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PAPER Special Section on Nonlinear Theory and its Applications

Blinking Long-Range Connections Increase the Functionality of
Locally Connected Networks

Martin HASLER†a), Member and Igor BELYKH†b), Nonmember

SUMMARY Information processing with only locally connected net-
works such as cellular neural networks is advantageous for integrated cir-
cuit implementations. Adding long range connections can often enhance
considerably their performance. It is sufficient to activate these connections
randomly from time to time (blinking connections). This can be realized by
sending packets on a communication network underlying the information
processing network that is needed anyway for bringing information in and
out of the locally connected network. We prove for the case of multi-stable
networks that if the long-range connections are switched on and off suffi-
ciently fast, the behavior of the blinking network is with high probability
the same as the behavior of the time-averaged network. In the averaged
network the blinking connections are replaced by fixed connections with
low (average) coupling strength.
key words: networks, CNN, blinking connection, multistable system, aver-
aging

1. Introduction

Analog circuits can speed up computations considerably.
They are used e.g. for massively parallel processing of vi-
sual information. Often they consist of 1-d or 2-d arrays
of simple circuit modules (cells) that are interconnected by
wires. Examples are cellular neural networks where usually
first order dynamical systems are placed in a regular 2-d ar-
ray and next nearest neighbors are connected by wires [1].

Many functions can be computed by arrays of locally
connected dynamical systems, but others require long range
interactions of the cells for efficient computation. Hard-
wired all-to-all connections of n × n cells would require n4

wires which is not realistic in most cases. In paper [2] just
a few long range connections were added in order to form
a small-world interaction graph. Even though in this case
relatively few connections were used, one would still have
to hardwire them which is not convenient.

In this paper we show that connections can actually
be switched on and off randomly in such a way that with
high probability the computational function the network per-
forms is the same as that of a corresponding non-switched
system, the averaged system. We call the switched connec-
tions blinking connections. The conditions for highly sim-
ilar behavior is that the (temporal) mean strength of each
blinking interaction between two cells is the same as in
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the non-switched network and that the switching is rapid
enough. The blinking connections can be realized by infor-
mation packages routed on a communication network that
is needed anyway to transport information to and from the
cells.

The switching is performed at times 0, τ, 2τ, · · · Each
blinking connection is turned on and off randomly, inde-
pendently in each time interval and independently of other
connections. The fact that the rapidly switched system has
the same behavior as the averaged system seems obvious,
but in fact there are rare exceptions and therefore a careful
proof of the property is needed which shows on what pa-
rameters the occurrence of the exceptions depends. While
averaging is a classical technique in the study of nonlinear
oscillators [3], averaging for blinking systems needs some
special mathematical techniques for obtaining rigorous con-
vergence proofs. Such techniques have been used in [4] for
synchronization of blinking networks of chaotic dynamical
systems.

In this paper we consider multi-stable rather than
chaotic systems. The information to be processed by a
multi-stable network determines the initial state and the in-
formation processing takes place by convergence to one of
the stable equilibria. Therefore, ideally the blinking network
should have the same basins of attraction of the equilibria as
the averaged network. We will show that with high proba-
bility the main part of the basins of attraction is indeed the
same in the averaged and in the blinking network. The de-
tails of the proof are different from those in [4] but the basic
idea is the same.

2. Example

In order to illustrate the topic, we use the example of a
Winner-take-all (WTA) 2-dimensional CNN (cellular neu-
ral network). We do not claim that this is a particularly good
example from an application point of view, but it illustrates
well the subject of the paper. A WTA network is designed to
find, using the network dynamics, the largest among a set of
numbers. In the realization we refer to, each number is asso-
ciated with a cell of the network. More precisely, the initial
state of each cell of the CNN is set to the value of the corre-
sponding number. The time-evolution of the winner is such
that the output of the cell corresponding to the largest num-
ber converges to 1 and all other outputs converge to −1, in
normalized variables. It is not difficult to see that in an only
locally connected CNN it is not possible to realize the WTA
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function, at least not in this way. Indeed, suppose that the
initial state of a loclly connected CNN has two local max-
ima, at cell i and at cell j and these maxima are sufficiently
far apart. Suppose that at cell i the maximum is also global.
If this network performs the WTA function correctly there
must be a stable equilibrium for which the output of the i-
th cell is +1 and all other outputs are −1. However, when
all cells are in saturation, the j-the cell and the i-th cell do
not interact. Then there will be another stable equilibrium
where in addition to the i-th cell the j-th cell has output +1,
and again all other cells have output −1. Such an equilib-
rium point is not compatible with the WTA function.

