COMPUTER-ASSISTED GLOBAL ANALYSIS FOR VIBRO-IMPACT DYNAMICS:
A REDUCED SMOOTH MAPS APPROACH *
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Abstract. We present a novel approach for studying the global dynamics of a vibro-impact pair, that is, a ball moving in
a harmonically forced capsule. Motivated by a specific context of vibro-impact energy harvesting, we develop the method with
broader non-smooth systems in mind. The seeming complications of the impacts of the ball with the capsule are exploited as
useful non-smooth features in selecting appropriate return maps. This choice yields a computationally efficient framework for
constructing return maps on short-time realizations from the state space of possible initial conditions rather than via long-time
simulations often used to generate more traditional maps. The different dynamics in sub-regions in the state space yield a
small collection of reduced polynomial approximations. Combined into a piecewise composite map, these capture transient and
attracting behaviors and reproduce bifurcation sequences of the full system. Further “separable” reductions of the composite
map provide insight into both transient and global dynamics. This composite map is valuable for cobweb analysis, which opens
the door to computer-assisted global analysis and is realized via conservative auxiliary maps based on the extreme bounds of
the maps in each subregion. We study the global dynamics of energetically favorable states and illustrate the potential of this
approach in broader classes of dynamics.
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1. Introduction. The prevalence of non-smooth dynamics, characterized by switches, impacts, sliding,
and other abrupt alterations in behavior, permeates various fields, including physics, biology, and engineer-
ing [3, 21, 15]. Non-smooth dynamical models are essential for understanding phenomena such as body
component interactions with non-smooth contacts, impacts, friction, and switching in mechanical systems
[17, 49, 32, 5], and relay systems, switched power converters, and packet-switched networks in electrical
and control engineering [17, 18, 9, 24]. In the life sciences, non-smooth dynamics are evident in diverse
systems such as gene regulatory networks [43, 1] and pulse-coupled neurons [20]. While piecewise smooth,
non-smooth, and vibro-impact dynamical systems represent vast research fields in nonlinear science, histori-
cally, non-smooth systems have received far less attention than their smooth counterparts. In recent decades,
increased efforts have pursued a comprehensive understanding of non-smooth bifurcations and related non-
linearities (see extensive reviews [15, 26, 27, 6] and references therein).

Vibro-impact (VI) systems constitute a distinct class of dynamical systems where impacts substantially
influence the nonlinear behavior. Typical classes of VI systems include a forced mass and one or more
stationary rigid barriers or, alternatively, a pair of moving impacting masses, each of which may be subject
to external forcing. Classic examples include balls bouncing on moving surfaces [36, 32, 31], pendulums
impacting barriers [50, 16], and VI pairs composed of two oscillating masses that impact each other [37].
Generally, both masses in the VI pair may undergo forcing, complemented by elastic or inelastic impacts. A
canonical VI pair, considered in this paper, consists of a forced capsule, with an inner mass moving freely
within a cavity of a given length and impacting the ends of the capsule. This concept has been explored as
an effective vibration mitigation alternative to linear tuned mass dampers or continuous nonlinear dampers
[56, 54, 58, 39, 33, 34, 13, 38]. Recently, a VI pair was proposed as an energy harvesting mechanism, where
the impacts between the inner mass and the capsule deform flexible dielectric polymer membranes on the
capsule ends [57]. These membranes serve as capacitors, as the impacts deform them and change their
capacitance, thus enabling energy harvesting [30]. Previously VI pairs have been studied by approximate
methods, including averaging, multiple scales, and complexification averaging [19, 25, 34, 55|, but with
limited applicability to non-smooth systems with impacts.
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Recently, VI pair systems have been studied precisely using maps, combining the system’s motion be-
tween the impacts and the impact conditions. The semi-analytical solution of these exact equations can
provide exhaustive information regarding the bifurcation structure and local stability of different types of
motion. In the case when the smaller mass is negligible relative to the larger one this two-degree-of-freedom
system can be reduced to a single differential equation for the relative displacement of the two masses [46, 37],
used to explore, e.g., the interplay between classical and grazing bifurcations [48] and comparisons of instan-
taneous and compliant impact conditions [12]. In settings where the smaller mass is non-negligible, such as
in targeted energy transfer, exact maps for the full system allow bifurcation analyses over a large range of
parameters for modes with efficient energy transfer and their loss of stability to inefficient alternating chatter
behaviors [28].

These previous map-based results are primarily based on linear stability analyses, leaving a critical gap
in analyzing the global, possibly chaotic dynamics of VI systems due to severe limitations of the existing
global stability methods in handling impacts. One contributing factor for the forced VI pair is the fact it is
non-autonomous, yielding analytically intractable coupled transcendental maps for the system response and
impact time that prevent explicit expressions for the state of the system.

In a broader context, global stability approaches for non-autonomous, non-smooth systems are few and
far between. One notable example is an extension of the Lyapunov function method to prove the global
stability of the equilibrium state of a non-autonomous bouncing ball [31]. In this setting, the Lyapunov-type
method involves non-autonomous measure differential inclusions and constructs a decreasing step function
above an oscillating Lyapunov function. However, its application to non-trivial dynamics of VI pairs with two-
sided impacts seems elusive. Another notable sample is an averaging Lyapunov function approach developed
to prove global convergence to absorbing domains of non-trivial attractors in non-smooth dynamical systems
with a non-autonomous stochastic switching parameter rule [24]. However, this approach is not relevant for
non-autonomous VI systems as it is based on knowledge of the averaged autonomous system’s attractor.
Recently, a computer-assisted proof of chaos in piecewise linear maps was obtained by explicit construction
of trapping regions and invariant cones based on word sets representing the dynamics symbolically [52]. An
area-preserving map-based analysis for the global behavior of a rare, restricted behavior of the VI pair was
proposed in [10]. Yet, to date, there appear to be no global analyses relevant to applications such as energy
harvesting, for which the VI pair dynamics of interest include sustained sequences of regular impacts on both
barriers at the capsule ends, observed over a large range of parameters. Then, we are faced with the challenge
of global analyses of behavior with at least two (alternating) impacts per forcing cycle. This feature is in
contrast with other studies of impacting systems that may consider the transition between no impacts and
a single impact [40], repeated impacts on a single barrier [53], or the global attraction of a solution without
impacts [31].

In this paper, we present a novel computer-assisted approach for studying the global dynamics of the
VI pair, that is, a ball moving in a harmonically forced capsule. Motivated to develop an analytical global
analysis for this system, we prioritize approaches that include explicit expressions wherever possible. We
exploit the seeming complications of the sustained impacts of the ball with the capsule as useful non-
smooth features in constructing two-dimensional (2D) return maps that can characterize global dynamics
and bifurcations of the VI pair. Computationally efficient short-time realizations of these return maps
divide the state space according to different dynamics. Our definition of return maps does not fall into
standard choices for maps, such as Poincaré, stroboscopic, all impacts, or all returns to a particular state
[37, 40, 42, 51]. Instead, it divides the return maps based on the sequence of impacts that do or do not
occur before the system returns to a particular impacting state. This innovative perspective is valuable for
efficiently partitioning the state space into a small number of regions from which it is straightforward to
identify attracting and transient behavior. Based on the behavior in each region, we then define reduced
polynomial approximations for the maps in each region.

Combining these polynomials into a piecewise smooth composite map, we demonstrate that it captures
transient behaviors throughout the state space while reproducing the attracting behaviors. Furthermore, it
reproduces an important sequence of period-doubling bifurcations and (apparently) chaotic behavior com-
pared with the bifurcation sequences of the exact systems. In constructing the composite map, we find that
in some regions with strongly transient dynamics, we can reduce the 2D return maps to a pair of 1D return
maps without sacrificing the integrity of the attracting dynamics. While not a necessary step, these types of
“separable” components of the composite map provide transparency for the overall dynamics. Furthermore,

2



118
119
120
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

this composite map derived from the non-smooth VI dynamics is remarkably valuable for cobweb analysis,
as it is based on simple return maps corresponding to impacts on one end of the capsule rather than on
compositions of map sequences. Specifically, the separable representations of the 2D map are convenient for
visualizations within this cobweb phase analysis that captures the different attracting behaviors for different
parameter regimes.

