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Abstract We study the role of network architecture and synaptic inputs in the for-
mation of synchronous clusters in synaptically coupled networks of bursting neu-
rons. Through analysis and numerics, we show that the stability of the completely
synchronous state, representing the largest cluster, only depends on the number
of synaptic inputs each neuron receives, independent from all other details of the
network topology. We also give a simple combinatorial algorithm that finds syn-
chronous clusters from the network topology. We demonstrate that networks with
a certain degree of internal symmetries are likely to have cluster decompositions
with relatively large clusters, leading potentially to cluster synchronization at the
mesoscale network level. We address the asymptotic stability of cluster synchro-
nization in excitatory networks of bursting neurons and derive explicit thresholds
for the coupling strength that guarantees stable cluster synchronization.

1 Introduction

Brain networks have an hierarchy of different levels, ranging from the microscale
via the mesoscale to the macroscale. The microscale is represented by individual
neurons and their local synaptic connections. The mesoscale level involves net-
works of columns and minicolumns, connecting populations of neurons. At the
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macroscale, large numbers of neuronal populations are arranged into large-scale
patterns of anatomical connectivity [1]. The three scale levels determine the func-
tional properties of individual neurons and neuronal networks. As a result, patterns
of cooperative neuronal activity also possess multi-level microscopic, mesoscopic,
and macroscopic properties. Individual neurons and their dynamics represent the mi-
croscale level; cooperative rhythms of neuronal subpopulations define the mesoscale
level, and large-scale patterns of activity, such as an average mean field dynamics or
synchronization, correspond to the macroscale.

Recently, a great deal of attention has been paid to algebraic, statistical and graph
theoretical properties of networks and their relationship to the dynamical properties
of the underlying network (see, for example, [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16] and the references therein). The most important questions about dynamical
networks are those of the interplay between network topology and dynamics: How
does network structure affect dynamical properties and information capabilities of
networks? Can a dynamical partition of a biological network be inferred from purely
topological criteria? Until recently most studies were concerned with the patterns
defined by a local microscale network structure or with the macroscopic large-scale
patterns of activity such as the mean field dynamics and synchronization. However,
the interest has now shifted toward the analysis of cooperative rhythms in subpopu-
lations defined by the mesoscopic modular structure of the network [10]. Different
approaches to extracting dynamical properties from topological and modular struc-
tures in complex networks of different nature were recently proposed [11, 12, 13].

The simplest macroscopic rhythm in neuronal networks is synchronization when
all neurons fire in unison. Synchronized neuronal firing has been suggested as partic-
ularly relevant for neuronal signal transmission and coding. While its involvement
in cortical processing is somewhat controversial, the presence of synchronization
has been shown in special areas such as the olfactory system or the hippocampal
region [17]. Model studies of neuronal synchronization can be separated in those
where spiking, relaxation oscillator-type models are used, and bursting models are
employed [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30]. Bursting occurs when
neuron activity alternates, on a slow time scale, between a quiescent state and fast
repetitive spiking. There has been much work on mechanisms that produce such
bursting [31, 32, 33, 34, 35, 36, 37, 38]. In contrast to coupled spiking neurons,
whose synchronous dynamics is relatively simple, interacting bursting neurons may
exhibit different forms of synchrony; including synchronization of individual spikes,
burst synchronization when only the envelopes of the spikes synchronize, and com-
plete synchrony [23, 25, 27]. Typically, burst synchronization arises at a low cou-
pling strength whereas complete synchrony, which involves both burst and spike
synchronization regimes, requires a stronger coupling. Models of interacting burst-
ing neurons often use one of two different forms of coupling depending on whether
the synapse is electrical or chemical. In the first case, the coupling through gap
junctions is linear and directly dependent on the difference of the membrane po-
tentials. In the second case, the coupling is pulsatile and often modeled as a static
sigmoidal nonlinear input-output function with a threshold and saturation [53]. The
emergence of neuronal synchronization heavily depends on the intrinsic properties



Patterns of synchrony in neuronal networks: the role of synaptic inputs 3

of the individual neurons and the type of synaptic coupling and its network topol-
ogy [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30]. This problem was intensively studied
for linearly coupled networks of bursting neurons [20, 25], and more generally, of
limit-cycle and chaotic oscillators [4, 5, 6, 7, 8, 9]. In particular, it has been shown
that synchrony in such networks strongly depends on the structure and size of the
network. In contrast with linearly (electrically) coupled bursting neurons, the sta-
bility of synchronization in pulse- (synaptically) coupled networks only depends on
the number of signals each neuron receives, independent from all other details of the
network topology [27]. In this chapter, we review this result [27] and give additional
details of the proof.

Other important examples of cooperative rhythms are clusters of synchrony
[39, 40, 41, 43, 44, 45] when the neuronal network splits into subpopulations, called
clusters, such that all neurons within one cluster fire in perfect synchrony. The ex-
istence of clusters of perfect synchrony is strictly defined by the symmetries of the
neuronal network [42, 43, 44, 45] and therefore by a symmetric modular structure
of the network. A symmetry of a coupled cell network is defined as a permutation
of the cells that preserves all internal dynamics and all couplings. The stability of
synchronous clusters in networks of bursting neurons is defined by different fac-
tors such as the type of bursting in the individual neuron model and the neuronal
connections among and within the clusters.

In this chapter, we also study the emergence of stable synchronous clusters in
synaptically coupled networks as a mesoscale phenomenon. We use our recent re-
sults [46] to show how to effectively find clusters defined by subnetworks’ meso-
scopic architecture and symmetries, and derive the conditions on their stability using
the Lyapunov function method. We also demonstrate that the same cluster synchro-
nization regimes may have distinct mesoscopic and macroscopic properties. More
precisely, we study the existence and stability of synchronous clusters in excitatory
networks of Hindmarsh-Rose neurons. We implement the concept of minimal bal-
anced coloring [43, 44, 45] into a combinatorial algorithm for finding synchronous
clusters. The core of the minimal balanced coloring concept is that every cluster of
synchrony corresponds to a coloring of the network cells in which two cells have the
same color if and only if their dynamical variables are equal (completely synchro-
nized). It is important to emphasize that the vertex coloring [43, 44, 45] used in this
is different from the one defined in graph theory. Graph theory introduces a coloring
of a graph as an assignment of colors to the vertices, one color to each vertex, so
that adjacent vertices are assigned different colors [49]. However, two adjacent cells
from our cluster partition may have the same color as long as their dynamics are
described by the same differential equations, up to a permutation of the variables
[43].

We use progressive refinement of the coloring map [43, 44, 45] to identify
clusters in regular and random networks and come to a natural conclusion that
random networks rarely exhibit clusters due to the lack of symmetrical network
substructures. We also prove the stability of specific clusters in regular lattices
of Hindmarsh-Rose neurons, starting with the proof of complete synchronization
in globally and densely synaptically coupled excitatory Hindmarsh-Rose neurons
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that exhibit square-wave bursters. To the best of our knowledge, synchronization
of synaptically coupled square-wave bursters has not previously been proven, and
this chapter, following our recent work [46], presents the first proof of this kind. In
fact, the well developed theory of weakly coupled oscillators had previously been
applied to prove synchronization of elliptic bursters [23] that synchronize at very
weak coupling strengths, comparable to a small parameter in the individual neuron
system. At the same time, square-wave bursters are notorious for their resistance to
synchronization[27] and require a strong synaptic coupling, therefore the reduction
to phase models cannot be applied. These two types of bursting were first identified
by Rinzel [31, 35]. Square-wave bursting was named after the shape of the voltage
trace during a burst which resembles a square wave due to fast transitions between
the quiescent state and fast repetitive spiking. Similarly, elliptic bursting received its
name due to the shape of the voltage trace that looks like a half-ellipse [35].