In [5], the design equations for a globally connected
WTA CNN are given. Actually, the point is made in [5]
that one does not need all-to-all connections, but only an
additional sum cell which has inputs and outputs that are
connected to all cells. This reduces the number of wired
connections from n4 to 2n2, which is even less than the 5n2

connections in a nearest neighbor connected CNN. However
most of these 2n2 connections go across a large part of the
circuit and thus still pose problems of realization. In our
blinking WTA CNN the n4 − 5n2 switched connections can
just as well be reduced, but for the simplicity and general-
ity of exposition, we do not want to take advantage of the
peculiarities of the example.

Following [5], we consider the piecewise linear dy-
namical system, whose state equations are given in (1), for
i = 1, . . . ,N = n2.

dxi

dt
= −xi + (1 + δ)yi − α

n∑
j=1

yi + κ

yi = f (xi) =


1 for xi > 1
xi for |xi| ≤ 1
−1 for xi < −1

(1)

If the parameters α, β and κ are chosen suitably, there
are exactly N asymptotically stable equilibrium points, one
in each linear region where one of the output signals yi is
1 and the other N − 1 are −1. All other equilibrium points
are unstable. The basin of attraction of the asymptotically
stable equilibrium point with outputs

yi = 1, y j = −1, j � i (2)

is composed of the state vectors x with

xi > x j for all j � i (3)

Hence, indeed the CNN realizes the WTA function by
its internal dynamics. In Fig. 1, two components of the state
trajectory x(t) of a 4×4 WTA CNN are shown, for the initial
conditions.

0.3644 0.3958 0.1871 0.2898
−0.3945 −0.2433 −0.0069 0.6359

0.0833 0.7200 0.7995 0.3205
−0.6983 0.7073 0.6433 −0.3161

(4)

For the fully connected CNN (solid line), one can

(a)

(b)

Fig. 1 Trajectory component xi (t) for a 4×4 WTA CNN, with a = 1, δ =
1.11, κ = −13.89 (solid line). (a) Component of the cell (3,3) whose initial
condition has the maximal value. (b) Component of the cell (4,1). Dashed
line: trajectory components of the CNN with the same parameters, but only
nearest neighbor connections.

see that the state of the cell with largest initial condition
(Fig. 1(a)) converges to a value higher than 1, whereas the
state of any other cell (Fig. 1(b)) converges to a value lower
than −1. Hence, asymptotically in time, the output of the
cell with the largest initial state is 1 and the output of all
other cells is −1. When only nearest neighbor connections
are used (dashed line), the network fails to detect the largest
initial value. In this case, all ouputs converge to −1.

3. Convergence to an Asymptotically Stable Equilib-
rium

Consider a dynamical system of the more general form

dxi

dt
= −xi +

N∑
i=1

Ai jy j + Ii

yi = f (xi) (5)

where f is continuously differentiable, and strictly increas-
ing from −1 at −∞ to +1 at +∞ (“sigmoid function”).
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It is well-known that for a symmetric coupling matrix
A almost all trajectories converge to an asymptotically sta-
ble equilibrium point. This fact is established using the Lya-
punov function

W(y) =
N∑

i=1

∫ yi

0
f −1(z)dz

− 1
2

N∑
i, j=1

Ai jyiy j −
N∑

i=1

Iiyi (6)

Along any solution of (5), we obtain, after some calcu-
lations

d
dt

W(y) = −
N∑

i=1

d f
dx

(
f −1 (yi (t))

) [∂W
∂yi

(y (t))

]2

= −
N∑

i=1

[
d f
dx

(
f −1 (yi (t))

)]−1 [
dyi

dt

]2

≤ 0 (7)

which implies the convergence property. Actually, the CNN
with the piecewise-linear nonlinearity (1) does not fit ex-
actly into this framework, because f is not invertible. The
reasoning could be adapted to this case, but for the sake of
simplicity, for the analysis we stick to the case with sigmoid
f, whereas the simulations are performed using the piece-
wise linear output function.

