shaded
regions in Fig. 11). The successive flow-defined global map

S, also separated into four parts and smoothly joining
with T at |z| = |y|µ, produces the resulting return map
ϕ = ST : Dx → Dx.

To relate the map ϕ to the behavior of the cell
model (2.1), as illustrated in Figure 12 we assume that the
iterate ϕM of a point M ∈ D2

⋃
D̃2 simulates one turn

near to the homoclinic loop of the fast system (one spike),
and that the iterate ϕM of a point M ∈ D1

⋃
D̃1 simu-

lates one turn along the route of the left branch J1(µ) and
manifold Lµ representing one burst of oscillations. Hence,
any attractor of the map ϕ(s) = ST2(ST̃2) is related to
continuous spiking and any attractor of any composition
of ϕ(s) and ϕ(b) = ST1(ST̃1) to burstings. This may be
seen as a formalization of Wang’s discussion [19] of a sym-
bolic dynamics approach to characterize different modes
of alternating spikes and bursts.

6 Symmetric model map

To obtain an explicit form of the map ϕ we replace |y|µ
in (5.2) by its µ → 0 limit of 1, thus avoiding the construc-
tion of ST̃ and eliminating the dark grey regions D̃1,2 of
Figure 11. With this approximation the image ϕDx be-
comes two separate pieces of the annulus, and the map ϕ
becomes discontinuous. Furthermore, for the sake of sim-
plicity we assume the map to have the central symmetry
ϕ(−y,−z) = −ϕ(−y,−z) and consider only constant and
linear contributions to the maps S1,2 : d1,2 → Dx,(

ȳ
z̄

)
= S1

(
x(τ)
z(τ)

)
= A

(
x
y

)
+

(−α
γ

)
, y > 0, (6.1)

where A = ||ai,j ||, i, j = 1, 2 is a nonsingular 2 × 2 matrix.
α and γ are bifurcation parameters. With these approxi-
mations, the map ϕ reduces to{

ȳ =
( − α + a11|y|λ sgn y + a12z

)
,

z̄ =
(
γ + a21|y|λ

)
sgn y + a22z.

(6.2)

Let us further restrain the analysis to non-twisted
maps S1,2, assuming that a12 ≡ −δ ≤ 0, and
a11, a12, a22 > 0. For simplicity we also take γ ≥ 0. A
complete analysis of the full map will be presented in a
separate publication.

The map ϕ is discontinuous at y = 0, and as shown in
Figure 13 the images ϕ1D1 and ϕ2D2 are symmetric paral-
lelograms such that the segments N1N2 and N̄1N̄2 are re-
lated to the images of the stable manifold W s : ϕ1(0, 0) =
N1N2, ϕ2(0, 0) = N̄1N̄2, thus identifying the segments
(y = 0, |z| < c) with the origin (0, 0) in accordance with
the substitution |y|−µz ∼= z.

The condition ϕDx ⊂ Dx for (6.2) takes the form

1 − δ > α > 1 + a11 + δ,
−1 + a22 < γ < 1 − a22 − a21.

(6.3)

A homoclinic orbit exists when (0, 0) ∈ N1N2((0, 0) ∈
N̄1N̄2). This condition gives the bifurcation line

α = α(h) ≡ δ

a22
γ, |γ| ≤ a22. (6.4)
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Fig. 13. The parallelograms ϕ1D1 and ϕ2D2 arise as the first
images of the regions D1 and D2 under the action of the sym-
metric map. This map is obtained in the limit µ → 0 where µ
represents the smallest of the two positive eigenvalues for the
saddle point E. The line segments N1N2 and N1N2 are images
of the origin, and a homoclinic orbit exists when (0, 0) ∈ N1N2

(or (0, 0) ∈ N̄1N̄2).

