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We study global stability of synchronization in asymmetrically connected networks of limit-cycle or
chaotic oscillators. We extend the connection graph stability method to directed graphs with node
balance, the property that all nodes in the network have equal input and output weight sums. We
obtain the same upper bound for synchronization in asymmetrically connected networks as in the
network with a symmetrized matrix, provided that the condition of node balance is satisfied. In
terms of graphs, the symmetrization operation amounts to replacing each directed edge by an
undirected edge of half the coupling strength. It should be stressed that without node balance this
property in general does not hold. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2146180�
The simplest and most striking interaction between dy-
namical systems is their synchronization. Individual dy-
namical systems with trajectories that are quite different
can be brought to follow exactly or approximately the
same trajectory, through interaction in a network. Stable
synchrony can be achieved in many different types of
asymmetrically or symmetrically connected oscillator
networks as long as the coupling between the nodes is
strong enough. The symmetry of coupling essentially fa-
cilitates the analytical study and allows the derivation of
synchronization conditions from graph theoretical quan-
tities using the connection graph method. In this paper
we show that the symmetry of undirected graphs can also
be used for the study of synchronization in asymmetri-
cally connected networks with node balance. Node bal-
ance means that the sum of the coupling coefficients of all
edges directed to a node equals the sum of the coupling
coefficients of all edges directed outward from the node.
This property allows us to derive an elegant graph-based
criterion for synchronization in directed networks. We
prove that for node balanced networks it is sufficient to
symmetrize all connections by replacing a unidirectional
coupling with a bidirectional coupling of half the cou-
pling strength. The synchronization condition for the
symmetrized network then also guarantees synchroniza-
tion in the original asymmetrical network.

I. INTRODUCTION

Networks of dynamical systems have been used in phys-
ics and biology for decades, and they are now becoming
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more and more relevant for engineering and computer
sciences.1 The purpose to connect dynamical systems in net-
works is to get them to solve problems cooperatively. In
physics, this is the origin of cooperative phenomena such as,
e.g., phase transitions. In biology, complex networks of
chemical reactions take place in all living organisms. In par-
ticular, such networks are used for information processing in
the brain.2 The simplest mode of the coordinated motion be-
tween dynamical systems is their complete synchronization
when all cells of the network acquire identical dynamical
behavior. Such cooperative behavior of a network models
neurons that synchronize,3 coupled synchronized lasers4 and
networks of computer clocks,5 as well as many other self-
organizing systems.

Synchronization in networks of dynamical systems de-
pends both on the stability of the individual systems dynam-
ics and on the topology and the kind of their interaction.6–27

Typically, networks of limit-cycle oscillators are easy to
synchronize6–8 whereas coupled chaotic oscillators9–11 are
more resistant to synchronization. Synchronization proper-
ties of pulse-coupled and linearly coupled networks can also
be dramatically different.12 The influence of network topol-
ogy on the stability of a synchronized motion where the mo-
tion could be a limit cycle or a chaotic attractor is currently a
hot research topic.

The conditions for complete synchronization of linearly
coupled identical dynamical systems are composed of a term
that depends only on the individual systems and a term that
depends only on the network structure.14–27 A general ap-
proach to the local stability of periodic or chaotic synchro-
nization for any linear coupling scheme, called the master
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Within the framework of this powerful method, one proves
local stability of the synchronization manifold by calculating
analytically �or numerically� the eigenvalues of the connec-
tivity matrix and numerically the transversal Lyapunov ex-
ponents. This approach is widely used in studies of synchro-
nization in complex networks with symmetrical28–30 or
asymmetrical connections.31,32 Global stability results based
on the calculation of the connectivity matrix eigenvalues
were also derived for oscillator networks coupled via
undirected33,34 and directed graphs.35

However, these eigenvalue based methods may be diffi-
cult to apply analytically for irregular graphs, especially de-
fined by an asymmetrical connectivity matrix with complex
eigenvalues, and these approaches in general fail for time-
dependent coupling coefficients.25,26

We have previously developed an alternative approach
�the connection graph method� to deriving rigorous bounds
on the minimum coupling strength that is necessary to
achieve complete synchronization from any initial, nonsyn-
chronized state. The proof is based on Lyapunov functions
and assumes symmetrical coupling �undirected graphs�. The
term that depends on the network structure is derived from
purely graph theoretic quantities. It allows us to derive indi-
vidually the strength of coupling for any two symmetrically
interacting systems such that the resulting network exhibits
globally stable complete synchronization. The method di-
rectly links synchronization with graph theory and allows us
to avoid calculating the eigenvalues of the connectivity ma-
trix. It is also applicable to time-dependent networks.