4. Blinking Connections

We divide the time-axis into intervals of length τ and num-
ber them consecutively. Thus, interval k is defined by
(k − 1) τ ≤ t < kτ. During each time interval, the circuit
connections remain constant, but for different time intervals,
the circuit connections are different. In the spirit of CNN’s,
however, nearest neighbor connections remain constant all
the time. For each non-nearest-neighbor pair of cells i, j
we introduce a discrete time binary signal sk

i j whose value
is 1 if the connection is switched on during the k-th time
interval, and 0 otherwise. We call these signals switching
sequences. We extend the switching sequences to continu-
ous time switching signals by setting si j(t) = sk

i j in the k-th
time interval.

Given a switching signal, we can write the equations of
the blinking CNN as

dxi

dt
= −xi(t) +

∑
j nn of i

Ai jy j(t)

+
∑

j not nn of i

Bi jsi j(t)y(t) + Ii

yi = f (xi) (8)

The choice of the switching sequences is performed at
random. More precisely, we consider the set of identically
distributed independent random variables

S k
i j, i and j not nearest neighbors, k = 1, 2, . . . (9)

which take the value 1 with probability p and the value 0
with probability 1 − p. The switching sequences are in-
stances of this stochastic process.

Due to the random choice of switching, the trajecto-
ries of (8) become also random processes. Intuitively, if the
switching is much faster than the intrinsic time constants
of the trajectories of a corresponding non-switched system,
we expect the trajectories of the blinking system to follow
closely the trajectories of the non-switched system whose
connections have the average value with respect to (8), the
averaged system:

dξi
dt
= −ξi(t) +

∑
j nn of i

Ai jη j(t)

+
∑

j not nn of i

Bi j pη j(t) + Ii

ηi = f (ξi) (10)

Since we would like the blinking system to have the
same behavior as the fully connected system (5), we have to
set

Bi j = Ai j/p (11)

In particular, we expect that the trajectories of the
blinking system with (11) gets close to the same asymptoti-
cally stable equilibrium of the averaged system, as t → +∞,
when both start from the same initial condition. We shall
prove that by choosing the switching time sufficiently small,
we can make the probability that this is not the case arbitrar-
ily small.

Note that the blinking system does not have the same
equilibrium points as the averaged system. This implies that
the trajectories of the blinking system can only come close
to the stable equilibrium points of the averaged system with-
out converging to them. However, from a practical point of
view this is sufficient. Indeed, in our example, as soon as the
solution gets sufficiently close to a stable equilibrium point
of the averaged system, the system decides for the corre-
sponding largest initial condition. In the piecewise linear
system, such a decision can be taken as soon as one output
value is +1 and the others −1.

5. Asymptotic Behavior of the Connections of the
Blinking Multistable System

In order to limit the exposition to the essentials, we consider
a more general blinking system of equations:

dx
dt
= F (x (t) , s (t)) (12)

where x ∈ RN ,F : RN+M → RN . As above, the binary signal
s(t) is supposed to be constant in each time interval of length
τ, starting at 0 and the value of si(t) in the k-th time interval
is denoted by sk

i . As general properties of (12) we require
that

• F is continuously differentiable.
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• There is a compact set C such that all solutions of (12)
join C in finite time and thereafter remain in C for any
choice of the binary signal s(t).

All interesting dynamics take place in C and therefore
we restrict the analysis to solutions that lie in C. In C, we
have a bound

‖F (x, s)‖ ≤ BF

for x ∈ C, s ∈ {0, 1}M (13)

and a Lipschitz constant

‖F (x, s) − F (y, s)‖ ≤ LF ‖x − y‖
for x, y ∈ C, s ∈ {0, 1}M (14)

As before, we suppose that the binary signal s(t) is gen-
erated by a random process S(t) and that the random vari-
ables S k

i that determine the value of sk
i are all independent

and identically distributed according to

P
(
S k

i = 1
)
= p, P

(
S k

i = 0
)
= 1 − p (15)

Consider the averaged equation

dξ
dt
= Φ (ξ (t)) (16)

where ξ ∈ RN ,Φ : RN → RN and

Φ(x) = E
(
F

(
x, Sk

))
where Sk =

(
S k

1, . . . , S
k
M

)
=

∑
s∈{0,1}M

F (x, s) P (s)

=
∑

s∈{0,1}M
F (x, s)

M∏
i=1

(psi +(1−p)(1−si)) (17)

Now, suppose ξ̄ is an asymptotically stable equilibrium
point of (16). Furthermore, we suppose there is a Lyapunov
function W : RN → R with the following properties:

a) W is continuously differentiable
b) W has a local minimum in ξ̄, for convenience W