The layout of this chapter is as follows. First, in Sec. 2, we introduce the
Hindmarsh-Rose neuron model as an individual unit of the network. We analyze its
dynamics to find the regions of parameters corresponding to square-wave bursting.
Then, we present and discuss the network model. In Sec. 3, we prove that the onset
of complete synchrony in a network with any coupling topology admitting com-
plete synchronization is ensured by one single condition, defined by the number of
synaptic inputs. To prove the stability of synchronization, we construct a Lyapunov
function for the difference variables that allows us to analyze the synchronization
properties of the networks without resorting to computer simulation. In Sec. 4, we
present the algorithm for finding possible synchronous clusters and apply it to spe-
cific networks. We also prove the stability of clusters in regular networks where
each cluster of cells is driven by the same driving neurons. Finally, in Sec. 5, a brief
discussion of the obtained results is given.

2 The model and problem statement

2.1 Single cell: Hindmarsh-Rose model and its dynamics

We start off with the Hindmarsh-Rose neuron model [47] which represents a class of
phenomenological models of spiking and bursting neurons. Without direct relation
to concrete physiological mechanisms, these models aim at reproducing the charac-
teristic features of the bursting behavior. To the extent that the assumptions under-
lying the phenomenological models are sufficiently general, these models may be
used to explain generic bifurcation scenarios that can also be observed in the more
realistic models.

The Hindmarsh-Rose (HR) model is well-known for its chaotic behavior and
different types of bursting [48, 22, 27, 50, 51]. The model takes the form
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ẏ = 1−dx2 − y
ż = µ(b(x− x0)− z),

(1)

where x represents the membrane potential, and variables y and z take into account
the transport of ions across the membrane through fast and slow ion channels, re-
spectively. Fast variable y describes the rate of change of the fast (e.g., sodium)
current. Slow variable z controls the speed of variation of the slow (e.g., potassium)
current. This speed is in turn controlled by a small parameter µ. Parameter I de-
scribes an external current that enters the neuron. Parameters a and d (b and x0)
describe activation and inactivation of the fast (slow) ion channel. The presence of
the small parameter µ in the z-equation makes the system (1) slow-fast, where the
(x,y)-equations and z-equation represent fast ”spiking” and slow ”bursting” subsys-
tems, respectively.

For the sake of simplicity, the original HR model (1) with the redundant set of
parameters can be transformed, using the substitution (y,z)→ (1−y,1+ I+ z), d =
a+α ,c =−1− I −bx0, into the form ẋ = ax2 − x3 − y− z,

ẏ = (a+α)x2 − y,
ż = µ(bx+ c− z).

(2)

The model (2) can exhibit different types of bursting that have different impacts on
the stability of the synchronous solution. Therefore we shall first study the dynamics
of the individual model (2) and determine the regions of parameters where square-
wave bursting exists. A detailed numerical analysis of bifurcations in the original
HR model (1) was recently performed [50, 51].

Readers who are willing to accept the results of this subsection without proof
can proceed without loss of continuity to the description of the network model in
the next subsection.

We use the standard decomposition of the system (2) into fast and slow subsys-
tems. The fast (x,y)-system has the nullcline z = f (x)≡−αx2 − x3, obtained from
solving the system of equations 0 = ax2 − x3 − y− z and 0 = (a+α)x2 − y. The
nullcline z = f (x) has two critical points xC1 =−2α/3 and xC2 = 0 that correspond
to two knees of the graph (see Fig. 1). For simplicity, we shall limit our attention to
positive values of parameter α . The generalization to α < 0 is straightforward. For
b > α2/3 the nullcline of the slow z-equation z = g(x)≡ bx+c crosses the graph of
f (x) at a single point xe such that the system (2) displays a unique equilibrium point
E(xe,ye,ze).

The types of bursting that can exist in the system (2) are defined by the z-
parameter sequences of phase portraits of the fast system:{

ẋ = ax2 − x3 − y− z,
ẏ = (a+α)x2 − y, z = const

(3)
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Fig. 1 Square-wave burster of the Hindmarsh-Rose model (2). Parameters a = 2.8, α = 1.6, c = 5,
b = 9, µ = 0.001. The right stable branch of the fast nullcline z = f (x) contains two points AH1
and AH2 corresponding to supercritical Andronov-Hopf bifurcations. The second point AH2 with
xAH2 ≈ 1.666 lies on a much lower part of the nullcline and is not shown.

derived from (2) for µ = 0. This represents the usual adiabatic approach in which
the fast system accounts for the fast dynamics (3), and variations of z describe the
slow dynamics. Here, the parameters of the fast system a and α determine the types
of possible bursting behavior in the full system (2).

I. Fast system. The x-nullcline of the fast system (3) is the curve

nx : y = ax2 − x3 − z (4)

and the y-nullcline is
ny : y = (a+α)x2. (5)

Coinciding with the points of intersection between the graphs of (4) and (5), equi-
libria of the system (3) are determined by the solutions of the equation

z = f (x)≡−αx2 − x3. (6)

Hence, for − 4
27 α3 ≡ zc < z < 0, α > 0 the system (3) has three equilibrium points

N1(x1,y1), O(x0,y0), and N2(x2,y2), where x0 and x1,2 are the roots of Eq. (6), or-
dered such that x1 < − 2

3 α < x0 < 0 < x2, and yi = (a+α)x2
i , i = 0,1,2. Their

stability is defined by the characteristic equation:

s2 −σ(xi)s− f ′(xi) = 0, i = 0,1,2, (7)

where the divergence σ = −(1− 2ax+ 3x2) and the slope f ′ = −2αx− 3x2. Thus
O is a saddle and N1 and N2 are stable nodes or foci. The divergence of the two-
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dimensional vector field of the fast system (3) changes sign so that

σ(x)> 0 for xAH1 < x < xAH2
σ(x)< 0 for x < xAH1, x > xAH2,

where the values xAH1,AH2 = (a∓
√

a2 −3)/3 correspond to a pair of Andronov-
Hopf bifurcations of the equilibrium point N2 where σ(x2 = xAH1,AH2) = 0.
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Fig. 2 Nullclines nx and ny of the fast system (3). Increasing (decreasing) z shifts the cubic nullcine
nx down (up). For − 4

27 α3 ≡ zc < z < 0, there are three equilibrium points N1, O, and N2. While
z changes, the three points trace out the left, middle, and right branches of the nullcline z = f (x)
of the full system (2), respectively (cf. Fig 1). Further increase (decrease) of z makes the saddle O
and the equilibrium point N2 (N1) disappear.

Using explicit formulas given by Bautin [52], we calculate the first Lyapunov co-
efficient for the Andronov-Hopf bifurcation of the equilibrium N2(x2,y2) as follows

L1 =−π
4
| f ′(x2)|−3/2(3+2αa). (8)

This value is negative for α > −3a/2 which is true for any positive values of a
and α. Hence, as z decreases for xAH1 (or increases for xAH2), the equilibrium N2
undergoes a supercritical Andronov-Hopf bifurcation such that a unique stable cycle
appears softly from N2.