Notably, this cobweb analysis motivates a valuable definition of auxiliary maps on the regions identified
within the construction of the composite map once the transient and attracting characteristics have been
identified. For regions with attracting dynamics, the auxiliary map is conservatively based on the extreme
bounds on the map for each region and thus can be used to bound the attracting domain. A key feature of the
auxiliary maps is that they simplify the 2D return maps into a set of 1D equations using the bounds for each
region. Then, a cobweb phase space analysis is used to explore the system’s long-term dynamics. Repeated
application of the auxiliary maps, each with updated bounds obtained from the previous application, yields
a limiting multi-period cycle that bounds the attracting domain. With the auxiliary maps based on the
polynomial approximations, we can obtain analytical expressions for the impact velocity map and, thus, for
the attracting domain.

We outline the process of generating the approximate composite map in terms of a general algorithm
adaptable for other non-smooth dynamical systems. A key step in the algorithm includes identifying short
sequences of impacts that give the building blocks for the return maps. The resulting division of the state
space is relatively simple and computationally efficient compared to, e.g., the identification of basins of
attraction, which require long time computations to find complex regions for dynamics sensitive to initial
conditions. Likewise, flow-defined Poincaré maps for the global dynamics of periodic and chaotic systems,
derived from long-time simulations over the entire state space, are often piecewise smooth even though
they originate from a smooth dynamical system. Geometrical piecewise smooth Lorenz maps [2, 44, 23]
representing the smooth chaotic dynamics of the Lorenz system are notable examples. Our approximate
composite map constructed for only short-time realizations of the VI pair is conceptually different from
classical piecewise smooth maps with regular and chaotic dynamics appearing in various biological, social
science, and engineering applications [41, 4, 59, 8, 11, 22, 14]. However, it can still be interpreted as a
geometrical model of the VI pair as it depicts the dynamics and bifurcations remarkably well and derives from
a polynomial approximation of the state space partitions. The combination of the geometric interpretation
and the polynomial approximation facilitates our goal of obtaining analytical results for the global dynamics
directly related to the physical model. These results are in contrast to local analyses and computational
studies of higher dimensional maps [42, 45].

In this first development of the approach, we focus on parameter regimes for behaviors that drive
favorable energy output in a VI pair-based energy harvesting device, behaviors with alternating impacts on
either end of the capsule. The impact velocity and phase may repeat periodically with period n7T, where
T is the period of the forcing, or the states may have apparently chaotic behavior within the alternating
behavior. Besides its physical relevance, this choice of parameters facilitates a relatively straightforward
presentation of the approach while exploring several types of non-trivial dynamics. Nevertheless, we expect
that foundational concepts in this analysis are adaptable to other (more complex) sequences of impacts, as
discussed further in the conclusions.

The remainder of the paper is organized as follows. Section 2 gives details of the VI pair model, including
the transcendental form of the maps [47, 48] that motivates the computer-assisted analysis of global dynam-
ics. Section 3 provides the return maps that form the building blocks of the computer-assisted approach,
illustrating their key properties. Section 4 provides the general algorithm for constructing a composite map
realized for the VI pair by approximating the return maps with explicit piecewise polynomial maps over
relevant regions that comprise the state space. Section 5 compares the trajectories generated using the exact
and composite maps in the state space and the phase plane. Section 6 develops an auxiliary map based
on the composite map to identify the globally attracting dynamics and the corresponding domain for three
qualitatively different types of the VI pair system behavior. Section 7 contains conclusions and a brief illus-
tration of the relevance of the approach for a VI pair-based energy harvesting device with stochastic forcing.
Finally, Appendix A provides additional details on the construction of the return map. The supplementary
material contains the exact map derivation and demonstrates its analytical intractability. It also contains
the coefficients of the polynomials used in the composite map.
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2. The Model. The model takes the form of the canonical impact pair, comprised of an externally
forced capsule with a freely moving ball inside. The friction between the ball and the capsule is neglected,
so the ball’s motion is driven purely by gravity and impacts one of the membranes on the capsule’s ends.

One application based on the impact pair is a nonlinear vibro-impact energy harvesting device. Each
end of the capsule is closed by a membrane of dielectric (DE) polymer material with compliant electrodes
[57]. The deformation of such a DE membrane is the vibro-impact energy harvesting device’s primary means
of energy generation. When the ball collides with the membrane, this action changes the ball’s trajectory
and deforms the membrane. The DE membrane’s physical property, being a variable capacitance capacitor,
allows the change of its capacitance when it is deformed; meanwhile, a bias voltage is applied when the
deformation reaches its maximum state. After the collision, an extra voltage charge is harvested, and the
membrane returns to its undeformed state.

The schematic for the VI pair is given in Fig. 1(a). Neglecting the friction, the system is driven by
forces generated at impact, gravity, and external harmonic excitation F (wt + 1) with period 27 /w. Using
Newton’s Second Law of Motion, the model is described by the following differential equations:

X Flwr+)

(2.1) dr2 M ’
d*z )
(2.2) ez s B,

where X (7) and (1) are the dependent variables for the absolute displacement for the capsule and the ball,
respectively. In addition, M and m are the mass of the capsule and the ball, respectively.

Treating the impact time as negligible compared to other time scales in the model, we use an instanta-
neous impact model given by

o) (5) (%) aaen ().

Note that this is a reduced model based on the condition M > m, as discussed in detail in [47]. The
superscripts + and — signify the state of the ball after and before the impact, respectively. The parameter
r is the restitution coefficient, which is a quantitative measure of the membrane’s elasticity. The range of
r is [0, 1] with r = 1 being perfectly elastic and » = 0 being inelastic. In this paper, we consider moderate
elasticity » = 0.5. Additionally, in (2.3), we do not distinguish the states before and after the impact for
the capsule dX/dr because the mass of the ball (M > m) is negligible and does not change the state of the
capsule at impact.

To focus on the system’s dependence on key parameters, we first non-dimensionalize the system. Fol-
lowing [47], the dimensionless variables X*(t), X*(t),t are the following:

EIE:
Mw?

dX _ | Fli=

(2.4) X(r) =T X,

- X, -t,

T
T w
where || a || is an appropriately defined norm of the strength of the forcing F. Here, we also use Newton’s
dot notation for differentiation when the derivative is calculated with respect to dimensionless time t.

In addition to non-dimensionalization, relative variables are used to focus on the system dynamics as
a whole, rather than the separate motion of the ball and capsule. Using the variables X*, the relative
displacement Z(t) and relative velocity Z(t) are given in the dimensionless form:

Z=X"—z" Z=X*—i*
.. .. - M gsin _
(2.5) Z=X"-% :F(Wt+¢)+W:f(t)+g,
where the non-dimensional forcing F(nt 4 ) = W has the unit norm, i.e. || F |=1.

Since we want to evaluate the system from one impact to the next, the system’s state at each impact is
particularly important. Combining conditions (2.4), (2.5), the impact condition (2.3) can be rewritten using
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Z and Z. For the 4" impact occurring at time t = t;,
Zj = X"(t;) —x*(t;) = :l:§7 for x € OB (0T the sign is + (—),

2
(2.6) Zf=—rZ;, d= _sMw?
[
The notations 0B and 9T denote the bottom and top membranes, respectively. The parameter d is the
dimensionless length of the system, used throughout this paper as the bifurcation parameter. In contrast to
the actual length of the capsule s, d varies with multiple factors, including the device length (s), mass (M),
angular velocity of the external force (w), and forcing strength (|| F ||). As illustrated in Fig. 1(b),(c), the
relative position of the system is bounded, Z(t) € [—d/2,d/2]. At the impacts, which is when Z; = +d/2,
the relative velocity Z; changes sign: when the impact is on dB (Z; = d/2), Z changes from positive to
negative; when the impact is on 0T (Z; = —d/2), Z switches from negative to positive. To complete the
definition of the state of the system at impact, we then need to determine (Zj,tj).

(a) (b)

X (t) £df2,x"(t)

0.5
s
.N 0

-0.5

Fig. 1: (a): Hlustration of the VI pair: A ball moves freely within a harmonically forced capsule enclosed by
deformable membranes on both ends. The capsule is positioned with an angle [ relative to the horizontal
plane and is excited by an external harmonic excitation a (wT 4+ ). The mass, length of the capsule, and
mass of the ball are M, s, and m, respectively. (b): The two dashed black lines represent the displacement
of the top and bottom membranes, X (¢)* + d/2. The green stars and blue dots indicate the impacts at 0B
and JT, respectively. The red solid lines connect each impact at 0T and 0B, representing the estimated ball
movement between each impact. (c): Phase plane in terms of relative variables. The relative displacement
Z(t) oscillates between —d/2 and d/2, and the relative velocity Z(t) has a sign change at each impact.
Parameters: d = 0.35, Zo = 0.43 and 1y = 0.26.