In this work we extend our approach to asymmetrically
coupled networks. The connection graph of such a network is
directed and the coupling coefficient from node i to node j is
in general different from the coupling coefficient for the re-
verse direction. It turns out that we obtain the same criterion
as for the network with a symmetrized connection matrix,
provided that the condition of node balance is satisfied. Node
balance means that the sum of the coupling coefficients of all
edges directed to a node equals the sum of the coupling
coefficients of all edges directed outward from the node. In
the special case where all coupling coefficients are equal, this
means that the in-degree equals the out-degree for each node,
i.e., the number of edges coming into a vertex equals the
number of edges going out of the vertex. In terms of graphs,
the symmetrization operation amounts to replacing the edge
directed from node i to node j by an undirected edge of half
the coupling coefficient. In the case where there is an edge
directed from node i to node j and another edge in the re-
verse direction, the pair of directed edges is replaced by an
undirected edge with mean coupling coefficient. It should be
stressed that without node balance the property in general
does not hold. In particular, it is possible that an asymmetri-
cally coupled network without node balance can never be
synchronized, whereas the symmetrized network has a finite
synchronization threshold.

II. NETWORK CONSIDERED

We consider a network of n linearly coupled identical

oscillators. The equations of motion read
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ẋi = F�xi� + �
k=1

n

cik�t�Pxk, i = 1, . . . ,n . �1�

Here, xi= �xi
1 , . . . ,xi

d� is the d-vector containing the coordi-
nates of the ith oscillator, and F�xi� is a nonlinear vector
function defining the dynamics of the individual oscillator.
The connectivity matrix C with entries cik is an n�n matrix
with zero row-sums and non-negative off-diagonal elements
such that �k=1

n cik=0 and cii=−�k=1;k�i
n cik, i=1, . . . ,n. Matrix

C is assumed to be asymmetric, therefore it defines a directed
�nonreciprocal� graph C with n vertices and m edges. The
vertices of the graph correspond to the individual oscillators,
and the graph has an edge between node i and node j if at
least one of the two coupling coefficients cij and cji is non-
zero. To allow complete synchronization of all the oscilla-
tors, the graph is assumed to be connected.

Elements of the d�d matrix P determine which vari-
ables couple the oscillators. For clarity, we shall consider a
vector version of the coupling with the diagonal matrix P
=diag�p1 , p2 , . . . , pd�, where ph=1, h=1,2 , . . . ,s and ph=0
for h=s+1, . . . ,d. The generalization of all the results ob-
tained in this paper for other possible cases of scalar and
vector couplings between the oscillators is straightforward.

We admit an arbitrary time dependence in the coupling
matrix even if t is not explicitly stated everywhere. All con-
straints and criteria for the coupling matrix are understood to
hold for all times t.

The completely synchronous state of system �1� is de-
fined by the linear invariant manifold D= �x1=x2= ¯ =xn�,
often called the synchronization manifold. In contrast to mu-
tually coupled networks, where any connection graph con-
figuration allows synchronization of all the nodes, synchrony
in asymmetrically coupled networks is only possible if there
is at least one node which directly or indirectly influences all
the others. In terms of the connection graph, this amounts to
the existence of a uniformly directed tree involving all the
vertices. A star-coupled network where secondary nodes
drive the hub is a counter example, where such a tree does
not exist and synchronization is impossible.

It is worth noticing that the connections of node i with
the other nodes of the graph are defined by ith row and ith
column elements of the matrix C. Connectivity matrices with
both zero row and column sums correspond to node bal-
anced networks, satisfying the property that all nodes in the
network have equal input and output weight sums. We will
use this property for deriving the synchronization criterion in
Sec. III.

We can give an interpretation of the node balance con-
dition in terms of electrical currents. If we interpret each
coupling coefficient as a current, flowing in the direction of
the corresponding edge in the graph, then the node balance
condition is nothing else than Kirchoff’s current laws.