Using the nullclines nx and ny together with the flows shown in Fig. 2, we can
deduce the following general properties of the vector field.
Property 2.1. All trajectories of the system (3) leave the region {y < 0}.
Property 2.2. The system has the absorbing domain Ab = {|x|< |xp|, 0 ≤ y ≤ yp},
where yp = (a+α)x2

p and xp is either the largest root of equation x3 −ax2 + z = 0,
or the coordinate of the equilibrium point N1.
Property 2.3. For x0 < xAH1 the limit cycles of the system (3) can only encircle the
equilibrium point N2, i.e., the fast HR model can not produce cycles encircling only
equilibrium point N1, nor can it have cycles enclosing all three equilibrium points.
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This property follows from the orientation of the vector field as cycles encircling ei-
ther the equilibrium N1, or all three equilibria would have to wind against the vector
field (cf. the vector field around N1).
Property 2.4. A homoclinic orbit of O may exist only in the region x > x0 as it is
constrained by the vector field, similar to Property 2.3.
II. Square-wave bursting. According to the above analysis, the behavior of the fast
system is essentially different for a ≤

√
3 and a >

√
3.

Region 1: a ≤
√

3. As the divergence σ(x) ≤ 0 everywhere, the fast system has no
cycles. The equilibrium points N1 and N2 are stable, and the stable manifold of the
saddle O (when it exists) divides the (x,y) plane into the basins of attraction of N1
and N2. As a result, the dynamics of the full system (2) is qualitatively similar to
that of the FitzHugh-Nagumo system. That is, with a proper location of the slow
nullcline z = g(x), intersecting the middle branch of the fast nullcline z = f (x), the
system has an unstable equilibrium encircled by a stable relaxation oscillator-type
cycle defining the simplest form of bursting.
Region 2: a >

√
3. The equilibrium point N2 of the fast system undergoes a super-

critical Andronov-Hopf bifurcation for x2 = xAH1, and the homoclinic orbit of the
saddle O is always stable (the corresponding saddle value is negative). In this case,
the dynamics of the fast system is as follows. For z < zAH2 the equilibrium point N2
is globally stable. For zAH2 < z < zc there exists a stable cycle encircling the unsta-
ble equilibrium point N2. For zc < z < zh the unstable manifold W u of the saddle O
consists of two separatrices so that one of them approaches the stable cycle and the
other is attracted by the stable equilibrium point N1. At z = zh the stable cycle turns
into a homoclinic loop, and for z > zh the separatrices of O change their arrange-
ment so that all trajectories of the system (3), except the stable manifold of O and
the unstable equilibrium point N2, approach the stable equilibrium N1. The result is
a spiking manifold that is composed of the limit cycles of the fast system. Its upper
edge is defined by the homoclinic bifurcation at z= zh. Depending on the location of
the slow nullcline z = g(x), intersecting the middle branch of the fast nullcline f (x),
the full system can generate either square-wave bursting (see. Fig. 1) or tonic spik-
ing. In the Izhikevich classification, [35] this scenario describes the mechanism of
formation of the fold/homoclinic burster which is referred to as being square-wave
bursting due to the voltage amplitude profile [35]. Bifurcations and complicated
sets associated with the transition from tonic spiking into square-wave bursting in
various neuronal models have been extensively studied [32, 34, 36, 37, 38].

In the following, we will concentrate on the parameters from region 2 where the
individual HR model (2) can generate square-wave bursting. Hereafter, the parame-
ters are chosen and fixed as follows: a = 2.8, α = 1.6, c = 5, b = 9, µ = 0.001.

2.2 Network of synaptically coupled neurons

Consider now a network of n synaptically coupled HR models (2). The equations of
motion read:
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ẋi = ax2

i − x3
i − yi − zi +gs(Vs − xi)

n
∑
j=1

ci jΓ (x j),

ẏi = (a+α)x2
i − yi,

żi = µ(bxi + c− zi), i, j = 1,n.

(9)

Here, each neuron is represented by the HR model (2), and the neurons are identi-
cal. The synapses are fast and instantaneous, i.e. time delays and internal synaptic
variables are ignored. The parameter gs is the synaptic coupling strength. The re-
versal potential Vs > xi(t) for all xi and all times t, i.e. the synapse is excitatory.
The synaptic coupling function is modeled by the sigmoidal nonlinear input-output
function Γ (x j)= 1/[1+exp{−λ (x j−Θs)}]. This oft-used coupling form was called
fast threshold modulation by Somers and Kopell [53]. The threshold Θs is chosen
such that every spike in the single neuron burst can reach the threshold (see Fig. 3).
Hereafter, Θs =−0.25 and Vs = 2.

In (9), C = (ci j) is the n× n connectivity matrix: ci j = 1 if neuron i receives
synaptic input from neuron j, ci j = 0 otherwise, and cii = 0. Matrix C can be
asymmetric such that both mutual and unidirectional couplings are allowed. We
require the connectivity matrix C to have at least some rows with equal row-sums

ki =
n
∑
j=1

ci j, i = 1, ...,n. This requirement is a necessary condition for the existence

of synchronous clusters of neurons whose states are equal. The existence of clusters
yields a decomposition of the network (9) into the disjoint subsets of vertices (neu-
rons) V = V1 ∪ ...∪Vd , Vγ ∩Vν = /0 given by the equalities of the neuron states. If
the decomposition is flow-invariant with respect to the vector field of the system (9),
then the corresponding linear subspace M(d) is invariant and defines d synchronous
clusters.

3 Complete synchronization in the network

The Section reports a surprising find regarding the synchronization of pulse-coupled
networks of bursting neurons [27]. We study the stability of full complete synchro-
nization in networks of HR neurons (9) where each neuron receives signals from
k others, where k is uniform for all neurons. In the following, we demonstrate that
all that matters for the onset of complete synchrony is the number of signals, k,
received by each neuron. This is independent of all other details of the network
structure. More precisely, the synchronization threshold is inversely proportional to
the number of incoming signals k. This criterion applies to a neuronal network with
any coupling topology admitting complete synchrony.

For this property to be true, we require matrix C to have equal row-sums k =
n
∑
j=1

ci j, i = 1, ...,n. This requirement is a necessary condition for the existence of the

synchronous solution, namely the invariance of hyperplane M(1)= {ξ1(t)= ξ2(t)=
... = ξn(t)}, ξi = (xi,yi,zi), i = 1,n. In fact, the equal row-sum property implies a
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network where each cell has the same number k of inputs from other neurons. Note
that this k-row sum matrix C can be asymmetric such that directed networks with
the same node in-degree k are also allowed.

Synchronous behavior on the manifold M(1) is generated by the self-coupled
system:  ẋ = ax2 − x3 − y− z+ kgs(Vs − x)Γ (x),

ẏ = (a+α)x2 − y,
ż = µ(bx+ c− z).

(10)

Consequently, the synchronous behavior differs from the behavior of the uncoupled
neuron and depends on the coupling strength gs. The analysis of the slow-fast in-
dividual HR system, performed in Sec. 2, carries over to the self-coupled system.
The main difference is that the fast subsystem of the self-coupled system undergoes
Andronov-Hopf bifurcations at new points xself

AH1,AH2 = (a∓
√

a2 −3(kgs +1))/3.
Hence, increasing the coupling gs makes the points xAH1 and xAH2 move towards
each other along the fast nullcline f (x) of the self-coupled system (cf. Figs. 3 and 1).
Hence, for kgs = a2/3−1 the two points merge together such that for kgs > a2/3−1
there is no oscillatory (spiking) dynamics on the right branch of the fast nullcline as
the Andronov-Hopf points have disappeared. Thus, there is no square bursting for
kgs > a2/3−1, and the synchronous dynamics defined by the self-coupled system
(10) is of relaxation oscillator-type.

We begin by deriving the variational equations for the transverse stability of the
synchronization manifold M(1).