We summarize results from [47] for calculating the exact maps for (Zj,tj) between two consecutive
impacts. Between the impact at ¢; and the next impact at t;41, the relative velocity and displacement can
be derived by integrating (2.5) for t € (¢;,t;41) and applying (2.6):

Z(t)=—rZ; +g- (t—t;) + Fi(t) — Fi(t)),
(27) 2= 2F —rZ7 (= t) + 51— 6)° + Balt) - Balty) — Filt) - (6~ 1),
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where Fj(t fF mt + ) dt and Fa(t) = [Fi(t) dt. At the j* impact, Z;r = Z; . Therefore, the

superscrlpts in Z* are omitted, since (2.7) are in terms Z~ and Z~ only. Using the equations (2.7), there
are four basic nonlinear maps Pgp, Ppr, Prg, Prr corresponding to motion between consecutive impacts,
in terms of the four combinations of impact locations: 0B — 0B, 0B — 0T, 0T — 0B, 0T — 0T. All
four maps take the form

Zijwr==rZi+ G- (L1 = 1) + Fitjen) — Fi(ty),

(2.8) ig = ig —rZj - (i1 — 1) + g St =47+ Fa(tjen) — Ba(ty) — Fity) - (81 — 1)
Notice, the sign for £d/2 is chosen depending on the impact locations of Z;, Zj11, + (=) for 9B (97).

Ideally, we would like to transform (2.8) into closed-form expressions for (Zjs1,tj11) in terms of (Z;,t;),
which can be used to analyze stability and other (global) dynamic properties of these maps and their
compositions. Furthermore, if we wish to determine the map for the first return to 0B for sequences as
shown in Fig. 1(b),(c), we would seek the exact map for the impact sequence 0B — 9T — 0B, or for two
consecutive impacts on 0B, which we refer to as BTB or BB motion, respectively. Here, we use the simpler
case of BB motion to demonstrate the difficulties in deriving closed-form expressions for such sequences. The
map Pgg is given by (2.8), using Z; 1 = Z; = d/2, we have

Zig1=—1Z;+ 3G (tj1 — t;) + Fitjz1) — Fu(ty),

(2.9) Gl 7 (o — 1)+ T (s — 1) + Fltyan) — Falty) — Fa(ty) - (t141 — 15).

2 2

N |

For concreteness, we take F(mt+1) = cos(mt+1). Then Fy(t) = L sin(nt+1) and Fp(t) = — 2 cos(mt +1).
Substituting these into (2.9) and solving for (Zj41,t;41), we have
. . 1 1
(2.10) Zjt1=—1Zj + gtj+1 — gtj + — Sln(’ﬂ't]+1 + ) — p sin(mt; + 1),
. g9 1 1
(2.11) 0= —rZiti1 +rZit; + §tj — gtisit; + 2t 3 —5 cos(mtji1 + ) + = cos(mt; + 1)
1, 1.
- sin(mt; + )t 41 + - sin(7t; + ¥)t;

In (2.10), Zj+1 is a function of Zj, t;, as well as t;41, determined from (2.11). Sorting terms containing ;4
to simplify (2.11) yields

t;
thﬂ (TZ +gt; + — sm(ﬁt + 1/1)) 1+ (TZ it + 2t3 + — COS(ﬂ't +¢)+ —sm(ﬂt + 1/1))
1
(2.12) = cos(mtj1 + ).

Equation (2.12) has a solution if the quadratic function on the left-hand side (LHS) and the cosine function
on the right-hand side (RHS) intersect. However, it is impossible to get a closed form expression for ;1
and consequently not possible to get a closed form expression for Zj+1. Further details of the derivation of
the equations for the maps can be found in Supplementary Section I.

For the BTB case, the same hurdle arises. In that case, the BTB motion is composed of maps Prp o
Ppr, and therefore a closed form first return map for B would require the composition of expressions for
(Zj+1,t]+1) and (ZH_Q, tj+2). The only difference in the equations for these quantities is the sign of +d/2
n (2.9), so the lack of closed-form expressions follows as in (2.12). Therefore, we propose a computational
method to reduce this non-smooth map to a composition of smooth maps using explicit polynomials.

3. Identification and visualization of the return maps. The non-smooth maps derived above are
based on the system (2.7), which gives the exact map when evaluated at impact times ¢ = t;; specifically,
P (Zj,tj) — (ZJH, tj+1) for Z Z( ;). This formulation is useful when determining conditions for
periodic solutions with a fixed number of impacts, and their local stability. For example, as in [47], a
composition of a fixed number of maps provides the basis for previous analyses of periodic solutions, and the
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corresponding linear stability analysis provides information about whether the periodic solutions are stable
under small perturbations. In this previous work, different types of motion were generally categorized as
n:m/p7, where n and m are the numbers of impacts on OB and 0T, respectively, T is the excitation period,
and p is an integer number. Furthermore, the impact pair has been demonstrated to yield n:m/p7 and
n:m/C behaviors, with C indicating complex, aperiodic, or chaotic behavior.

Figure 2 shows the relative impact velocity Z), on OB , corresponding to a sequence of bifurcations with

1:1/T, 1:1/pT for p an even integer, and 1:1/C behavior over a range of the dimensionless length d. (Note:
relative impact velocity on 9T not shown.) We focus here on the parameters and the range of d yielding
1:1-type behavior, with impacts alternating between 0B and 0T that is typically favorable for energy output,
and observed for the system (2.1)-(2.3) over a large range of parameters [47, 48].
Remark 3.1. The numerical results in the bifurcation diagram (Fig. 2) are generated by solving (2.1)-(2.3)
over a long time, recording the limiting values for Zy and Y on OB for each value of d. The attracting state
then serves as the initial condition for the next value of d, using a continuation-type method with decreasing d.
Throughout this paper, the parameters used to generate the simulations are the following: r = 0.5, HFH =35,
M = 124.5 g, w =57, f=7/3, g = 9.8 m/s%. Here, the non-dimensional parameter d varies with the length
of the capsule s, as given in (2.6).

While the previous analyses capture the local stability of branches corresponding to periodic solutions,
they do not provide information about the global attraction of this behavior or the potential for other
attracting behavior. In contrast, here, we seek to provide global stability results for the attraction of
different types of solutions, including periodic, nearly periodic, and chaotic behavior. As shown in Fig. 2,
we proceed with the variables (Zk, 1), where 1y, is the relative phase of the exact map at impact and ¢y, =
mod (7ty + 9, 27), as ¥y is more amenable than ¢ for considering transients as well as (quasi)-periodic
behavior.

— 0.61%.

- 047 T ——
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0.2 5™ s
E‘éh—-“'-
032 034035 026 028 03 032 034035

d

Fig. 2: Bifurcation diagrams for Z;, and v, generated using the exact map from system (2.7).

There are three key elements to our generalizable approach to the maps:

1. We exploit the non-smooth impact events in the dynamics, leading to the observation that any
transient behavior can be broken down into a sequence of a small number of types of return maps
to OB, as shown in Fig. 1(b): those that impact 0T between sequential impacts on 9B, and those
that do not.

2. The second key element is the ability to approximate these return maps with polynomial functions.

3. We focus on return maps, in contrast to those in (2.7)-(2.8), for which a valuable phase plane analysis
follows naturally.

With sequential impacts on OB as a natural framework for defining the maps, we focus on the first
return maps to 9B captured by Pgrp and Pgg. While above, we have used the subscripts j and k somewhat
generically for impacts, for clarity with respect to the maps in (2.7)-(2.8), we reserve the subscripts j,j+1, ...
for sequential impacts on either 9B or 9T'. Then, for the sequential impacts on 0B only, in the following we
use the subscripts k,k + 1,..., so that for k = j and Pgrp (PsB), the (k + 1)%* impact on dB corresponds
to the j +2°¢ (j + 1%¢) impact. That is, for Z; € 0B,
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Pore ((Zj,0;) = {(Zj42,¥j42) | Zj41 € OT, Zj 12 € OB},
(3.1) Pyp ((Z,¢5) = {(Zj+1,%j+1)| Zj+1 € OB}

Note, for physical clarity, we have slightly abused notation in (3.1), using Z; € 0B and Z; € 9T for impacts
on either end of the capsule, in place of Z; = £d/2 as discussed following (2.6).

As illustrated in Fig. 1(b), the sequence length, for example, to (nearly) periodic behavior is not uniform
over the space of initial conditions and cannot be anticipated a priori. The return map to 9B gives a flexible
construction that can be applied over any length of the transient. This framework is also amenable to
analysis that captures global dynamics via phase plane analysis, and can be used in stochastic settings for
the VI pair [29]. In identifying potentially attracting dynamics, we use projections of the return maps in the
Zy — Zk+1 and 1y, — Y11 phase planes, relative to the corresponding diagonals (see Section 3.1). The maps
in (2.7)-(2.8) do not lend themselves to these goals, as these are not (necessarily) return maps.