Fixed points of the map ϕ are defined by the equations
ȳ = y > 0, and z̄ = z. From (6.2) we obtain{

z1(y) = δ−1
( − α + a11y

λ − y
)
,

z2(y) =
(
1 − a22)−1(γ + a21y

λ
)
,

(6.5)

such that the equation g1(y) ≡ z1(y) − z2(y) = 0 defines
the coordinates y of the fixed points. It is obvious that the
map ϕ1(ϕ2) has the stable fixed point p1(y1, z1(y1))(p2)
and the saddle point p∗1(y

∗
1 , z1(y

∗
1))(p

∗
2), 0 < y1 < y∗1(y

∗
2 <

y2 < 0, respectively), for some interval

α(1) −A1 < α < α(1). (6.6)

The bifurcation value

α = α(1) ≡ − δγ

1 − a22
(6.7)

corresponds to the disappearance of p1 and p2 at the edge
of D1,2 (y = 0), and the value α(1)−A1 is the saddle-node
bifurcation of p1 and p∗1. Being a solution to the system
g1 = 0, (g1)′y = 0 with respect to α, this gives

A1 = λ−(λ/(λ−1))(1 + λ)
(

1 − a22
a11 −∆

)1/(λ−1)
. (6.8)

The symmetric period-2 cycles is defined by the con-
dition {ȳ = −y < 0, z̄ = −z}. Arising from (6.2), the
equation

g2(y) ≡ (δ(1 + a22))−1

× (α0 + (1 + a22)y + (a11 + ∆)yλ) = 0, (6.9)

where α0 = −α(1 + a22) + γδ, ∆ = detA > 0 then deter-
mines the y-coordinates of the period-2 symmetric cycle.

α

γ

αα (1) (2)

012a

catastrophe
blue sky bursting

spiking

α (h)

Fig. 14. Schematic phase diagram for the map (6.1). The light
grey zone represents the region of continuous spiking. Transi-
tions across α(1) lead to bursting. α(1) represents the disappear-
ance of a stable, respectively, an unstable cycle at the edge of
D1,z and the appearance of a period-2 cycle. α(2) is a pitch-
fork bifurcation where the period-2 cycle is replaced by two
different cycles of the same period. α(h) is a line of homoclinic
bifurcations. Transitions through the origin (α, γ) = (0, 0) cor-
respond to a blue sky catastrophe. (Due to the symmetry of
the map, the transition from spiking to bursting takes place
via a heteroclinic bifurcation that occurs close to α(1)).

For α0 > 0, equation (6.9) has no solutions. For α0 < 0,
a unique solution of (6.9) corresponding to the symmet-
ric period-2 cycle C2((y∗, z∗) : (−y∗,−z∗) = f(y∗, z∗)) is
generated from the boundary {y = 0} at the bifurcation
line (α0 = 0):

α = α(2) ≡ δγ

1 + a22
. (6.10)

This cycle is stable in the interval

α(2) < α < α(2) + A2, (6.11)

where

A2 =
(

1 − a22
λ(a11 −∆)

)1/(λ−1)
×

(
1 +

(a11 + ∆)(1 − a22)
λ(a11 −∆)(1 + a22)

)
. (6.12)

At the bifurcation value α(2)+A2 the cycle C2 becomes
unstable, and two stable asymmetric period-2 cycles C+2
and C−

2 are generated from C2.
The arrangement of the bifurcation lines (6.4), (6.7),

(6.10) and the domains (6.6), (6.11) are illustrated in Fig-
ure 14. Obviously, from the previous local analysis we may
conclude that for α > α(2), bursting oscillations exist. In
order to obtain the general picture of the emergence of the
bursting oscillations let us consider the nonlocal behavior
of the map ϕ in the region of parameters α < α(2).

Theorem 5. Let the conditions (6.3) and

λ(−α + α11)λ−1 <
1 − a22
a11 −∆

(6.13)
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Fig. 15. Bifurcation diagram for the symmetric model map
(6.2) with α as the active parameter. The other parameters
are a11 = 0.4, a12 = −0.1, a21 = a22 = γ = 0.1, and λ = 2.
The transition to chaos does not occur via period-doubling
but via an unusual cascade of pitchfork and boundary collision
bifurcations.

be satisfied. Then
1) for α ≤ −δ the fixed points p1 and p2 are globally

stable so that D1(D2) is the basin of p1 (p2, respectively);
2) for α(1) > α > −δ the basin of each stable point p1

and p2 consists of parts of D1 and D2;
3) for α > α(1) the map ϕ has the limiting set of com-

position ϕ2 ◦ ϕ1.

Proof. 1) Due to (6.3), ϕ1,2D1 ⊂ D1,2 for α ≤ −δ and
since (6.3) implies the contraction of ϕ at ϕDx, the points
p1 and p2 are globally stable in D1 and D2, respectively.