(
ξ̄
)
=

0
c) If ξ(t) is a solution of (16) then d

dt W (ξ (t)) ≤ 0

In addition, suppose there are two constants0<V0 <V
and a constant γ > 0 such that

e) The level set {ξ |W (ξ) ≤ V } is contained in C and thus
compact.

f) The connected component U of {ξ |W (ξ) ≤ V } that
contains ξ̄ is contained in the basin of attraction of ξ̄.

g) Within U, but outside of
U0 = {ξ |ξ ∈ U,W (ξ) ≤ V0 }, we have along any solu-
tion ξ(t) of (16) the inequality
d
dt

W (ξ (t)) ≤ −γ. (18)

The meaning of the last two conditions is to consider
the connected part U of a level set of W that fills out as much

Fig. 2 Schematic representation of the state space with the compact re-
gions C, U and U0, the solution of the averaged system (bold) and two
instances of the solution of the blinking system. One of them reaches U0,
whereas the other leaves U and approaches another asymptotically stable
equilibrium point.

as possible of the basin of attraction of ξ̄, but that has still
some distance from the basin boundary where an unstable
equilibrium point of could sit and therefore the derivative of
W could become 0 (Fig. 2). Within U, the connected part
U0 of a level set of W should be chosen as small as possible
around ξ̄. Excluding U0 from U allows guaranteeing that
W decreases at a speed that cannot become smaller than a
certain positive constant (γ).

Theorem 1: Consider system (12) with the above listed
properties and fix an initial condition x0 in U. The probabil-
ity Pf that the corresponding solution of the blinking system
reaches the neighborhood U0 of the equilibrium point ξ̄ of
the averaged equation in finite time converges to 1 as the
switching period converges to zero.

Proof
We consider a set of solutions x (t) of the blinking sys-

tem (12), all starting from the initial state x(0) = x0 ∈ U.
The different solutions correspond to different switching se-
quences. Furthermore, we consider the unique solution ξ (t)
of the averaged system (16) starting from the same initial
condition ξ (0) =x(0) =x0. Then, by (18),

W (ξ (t)) ≤ W (ξ (0)) − γt (19)

Thus, the solution x(t) of (16) remains in U and reaches
U0 at the latest at time

T =
V − V0

γ
(20)

We want to show that with high probability the solution
x (t) of the blinking model also remains in U and reaches U0

in finite time.
Since W is continuously differentiable and C is com-

pact, it has a Lipschitz constant LW in C and thus

|W (x (t)) −W (ξ (t))| ≤ LW ‖x (t) − ξ (t)‖ (21)

On the other hand
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‖x (t) − ξ (t)‖ ≤
∥∥∥∥∥∥
∫ t

0
F (x (ρ) , s (ρ)) dρ

−
∫ t

0
Φ (ξ (ρ)) dρ

∥∥∥∥∥∥
≤

∥∥∥∥∥∥
∫ t

0

[
F (x (ρ) , s (ρ)) − F (x (0) , s (ρ))

]
dρ

∥∥∥∥∥∥
+

∥∥∥∥∥∥
∫ t

0

[
F (x (ρ) , s (ρ)) −Φ (x (0))

]
dρ

∥∥∥∥∥∥
+

∥∥∥∥∥∥
∫ t

0

[
Φ (ξ (ρ)) −Φ (ξ (0))

]
dρ

∥∥∥∥∥∥
(22)

Using (13) and (14) we find the following bound for
the first term on the RHS of (22):∥∥∥∥∥∥

∫ t

0

[
F (x (ρ) , s (ρ)) − F (x (0) , s (ρ))

]
dρ

∥∥∥
≤ LF

∫ t

0
‖x (ρ) − x (0)‖ dρ

= LF

∫ t

0

∥∥∥∥∥
∫ ρ

0
F (x (Θ) , s (Θ)) dΘ

∥∥∥∥∥ dρ

≤ LF BF

∫ t

0

∫ ρ

0
dΘdρ = LF BF

t2

2
(23)

Since Φ is a mean value of F, its bound and its Lip-
schitz constant on C is not larger than those of F, and the
third term has the same bound as the first:∥∥∥∥∥∥

∫ t

0

[
Φ (ξ (ρ)) −Φ (ξ (0))

]
dρ

∥∥∥∥∥∥ ≤ LF BF
t2

2
(24)

For the second term, we suppose that t is a multiple of
τ:

t = Kτ (25)

Then,∥∥∥∥∥∥
∫ t

0

[
F (x (0) , s (ρ)) −Φ (x (0))