III. NETWORK SYNCHRONIZATION:
A STABILITY CRITERION

A. Decomposition of the connectivity matrix

Statement 1: Asymmetric connectivity matrix C= �cik�

can be decomposed into two n�n matrices E and �:
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C = E + � , �2�

where matrix E is symmetric

E = ��ik�:��ik = �ki = 1
2 �cik + cki� for k � i

�ii = − 1
2 �

k=1;k�i

n

�cik + cki� for k = i 	 �3�

and matrix � is antisymmetric

� = ��ik�:��ik = 1
2 �cik − cki� = − �ki, for k � i

�ii = − 1
2 �

k=1;k�i

n

�cik − cki� , for k = i .	 �4�

Taking into account only off-diagonal elements, the ma-
trices E and � may be thought of as the symmetrized and
antisymmetrized connectivity matrix C, respectively. Both
the matrices E and � have zero row sums: �k=1

n �ik=0 and
�k=1

n �ik=0, respectively.
Statement 2: The diagonal elements of matrix � are �ii

= 1
2�k=1

n cki. In other words, �ii is half the sum of ith column
elements of the connectivity matrix C.

The proof is straightforward. Adding and subtracting the
term 1

2cii from �ii=− 1
2�k=1;k�i

n �cik−cki�, we obtain �ii

=− 1
2�k=1

n cik+ 1
2�k=1

n cki. The first term equals zero due to zero
row sums of the matrix C, therefore �ii=

1
2�k=1

n cki.

B. Application of the connection graph method

Our objective is to find a class of asymmetrically con-
nected networks for which the connection graph �stability�
method can be directly applied.

Using the decomposition �2�, we can rewrite Eq. �1� in
the form

ẋi = F�xi� + �
k=1

n

�ikPxk + �
k=1

n

�ikPxk, i = 1, . . . ,n . �5�

Introducing the notation for the differences

Xij = xj − xi, i, j = 1, . . . ,n , �6�

similar to our previous work,25 we obtain the stability system
for the difference variables

Ẋij = F�xj� − F�xi� + �
k=1

n

�� jkPXjk − �ikPXik�

+ �
k=1

n

�� jkPXjk − �ikPXik� . �7�

Using a compact vector notation for the function difference

F�xj� − F�xi� = 

0

1 d

d�
F��xj + �1 − ��xi�d�

= �

0

1

DF��xj + �1 − ��xi�d��Xij ,
where DF is a d�d Jacobi matrix of F, we obtain
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Ẋij = �

0

1

DF��xj + �1 − ��xi�d��Xij

+ �
k=1

n

�� jkPXjk − �ikPXik�

+ �
k=1

n

�� jkPXjk − �ikPXik� . �8�

The origin O= �Xij =0, i , j=1, . . . ,n� is an equilibrium of
the system �8�. Its global stability amounts to the global sta-
bility of the synchronization manifold D. Often, global sta-
bility of the equilibrium point O can be achieved through the
coupling as long as it is strong enough to overcome the un-
stable term �
0

1DF��xj + �1−��xi�d��Xij, defining the diver-
gence of coupled systems trajectories. The proof that the
origin can be globally stable involves the construction of a
Lyapunov function, a smooth, positive definite function that
decreases along trajectories of the system �8�.

To construct the Lyapunov function and obtain the con-
ditions on the coupling strength required for global stability
of synchronization in the network �1�, we shall follow the
steps of our previous study of mutually connected
networks.25

Adding and subtracting an additional term aPXij from
the system �8�, we obtain

Ẋij = �

0

1

DF��xj + �1 − ��xi�d� − aP�Xij + aPXij

+ �
k=1

n

�� jkPXjk − �ikPXik� + �
k=1

n

�� jkPXjk − �ikPXik� , �9�

where a is an auxiliary scalar parameter.
The use of the auxiliary terms ±aPXij allows us to derive

the stability conditions in two steps. The negative term
−aPXij is favorable for the stability and added to damp in-
stabilities caused by eigenvalues with positive real parts of
the Jacobian DF. In turn, the corresponding positive term
+aPXij can be damped by the coupling terms.