2) For α(1) > α > −δ, p1 ∈ ϕ1D1 and p2 ∈ ϕ2D2, but
as q2 = ϕ1D1 ∩D2 	= ∅(q1 = ϕ2D2 ∩D1 	= ∅) the basins
of p1 and p2 consist of parts of D1 and D2.

3) For α = α(1), p1 and p2 lie at the boundary {y = 0},
and the domains q1 and q2 adjoin the fixed points p1 and
p2. Moreover, ϕn

2 q2 → p2, ϕn
1 q1 → p1 for n → ∞. Hence,

there exists a heteroclinic linkage of p1 and p2 so that
the composition ϕ2 ◦ ϕ1 for α > α(1) has the limiting set
generated from this linkage. ��

Now we have the following explanation of the on-
set of bursting oscillations through the symmetric model
map (6.2). For γ = const ≥ 0, δ 	= 0, while α is increasing
the birth of a limiting set for the composed map ϕ2 ◦ ϕ1
(bursting oscillations) occurs at α = α(1) via the creation
of a heteroclinic linkage of the stable points p1,2 situated
at the boundary of the map discontinuity. For our initial
continuous system, the bifurcation of p1,2 at the bound-
ary {y = 0} corresponds to a saddle-node bifurcation.
One can easily verify this fact by using the map (6.2)
with return term y−µz instead of z. Thus we obtain that
the establishment of a heteroclinic linkage between the
points p1 and p2 represents the bifurcation in which the
1D stable manifold of E hits the unstable manifold of the

saddle cycle. This corresponds to the situation in Figure 6.
The blue sky catastrophe discussed in Section 4 is mod-
eled by the map (6.2) when α, γ → 0 along the “tongue”
0 < γ < −(1 − a22)α/δ, i.e., through a codimension-2
homoclinic bifurcation.

The bifurcation diagram for the symmetric map is il-
lustrated in Figure 15 for particular values of the parame-
ters. Observe that the increase of α leads to chaos. At first
sight the diagram may appear similar to that of a period-
doubling scenario. However, the present scenario is quite
different. The change of the periods occurs only through
gaps when periodic orbits reach the boundary {y = 0}.
The pitchfork-like branches correspond to loss of stability
of symmetric orbits (one multiplier becomes equal to +1)
while two asymmetric orbits with the same period appear.

For negative values of α (α < α(1) ∼= −0.01), the
map (6.2) exhibits two stable fixed points. One of these
corresponds to continuous spiking (repeated application of
ϕ2, see, e.g., Fig. 12). The other fixed point exists due to
the symmetry of the map and has no real significance. For
positive values of α(0.01 ∼= α(2) < α < α(2) + A2 ∼= 1.96)
the map exhibits a period-2 orbit corresponding to a reg-
ular alternation of bursts and spikes (one iteration of ϕ1
followed by one iteration of ϕ2, etc.). At α = α(2) + A2,
the period-2 orbit undergoes a pitchfork bifurcation, and
for α(2) + A2 < α < α

(1)
4

∼= 2.5, two asymmetric period-
2 orbits coexist. At α = α

(1)
4 , a period-4 orbit arises in

a saddle-node bifurcation (multiplier +1), and at α =
α
(2)
4

∼= 2.7, the two period-2 orbits disappear in a bound-
ary collision bifurcation. For α ∼= 3.0 , the period-4 orbit
undergoes a pitchfork bifurcation and produces two mu-
tually symmetric period-4 cycles. As follows from this de-
scription, the transition from continuous spiking to burst-
ing takes place in a small interval around α = 0. Due to
the symmetry of the map, this transition does not take
place via a homoclinic bifurcation, but via the creation
of a heteroclinic connection. This aspect of the map (6.2)
disappears when we introduce asymmetries.

7 Asymmetric model map

Consider again the model map ϕ = ST . For scenario 3 the
flow system (2.1) must be asymmetric. While maintaining
simplicity we may take this asymmetry into account by
changing only a single parameter α for y < 0:

ȳ = −α + a11y
λ − δz, y ≥ 0,

ȳ = β − a11|y|λ − δz, y < 0,
z̄ = (γ + a11|y|λ) sgn y + a22z.

(7.1)

Assume β = const > 0, so that ϕ2 has no stable fixed
points and the region D2 becomes transient under ϕ2, and
consider the bifurcations of (7.1) that occur when chang-
ing the parameter α.