Adding and subtracting an additional term gs(Vs − xi)
n
∑
j=1

ci jΓ (xi) = kgs(Vs −

xi)Γ (xi) from the x-equation of system (9), yields
ẋi = ax2

i − x3
i − yi − zi + kgs(Vs − xi)Γ (xi)+gs(Vs − xi)

n
∑
j=1

ci j (Γ (x j)−Γ (xi)) ,

ẏi = (a+α)x2
i − yi,

żi = µ(bxi + c− zi), i, j = 1,n.
(11)

Introducing the differences between the neural oscillator coordinates X12 = x2 − x1,
Y12 = y2 −y1, Z12 = z2 − z1 in the limit when these differences are infinitesimal, we
derive the stability equations for the transverse perturbations to the synchronization
manifold M(1)[27]:

Ẋi j = (2ax−3x2)Xi j −Yi j −Zi j − kgsΓ (x)Xi j+

+gs(Vs − x)Γ ′
x (x)

(
kXi j +

n
∑

h=1
{c jhX jh − cihXih}

)
,

Ẏi j = 2(a+α)xXi j −Yi j,
Żi j = µ(bXi j −Zi j).

(12)

The derivatives are calculated at the point Xi j = 0,Yi j = 0,Zi j = 0, and {x(t), y(t),
z(t)} corresponds to the synchronous bursting solution defined via system (10). The
first coupling term S1 = −kgsΓ (x)Xi j accounts for the number of inputs k. At the
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same time, the contribution of the second coupling term S2 = gs(Vs−x)Γ ′
x (x)(·) de-

pends on the coupling configuration. Note that the term
n
∑

h=1
{c jhξ jh − cihξih} is the

same as for linear coupling [6]. In terms of the original variables xi, the correspond-
ing coupling matrix G=C−kI is the Laplacian of the connected graph, except for a
sign change. It is well known that G has one zero eigenvalue γ1 and all other eigen-
values have non-positive real parts. If the coupling is mutual, G is symmetric and all
eigenvalues are real. For simplicity, suppose that the eigenvalue γ2 with the largest
real part is simple. Then, applying the linear transformation that diagonalizes G to
Eq. (12), we obtain the stability equation for the most unstable transverse mode:

Ẋ = (2ax−3x2)X −Y −Z −Ω(x)Z,
Ẏ = 2(a+α)xX −Y,
ζ̇ = µ(bX −Z),

(13)

where Ω(x) = kgsΓ (x)− gs(Vs − x)Γ ′
x (x)(k+ γ2). System (13) is an analog of the

Master Stability function [6] for synaptically coupled networks (9). If γ2 is not sim-
ple, then we can write similar equations to system (13) for the vectors spanning
the corresponding blocks in the Jordan normal form of G. The stability discussion,
however, is essentially the same. Consider now its application to basic network con-
figurations.

3.1 Globally coupled networks

In this case, the second largest eigenvalue γ2 =−n and k = n−1. Consequently, the
function Ω(x) becomes

Ω(x) = kgsΓ (x)+gs(Vs − x)Γ ′
x (x) =

kgs
1+exp{−λ (x−Θs)} +gs(Vs − x) λ exp{−λ (x−Θs)}

(1+exp{−λ (x−Θs)})2
(14)

The function Γ (x) together with its derivative Γ ′
x (x) is non-negative, and (Vs − x)

is always positive (the synapses are excitatory). Therefore Ω(x) is always non-
negative and the coupling term −Ω(x)X aims at stabilizing the zero equilibrium of
system (13); corresponding to the synchronous solution. The function Ω(x) strongly
depends on whether the membrane potential x(t) exceeds the threshold Θs or not
(see Fig. 3). In fact, for a sufficiently large λ ensuring a bell-shape graph Ω(x) [46],
kgs is a lower bound of Ω(x) in the region x(t)>Θs and strongly contributes to the
stability. At the same time, when x(t) is below Θs, the first term in Ω(x) rapidly
decreases to zero, and the second coupling term becomes decisive in a small region
close to x =Θs. This region is defined by the parameter λ . For our results concern-
ing the stability of synchronization, it is also necessary to assume that λ is only
moderately large. Our stability approach does not carry over to the case where the
function Γ (x) is approaching the Heaviside function when λ approaches infinity. In
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fact, the bounds of Theorem 1 on the sufficient coupling strength become too con-
servative when λ approaches infinity. At the same time, to prove synchronization of
bursters, we do not require µ to be a singular perturbation parameter. Applying the
Lyapunov function method to the stability of system (13) with the function (14), we
prove the following theorem that synchronization in the globally coupled network
can be made stable, provided that the coupling gs is sufficiently strong.

0

Θ
s

k g
s

z
Ω(x)

Ω(x)

nullcline f(x)

x

0

Θ
s

k g
s

z

Ω(x)
nullcline f(x)

x

Fig. 3 The function Ω(x) and the corresponding synchronous bursting. Globally coupled HR neu-
rons (k = n−1, λ = 10) (left). Ring of locally coupled HR neurons (k = 2, λ = 10) (right).

Theorem 1. Complete synchronization in the globally coupled network (9) with the
number of synaptic inputs k = n− 1 is locally stable if the coupling gs exceeds the
critical value

g∗s = max{D1,D2,D3}, where (15)

D1 =
a2

3k , D2 =
(a−α)2

4k(3−β (a+α)2)
+ 1

4kβ , β < 3/(a+α)2,

D3 =
p(1+e−λ (b−Θs))2

β [k(1+e−λ (b−Θs))+(Vs−b)λe−λ (b−Θs)]
,

b =
(a−α)−

√
(a−α)2+(3/β−(a+α)2)

2(3−β (a+α)2)

for a ≥ α : p = 1
4 and for a < α : p = 1

4 +
β (a−α)2

4(3−β (a+α)2)
.

(16)

Proof. Consider the Lyapunov function

Φ = X2/2+βY 2/2+
1

2µb
Z2, (17)

where β is a positive auxiliary parameter to be defined.
The derivative of the Lyapunov function (17) with respect to the variational equa-

tions (13)-(14) is calculated as follows
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Φ̇ =−
{

AX2 −BXY +βY 2 +Z2/b
}
, (18)

where A = [3x2 −2ax+Ω(x)] and B = (2β (a+α)x−1).
Our goal is to prove the negative definiteness of the quadratic form Φ̇ and to

obtain conditions under which solutions of the variational equation (13)-(14) con-
verge to 0 as t →∞, and its trivial equilibrium, corresponding to the synchronization
manifold of system (9), is locally asymptotically stable.

The quadratic form Φ̇ is negative definite as long as the quadratic form

W =−
{

AX2 −BXY +βY 2}
is negative.

Applying Sylvester’s criterion for the negative definiteness of the quadratic form
W , we obtain the following two conditions.

Condition I: A > 0.
Part 1. If x≥Θs then the condition A> 0 is true if 3x2−2ax+kgs > 0. Here, we have
taken the lowest bound (kgs) of the function Ω(x) in the region x ≥Θs (cf. Fig. 3).
The roots of the quadratic equation are xr

1,2 =
(

a±
√

a2 −3kgs

)
/3. Therefore, this

equation has no solutions for

gs >
a2

3k
. (19)

Part 2. For x ≤Θs and for the given Θs =−0.25, A is always positive.
Condition II. The second condition of Sylvester’s criterion is βA−B2/4 > 0.

This leads to the inequality

Q(x)≡ φ(x)+Ω(x)> 0, where (20)

φ(x) = β (3−β (a+α)2)x2 −β (a−α)x−1/4.
The function Ω(x) is non-negative for any x(t) while the parabola φ(x) can be

negative in some interval of x(t). To satisfy the condition (20), we should increase
the values of the function Ω by increasing the coupling gs such that the superposi-
tion of the two functions becomes positive.