Step 1: Introduce the auxiliary system

Ẋij = �

0

1

DF��xj + �1 − ��xi�d� − aP�Xij,

i, j = 1, . . . ,n . �10�

This system is the system �9� without the coupling terms.
Consider Lyapunov functions of the form

Wij = 1
2Xij

T · H · Xij, i, j = 1, . . . ,n , �11�

where H=diag�h1 ,h2 , . . . ,hs ,H1�, h1�0, . . . ,hs�0, and the
�d−s�� �d−s� matrix H1 is positive definite.

Assumption 1: The derivatives of the Lyapunov func-
tions �9� with respect to the system �10� are required to be

negative
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Ẇij = Xij
TH�


0

1

DF��xj + �1 − ��xi�d� − aP�Xij � 0,

Xij � 0. �12�

In other words, we assume that there exists a critical value
a*, sufficient to make the equilibrium state O of the auxiliary
system �10� globally stable. This is, in particular, the case if
for arbitrary x the quadratic form Xij

TH�DF�x�−aP�Xij is
negative definite.

Note that if a=c12, where c12 is the coupling strength in
the network �1� of two unidirectionally coupled oscillators
�the direction of coupling is unimportant�, then the system
�10� becomes the stability system for synchronization in this
simplest unidirectionally coupled network. Consequently, the
assumption �12� implies that the network �1� of two unidi-
rectionally coupled oscillators will be globally synchronized
if the coupling exceeds the critical value c12

* .
This is true for many coupled limit-cycle or chaotic sys-

tems. However, there are a few examples of coupled systems
where increasing in coupling desynchronizes the
network.15,20,21 Therefore, before proceeding with the study
of synchronization in a larger network, we have to prove that
the assumption �12� holds for the chosen type of oscillators.

Examples for which the proof is straightforward include
coupled double-scrolls,14 Hindmarsh-Rose neuron models,27

Lorenz systems,25,36 etc. For example, for two unidirection-
ally x-coupled Lorenz oscillators:

ẋ1 = ��y1 − x1� + c12�x2 − x1�, ẋ2 = ��y2 − x2� ,

ẏ1 = rx1 − y1 − x1z1, ẏ2 = rx2 − y2 − x2z2,

ż1 = − bz1 + x1y1, ż2 = − bz2 + x2y2, �13�

assumption �8� is true, and the bound for the synchronization
coupling threshold is calculated as follows25 c*= �b�b+1��r
+��2� / �16�b−1��−�.

Step 2: Construct the Lyapunov function for the entire
stability system �9�

V = 1
4�

i=1

n

�
j=1

n

Xij
T · H · Xij � 1

2�
i=1

n

�
j=1

n

Wij . �14�

The corresponding time derivative has the form

V̇ = 1
2�

i=1

n

�
j=1

n

Ẇij + 1
2�

i=1

n

�
j=1

n

Xij
TaPXij

− 1
2�

i=1

n

�
j=1

n

�
k=1

n

�� jkXji
THPXjk + �ikXik

T HPXij�

− 1
2�

i=1

n

�
j=1

n

�
k=1

n

�� jkXji
THPXjk + �ikXik

T HPXij� . �15�

The first sum S1= 1
2�i=1

n � j=1
n Ẇij is negative definite due to

assumption �8�. The second sum S2= 1
2�i=1

n � j=1
n Xij

TaPXij is al-
ways positive definite. For convenience, it can be rewritten
as follows S2=�i=1

n−1� j�i
n aXij

TPXij, due to the symmetry
�Xii

2 =0, Xij
2 =Xji

2 �. As shown in the following, the third term S3
associated with the symmetrized matrix E= ��ij� is always
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negative definite and favorable for the stability. Therefore, it
has to be made large to overcome the contribution of the
term S2. The last coupling term defined by the anti-
symmetric matrix �= ��ij� can change sign. In the following,
we will show that this term equals zero for asymmetrically
coupled networks with node balance, and therefore the sym-
metrical matrix E can give synchronization conditions for
directed graphs defined by the asymmetric connectivity ma-
trix C. Let us elaborate it.

Using the symmetry of �, we can rewrite the third term
S3 in the form25

S3 = − �
i=1

n

�
j=1

n

�
k=1

n

� jkXji
THPXjk = − �

k=1

n−1

�
j�k

n

n� jkXjk
T HPXjk.