For the remainder of the paper, we track the first return maps for impact velocity and impact phase

(Zk,wk) on 0B, using the subscripts k,k + 1,... to indicate sequential impacts on OB, composed of the
building blocks in (3.1). Figure 3 shows how the choice of these building blocks divides the state space
for (Zk, ) by viewing this pair as the initial condition, which then yields one of these two return maps.
Figure 3(a) shows how the (Z, 1x) plane is divided by tracking the return maps. Figure 3(b) illustrates a
further division of the state space, necessary for applying straightforward polynomial approximations of the
return maps, as discussed in the context of the full algorithm described in Section 4. Note that the building
blocks (3.1) are analogous to short words in the symbolic representations used for piecewise linear maps in
[52], which form the basis for invariant cones and trapping regions.
Remark 3.2. For the algorithm developed in this paper, we restrict our attention to the range of 0 < ¥y <,
discussed further in the context of Fig. 7 below. As can be shown for the model (2.1)-(2.3) and the parameters
considered in this paper, impacts with 1y > 7w correspond to those where the ball and capsule are moving in
the same direction, yielding smaller impact velocities and thus transient behavior in both vy and Z, [46].
This point is discussed in Section 3.1 below, in the context of projections of the 2D maps for Zi s into
their corresponding phase planes. Likewise, for the parameter regimes considered in this paper, focusing on
a range of d with energetically favorable 1:1-type sequences of alternating impacts, the impact velocities in
the range Z > 1.25 are transient. F' 1gure 23 in Appendiz A.1 illustrates the additional regions with transient
BTTB behavior, which can appear for Z > 1.25. While the approach proposed here can handle these values
by including additional transient regions, for simplicity of exposition, we restrict our attention to 0 < Y <7
and 0 < Z < 1.25.
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Fig. 3: (a): Using the building blocks in (3.1), the state space Z — b can be partitioned based on two
types of first return maps: Ppp (black regions) and Pgrp (magenta region). The blue square indicates the
location of R1, a region within the Pgrp region that has special properties as studied in detail in Section
4. (b): Further partition of the state space into five regions: Regions R1, R2, R4 divide the state space for
the BTB motion, and Regions R3, Rs divide the state space for the BB motion. The partition in panel (b)
shows an approximation to the exact solution in panel (a), so the dividing boundaries between regions do
not match exactly those based on the exact map. Parameter d = 0.26.

Figure 4 illustrates the reduction of our representation within the dynamics, focused on the impact
velocity Zj and phase ¢; on OB (green stars), in contrast to Fig. 1(b), which shows the exact behavior
solution at and between the impact time. The first return maps in (3.1) are implicit in form and thus awkward
to use directly in a global stability analysis. Then, as a first step towards a more explicit approximation, we
visualize the return maps in (3.1).

(a) (b)

* *
i * f' .
06 (tO,ZO):-" ‘ * L]
* C 4 - .
— (‘tl' Zl) . =~ *
.P\J () *; ; : ‘j EB* , o . .
. -; i ; .‘f 2 (S}r U’I)? ﬂ ;
0.6 . -, . (5{0, wo)” *

*
0 2 4 6 8 10

Fig. 4: The values (Z;,1;) at impacts (both @B (green stars) and 9T (blue circles)), starting with initial
conditions Z; = 0.43 and 1o = 0.26 with d = 0.35. Note that the location of the impact determines the sign
of the relative velocity: Zj > 0 for the impact on 0B, and Zj < 0 for 0T, and the dotted lines trace the
order in which the impacts happen. In this paper, we focus on the return map for 0B, denoted (Zk, Yg).

3.1. Visualization. Given that the return maps Pgrg, Pgg are in terms of the 2D vector (Zk, Y) we
show two separate surfaces for Z, k+1 and 111 generated by them. To build these up, we first show the maps
projected in the phase planes Zp — Zk+1 and Y — Yry1, for a fixed value of 0 < ¢, < 7, and sweeping
through Z; € (0,1.25). In Fig. 5(a), the resulting first return values (Zj41,r41) are sorted according to

9



332 BTB and BB motion, as indicated by different colors. In Fig. 5(b), in this projection, these two types of
333 behavior can interweave for a single value of i, as different values of Zj, yield a variety of ¥;1 that appear
334 in both the Pgrg and Pgg return maps.

(a) (b)
1.25 s

o2

Vit

0.25 075 1.25 0 )2 .

Zj: Yy,

Fig. 5: Illustration of Zlg+1 and ¥y 1, the first reburn maps on 9B using (3.1) for fixed 13, = 0.4 and sweeping
through initial values Zy € (0,1.25) with d = 0.35. The magenta points correspond to the first returns via
BTB type, and the black points represent the first returns of BB type.

()

. 0
Zy, Yy,

Fig. 6: Illustration of the 3D surfaces generated using_; the first return maps Pgrp (magenta) and Ppp (black)
in (3.1), with d = 0.35. Each initial condition pair (Zj, ¥y ) has output (Zx41, ¥r+1), graphed on the vertical
axes in panels (a) and (b), respectively.

335 Repeating the application of the first return map (3.1) over the range of initial phase values 9y yields the
336 surface visualized in Fig. 6, over a range of .initial values in thq horizontal Z;, — 1, plane. For PBB., shown by
337 the black points, in general small values of Z; (approximately Z; < 0.55) map into small values of Zj 1, while
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Y41 tends towards values either near 0 or above 2. In the case of Pgrg, shown by magenta points, larger Zk
map into larger values of Zk+1, with the corresponding ;11 spread out between 0 and 7. The visualization
of the return maps Pgp and Pgrp indicates a few features that are important in approximating these surfaces
with polynomial maps. Not only are the surfaces disconnected, but the surfaces have dramatically different
gradients corresponding to different regions in the Z; — v state space, which leads to the partitioning as
shown in Fig. 3(b). These regions are identified as part of the algorithm for approximating the surfaces, as
discussed in detail in Section 4.

Comparison of the return maps with the diagonals in the Zp - Zk+1 and vy - ¥r+1 phase planes is
achieved via projections of the return map surfaces on the phase planes, as shown in Appendix A.2, Fig. 24.
This projection is valuable as we identify potential regions for attracting and transient behaviors, following
from comparisons of the map surfaces with the diagonals in the phase planes. For example, as discussed
in Section 4, intersections of the projections and the diagonals in both phase planes suggest a potential
attracting region for (Z, ) near Ry in Fig. 3(b), depending on the slopes of the maps for these values. In
contrast, the projection shown in Fig. 7, particularly for the (1, ¥r+1) phase plane, illustrates the highly
transient nature of any step with a value = < ¥ < 2w, as discussed above in Remark 3.2. Section 4 includes
this information in the application of the algorithm, combining visualizations of Figs. 6, 7, 24, and 23 to
give further insight into behavior on subdivisions of the return map surfaces together with approximating
these surfaces with polynomials.

4. Composition of the Approximate Map. We provide an algorithm for deriving a set of explicit
piecewise polynomial maps f, and g, for each region R, in the state space Zj — 1y, approximating the
surfaces Zk+1 and ¥,11 as shown in Fig. 6. The approximate return maps are given in terms of the variables
(vk, ¢r) that denote the approximate relative impact velocity on 9B and the corresponding impact phase,
respectively, at the k' return to 9B. We define the composite approximate map M that combines the
continuous maps f,, g, for the regions R,, in Fig. 3(b), taking the form

(4.1) (Vkt1, Prr1) = M(vi, dr) = (fr(Vks &), gn(Vk, d1)), Where (v, dr) € Ry.

Given the complex nature of the surfaces for Zk+1 and ¥gy1, the algorithm for constructing the maps
(fn,gn), leads to refining the regions shown in Fig. 3(a), resulting in the regions R,, for n = 1,2,3,4,5 in
Fig. 3(b).

(a) (b)
1.25 20
—
Yoo
S’ .
/7
//
/
. //

Sl

-

‘...'-..‘. h .. . o

e 3n/2 2m

Wk

Fig. 7: The 2D projection of Fig. 6 on the phase plane Z; — Zk+1 and v — ¥g41 for initial condition
Yy € [m,27] and d = 0.35. Since there is no common point of intersection on both diagonals in (a) and (b),
we conclude that the states generated from the initial states (Zj,) with ¢ € [r,27], always leave this
range. The colored points represent the BTB motion, and the black points represent the BB motion.