First of all, we require (3−β (a+α)2)> 0 to keep the parabola φ(x) concave up.
This constrains the choice of the auxiliary parameter β . As the region of parameters
where square-wave bursters can exist in the individual HR model (2) is defined by
the condition {a ≥

√
3} (Region 2), we have to choose β < 1 for synchronization

of square-wave bursters.
The roots of the parabola φ(x) are

xr
1,2 =

(a−α)±
√

(a−α)2 +(3/β − (a+α)2)

2(3−β (a+α)2)

such that the function φ(x) is positive outside the region [xr
1,x

r
2].
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We derive the conditions for Eq. (20) in two steps, considering two parts of the
bursting solution (10): x ≥Θs and x <Θs.
Part 1. x ≥Θs.

As before, we take the lowest bound (kgs) of Ω(x) in the region x ≥Θs such that
the condition (20) becomes

(3−β (a+α)2)x2 − (a−α)x− 1
4β

+ kgs > 0.

This is true under the conditions

gs > g∗s = [ (a−α)2

4k(3−β (a+α)2)
+ 1

4kβ ], β < 3/(a+α)2 (21)

Part 2. x <Θs.
The minimum of the parabola φ(x) is reached at x∗ = a−α

2(3−β (a+α)2)
. If a < α

then x∗ lies in the region x <Θs < 0 and the minimum of the function φ is φ(x∗)≡
−m =−1/4− β (a−α)2

4(3−β (a+α)2)
. If a > α then the minimum value of φ(x) in the region

x <Θs < 0 becomes

φ(Θs) = β (3−β (a+α)2)Θ 2
s +β (a−α)|Θs|−1/4.

Therefore we take φ(Θs) =−1/4 as the ultimate bound for the case a > α .
To compensate these negative mimimum values of φ(x), we should make the

coupling strength gs sufficiently strong such that the minimum value of the positive
function βΩ(x) in the interval [xr

2,Θs] is greater than −m and −1/4 for a < α and
a > α , respectively.

The function Ω(x) reaches its minimum at the left endpoint of the interval [xr
2,Θs]

b = xr
2 =

(a−α)−
√

(a−α)2 +(3/β − (a+α)2)

2(3−β (a+α)2)
.

Hence, the stability condition (20) for the region x <Θs becomes

gs > g∗s =
p(1+e−λ (b−Θs))2

β [k(1+e−λ (b−Θs))+(Vs−b)λe−λ (b−Θs)]
,

p = m for a < α ; p = 1/4 for a > α ; β < 3/(a+α)2.
(22)

Combining the conditions (19), (21), and (22), we obtain an upper bound for
the negative definiteness of the quadratic form Φ̇ and come to the conditions of the
Theorem. ⊓⊔

Remark 1. Condition for D3 in Theorem 1 gives a large overestimate. This is due
to the simplifications made in estimating the positiveness of the function Q(x). To
obtain a tighter bound for the coupling threshold g∗s that would replace the constant
D3, we should resolve the transcendental equation (20) with respect to gs
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Q(x) = β (3−β (a+α)2)x2 −β (a−α)x−1/4+β g∗s
1+e−λ (U−Θs)+

+βkg∗s (Vs −U) λe−λ (U−Θs)

(1+e−λ (U−Θs))2 = 0,
(23)

taking into account the condition β < 3/(a+α)2. We shall find the solution of Eq.
(23) only in the region x <Θs. In fact, the bound D2 (cf. Theorem 1) for the region
x >Θs is close to an optimum.

One can see that the equation (23) has a unique solution with respect to g∗s in the
region x <Θs that can be found numerically. Therefore, we can formally substitute
D3 in Theorem 4.1 by Dnew

3 = gcr
s , where gcr

s is the solution of Eq. (23) in the region
x <Θs. Note that for a relatively sharp saturating coupling function (λ is relatively
large), the constant D3 (or the corresponding Dnew

3 ) often dominates over D1 and
D2.

Remark 2. The analysis shows that the major part of the quiescent (slow) mode of
the synchronous solution, where the contribution of Ω(x) is negligible, lies in a
stable zone x < xr

1, where function φ(x) is positive. Here, the derivative of the Lya-
punov function is always negative, i.e. where the solutions of the individual systems
converge to each other. On the other hand, the part of the bursting solution that is
the most difficult to synchronize, favorably lies in the region x(t) ≥ Θs, where the
contribution of Ω(x) = kgs is strong and depends on k. This property will re-appear
for the densely and sparsely networks later in the text.

Theorem 1 guarantees the stability of the synchronized solution, where the solu-
tion could be an equilibrium, a limit cycle defining periodic bursting, or a chaotic
attractor corresponding to a chaotic bursting rhythm. The type of the synchronous
dynamics is determined by the self-coupled system (10), possessing the additional
coupling-dependent term. Let us calculate the synchronization threshold g∗s (15)
with Dnew

3 for the simplest two-neuron globally coupled network (9) with k = 1 and
parameters of the individual HR model (2) given in Fig. 1. The auxiliary parameter
β is chosen from the condition β < 3/(a+α)2 and set equal to 0.14. Therefore, the
upper synchronization bounds D1 and D2 calculated from (15), become D1 = 2.61
and D2 = 2.7. The bound Dnew

3 that we calculate from the transcendental equation
(Q(x) = 0) (23) becomes gs = Dnew

3 = 2.94. Therefore, the final upper bound is
g∗s = max{D1,D2,Dnew

3 } = 2.94. Numerical simulation shows that complete syn-
chronization arises in the system (9) at a relatively strong coupling g∗s = 1.28. Our
bound g∗s = 2.94 clearly gives an overestimate as it comes from sufficient conditions
of stability, however it is consistent with non-trivial synchronous behavior.

3.2 Densely coupled networks

We define a densely coupled coupled network (9) as a network (9) for which the
eigenvalue γ2 of G is close to −k. For example, for a ring of 2K-nearest neighbor

mutually coupled neurons, γ2 = −4
K
∑

l=1
sin2 lπ

n [54] with n = 10, K = 4, and k =
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2K = 8, we obtain γ2 ≈ −7.976. Consequently, the function Ω(x) becomes close
to kgsΓ (x). Therefore, if k is sufficiently large, the bound for the synchronization
threshold is close to that for globally coupled networks. In particular, the following
theorem holds.

Theorem 2. An upper bound for the coupling threshold that guarantees local stabil-
ity of synchronization in the (dense) network (9) with the eigenvalue γ2 of G smaller
than or equal to −k is

g∗s = max{D1,D2,Ddense
3 }, where (24)

constants D1 and D2 are given in the condition (15) of Theorem 1. Here, the new

constant Ddense
3 = p(1+e−λ (b−Θs))2

β [k(1+e−λ (b−Θs))−(k+γ2)(Vs−b)λe−λ (b−Θs)]
, and parameters p,b, and β

are given in (15).

Proof. The proof is identical to that of Theorem 1 except for the change of function
Ω dense(x) = kgsΓ (x)− (k+ γ2)gs(Vs − x)Γ ′

x (x)(k+ γ2). ⊓⊔

Remark 3. Note that the second term −(k+ γ2)gs(Vs − x)Γ ′
x (x) in the denominator

of Ddense
3 is positive as long as −γ2 > k and therefore contributes to lowering the

coupling threshold g∗s . This term, however, is small compared to the first term in
the denominator that is decisive for the stability and directly proportional to the
number of synaptic inputs k. Consequently, the coupling threshold g∗s is inversely
proportional to k, as in the globally coupled networks.