]
dρ

∥∥∥∥∥∥
=

∥∥∥∥∥∥∥
K∑

k=1

τF
(
x (0) , sk

)
− tΦ (x (0))

∥∥∥∥∥∥∥ (26)

and the probability that this term grows linearly with K can
be made arbitrarily small for large K. Indeed,

P

[∥∥∥∥∥∥
∫ t

0

[
F (x (0) , s (ρ)) − Φ (x (0))

]
dρ

∥∥∥∥∥∥ > λt
]

= P


∥∥∥∥∥∥∥

K∑
k=1

τF
(
x (0) , Sk

)
− tE

[
F

(
x (0) , Sk

)]∥∥∥∥∥∥∥ > λt


= P


∥∥∥∥∥∥∥

K∑
k=1

F
(
x (0) , Sk

)
− KE

[
F

(
x (0) , Sk

)]∥∥∥∥∥∥∥ > λK


(27)

The probability P (λ,K) can be bounded by the Cheby-
chev inequality [6] as follows:

P (λ,K) = P


∥∥∥∥∥∥∥

K∑
k=1

F
(
x (0) , Sk

)

− K E
[
F

(
x (0) , Sk

)]∥∥∥∥2
> λ2K2

]

≤ P


N∑

i=1

∥∥∥∥∥∥∥
K∑

k=1

Fi

(
x (0) , Sk

)

− K E
[
Fi

(
x (0) , Sk

)]∥∥∥∥2
> λ2K2

]

≤
N∑

i=1

P


∥∥∥∥∥∥∥

K∑
k=1

Fi

(
x (0) , Sk

)

− K E
[
Fi

(
x (0) , Sk

)]∥∥∥∥2
> λ2K2

]

≤
∑N

i=1 Var
[∑K

k=1 Fi

(
x (0) , Sk

)]
λ2K2

=

∑N
i=1

∑K
k=1 Var

[
Fi

(
x (0) , Sk

)]
λ2K2

=
N
λ2K

N∑
i=1

∑
s∈{0,1}M

[Fi (x (0) , s)

−


∑
s∈{0,1}M

Fi (x (0) , s) P (s)




2

P (s) (28)

The inequality in the brackets can only hold if at least
one term exceeds λ

2K2

N . Thus

P (λ,K) ≤
N∑

i=1

P


∥∥∥∥∥∥∥

K∑
k=1

Fi

(
x (0) , Sk

)

− K E
[
Fi

(
x (0) , Sk

)]∥∥∥∥2
>
λ2K2

N

]

≤
∑N

i=1 Var
[∑K

k=1 Fi

(
x (0) , Sk

)]
λ2K2

=
N

∑N
i=1

∑K
k=1 Var

[
Fi

(
x (0) , Sk

)]
λ2K2

=
N
λ2K

N∑
i=1

∑
s∈{0,1}M

Fi (x (0) , s)

−


∑
s∈{0,1}M

Fi (x (0) , s) P (s)




2

P (s) (29)

Actually, much better bounds on this probability can
be derived for particular forms of F. We now conclude that
with probability at least 1 − P(λ,K) we have the bound
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W (x (t)) ≤ W (ξ (t)) + |W (x (t)) −W (ξ (t))|
≤ W (ξ (0)) − γt + LW

[
LF BFt2 + λt

]
= W (x (0)) − γt + LW LF BFt2 + LWλt (30)

Choosing

λ =
γ

4LW
, t =

γ

4LW LF BF
(31)

we obtain

W (x (t)) ≤ W (x (0)) − γ
2

t (32)

Strictly speaking, we would have to choose t as a mul-
tiple of τ, but since the theorem makes a statement for small
τ, this would change t only by a small amount and therefore,
we disregard this detail in the sequel of the proof.

For the binary signals which do not satisfy (30), we can
give the bound

W (x (t)) ≤ W (x (0)) +
∫ t

0

∂W
∂x

(x (ρ) , s (ρ))
dx
dt

dρ

≤ W (x (0)) + LW BFt (33)

By time invariance, we can write (32) and (33) replac-
ing t = 0 by t and t by t + ∆t, where now ∆t is given by
(31).

In summary, starting from a state x (t) ∈ U\U0 after
the lapse of time ∆t = γ

4LW LF BF
the Lyapunov function W

has decreased at least the amount γ2∆t with probability at
least 1 − P(λ,K) and it has increased by at most LW BF∆t
with probability at most P(λ,K).