�16�

Consider the fourth term

S4 = − 1
2�

i=1

n

�
j=1

n

�
k=1

n

�� jkXji
THPXjk + �ikXik

T HPXij� . �17�

Renaming in the second term of S4 the summation index
i by j and vice versa, this second term becomes identical to
the first, and we get

S4 = − �
i=1

n

�
j=1

n

�
k=1

n

� jkXji
THPXjk. �18�

Using Xjk=Xji+Xik, we decompose S4 into two sums

S4 = − �
i=1

n

�
j=1

n

�
k=1

n

� jkXji
THPXji − �

i=1

n

�
j=1

n

�
k=1

n

� jkXji
THPXik

� S4
�1� + S4

�2�. �19�

The first sum in Eq. �19�,

S4
�1� = − �

i=1

n

�
j=1

n

Xji
THPXji�

k=1

n

�ik = 0, �20�

due to the zero row sums property of the matrix �.
Decompose the second term in Eq. �19�

S4
�2� = �

i=1

n

�
j=1

n

� j jXij
THPXij − �

i=1

n ��
j=1

n

�
k�j

n

� jkXji
THPXik� .

�21�

For each i=1, . . . ,n the sum in the second term of S4
�2� equals

zero,

��
j=1

n

�
k�j

n

� jkXji
THPXik� = 0, �22�

due to the anti-symmetry of the matrix � : �� jk=−�kj� and the
equality Xji

THPXik=Xki
T HPXij.

Consequently, we obtain

S4
�2� = �

i=1

n

�
j=1

n

� j jXij
THPXij . �23�

�2�
Using the symmetry of the quadratic form S4 , we get
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S4
�2� = �

i=1

n−1

�
j�i

n

	ijXij
THPXij , �24�

where 	ij =�ii+� j j is half the sum of ith and jth column
elements of the connectivity matrix C.

Thus collecting the sums S2, S3, and S4
�2� from Eqs. �15�,

�16�, and �24�, we obtain the condition that the time deriva-

tive V̇ is negative if

�
i=1

n−1

�
j�i

n

Xij
TH�A − n�ijP + 	ijP�Xij � 0. �25�

The inequality �25� is a sufficient condition for the global
stability of the synchronization manifold.

Due to zero row sums of the connectivity matrix C, the
matrix �	ij� satisfies the condition

�
i,j=1

n

	ij = 0.

Then from the symmetry of the matrix �	ij�, it follows

�
i=1

n−1

�
j�i

n

	ij = 0.

Thus, the coefficients 	ij either equal zero or change sign
along the set �1
 i
n−1, i� j
n�. Let us consider these
two cases, separately.

General case: 	ij�0. While negative 	ij are favorable
for the synchronization condition �25�, the contribution of
positive 	ij has to be compensated by the negative coupling
terms. Therefore, the stability condition �25� becomes depen-
dent on the distribution of positive and negative coefficients
	ij over all possible Xij , �1
 i
n−1, i� j
n�. The deriva-
tion of graph-based synchronization conditions for this gen-
eral case requires consideration of an extended graph with
additional edges corresponding to positive 	ij. This will be
reported elsewhere.

The following is devoted to synchronization in networks
for which 	ij �0.

C. Synchrony in node balanced networks

It is easy to check that the constraint 	ij �0 relates to
graphs with node balance. Hence, for such networks, the
stability condition �25� becomes

�
i=1

n−1

�
j�i

n

Xij
TH�A − n�ijP�Xij � 0. �26�

Here, the negative coupling term, defined by the symmetrical
matrix E= ��ij�, must overcome the contribution of the posi-
tive term Xij

THAXij.
The stability criterion �26� for asymmetrically but node

balanced networks is identical to the stability condition for
symmetrized networks with the connectivity matrix E.
Therefore, the connection graph method25 can be directly
applied to this class of directed graphs. This results in the
main statement of this paper.