3.3 Intermediately and sparsely coupled networks

When the number of links between the neurons in a network is small, the eigen-
value γ2 is also small such that the second term in Ω(x), −gs(k+ γ2)(Vs − x)Γ ′

x (x)
no longer favors the stability. Consequently, the function Ω(x) takes negative val-
ues in the region close to the threshold Θs and defines the instability zone, where
the coupling desynchronizes the neurons. At the same time, the stability zone is
defined by the first term in Ω , kgsΓ (x), which is bounded from below by kgs in
the region x(t) ≥ Θs (cf. Fig. 3 (right)). Strictly speaking, while we are no longer
able to prove that the systems synchronize within the framework of the Lyapunov
function method, the slow-fast structure of the self-coupled system (10), defining
the synchronous solution, yields the following. The excitatory coupling raises the
x-nullcline f (x) =−αx2 − x3 − kgs(x−Vs)Γ (x) of system (10) such that the right-
branch attractor corresponding to spiking gradually moves to the right from the
threshold x = Θs. Finally, it leaves the zone where Ω(x) is negative (cf. Fig. 3
(right)), provided gs is large enough. Note that the raising of the nullcline and the
shift of the attractor are also governed by kgs (cf. Eq. (10)). In the singular pertur-
bation limit (µ → 0), the synchronous trajectory traverses the instability region via
fast jumps from the quiescent mode to repetitive spiking, and spends almost all its
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time in the stability regions. As in the case of the global coupling, the first stability
zone corresponding to a major part of the slow motion along the left branch of f (x)
is always stable, whereas the stability of the second zone corresponding to spiking
is defined by kgs. Hence, once again we see that the synchronization threshold in
sparsely and intermediately connected networks is also inversely proportional to k.

3.4 Arbitrary network topology: what matters for synchronization

Collecting all the considered coupling topologies and the conditions of Theorems 1
and 2, we come to the following assertion [27].
Statement 1. The synchronization threshold estimate

g∗s = g(n=2)
s /k, (25)

is valid for the networks (9) with any coupling configuration (whether global or
local, regular or random, mutual or unidirectional) under the constraint that each
neuron has the same number of inputs k. In (25), g(n=2)

s is a constant correspond-
ing to the synchronization coupling threshold between two mutually coupled HR
neurons (k = 1).

Remark 4. The constant g(n=2)
s comes from sufficient conditions and therefore gives

an overestimate for the real coupling strength that leads to complete synchronization
of two HR neurons: 2.94 predicted versus 1.285 actual for the above mentioned
parameters and λ = 10. However, using the numerically obtained g(n=2)

s , we can
predict the threshold g∗s , for any k, from (25), as shown in the numerical examples
below.

Remark 5. The synchronization threshold in locally synaptically coupled networks
is constant; g∗s = g(n=2)

s /2 for mutually nearest-neighbor coupled neurons, and does
not depend on the number of neurons n. This is in sharp contrast with linearly
coupled networks where the coupling required for stable synchronization has a
quadratic dependence on n [9].

In support of this claim, we determine numerically the threshold for complete syn-
chronization as a function of k for various coupling configurations (local, interme-
diate and global), and compare it to the value predicted by Eq. (25). For g(n=2)

s , the
value from simulation of two mutually coupled HR neurons was used. This value is
g(n=2)

s = 1.285 for λ = 10 and g(n=2)
s = 1.139 for λ = 50. It can be seen from Fig. 4

that the deviation of the data from the fitted curve is very small indeed. Note that
even for large λ , when the synaptic function Γ (xi) approaches the Heaviside func-
tion, the estimate (25) gives an excellent numerical prediction (cf. Fig. 4 (right)).

To illustrate the power of condition (25) even further we have simulated -in ad-
dition to the regular, mutually coupled networks from Fig. 4- a series of randomly
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Fig. 4 Synchronization thresholds g∗s in a ring of 2K-nearest neighbor coupled HR neurons as
functions of n for various coupling configurations (different K). Markers: Simulation results. Solid
line: Prediction of Eq. (25).

generated unidirectionally coupled networks of HR neurons with uniform number
of synapses as those shown in Fig. 5. For all simulated networks, numerical results
are nearly identical to the analytical predictions of Eq. (25).

Fig. 5 Ten networks of each type, (left): n = 9, k = 3; (middle): n = 9, k = 4; (right): n = 16, k = 4
were generated randomly. The synchronization threshold for networks of type (a): g∗s = 0.429 for
λ = 10, and g∗s = 0.380 for λ = 50; and of types (b) and (c): g∗s = 0.322 for λ = 10, and gs = 0.285
for λ = 50. All the calculated thresholds coincide perfectly with g(n=2)

s /k.

Finally, we have tested robustness of the synchronization with respect to a mis-
match in the synaptic strengths. We have simulated networks of 20 neurons for
the local, intermediate and global cases, introducing a mismatch in the synaptic
strengths around the average gs. Perfect synchronization is no longer possible in
these cases, due to the absence of the synchronization manifold, and there is al-
ways an error in the synchronization. However, for a given value of gs this error
falls rapidly and then remains constant when gs is further increased. This point can
be seen as the coupling threshold for the approximate synchronization. In all sim-
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ulated cases this value is nearly identical to the synchronization threshold without
mismatch as shown in Fig 4. The synchronization has been verified to be robust for
mismatches in gs of up to 5%.

The derivation of condition (25) mainly relies on two properties of the coupled
system: (i) the spiking state, which is most resistant to synchronization, encircles the
right branch of the fast nullcline f (x), where the contribution of coupling is strong;
(ii) the quiescent state, which is easy to synchronize, belongs to the left branch of
f (x). These properties are typical for square-wave and parabolic bursters, whose
formation involves the two branches of f (x). Consequently, the synchronization
condition (25) is not restricted to the HR neuron, but is applicable to other Hodgkin-
Huxley-type neurons, exhibiting square-wave and parabolic bursters. For example,
two Sherman models displaying square-wave bursting for the standard parameters
[20], synchronize at g(n=2)

s = 0.25 when synaptically coupled with Θs =−40, Vs =
−10, and λ = 50. The synchronization thresholds in a larger network (9) of the
Sherman models correspond to the values predicted by g(n=2)

s /k.
This completes our study of stable complete synchronization in the network (9)

with any coupling configuration admitting synchronization. In the next section, we
consider the existence and stability of synchronous clusters in the network (9).

4 Clusters of synchrony

4.1 Existence of synchronous clusters

Synchronous clusters exist if the graph vertices have a corresponding balanced col-
oring [43, 44, 45]. Every cluster of synchrony corresponds to a coloring of the graph
vertices in which two vertices have the same color if and only if their states are equal
(completely synchronized). Vertices colored in this way create a coloring map.

Definition 1. A coloring of the vertices is balanced, if each vertex of color i gets the
same number of inputs from the vertices of color j, for all i and j.

That is, we color the vertices from the cluster decomposition V according to the
following rule. We assign the same color to vertices (neurons) if their coordinates in
the corresponding linear subspace M(d) are equal. Coloring is balanced if all cells
with the same color receive equal number of inputs from cells of a given color. The
linear subspace M(d) is flow-invariant if and only if the chosen coloring is balanced
[43].

Definition 2. A minimal balanced coloring is a balanced coloring with the minimal
number of colors.

Note that the above coloring differs from the classical definition used in graph the-
ory. Indeed, graph theory defines a coloring of a graph as an assignment of colors
to the vertices, one color to each vertex, so that adjacent vertices are assigned dif-
ferent colors. The minimum integer k for which a graph is k-colorable is called the
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chromatic number [49]. However, our cluster partition and the associated balanced
coloring allow two adjacent cells (vertices) to have the same color, provided that the
two cells are input isomorphic [42], i.e. their dynamics are described by the same
differential equations, up to a permutation of the variables [43].