As proved in the appendix, it follows from this that the
probability Pf that the solution reaches U0 in finite time is
bounded by

Pf = 1 − P∞ > 1 −
(
2

P(λ,K)
1 − P(λ,K)

) 1
J

(34)

where J is given by (A· 1) and λ by (31). Since by (28)
P(λ,K) converges to zero when K goes to infinity and since
our choices of λ, J and ∆t are independent of τ, whereas K =
∆t/τ, Pf converges to 1 as τ goes to zero. This concludes
the proof of Theorem 1.
Remark:

Actually, inequality (28) combined with Theorem 2 of
the appendix would allow us to give an explicit lower bound
on Pf . However, this bound can be improved substantially
for specific forms of F, as we will show in the example. For
this reason, we do not pursue the general bound any further.

6. Back to the Example

The various conditions can be verified for our example sys-
tem, with a sigmoid nonlinearity. In Fig. 3 we show the
trajectory for the blinking system (with piecewise nonlin-
earity), starting from the same initial conditions as in (4).
Indeed, the blinking network performs the WTA function

(a)

(b)

Fig. 3 Same figure as Fig. 1, but in addition trajectory of the blinking
network with a switching time τ = 0.0001 and p = 0.1.

correctly for this switching sequence. According to the the-
orem, only a very small portion of the switching sequences
could lead to a misidentification of the largest initial value.

We now derive an explicit upper bound on the proba-
bility of misclassification. For this purpose, we have to give
an upper bound for P(λ,K) as defined in (27). The state
equations of the blinking WTA system are

dxi

dt
= −xi + (1 + δ) yi − α

n2∑
j=1

j nn of i

y j

−α
p

n2∑
j=1

j not nn of i

si j (t) y j + κ (35)

Then

P(λ,K) = P


∥∥∥∥∥∥∥

K∑
k=1

F
(
x (0) , Sk

)

−K E
[
F

(
x (0) , Sk

)]∥∥∥∥2
> λ2K2

]
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= P


α2

p2

n2∑
i=1


K∑

k=1

n2∑
j=1

j not nn of i

(
S k

i j − p
)
y j



2

> λ2K2



= P


n2∑
i=1


K∑

k=1

n2∑
j=1

j not nn of i

(
S k

i j − p
)
y j



2

>
λ2K2 p2

α2

 (36)

In order for the inequality in the brackets to hold, at
least one of the terms indexed by i must be larger than λ

2K2 p2

n2α2 .
Therefore, and since

∣∣∣y j

∣∣∣ ≤ 1,

P(λ,K) ≤
n2∑
i=1

P




K∑

k=1

n2∑
j=1

j not nn of i

(
S k

i j − p
)
y j



2

>
λ2K2 p2

n2α2



=

n2∑
i=1

P



∣∣∣∣∣∣∣∣∣∣∣
n2∑
j=1

j not nn of i

y j

K∑
k=1

(
S k

i j − p
)
∣∣∣∣∣∣∣∣∣∣∣
>
λK p
nα



≤
n2∑
i=1

P


n2∑
j=1

j not nn of i

∣∣∣∣∣∣∣
K∑

k=1

(
S k

i j − p
)∣∣∣∣∣∣∣ >
λK p
nα


(37)

Again reasoning that at least one term in the sum over
j must be larger than λK p

n2nα we obtain

P(λ,K) ≤
n2∑

i, j=1

P


∣∣∣∣∣∣∣

K∑
k=1

(
S k

i j − p
)∣∣∣∣∣∣∣ >

λK p
n3α

]
(38)

Applying now the Chernoff bounds for binary random
variables [6], [7]:

P


K∑

k=1

S k
i j − p ≥ (1 + δ) K p

 ≤ e−
δ2 pK

3

P


K∑

k=1

S k
i j − p ≤ (1 − δ) K p

 ≤ e−
δ2 pK

2 (39)

we obtain

P(λ,K) ≤ 2n4e−
λ2

3n6α2 K (40)

Applying now Theorem 2 of the appendix leads, for
sufficiently small τ to the following bound for the probabil-
ity that the blinking trajectory leaves the domain U and thus
potentially leads to misclassification:

P∞ ≤ 3n4e−
λ2∆t

3Jn6α2
1
τ (41)

where J is given by (A· 1) and ∆t = γ
4LW LF BF

.
This inequality shows that once the switching time τ

is small enough, then the probability that the blinking tra-
jectory does not follow the averaged system trajectory goes

exponentially fast to zero. Thus, there is a kind of threshold
for the switching time. Of course, this is not the whole prob-
ability of misclassification, because we limited the analysis
from the outset to a region that is smaller than the basin of
attraction of the equilibrium point that represents the correct
classification. Typically, we neglect initial state vectors with
a component that is very close to the maximum. It is quite
intuitive that in such a case, the blinking system is likely to
lead to misclassification. However, choosing the parameter
γ closer to zero allows getting closer to the border of the
basin of attraction. The price to pay is a lower threshold for
τ.