As a first illustration that M in (4.1) (derived below, with specifics given in Appendix A.8) captures the
11
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critical features of (2.7)-(2.8) in the parameter range of interest, we use it to obtain the bifurcation diagram
analogous to Fig. 2. Figure 8 shows the results for vy, ¢x vs. d, generated using M via the continuation-type
method described in Remark 3.1. Comparing with the corresponding bifurcation diagram for the exact map
in Fig. 2, we see that the results from M capture a number of features of the original system, including d
values for the period-doubling bifurcations, the attracting values of v, and ¢y for the different branches, and

the approximate range of values of vi and ¢, for the chaotic behavior obtained for smaller d in the range
shown in Figs. 2, 8.

0.80 i

X

075 50

0.700%: w3

(b)

"oeeeecernege,

A

_—_..--'"
=

——

0.3

d

0.32 0.340.35

Fig. 8: Bifurcation diagrams generated using the composite approximate map M, defined in (4.1) and
Appendix A.8, with coefficients given in Supplementary Section II. The bifurcation structure obtained using
M reproduces remarkably well that obtained for the exact map (2.7)-(2.8) presented in Fig. 2.
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Fig. 9: Hlustration of the general algorithm for constructing the composite map.

4.1. General Algorithm: Construction of the composite map M. Illustrated in Fig. 9, the
general algorithm consists of three main activities: identifying an initial partition of the state space based
on the return map building blocks, iterating on approximations of the return maps on these regions, and
including updates of the regions as necessary to improve the approximation.

Initialize: steps 0)-ii): Partition state space for the definition of the composite map.
0). Choose a state as the basis for return behavior.
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i). Generate surfaces (Zk+17 Yr41) corresponding to the first return maps for this state;
ii). Partition regions in the state space based on different types of first returns. Label these regions as R, 1,
denoting Region n defined on iteration 1.

Iterate on steps iii)-vi) until appropriate fit for surfaces corresponding to first return map for all re-

gions R,.m, Region n on m*™ iteration.

iii). Identify potential regions of attraction or transient behavior.

iv). Choose an appropriate order of polynomial fit for each, via testing different orders of polynomials and,
depending on the resolution needed, to identify f,, and g, for each R,

v). If the fit of the polynomial is unsatisfactory, adjust the size of the regions and/or locate new regions for
additional partitions.

vi). Optional reduction: for regions that yield immediate transitions to other regions, replace with appro-
priate resetting conditions.

Finalize

vii). Once the polynomial approximations are defined for maps for all regions, finalize definitions of regions,
labeled as R, dropping the .m label, together with their corresponding maps (f,,,gn). This final step in-
cludes a definition of the range for each map, as discussed further in the demonstration in Section 5.

Steps iii)-vi) depend on the analysis of several different features of the first return map surfaces found

in ii), both dynamics and geometric characteristics and combinations of these. We illustrate these next in
the concrete context of (2.1)-(2.3) and the corresponding non-dimensional form (2.6).
Remark 4.1. As demonstrated below, in certain regions R, where the shape of the map clearly indicates
transient dynamics, we look for a simple approximation that takes the form of a single variable polynomial
for each of the variables of interest, e.g., vg41 = fn(Vk) and ¢rr1 = gn(¢r). We refer to these as separable
maps since we approximate the 2D map for (vg, ) with two 1D maps that each depend on a single variable.
Such an approzimation supports a cleaner visualization in the phase plane by simplifying the details of the
transient behavior while approximating it as dictated by the shape of the exact map.

4.2. Algorithm implementation: a composite map for the VI pair model. We apply the gen-
eral algorithm outlined above - Initialize, Iterate, and Finalize - to identify appropriate partitions of the
state space and the approximations for the return maps on these regions for the non-dimensionalized VI pair
model as in (2.7). Here, we present this application step-by-step, with the specific details of the composite
map M given in Appendix A.8.

Initialize the partition of the state space.

0). Choose Z € OB as the state for the basis of the first return maps.

i). Generate surfaces Zk+1 and g1 for BTB and BB behavior as first return maps (2.8) over the range of
possible initial conditions in the state space (Zg, ) (see, e.g., Fig. 3(a)).

ii). Partition the state space into regions R,.1 according to these building blocks: BTB and BB: Ry cor-
responds to BTB, R3.1 corresponds to BB behavior for smaller ¢, and Rs5.; corresponds to BB behavior
with larger vy.

Iteration 1: steps iii)-vi)
iii). Identify regions of potential attraction and transients as follows.
e Rq.1: entire region of BTB behavior, including both transient regions and potential attracting
dynamics near the diagonals in the Zy — Zk+1 and v, — Y41 planes.
e R3.1: The surfaces for BB behavior with sharp gradients in the map near the diagonals. Thus,
transient BB behavior is expected.
e Ry51: The surfaces for BB behavior are away from the diagonal in the tp-1,41 plane, thus
transient BB behavior is expected.
iv). Polynomial approximation of surfaces for Zk+1 and ¥g4+1 in R1.1, Rs.1, and Rs.1 (see Fig. 6):
e Ry, BTB behavior: There is a combination of subregions where the surfaces for Zk+1 and

13
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Y41 have more gradual variation, contrasted with others with sharp gradients. Thus, an
accurate polynomial fit is challenging, which also limits an accurate approximation of potentially
attracting dynamics near the diagonals in the Zj, — Zk+1 and ¥y — ¥r4+1 phase planes. This
motivates a further partitioning the BTB region, as described in step v).

Rs.1, BB behavior: As can be observed in Fig. 6, there are two disjoint surfaces for Zk+1.
One is a curved surface with sharp gradients for which we use fifth/fourth order polynomials in
v/ dr for the approximate map (f3, g3) (see Appendix A.6). There is a second segment, nearly
vertical in Z 1, discussed in (vi) below.

Rs.1: As the surfaces for Zk+1 and Yry1 in Rs.1 are away from the diagonal, we use a “sep-
arable” approximation, as discussed in Remark 4.1. See Appendix A.7 for a discussion of the
resulting approximate map (f5, gs)-

v). Update regions in terms of additional partitions for R; ;. The different features of the Zk+1 and
Y41 surfaces in Ry ; motivates sub-dividing into two regions:
e R;.: identify potentially attracting states, e.g. states for which the repeated images of the

return map Pprp are near the diagonals in the Zk — Zk+1 and ¥, — Y41 phase planes. This
choice of R1 o limits to cases where the slopes of the surfaces near the diagonals are primarily
small, e.g., less than unity for some values of d.

e Rso: the remaining states that produce clearly transient BTB behavior. This region includes

sections of the Pgrp map located away from the phase plane diagonals and sections near the
diagonals with sharp gradients.

vi). From physical considerations, some maps are replaced with resetting functions and/or approximate
maps in nearby regions.
o T < ¢ < 2m: The transient behavior for this range of ¢ is discussed in Remark 3.2 above.

Then, we employ the reset: ¢r1 = 1.2 and vg41 = vy if ¢ > 7 or ¢ < 0 (see Appendix A.8).

e The nearly vertical surface in R3; mentioned above represents strongly transient behavior,

consisting of transitions to BTB behavior or other states in R3. This transient behavior is
captured by using equations (A.2) throughout Rs. 1, without approximating the vertical surface.
Likewise, there is a small vertical section of the surface ¢;1 in R5 1, also discussed in Appendix
AT.

Iteration 2: steps iii)-vi)
Iteration 2 is focused on the newly defined Ri2 and Ro5.
iii). Considering attracting and transient BTB behavior:
e To identify R1.2 as described in Iteration 1 step v), we introduce a filter R 2(d) for a given d

that selects states (Z,vy) near the diagonals (Zk,z/)k) in the Zj, — Z41 and b, — 941 phase
planes with images (Zx41,¥g+1) from Pprp near the same diagonals. We then take the union
of these regions to obtain a region valid for the full range of d of interest. Then, R, 5 is given
by

: 1 () 1 Zi1
d)=1(Z . 4§ and = — 1)
Ri.2(d) {( ks Uk 5 < ™ <dand < < 7 < },
(4.2) Ri.2 = Ude[0.26,0.35) R1.2(d).

Of course, the size of R1.2 depends on the choice of §, which characterizes proximity to the
diagonals, as discussed further in Appendix A.3. Figure 10 shows an example of the definition
of Rl_g.

14



Fig. 10: The surface corresponding to Pprp (magenta and blue combined), where Rq 5 (blue region), is

obtained by using the filter (4.2) (0 = 1.2) to identify return maps located near diagonals in both the Zj 1
- Zy, and k41 - ¥y phase planes.