Theorem 1 (sufficient conditions): Under Assumption 1

and the assumption that the asymmetrical connectivity ma-
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trix C= �cij� has zero column sums (condition of node bal-
ance, 	ij =0�, complete synchronization in the network (1) is
globally asymptotically stable if

cij�t� + cji�t�
2

� �ij�t� � �k�t� �
a

n
bk�n,m�

for k = 1, . . . ,m and for all t , �27�

where at least one coefficient from the pair �cij ,cji� is not
zero and defines an edge on the directed connection graph
C; the mean coupling coefficient �ij ��k defines edge k on
the undirected graph E associated with the symmetrized ma-
trix E; and bk�n ,m�=� j�i;k�Pij

n ��Pij�� is the sum of the lengths
of all chosen paths Pij which pass through a given edge k
that belongs to the undirected graph E. Here, m is the num-
ber of edges of the undirected graph rather than the original
directed graph.

In other words, we obtain the same criterion for synchro-
nization in asymmetrically connected networks as for the
network with a symmetrized connectivity matrix, provided
that the condition of node balance is satisfied. In term of
graphs, the symmetrization operation amounts to replacing
the edge directed from node i to node j by an undirected
edge of half the coupling coefficient. In the case where there
is an edge directed from node i to node j and another edge in
the reverse direction, the pair of directed edges is replaced by
an undirected edge with mean coupling coefficient. Finally,
the calculation of bk along the symmetrized undirected graph
E gives us the stability condition for the asymmetrical
network �1�.

This calculation is straightforward within the framework
of the connection graph method. To do so, we first choose a
set of paths �Pij�i , j=1, . . . ,n , j�i� �typically, the shortest
paths�, one for each pair of vertices i , j, and determine their
lengths �Pij�, the number of edges in each Pij. Then, for each
edge k of the connection graph we calculate the sum bk�n ,m�
of the lengths of all Pij passing through k. Our previous
works25,27 give further details on a possible choice of paths
and calculations of bk�n ,m� for different coupling configura-
tions.

Remark 1: Theorem 1 is not valid for unbalanced net-
works in general �additional terms defined by the anti-
symmetric matrix � are always present in the stability con-
dition �25��. Therefore, the symmetrization operation on the
graph cannot be applied in general to directed unbalanced
networks.

Remark 2: Obviously, symmetrically coupled networks
are always node balanced: zero row sums property of the
symmetrical connectivity matrix C implies zero column
sums. Therefore, Theorem 1 is applicable for such networks.
However, the symmetrized matrix E will always be identical
to C. For illustrative purposes, we can consider the simplest
network of two symmetrically connected nodes with mutual
coupling strength c. This network can also be considered as a
ring of two unidirectionally connected oscillators. In terms of
graphs, the symmetrization operation applied to both unidi-
rectional links separately leaves us with two mutual halves of
the coupling strength connections. Considered together, they

form the original mutual coupling with strength c.
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IV. EXAMPLES

A. Ring of unidirectionally coupled oscillators

Consider the unidirectionally coupled ring of dynamical
systems, with constant coupling coefficient c �Fig. 1�a�
�left��. At each node of the graph, one edge enters and one
leaves. Thus, node balance is realized. The associated sym-
metrically coupled network is a ring with coupling coeffi-
cient c /2 �Fig. 1�a� �right��. Synchronization in this network
was already studied25 by the connection graph method. It
was proven that

c/2 = � � �a� n2

24
−

1

24
� for odd n

a� n2

24
+

1

12
� for even n	 �28�

is a sufficient condition for global synchronization. Accord-
ing to Theorem 1, this is also a sufficient condition for global
synchronization of the unidirectionally coupled network of
Fig. 1�a� �right�.

To check whether our symmetrization operation cor-
rectly describes the relation between synchronization proper-
ties of the two networks, we have numerically calculated the
eigenvalues of the connection matrix of both the unidirec-
tionally and symmetrically coupled networks:

�1
asym = 0, �1

sym = 0,

�2,3
asym = − 0.1910 ± 0.5878i, �2,3

sym = − 0.1910,

�4,5
asym = − 0.6910 ± 0.9511i, �4,5

sym = − 0.6910,

�6,7
asym = − 1.3090 ± 0.9511i, �6,7

sym = − 1.3090,

�asym = − 1.8090 ± 0.5878i, �sym = − 1.8090,

FIG. 1. Unidirectionally coupled networks and their symmetrized analogs
with half the coupling strength per link. Arrows indicate direction of cou-
pling along an edge; edges without arrows are coupled bidirectionally. The
width of the links may be thought of as the coupling strength. �a� Rings of
locally coupled oscillators. �b� Rings of K-nearest neighbor coupled oscilla-
tors. Here, K=2 and n=10.
8,9 8,9
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�10
asym = − 2, �10

sym = − 2.