7. Conclusions

We have shown that in a network of interacting dynamical
systems, long-range interactions can be realized by blink-
ing connections, i.e. connections that are only switched on
from time to time, in a random fashion. If the switching is
fast enough, the behavior of the blinking system is close to
the behavior of the averaged system, where the long range
connections are fixed, but with an interaction strength that
is the mean strength of the same connections in the blinking
system. The blinking connections can be realized by send-
ing packets on a communication network underlying the net-
work of dynamical systems. Such a communication network
is in any case needed to bring the information to and from
the dynamical systems.

A rigorous analysis of the blinking system is carried
out for the case where the averaged system is multi-stable.
It is shown that for a large part of the basin of attraction of
an asymptotically stable equilibrium point of the averaged
system, the solutions of the blinking system approach the
same equilibrium point with high probability. In fact, this
probability converges to one when the switching period goes
to zero. Rigorous lower bounds for this probability can be
given. As an illustrative example, a winner-take-all neural
network is used. For this example, we show that for large
enough switching frequencies the probability converges to
one exponentially fast as a function of the switching fre-
quency. This causes a sort of a threshold for the switching
frequency above which the trajectories of the blinking sys-
tem follow those of the averaged system almost with proba-
bility one. Of course, whether or not there really is a thresh-
old cannot be decided here, because we only have given
bounds on the probabilities.
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Appendix

Theorem 2: Let

r =
P (λ,K)

1 − P (λ,K)
, J =

[
2LW BF

γ

]
+ 1 (A· 1)

where [.] denotes the integer part and

λ =
γ

4LW
, K =

∆t
τ
=

γ

4LW LF BFτ
(A· 2)

If r ≤ 2−(J+1) then the probability that a trajectory of
the blinking system starting in U does not reach U0 in finite
time is bounded by (2r)

1
J .

Proof
Consider a trajectory of the blinking system starting at

a point x0 ∈ U. More precisely, consider the set of trajec-
tories starting at x0 generated by all possible binary signals
s (t). Let P∞ be the probability of the set of binary signals
that generate trajectories that do not reach U0 in finite time.
We now define an auxiliary Markov chain which will allow
deriving a bound for P∞. The state space of the Markov
chain is and the transition probabilities pi j from state i to
state j are

pi i+N = P (λ,K)

pi i−1 = 1 − P (λ,K)

pi j = 0 for all other i, j (A· 3)

A sample path of length Q starting at zero of the
Markov chain is a function z : {0, · · · , L} → Z with

z (0) = 0

z (q + 1) − z (q) = J or − 1,

for q = 0, . . . ,Q − 1 (A· 4)

Here, Q may also be infinite. To each trajectory of
the blinking system, observed at the discrete time instants
t = q∆t = qKτ, q = 0, 1, 2, . . . we associate a sample
path of the Markov chain of length Q that satisfies for
q = 0, 1, 2, . . . ,Q − 1

∥∥∥∥∥∥∥
K∑

k=1

F
(
x (q∆t) , Sk

)
− KE

[
F

(
x (q∆t) , Sk

)]∥∥∥∥∥∥∥ > λK
⇒ z (q + 1) = z (q) + J

∥∥∥∥∥∥∥
K∑

k=1

F
(
x (q∆t) , Sk

)
− KE

[
F

(
x (q∆t) , Sk

)]∥∥∥∥∥∥∥ ≤ λK
⇒ z (q + 1) = z (q) − 1 (A· 5)

where Q is such that

x (q∆t) ∈ U\U0 for q = 0, 1, . . . ,Q − 1

and, for finite Q, x (Q∆t) � U\U0 (A· 6)

Thus, at time Q∆t, the trajectory is either outside of U
or inside U0. If Q is infinite, the trajectory remains forever
in U\U0. Note that since in general the sample path is only
related to the trajectory of the blinking system for a finite
time interval, there are infinitely many trajectories with the
same associated sample path.