477 ® Ro o is defined as the remainder of the BTB region, with transient behavior.

478 iv). Polynomial approximation of surfaces Zy1 and ¥p1.

479 ® Ri2: To capture subtle changes in the attracting behavior near the diagonals, the surfaces for
480 Zk+1 and 9p41 are approximated with polynomials of degree 3 in v; and degree 2 in ¢y

481 V1 (Vk, Ok) = f1(vk, dr)

482 (4.3) = bo + b1k, + bovy + b3dp + bagrvg + bsvj + bedrvk + brgrvp + bsvy,

483 Prr1(vk, k) = g1 (vi, P

484 (4.4) = ag + a16k + a2k + azdj + asdrvr + asvi + agdrvr + ardrvi + asvy.

486 e Ry We use a “separable” approximation (see Remark 4.1) that takes the form

487 Op1(0k) = fa(Uk) = baovp, + ba1vj + baov + bagvj + bogvy + bas,

485 (4.5) Drs1(Dk) = g2(dr) = azody + a2 Gy, + 220} + a3y + a2y + azs.

490 Figure 11(a)-(c) shows (green) curves representative of the transient behavior for this region,
491 following from the shape of the surfaces for Zy 1 and 9,1 shown in panel c) for Ra. The
492 orange curves, showing the separable map in (4.5), approximates this green curve. See further
493 discussion in Appendix A.4.
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Fig. 11: Tllustration of the Pgrp surface (magenta surfaces in panels ¢,f) and its corresponding separable
approximation (green and orange curves) for Ry (panels a, b, ¢) and R4 (panels d, e, f), with d = 0.35.
Generated using the exact map (3.1), the green curves are chosen to represent the variation of the surface
for fixed 4, or Z. Specifically, for (c): 1 = 0.35 (left) and Z;, = 0.85 (right); for (f): ¥ = 1.35 (left)
Zi, = 0.12 (right). Panels (a)-(b) and (d)-(e) compare the green curves and the orange curves for the
approximate separable map (4.5) in the phase planes. See Appendices A.4 and A.5 for details.

v). Update regions/additional partitions for Roo: As seen from the curve shown in Fig. 11, which
forms the basis of the separable map, the map is not defined on smaller values of Zj, in Ro. This
suggests a further partition of Ro o into Ro3 and Ry 3, to capture all values of Zk+1, as described
in Appendices A.4 and A.5.

vi). No further updates on this optional step.

Remark 4.2. Here, we note that the individual curves viy1 = fa(vr) and ¢ri1 = g2(¢r) shown for Rao
each overlap with the intervals for vy and ¢i in Rio. At first glance, this may seem to cause indeterminacy
in the application of the map. However, since Ro surrounds Ry, it is possible that one of vg or ¢ in Rao
can take a value that also appears in the range for Ry o. However, for (vg, ¢r) in Ri.a, i.e. both vy and ¢y
in the intervals corresponding to Ri.2, then (Vit1, dk+1) = (f1,91) as in (4.3)-(4.4), and not the separable

approzimation (fa(vg), g2(Pr)).

Iteration 3: steps iii)-vi)
This iteration focuses on Ro 3 and R4 3.

iii). Considering transient dynamics for R4 3: For values of small vy not covered by the map (4.5) in
Ra.2, we consider surfaces as shown in Fig. 11(f).
iv). Polynomial approximation of R4 3: Similar to the separable maps defined for R 2, we use separable
single variable approximations ( f4, g4) for the transient dynamics, given in equation (A.1) and shown
in Fig. 11(d) and 11(e) .
v). No additional partitions are needed.
vi). No further updates needed.
Finalize
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vii) We finalize definitions of the regions R,,, n =1,2,...,5 dropping the .m label. The correspond-
ing maps (fn, gn) that define the composite map M are given in the detailed algorithm in Appendix
AS.

5. Validation of the Composite Map. In this section, the composite map M is validated using
three distinct types of solutions, showing that it can reproduce the dynamics of different types of solutions.
The first type of solution is the fixed point of M, which we call Case FP, corresponding to the 1:1/7 solution
of the full system (2.1)-(2.3). The second type is the period doubled case, i.e., the period-2 orbit of M,
called Case PD, corresponding to the 1:1/27 behavior in the full system. Lastly, the chaotic dynamics of M,
called Case CD, corresponds to the chaotic 1:1/C behavior in the full system. These different dynamics can
be observed from the bifurcation diagrams in Figs. 2, 8 for d = 0.35, d = 0.30, and d = 0.26, respectively.

(c) (d)
1.25 1.25
08 X 0.
N N o

0.4

0 /2 m 0 /2 m
Wk, Pk Wkr Pk

Fig. 12: Comparison of trajectories in state space from the exact map (3.1) (orange) and the composite map
M (4.1) (green), superimposed on regions R, used in the definition of M as specified in Appendix A.8. (a)
and (b) correspond to Case FP, also shown in cobweb phase portraits in Fig. 13(a),(b); (c) corresponds to
Case PD, also shown in Fig. 13(c),(d); (d) corresponds to Case CD, also shown in Fig. 13(e),(f). Parameter
and initial conditions: (a) d = 0.35, ¢g = 7/2,v9 = 0.35; (b) d = 0.35, ¢o = 0.1,v9 = 0.2; (¢) d = 0.30,
do =0.1,99 = 0.2; (d) d = 0.26, ¢p = 0.1,v9 = 0.2. Here, we show representative results for initial conditions
in the transient regions R3 and Rg4.

Figure 12 shows the implementation of the composite map M (dashed green line), with corresponding
pseudocode given in Appendix A.8. Initial condition pairs (vg, ¢k ) are selected from transient regions R3 and
R4 to demonstrate that M can reliably predict the long-term system behavior, reaching an attracting region
after traveling through other transient regions R,,. Similar results were obtained for other randomly selected
initial pairs (not shown here). Trajectories for M are plotted together with the trajectories generated with the
exact map (3.1) (solid orange line). Panels (a) and (b) correspond to Case FP. Panels (c) and (d) correspond
to Case PD and Case CD, respectively. In all cases, both M and the exact map (3.1) trajectories follow each
other to reach the same attracting dynamics. Of course, the transient dynamics are not reproduced exactly,
e.g., given the separable approximations used in M to facilitate visualization of the maps.

Complementary to the validation of M in Fig. 12, Fig. 13 demonstrates the attracting behavior in the
projected vy, —vg11 and ¢ — 41 phase planes with initial conditions for small vy, and ¢, (vg = 0.2, g = 0.1).
Repeated application of the composite map is demonstrated via cobweb phase portraits, indicating the steps
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Fig. 13: Application of M (4.1) projected on the v, and ¢, phase planes, with step navigation for (f,, gn)
discussed in the text. Curves show (separable) maps for Regions R (green), R4 (red), and R (olive). Shaded
regions are for approximate 2D maps for R; (gray) and Rs (light blue), which can not be drawn in these
projections. Black dashed lines show the respective diagonals. Parameters: Case FP (a),(b): d = 0.35,v9 =
0.2, ¢9 = 0.1; Case PD (c),(d): d =10.30,v9 = 0.2, ¢ = 0.1; Case CD (e),(f): d = 0.26,v9 = 0.1, ¢ = 0.2.
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toward the attracting behavior. The dynamic behavior is shown for the three types of solutions listed
above. In both Case FP and PD, the trajectories limit to values within R while in Case CD, the long-term
trajectory takes values in Ry and Ro. All of these are consistent with the bifurcation structure shown in
Fig. 8.

For the projection of the maps (f,, gn) into the vy, —vk41 and ¢ — ¢dr4+1 phase planes shown in Fig. 13, it
is possible to visualize the curves for the maps in Ra, R4, and Rs, as we use separable (1D) approximations
in those regions. In R and R3 we can not show a single curve in this projection, given the 2D polynomial
map used in (4.3)-(4.4) and (A.2). Instead, shaded regions show the range of vy and ¢y in Ry (gray) and
R3 (purple). Then, the cobweb steps in these regions follow the (surface) maps (4.3)-(4.4) and (A.2) for
R1 and Rs3, respectively, for (vg, ¢x) in these regions, even though specific curves are not shown. Given the
width of these shaded regions, it is possible to give a maximum and minimum for v 1 and ¢ 1, which also
motivates the auxiliary map defined and applied in Section 6 for R;.