In the following we use this concept to identify partitions with minimum number
of clusters in networks (9) with regular and random structures. Finding a minimal
balanced coloring in a given complex network is a non-trivial task. In this subsec-
tion, we propose a simple combinatorial algorithm that finds the minimal balanced
coloring, and therefore identifies the largest synchronous clusters in the given (com-
plex) network. In the next subsection, we address the stability of the clusters.

We shall first establish a few properties of balanced colorings before introducing
an algorithm that allows finding a minimal balanced coloring.

Definition 3. A coloring C2 is a refinement of a coloring C1 if two vertices that have
the same color in C2 have the same color also in C1.

Remark 6. a) We do not distinguish colorings where the subsets of vertices with the
same color are the same, but the colors are different.
b) Any coloring is a refinement of the coloring where all vertices have the same
color.
c) The coloring where all vertices have a different color is balanced and it is a
refinement of any other coloring.
d) The set V1m of vertices with color c1m in C1 is a union of sets V2p, where V2p is
the set of all vertices with the same color c2p in C2.
e) If C2 is a refinement of C1, and C1 is a refinement of C2, the two colorings are the
same (modulo the colors, cf. Remark 6a)).

We now introduce a special refinement in view of balancing.

Definition 4. The input driven refinement C2 of a coloring C1 is obtained as follows.
Consider all vertices that have color cm in C1. Color them with the same color cm j if
they have the same number of inputs from all vertices of the same color cm′ in C1,
for every color cm′ .

Property 4.1.
a) Either the input driven refinement C2 of C1 has more colors than C1 or C2 is equal
to C1 (modulo the colors) and balanced.
b) Suppose that a balanced coloring C2 is a refinement of a (not necessarily bal-
anced) coloring C1. Let C3 be the input driven refinement of C1. Then C2 is also a
refinement of C3.

Proof. Property 4.1a) follows immediately from Definition 4. For the proof of Prop-
erty 4.1b) suppose that two vertices v and w have the same color in C2. We have to
show that they also have the same color in C3. Since C2 is a refinement of C1, v and
w also have the same color in C1. Now consider the set V2p that have the color c2p
in C2. Again, they must also have the same color in C1. Furthermore, since C2 is a
balanced coloring, the number of inputs from V2p to v is the same as the number
of inputs from V2p to w. This is true for any color c2p of C2. Now consider the set



Patterns of synchrony in neuronal networks: the role of synaptic inputs 21

V1m of vertices that have color c1m. Then according to the above remark, V1m is a
union of sets V2p. From each of the sets V2p there is the same number of inputs to
the vertices v and w and therefore there is also the same number of inputs from V1m
to v and w. As this holds for any color c1m, by the construction of C3, v and w must
have the same color in C3. ⊓⊔
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Fig. 6 Clusters of synchrony in random networks of 30 neurons. (Left): Network generated by ran-
domly choosing a link between any two nodes with probability p = 0.045. There are 30 indepen-
dent clusters, each represented by one distinct neuron. Neurons do not form clusters of synchrony
due to the lack of symmetry. (Right): Random network with 23 clusters. Links are generated with
uneven probabilities. Note clusters formed by vertices with the same index.

Property 4.1 and Remark 6a suggest the following algorithm to obtain a minimal
balanced coloring:
Algorithm for finding synchronous clusters:
Initialization: Start with the coloring where all vertices are colored with the same
color.
Repeat: Replace the current coloring with the input driven refinement of the current
coloring until no new refinement is obtained.

The following property follows immediately from Property 4.1.
Property 4.2.
a) The algorithm stops in a finite number of steps. The maximum number of steps
is the number of vertices in the graph.
b) The coloring, obtained when the algorithm stops, is balanced.
Corollary 4.1: Given a directed graph, the minimal balanced coloring is unique and
it is obtained by the above algorithm.

Proof. According to Property 4.1b) any balanced coloring Cb is a refinement of all
colorings obtained during the execution of the algorithm. It is in particular a refine-
ment of the balanced coloring Cmin obtained when the algorithm stops. Therefore,
Cmin is minimal. Furthermore, if there was another minimal balanced coloring Cm,
it would also have to be a refinement of Cmin. But since Cm is minimal, it must be
equal to Cmin (modulo the colors). ⊓⊔
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We have applied our combinatorial algorithm to a number of regular and random
networks. Three of them are shown in Figs. 6 and 7. The application of our algo-
rithm has shown that random networks generated with uniform probability per link
appearance rarely have clusters of synchrony, whereas pseudorandom networks (cf.
Fig. 6 (right)) may have a hidden subnetwork modular structure that yields clusters
of synchrony.

The stability of clusters in networks of bursting neurons (9) depends on various
factors, including the individual neuron dynamics and network topology. In the next
section, we prove the stability of specific clusters of synchrony in networks (9). The
stability conditions for irregular cluster configurations are often tedious and will be
reported elsewhere.

4.2 Stability of clusters in multi-layer networks

We use the pyramidal-shape network of Fig. 7 as a representative example of multi-
layer networks where the cells from each layer receive a common input from the
same driving neurons. The network of Fig. 7 with uniform symmetrical connections
has a four-color partition, corresponding to four clusters of synchrony that are de-
fined by M(4) = {ξ2(t) = ξ3(t), ξ4(t) = ξ5(t) = ξ6, ξ7(t) = ξ8(t) = ξ9(t) = ξ10(t)},
ξi = (xi,yi,zi).

In the following, we derive stability conditions for the four clusters in the network
(2) with the above four-layer structure. The stability equations (2) for the transverse
perturbations to the linear invariant manifold M(4) take the form

Ẋc2 = (2axc2 −3x2
c2)Xc2 −Yc2 −Zc2 −gs [Γ (xc1)+3Γ (xc3)]Xc2

Ẏc2 = 2(a+α)xc2Xc2 −Yc2
Żc2 = µ(bXc2 −Zc2)
Ẋc3 = (2axc3 −3x2

c3)Xc3 −Yc3 −Zc3 −gs [2Γ (xc2)+4Γ (xc4)]Xc3
Ẏc3 = 2(a+α)xc3Xc3 −Yc3
Żc3 = µ(bXc3 −Zc3)
Ẋc4 = (2axc4 −3x2

c4)Xc4 −Yc4 −Zc4 −3gsΓ (xc3)Xc4
Ẏc4 = 2(a+α)xc4Xc4 −Yc4
Żc4 = µ(bXc4 −Zc4)

(26)

Here, {Xc2,Yc2,Zc2}, {Xc3,Yc3,Zc3} and {Xc4,Yc4,Zc4} are infinitesimal differences
between the coordinates of the neurons from clusters {C2 : ξ2 = ξ3}, {C3 : ξ4 = ξ5 =
ξ6}, and {C4 : ξ7 = ξ8 = ξ9 = ξ10}, respectively. The first cluster C1 is represented
by one, unsynchronized neuron from layer 1. Technically, we should have consid-
ered the difference stability equations for any pair of neurons from the same cluster.
However, due to the layer-structure of the network in which each neuron from a
given cluster receives inputs from the same neurons, these stability equations are
identical and can be replaced by a system of only three stability equations for each
cluster. In (26), the variables (xci), i = 1, ..,4 are governed by the system (10) with
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the number of inputs ki = 2,4,6,3, respectively. System (26) is an analog of the
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Fig. 7 Multi-layer network with symmetrical connections (top). Cells with the same color belong
to the same cluster. Time-series of four synchronous clusters. Note that the time-series are syn-
chronized at the level of bursts but there is spike asynchrony between the clusters. Neurons within
the clusters are synchronized completely.