Because of the definition of the transition probabili-
ties (A· 3) of the auxiliary Markov chain, the set of all tra-
jectories with a given associated sample path has the same
probability in the blinking system as this sample path in the
Markov chain. Furthermore, let x (t) be a trajectory of the
blinking system and let z(q), q = 1, . . . ,Q be its associated
sample path in the Markov chain. Then

W (x (q∆t)) ≤ W (x (0)) + z (q)
γ

2
∆t

for q = 0, 1, . . . ,Q (A· 7)

This can be seen by induction. It clearly holds for q = 0.
Suppose it holds for q. If z (q + 1) = z (q) + J, then by (33)
and time invariance we obtain

W (x ((q + 1)∆t)) leq W (x (q∆t)) + LW BF∆t

≤ W (x (0)) + z (q)
γ

2
∆t + J

γ

2
∆t

= W (x (0)) + z (q+1)
γ

2
∆t

(A· 8)

whereas if z (q + 1) = z (q) − 1, by (32) and time invariance

W (x ((q + 1)∆t)) ≤ W (x (q∆t)) − γ
2
∆t

≤ W (x (0)) + z (q)
γ

2
∆t − γ

2
∆t

= W (x (0)) + z (q+1)
γ

2
∆t (A· 9)

This implies

x (Q∆t) � U ⇒ z (Q) > 0

z (Q) ≤ 0⇒ x (Q∆t) ∈ U0

Q = ∞ ⇒ x (q∆t) ∈ U\U0

for all q ≥ 0 (A· 10)
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In addition, since W is non-negative on U, we have

x (q∆t) ∈ U ⇒ z (q) ≥ −2γW (x (0))
∆t

(A· 11)

Thus, if Q is infinite, either the sample path is confined
to the finite number of states between zero and the lower
bound (A· 11), or it eventually reaches a positive state. It is
not difficult to see that the set of all infinite length sample
paths in the Markov chain that take values only in a finite
set has probability 0. Therefore, if Q is infinite, then almost
surely the sample path takes also positive values. This, to-
gether with (A· 10) allows us to conclude that the probability
that a trajectory of the blinking system does not reach U0 in
finite time is bounded by the probability that a sample path
reaches a positive state in the Markov chain, i.e.

P∞ ≤ P {z |z (q) > 0 for some q ≥ 0} (A· 12)

We now analyze this probability in the Markov chain.
Consider sample paths that start from any state. Define

h (i) = P {z |z (0) = i, z (q) > 0

for some q ≥ 0} (A· 13)

Thus, (A· 12) becomes

P∞ ≤ h (0) (A· 14)

and h satisfies

h (i) = P (λ,K) h (i + J) + (1 − P (λ,K)) h (i − 1)

(A· 15)

h is increasing, h (i) = 1 for i > 0,

lim
i→−∞ h (i) = 0 (A· 16)

In fact h has the properties of absorption probabilities
[6]. Define d (i) by

d (i) = h (i) − h (i − 1) (A· 17)

and r by (A· 1). Then all d (i) are non-negative and

d (i) = r (d (i + 1) + · · · + d (i + J))

d (i) = 0 for i ≥ 1,

d (1) = 1 − h (1) ,
∞∑

i=0

d (i) = h (0) (A· 18)

We are now looking for a bound on d (i) of the form

d (i) ≤ Cαi α > 1 (A· 19)

Suppose (A· 19) holds for i = j + 1, j + 2, . . . , j + J.
Then

d ( j) ≤ Cr
(
α j+1 + · · · + α j+J

)

= Crα j+1α
J − 1
α − 1

(A· 20)

Therefore, if

rα
αJ − 1
α − 1

≤ 1 (A· 21)

then (A· 19) holds for all i ≤ j provided it holds for i =
j + 1, j + 2, . . . , j + J. Set

α =

(
1
2r

) 1
J

(A· 22)

Then because of r ≤ 2−(J+1) we have α ≥ 2, α
α−1 ≤ 1

and (A· 21) is satisfied. Now, according to (A· 18), we start
with d (2) = . . . = d (J) = 0 and d (1) arbitrary. Therefore,
(A· 19) is satisfied for i = 1, . . . , J if d(1) = Cα. Then, again
according to (A· 18)

h (0) ≤ C
1−α−1 =

d(1)
α−1 =

1−h(0)
α−1 (A· 23)

which leads finally to

P∞ ≤ h (0) ≤ 1
α
= (2r)

1
J (A· 24)
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