Since the real parts of the eigenvalue of both networks
are identical, by the master stability function approach19 it
follows that both networks have the same local synchroniza-
tion properties. It shows that our graph theoretical analysis
correctly predicts the real relation between the two synchro-
nization thresholds.

B. Rings of K-nearest neighbor coupled oscillators

Quite similar results are obtained when analyzing the
unidirectionally K-nearest neighbor coupled ring of dynami-
cal systems �see Fig. 1�b� �left� for K=2� and its associated
symmetrically coupled network of Fig. 1�b� �right�. Our con-
nection graph stability analysis of the latter yields the follow-
ing sufficient condition for global synchronization:25

c/2 �
a

n
· � n

2K
�3�1 +

65

4

K

n
� . �29�

According to Theorem 1, condition �29� also guarantees glo-
bal synchronization in the unidirectionally coupled network.

We are not aware of analytical expressions for the eigen-
values of the connection matrix in this general case �for any
K and n�. For the unidirectional coupling, they are typically
complex and, therefore, difficult to derive. Similar to the
previous example, we could only calculate the eigenvalues
numerically for specific network examples �for different n
and K�. For all these examples, the real parts of the eigen-
values of the symmetrized and the asymmetrical connectivity
matrices were the same. For example, for n=10 and K=3 the
eigenvalues are

�1
asym = 0, �1

sym = 0,

�2,3
asym = − 2.1910 ± 2.4899i, �2,3

sym = − 2.1910,

�4,5
asym = − 3.1910 ± 0.5878i, �4,5

sym = − 3.1910,

�6,7
asym = − 3.3090 ± 0.2245i, �6,7

sym = − 3.3090,

�8
asym = − 4, �8

sym = − 4,

�9,10
asym = − 4.3090 ± 0.9511i, �9,10

sym = − 4.3090.

This supports our view that in the case of node balance, the
directed and symmetrized undirected networks have essen-
tially the same synchronization properties.

C. Irregular graph with node balance

Consider the asymmetrically coupled network of Fig.
2�a�. The coupling coefficients cij are in general different, but
it is easy to check that node balance holds. The correspond-
ing symmetrized network is represented in Fig. 2�b�.

In order to calculate synchronization bounds, we apply
the connection graph method to the symmetrized network.
We have to choose a path Pij between any pair of nodes i , j.

Our choice is
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P12:edge 2, P23:edge 7, P35:edges 5,8,

P13:edge 1, P24:edges 7,8, P36:edge 9,

P14:edge 3, P25:edges 2,4, P45:edge 5,

P15:edge 4, P26:edges 7,9, P46:edges 5,6,

P16:edges 4,6, P34:edge 8, P56:edge 6.

Now we have to calculate, for each edge k of the graph, the
sum of the lengths of all chosen paths Pij passing through k:

bk = �
j�i;k�Pij

��Pij�� .

Here, the path length is the number of edges comprising each
Pij.

The result is

b1 = 1, b4 = 5, b7 = 5,

b2 = 3, b5 = 5, b8 = 5,

b3 = 1, b6 = 5, b9 = 3.

By condition �27�, this leads to the constraints to achieve
global synchronization:

4c �
a

6
· 1, 5c �

a

6
· 5, 5c �

a

6
· 5,

5c �
a

· 3, 10c �
a

· 5, 6c �
a

· 5,

FIG. 2. �a� Asymmetrically coupled network with node balance. Arrows
indicate direction of coupling along an edge. �b� The symmetrized mutually
coupled network.
6 6 6
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4c �
a

6
· 1, 5c �

a

6
· 5, 5c �

a

6
· 3.

The bounds for edges 4, 6, and 7 give the maximum con-
straint, therefore we conclude that for

c �
a

6
� 0.1668a �30�

we can guarantee global synchronization of the network both
for the asymmetrically and symmetrically coupled case.