We provide some navigation in order to trace the cobweb behavior for M as shown in Fig. 13. Since the
panels show projections of the higher dimensional maps (f;, g;) in the phase planes, there is an overlap in
these projections, and thus, it is not necessarily obvious how to trace the dynamics. For each cobweb step,
Vk+1, Op+1 takes a value according to the map for the region that is common for both (v, ¢r). In all cases
shown, the initial condition (v, @x) for k = 0 takes small values in R3. We observe that Rs, R4, and Rs
overlap in the vy — vi1 phase plane for these smaller values of vy, while in the ¢ — ¢r+1 phase plane the
curve for Ry and region R3 overlap for smaller ¢5. Since R3 is the only region in common for v and ¢y
for these small values, we conclude that (vg, ¢r) € Rs, and the first step follows (f3,gs3) in (A.2), as shown
in Fig. 13. In the next step, vy remains small while ¢, increases (before reaching the attracting dynamics).
Again R3, R4, and Ry overlap in the vy — vgy1 phase plane for these smaller values of vy, while in the
oK — dr+1 plane, ¢y takes a value corresponding to the range for Ry only, so that vg41 ¢ry1 follow the map
(f4,94) for R4. Note that the curve for R5 is not applied for vy, even though vy takes values in its range,
since ¢y has not reached R5. Eventually vy has increased to a range with an overlap between Ry and R,
while ¢, decreases back to the region with overlap between Ro, R and R3. Then, the cobweb steps are
governed by (fa, g2) for (vk, ¢r) € Ra, and by (f1,¢1) in (4.3)-(4.4) for (vk, ¢r) € R1, as already discussed
in Remark 4.2 about the overlap between the green curves and the grey shaded R; region. From there,
the dynamics are dictated by the attracting dynamics of R for panels (a),(b) and (c),(d) corresponding to
Cases FP and PD, respectively. In panels (e) and (f), the attracting chaotic dynamics for Case CD alternate
between R and Ro.

6. Global Stability and the Auxiliary Maps. The trajectories above indicate visually that Regions
R1 and Rs contain an absorbing domain that attracts all non-trivial trajectories in R and Ro for the
considered range of parameter d. In Fig. 13, iterations of the closed-form composite map visualize the
system’s long-term behavior, with explicit curves shown only for regions Rs, R4, and R5 when projected
onto the Zk+1 — 7k and dk+1 — ¢k planes. In contrast, for R1 and R3 the maps cannot be visualized under
this projection, suggesting that an alternate approach is needed to capture global attraction using these
cobweb phase portraits. The difference between the regions follows from the separable form of the maps
in Ro, R4, and Rs, in contrast to the 2D maps of R; and R3. This observation inspires the design of an
auxiliary map, in which we dissect each 2D map into a pair of 1D maps based on the lower and upper bounds
of the 2D map domain. This definition can then take advantage of the separable form and lead to bounds
on the composite map’s absorbing domain.

6.1. Constructing the Auxiliary Maps. The auxiliary map is constructed using the bounds on the
approximate maps (fn, gn) for each Region R,,, where (f,, g») depends on both variables vy and ¢y. In our
case, these regions are Ry and R3. We define the auxiliary maps in terms of the maxima and minima of
(fns gn), vielding the form: &max(vi) @ vk = Vi1 and Nmax(Pk) © Ok — Pr+1, and similarly for the minima.
This decouples the two 2-D equations into two separable 1-D equations for each R,,. The advantage of this
formulation is its ability to track the dynamics of velocity vy and the phase ¢ separately, thus facilitating
a 1D cobweb phase portrait for each. At the same time, it captures the worst-case scenario and provides
conservative bounds on the maximum and minimum range of (f,, g.) at each iterate. Furthermore, we show
that a repeated application of this auxiliary definition hones in on the attracting solutions or regions of the
full map. While here we give the construction in terms of general n, we emphasize that below it is applied
for R1 only, as we focus on the attracting behavior.
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The construction of the auxiliary map begins with the bounds for v, and ¢y for a given R,: v, €
[Vmins Vmax) and ¢ € [Pmin, Pmax]. Then two curves &max(v) and min (vi) are determined for vg4q in terms
of the max and min of f,, over the range of possible ¢, values, and the auxiliary map §£LN)

these two curves:

alternates between

— ¢(N) (N) ._
(61) g’le) _ Vg41 = 5?1]3?(11@, where fzna)x = Hllax¢k€AszN>{fn(vk’ ¢k))}’
U1 = &y (Vk),  where §mm = mmeAEfV){f”(”k’(ﬁk)}'

The superscript N gives the index of updates of the auxiliary map after the first and subsequent appli-
cations, particularly valuable when the auxiliary map is contracting, as demonstrated below for the specific
cases considered in Section 6.2. To track the (possible) contraction of the region for each update, we define
AN in (6.4)-(6.5) below. There AN =R, for all N if the region does not contract, while AV =R, and
A%N) C R, for N > 1 for a contracting region, updated as the auxiliary map is updated. For the system
studied here, it is only for n = 1 that A%N) contracts.

(N) -

Likewise, the auxiliary map 7y ’ is given in terms of two maps Mmax, Mmin that bound ¢y41 for v, €

[Umma 'Umax] .

) _ { 1 = Nink(0x), where nik i=max, v {gn (v, d1)},

(6.2) U (™) N) . _
Oht1 = Mypin (Pr), wWhere n .= min, o0 {gn(vr, k) }-

We then write the full auxiliary map, replacing M (4.1) with ME4N), which is composed of a combination

(T(LN) (N)

of maps (f,,gn) and M), with vy, @ corresponding to impact velocities on 0B as in (4.1). For our

system it is only AﬁN) that contracts as N increases, so we define the full auxiliary map as

(Vks1, Srr1) = MU (vg, i),
N €™ (o), ““(m)) for (vg, dx) € ALY,
(6.3) MO (v, ) = E wr), S (0r)) for (vk, ¢x) € Ra,
(fn(vk7¢k) gn(”/w‘bk)) for (Ukad)k) ERn7n:2a4a5'

We define region AgN) C R4 to allow a change in its size over the N updates of the auxiliary construction,

R1 for N =1
6.4 AN = ’
(6.4) ! BgN) otherwise.

(6.5) BN = [minvp¢, max vg¢] x [min ¢ e, max o]

¢
for (Vite, Prie) = (MEL\NA)) (vk, @r), £> 1.

Stated in words, (6.4)-(6.5) simply indicate that for the N*® (N > 1) update of (§£N) (Uk),n:(lN)(qSk)), the
region .A(N is updated to the limiting range of (vg,¢x) obtained from a large number of iterations of

& (), m ™ ().

Remark 6.1. As demonstrated below, updating the region AgN) and ME4N) is valuable for the region(s)
in which the dynamics are contracting since these updates allow a relazation of the worst-case scenario
imposed by the maxima and minima used in the definitions. Thus, we apply this update accordingly below to
approxzimate the size of the attracting region.

6.2. Application of the auxiliary map MEQ\N). In Section 5, the application of M via cobweb phase
portraits indicates that the absorbing dynamics are concentrated in R; for the larger values of d considered
in this study. Specifically, in Fig. 13, we see attracting solutions contained in R; in Case FP and PD, while
the trajectories oscillate between R; and R, in Case CD.
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Fig. 14: Visualization of the auxiliary maps 551) and nil) ((6.1) and (6.2)) for R}, as the lower (orange
diamonds) and upper (blue diamonds) bounds of the maps for vgy1 = f1(vg, ¢x) and ¢dr+1 = g1(vk, dr). In
(a), the family of curves corresponds to the map f; for fixed ¢y values. Likewise, in (b) for g; with fixed vy
values.

While we could construct an auxiliary map in the setting where the dynamics revisit regions with
transient dynamics (e.g., Ra), this would require a different construction to be useful in demonstrating
global stability. Instead, the absorbing dynamics suggest a more efficient approach. From Fig. 13, the
absorbing domain covers values in R; for Cases FP and PD, and in a region just outside of R for Case CD.
This suggests constructing the auxiliary map on a slightly expanded region R{ 2 R, noting that this does
not reduce the accuracy of the approximation as it uses the more accurate 2D approximation over a larger
region, reducing the region over which the separable approximation (f2,g2) is used. Then we can expand
the size of Region R; to Ri" sufficiently so that the long-term dynamics remain in Rf and Rf O Ri, and
here we consider the auxiliary map for Rf only.