1) For α = a(1) the fixed point p1 of ϕ1 is globally sta-
ble. At the boundary bifurcation when p1 ∈ {y = 0}, ho-
moclinic orbits of p1 exist, and the transition to α > α(1)
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Fig. 16. Bifurcation diagram for the asymmetric model map
(7.1). The parameters are a11 = β = 1, δ = γ = a22 = 0.1, and
λ = 1.5. In this case the map only shows a single fixed point
corresponding to continuous spiking for negative values of α.

corresponds to the birth of a limiting set of the two-sided
map ϕ. For scenario 3 this bifurcation may be interpreted
as follows. When the stable cycle of the cell model (2.1)
passes into the layer Th, it merges with the saddle-type
cycle born from the homoclinic orbit of the saddle equi-
librium point (p1 reaches y = 0). Before the bifurcation
point, the saddle cycle Csd has a homoclinic orbit fol-
lowing the route Csd → U(J1(µ)) → T1 → U(Lsµ) → Csd.
The appearance of this homoclinic orbit leads to the burst-
ing oscillations. The blue sky catastrophe occurs, similarly
to the symmetric case when α, γ → 0 along the tongue
0 < γ < −(1 − a22)α/δ such that the point p1 reaches
zero, i.e., the stable limit cycle merges with the homo-
clinic orbit of the equilibrium point.

Figure 16 displays the bifurcation diagram for the
asymmetric map (7.1). The gaps in the diagram arise from
destroyed pitchfork-like branches because of lack of sym-
metry. Complex bursting oscillations may arise before the
bifurcation of the saddle-node cycle having a homoclinic
orbit. This explosive transition from a fixed point to com-
plex solutions is clearly seen in Figure 16. Finally, we ob-
serve that for δ = 0, the map ϕ attains a triangular form,
and we find the simple 1D non-invertible map for ϕ:{

ȳ = −α + ayλ, y ≥ 0,
ȳ = β − b|y|λ, y < 0.

(7.2)

Being independent of the coordinate-z part of the in-
vertible map (6.2) (or (7.1)), this new map maintains all
the main features (with the simplification that α(1) =
α(2) = α(h) = 0). Hence, it may be considered as a ba-
sic factor-map for our model.

8 Conclusions and remarks

The main conclusion of this paper is as follows. Phase
portraits of the fast subsystem (Figs. 3, 4, 7 and other

possible versions) are well known. In the same way, “on-
off” mechanisms for bursting are trivially understood in
the case of a suitable location of the slow equation surface
{R(x, y)− z = 0} separating the left and right branch at-
tractors. However, the mechanism of the onset of bursting
under a shift of the function R(x, y) is “hidden” and may
be clarified only through a detailed study of the bifurca-
tions of nontrivial homoclinic orbits that do not exist in
the fast system.

The details of the bifurcations for scenarios 2 and 4,
especially the construction of matching, explicitly defined
maps will be the subject of a separate study. As for sce-
nario 3, the next step is a construction of the full modeling
map of the disk into an annulus including an investiga-
tion of the general nonlocal map defined by the nontrivial
topological structure of the manifolds of Figure 10.

The specific form of the model map considered in Sec-
tions 6, 7 came from our simplifying assumptions com-
bined with the approximation of an obviously strongly
nonlinear map S by a linear one. Even in this case we
obtained a good accordance of the bursting chaotic os-
cillations with the behavior predicted by our qualitative
analysis. For the purpose of simplicity we eliminated the
domains D̃1,2 with the loss of continuity and the trans-
formation of the annulus into two separated domains as
results. What would happen if D̃1,2 were reintroduced, and
the map S considered in its full nonlinear form? We may
present the following preliminary answer to this question.
First, in this case the image ϕDx becomes the annulus A
and the image ϕD̃1 ⊂ A. We assume that the map S, de-
pending of some parameter r, acts as a returning nonlinear
twist map such that parts of A that are farther from zero
rotate faster than nearer parts and this rotation increases
with the parameter r. Then for some value r0 a tangency
of D̃1 and ϕD̃1 occurs and this will signal the beginning
of the formation of a Smale horseshoe. For r1 > r0, ϕD̃1
intersects D̃1 transversely, for r2 > r1 a new intersection
occurs, and so forth. Then the interval (r0, r1) will have
a Newhouse set [35], the values r1, r2, . . . being the wind-
ing numbers of Terman corresponding to the increase of
kneading of the hyperbolic set.
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