The second largest eigenvalue of the connectivity matrix
of the asymmetrically coupled network is calculated numeri-
cally

�2
asym = − 10c

and for its symmetrization

�2
sym = − 8.1852c .

By the eigenvalue approaches to global synchronization,
the synchronization bound associated with the second largest
eigenvalue of the connectivity matrix is

c � a/�Re �2� . �31�

Note that this is true only for networks where there is no
desynchronization with increasing coupling and the param-
eter a can be rigorously derived.

The condition �31� gives the following upper bound for
global synchronization:

c � a/��2
asym� = 0.1a �32�

for the asymmetrically coupled, and

c � a/��2
sym� = 0.1222a �33�

for the symmetrically coupled network. Compared with Eq.
�30�, this confirms that the connection graph method gives
bounds for global synchronization that are not far from the
optimal bounds, achievable by the eigenvalue method. The
comparison between conditions �32� and �33� shows that the
symmetrized network is only slightly more difficult to syn-
chronize than the asymmetrically coupled one.

D. Unbalanced nonsynchronizable network

Figure 3�a� shows the simplest network that is impos-
sible to synchronize due to its connection structure, i.e., for
any individual systems that do not have unique asymptotic
behavior, even for arbitrarily large coupling constants c the
network cannot achieve synchronization.

Indeed, systems 1 and 2 have no interaction at all and
therefore they do not synchronize. The symmetrized network
�Fig. 3�b��, however, can easily be seen to synchronize for

c � 2a

by applying the connection graph method.
This example illustrates that it is in general not possible

to apply the synchronization bound of the symmetrized net-
work, when the node balance condition is not satisfied. In-
deed, in the networks of Fig. 3 no node achieves node bal-

ance.
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V. CONCLUSIONS

We have extended the connection graph stability method
to prove global synchronization in networks of coupled dy-
namical systems. Previously we assumed symmetrical cou-
pling between individual dynamical systems in the network.
Here, we have extended the method to asymmetrically
coupled networks that satisfy the node balance condition.
This condition requires that the sum of coupling coefficients
of all edges directed toward a node is equal to the sum of
coupling coefficients of all edges directed away from the
node.

We showed that for networks with node balance it is
sufficient to symmetrize all connections by replacing a uni-
directional coupling of strength c by a bidirectional coupling
of strength c /2. The bounds for global synchronization for
this symmetrized network then also hold for the original
asymmetrical network, when we apply our connection graph
stability method.

Let us remark once more that the connection graph sta-
bility method relies solely on graph theoretical reasoning to
derive synchronization bounds, that it allows for time-
dependent coupling coefficients and that it gives values for
the critical values of coupling above which global synchro-
nization is rigorously established. If the node balance condi-
tion is not satisfied, the asymmetrically coupled network may
have very different synchronization behavior from the sym-
metrized network. The extension of our method to this most
general case is a current research topic.

It is customary to discuss synchronization properties of
networks in terms of eigenvalues of the connectivity matrix.
On the one hand, it allows one to give necessary and suffi-
cient conditions for local synchronization depending on �usu-
ally numerically calculated� Lyapunov exponents of the in-
dividual systems. On the other hand, we have previously
shown that in the case of symmetrically coupled networks,
the second largest eigenvalue also allows one to obtain a
bound for global synchronization. Actually in the context of
our quadratic Lyapunov function this is the optimal bound.
For networks with node balance, this carries over to asym-
metrically connected networks.

We may wonder whether the local synchronization prop-

FIG. 3. �a� Simplest nonsynchronizable network, not satisfying the node
balance condition. It shows that node balance is crucial for obtaining the
same synchronization behavior as in the symmetrized network. �b� Symme-
trized, synchronizable network.
erties of directed networks with node balance and the corre-
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sponding undirected networks are also the same, i.e., if the
eigenvalue of the asymmetrical and symmetrical connectiv-
ity matrices are the same. In general this is not true, but this
is the case for a number of networks with a regular structure.
Examples include rings of K-nearest neighbor unidirection-
ally coupled oscillators �cf. Sec. IV� and locally connected
two-dimensional lattices on a torus with a uniformly directed
coupling. In all other cases we have numerically examined,
the symmetrized network was only slightly more difficult to
synchronize than the asymmetrically coupled one.
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