Master Stability (MS) function [6] for the stability of the cluster synchronization.
MS functions of this kind are usually analyzed numerically. Completely rigorous
derivation of an upper bound for the coupling threshold sufficient for cluster syn-
chronization is complicated as the X stability equation of each cluster is also driven
by neurons from other clusters. To get around this difficulty, we make the following
simplification. Numerical simulations show that when cluster synchronization takes
place and neurons split into clusters of perfect synchrony, all neurons of the net-
work also become synchronized at the level of bursts but there is no spike synchrony
among the clusters (see Fig. 7). As a result, the network behavior possesses two dis-
tinct mesoscopic and macroscopic properties: synchronization within the clusters
representing the mesoscale and burst synchronization of the entire network at the
macroscale. Burst synchronization implies that all the neurons start and cease burst-
ing at the same time instant. Consequently, the variables defining the four clusters of
perfect synchrony: xc1, xc2, xc3, and xc4 cannot be equal. However, the correspond-
ing synaptic functions Γ (xc1), Γ (xc2), Γ (xc3), and Γ (xc4) become approximatively
equal as the neurons states cross the synaptic threshold Θs and therefore activate the
synaptic functions Γ (xci) at approximatively same times. Using this approximation
that Γ (xc1) = Γ (xc2) = Γ (xc3) = Γ (xc4), we can transform the stability equation
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(26) as follows:

Ẋc2 = (2axc2 −3x2
c2)Xc2 −Yc2 −Zc2 −4gsΓ (xc2)Xc2

Ẏc2 = 2(a+α)xc2Xc2 −Yc2
Żc2 = µ(bXc2 −Zc2)
Ẋc3 = (2axc3 −3x2

c3)Xc3 −Yc3 −Zc3 −6gsΓ (xc3)Xc3
Ẏc3 = 2(a+α)xc3Xc3 −Yc3
Żc3 = µ(bXc3 −Zc3)
Ẋc4 = (2axc4 −3x2

c4)Xc4 −Yc4 −Zc4 −3gsΓ (xc4)Xc4
Ẏc4 = 2(a+α)xc4Xc4 −Yc4
Żc4 = µ(bXc4 −Zc4)

(27)

Note that three subsystems for the stability of clusters C2, C3, and C4 are indepen-
dent. The new stability system (27) is stabilized as long as its weakest subsystem,
corresponding to the cluster C4 that receives the fewest number of inputs, becomes
stable. This statement can be verified by constructing a Lyapunov function similar
to the function (17), written for all nine coordinates of the system (27) and show-
ing that its derivative splits into three independent quadratic forms. Each quadratic
form corresponds to the stability of each cluster, and the negativeness of the form
corresponding to the cluster C4 with the fewest number of inputs ensures the nega-
tiveness of the other two quadratic forms. For the sake of brevity, we have omitted
this proof. In short, the linear invariant manifold M(4) defining the cluster partition
is locally stable as long as the origin of the following system is stable

Ẋc4 = (2axc4 −3x2
c4)Xc4 −Yc4 −Zc4 −3gsΓ (xc4)Xc4

Ẏc4 = 2(a+α)xc4Xc4 −Yc4
Żc4 = µ(bXc4 −Zc4).

(28)

Statement 2. Under the numerically validated approximation that Γ (xc1)=Γ (xc2)=
Γ (xc3) = Γ (xc4) in the regime of cluster synchronization, an upper bound for the
coupling threshold that guarantees local stability of cluster synchronization in the
network (2) with the structure of Fig. 7 becomes

g∗s = max{2D1/3,2D2/3,Dcl
3 }, where (29)

constants D1 and D2 are given in the condition (15) of Theorem 1 with k = 1. Here,
the new constant Dcl

3 = p
3β (1+ e−λ (b−Θs)), and parameters p,b, and β are given in

(15).
Proof. The stability system (28) is similar to the variational equations (13)-(14)
for the stability of complete synchronization in the simplest globally coupled two-
neuron network (2) with k = 1. Use the Lyapunov function (17) and follow the steps
of the proof of Theorem 1, replacing the function Ω(x) with 3gsΓ (x). Note that
the lowest bound of 3gsΓ (x) in the region x ≥ Θs is 3/2. Therefore, Conditions I
and II (Part I) of the above proof yield the bounds 2D1/3 and 2D2/3. The stability
condition (20) for the part of the synchronous trajectory xc4 < Θs turns into gs =
Dcl

3 = p
3β (1+ e−λ (b−Θs)). �
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Note that the obtained bound (29) is not completely rigorous as opposed to the
rigorous bounds for complete synchronization derived in Theorems 1 and 2. The
above approximation only holds to a certain degree of precision and comes from nu-
merical simulations. However, it clearly shows that the stability of cluster synchro-
nization in the multi-layer network (2) is determined by the stability of the cluster
with the smallest number of inputs. In our case, this is cluster C4, representing layer
4 of the network in which the neurons receive three inputs.

5 Conclusions

Networks of synaptically coupled neurons have very different synchronization prop-
erties from linearly (gap-junction) coupled neurons. In the case of identical neurons
with identical excitatory coupling functions and coupling constants, complete syn-
chronization is only possible when each neuron receives the same number of inputs
from other neurons [27]. In this case, we have showen that the single condition
(25) ensures the onset of complete synchronization in networks of synaptically cou-
pled bursting neurons (9) with any coupling topology in which each neuron receives
signals from k others. The synchronization condition depends on the number of
inputs k and not on the connectivity matrix. This condition carries over to burst syn-
chronization when the neurons are non-identical and the synaptic connections are
heterogeneous, provided that the total input, each neuron receives, is roughly the
same. Burst synchronization occurs when the envelopes of the spikes synchronize,
but there is no synchrony among the spikes.

The equal k constraint is often invalid for biologically relevant networks with a
complex structure where the number of inputs is not necessarily constant, but if k is
uniform for a group of neurons, synchronization within this cluster of neurons can
occur. The possible cluster decompositions of the network can be identified from
the network topology alone through a so-called balanced coloring of the vertices
[43, 44, 45]. Among the balanced colorings there is a unique coloring that uses
the minimal number of colors, corresponding to a cluster decomposition with the
smallest number of clusters, and therefore to the largest clusters. With sufficiently
strong coupling, the neurons within these clusters synchronize. We have given a
simple algorithm that finds this cluster decomposition from the network topology.
Networks with a certain degree of internal symmetries are likely to have cluster de-
compositions with relatively large clusters, leading potentially to synchronization
at mesoscale, whereas random graphs rarely admit clusters composed of more than
two or three neurons. We have also addressed the important question of the (local)
asymptotic stability of cluster synchronization. This property depends not only on
the network topology, but also on the neuron models themselves. We have concen-
trated on the Hindmarsh-Rose model in the range of parameters where square-wave
bursting takes place. We have given an explicit rigorous threshold for the coupling
strength that guarantees the asymptotic stability of local synchronization in globally
and densely coupled neurons. We have then used a similar stability argument to es-
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tablish thresholds for the stability of cluster synchronization in well-structured net-
works where each cluster receives the same inputs from other neurons. Our analysis
demonstrates that the stability of the cluster synchronization in the entire network
is determined by the stability of the cluster composed of two or more neurons with
the smallest number of inputs.

The synaptic strengths in biologically relevant networks with a complex structure
can change as a result of pre- and postsynaptic neuron activity. This may result in
temporally approximate cluster synchronization when the total input to groups of
neurons becomes color balanced only for a specific interval of time. The proposed
algorithm promises to allow finding temporal clusters of synchrony in networks
with time-varying synapses. Its extension to adaptive networks with the ability to
privilege clusters of synchrony is a subject of separate study.
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