The following are the ranges of the initial region Agl) = R for the three cases, the fixed point (FP)
case, the period-doubling (PD) case, and the chaotic dynamics (CD) case of the composite map M:

(6.6) Case FP: R := {(vk,éx) : vr €[0.7,1] and ¢y, € [0.2,7/3]}
(6.7) Case PD: R{ := {(vk, ¢r) : vx € [0.65,1] and ¢y, € [0.13,7/3]}
(6.8) Case CD: R := {(vk,¢r): vk €1[0.64,1] and ¢y, € [0.08,7/3]}

Figure 14 illustrates this construction of {gl) and ngl) in (6.1) and (6.2) for Case FP, with A; = R} and
N = 1. In the phase plane (vk,vk11), the family of curves fi(vg, dx) do not cross each other, so §1§}3X =
f1(vg, min(¢y)) and fr(ii)n := f1(vg, max(¢y)) for ¢ € [0.2,7/3] , thus yielding closed-form expressions for
5%1) in terms of fi. In contrast for ¢y, the family of curves for g1 (vg, ¢r) with fixed vy cross each other so
that the envelope for g; is found computationally from the definition of nfr}gx and nl(nli)n in (6.2). Note that

the shape of the auxiliary map (551), 17%1)) indicates its contracting properties in RL discussed further below.
Auxiliary maps for R3 can also be constructed using the method described in Section 6.1. However, since
R3 is a transient region, we do not pursue its construction here but focus on the use of the auxiliary map in
+
RY.
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Fig. 15: Application of Mﬁ) (6.3) for d = 0.35 with initial conditions (vg, ¢g) in Ro. The green lines show
Ro approximate maps (4.5), and the blue and orange curves show (gﬁ}a{x, nggx) and (§$i)n, ngi)n), respectively
for Ry (6.1)-(6.2). The areas between these curves are shaded in blue, representing the possible values
of v and ¢y in Rf. Analogous to the cobweb phase portraits for M above, the map (fa,g2) is used for

(vk, dr) € Ra, and the auxiliary map is used for (vy, ¢r) € R, as discussed in Remark 4.2. The last 40
steps of the cobwebs are shown in red, indicating the attracting orbit within Rf for MEP.

We apply the cobweb phase portrait method, combined with the update of the auxiliary map region
A&N) within the composite auxiliary map ME4N), to three cases with distinct dynamics: Case FP, Case PD,
and Case CD.

Figure 15 illustrates the cobweb phase portraits for /\/l(l)7 with initial conditions in Rs for simplicity of
exposition. The cobweb trajectories for vy and ¢ quickly leave Ro after two steps, with (vg, ¢ ) reaching
the attracting region Rf. Then in both of the vy — viy1 and ¢ — ¢r+1 phase planes, the cobweb iterations
follow the auxiliary map Ai. Specifically, this maps v; to vjy1 using the upper-bound auxiliary map 5&1,(,
followed by wvg41 to vgyo using the lower-bound auxiliary map fl(nli)n, and then continuing with alternating
upper and lower auxiliary maps. Then, the auxiliary map captures the worst-case scenario of the trajectory
in R, yielding the maximum range in this region. Likewise, the auxiliary maps for ¢, € R are iterated,
yielding a trajectory that covers the range of ¢x. In contrast to the composite map M, for which v, ¢y, reach

fixed points (see Fig. 13), M&N) has an attracting orbit, due to the use of the max and min in (6.1)-(6.2).
We use the bounds on this limiting behavior, shown in red in Fig. 15, to provide an update to AgNH) in

ME4N+1) as in (6.4)-(6.5) for the N + 1%% step of the computer-assisted characterization of the attracting
dynamics.

Figure 16 illustrates the updates of region AgN) and ME4N) in the FP case. Each row shows results for a
different update, specifically N =1, N = 2, and N = 11. The red box highlights the last 10% of the cobweb
iterations, indicating the limiting dynamics for MEL‘N). For N =1, Al = R] is defined as in (6.6) and is also
the same as in Fig. 15. The size of the corresponding absorbing domain (indicated by the red box) shrinks
with N, and AgN) for N > 1 is updated accordingly, as in (()4))—(65) For( increasing N, Figs. 16 (¢),(d) and
(N N)

max/min max /min’ mirroring the smaller size

(e),(f) illustrate the smaller range of vy and ¢ given by & and 7

of AﬁN). Figure 17 then shows how the length and width of the absorbing domain for vy and ¢, decreases
with increasing N. Thus, even though the max/min characteristics of the auxiliary map do not allow the
limiting behavior of M 4 to be a fixed point, nevertheless, for Case FP, we see that region A§N) shrinks to
a negligible size for large N.

Similar to the cobweb illustration of the updates in the Case FP, Fig. 18 and Fig. 20 illustrate the updates
of the region A:(LN) and ME4N) in Case PD and Case CD, respectively. The setup in Fig. 18 and Fig. 20 is
the same as in Fig. 16, with each row showing results from updates of AﬁN). In Case PD, N =1,N = 2,
and N = 11 are shown; while in Case CD, N = 1 and N = 6 are shown. Moreover, in contrast to the
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Case FP, where the limiting dynamics approaches a point for IV large, for Cases PD and CD, the size of the
absorbing domain saturates to its limiting size at a finite N. In Case PD, the limiting dynamics converge to
an attracting period-2 orbit (2-cycle) for both vy, and ¢ when N is large, with much of the size reduction of
AgN) occurring in the first two updates, as shown in Fig. 19. In contrast to case FP, the attracting 2-cycle
has a limiting size dictated by |p, — ¢,| and |py — gg|.

Similar to Case PD, Fig. 20 shows that the limiting dynamics of Case CD when N is large yields
attracting orbits over a larger range of v; and ¢,. In addition to the larger size of the attracting region,
the limiting behavior of ¢y is an orbit with period-4 (4-cycle), while for v, the orbit has period 2 (2-
cycle), as shown in Fig. 20(c),(d). While the difference in the periodic behavior in the auxiliary map for
v and ¢, may seem like a contradiction at first glance, in fact, there is no reason for vy and ¢, to have
the same periodicity, since their auxiliary maps have been decoupled through the use of the bounds on the
region A§N> and the corresponding max/min in (6.1)-(6.2). In this case, the attracting region obtained
from the auxiliary map slightly underestimates that of the exact map (approximately 2% error). Additional
computational exploration (not shown) indicates this error follows from sensitivity of the relatively simple
approximate polynomial maps in this region where the maps are more complex.

The pairs of points (py,¢,) and (pe, ge) shown in Figs. 16 -20 for the largest value of N indicate the
maximum ¢, and minimum p, of the attracting orbits for v and ¢. Likewise, these values can be used to
determine the size of the globally absorbing domain, as discussed in the next section.

6.3. Global Dynamics. The auxiliary map method developed in the previous subsection opens the
door to characterizing the global dynamics of the composite map. The cobweb phase plane dynamics
simulated for the auxiliary map MEL‘N), as shown in Figs. 16-20, demonstrate the convergence to stable
period-m orbits, or m-cycles, in the FP, PD, and CD cases. Since these m-cycles bound a subset of the
auxiliary map’s phase space, their existence and global stability imply the existence of a globally stable
absorbing domain for the trajectories of the composite map M (4.1). The bounds on the absorbing domains
are indicated as ¢y, pv, ¢¢, and pg in Figs. 16 - 20 for the largest value of N shown. Computing these values
as the roots of m iterations of the maps (6.1) and (6.2) for appropriate m, we obtain their stability and thus
bounds on the absorbing domain for the dynamics.

First, to obtain the bounds on v used in the N + 15° update, we consider the second iterate map for
Vk+2, given by (6.1)

(6.9) vera(vk) = € (6N (o).

The maps 5

mln/max

can be written explicitly in terms of fi evaluated at ¢pin/max (6.1), since the family of

curves f1(vk, ¢) for fixed ¢ € [Pmin, Pmax] do not cross each other, analogous to f; shown in Fig. 14(a).
Then we have the closed-form expression for the first and second iterate maps for vg, where the second
iterate map for vy, o is a 9*"-order polynomial of the form

Vks2(vk) = f1(f1(Vk; Pmax)s Pmin)

(6.10) = ag + a1v} + a2V} + azvp + aavj + azvl + agvl + arul + agvl + aguy .

Here «;,i = 1,...,9 are polynomials that depend on d and on ¢y, and ¢y ax, whose coefficients bg, by, ..., by
are listed in Supplementary Section III. The (stable) root vgia = v = p, of (6.10) corresponds to the

minimum on the limiting behavior of ng) (6.1), with the maximum ¢, obtained by

(6.11) Vg = Do, Vkt1 = Go = f1(Vk, Dmin) = f1(Po, Pmin) = EQR (Do),

= Vg2 = Py = fl(vk—i-h ¢max) = fl(Qva (bmax) = fl(fl(pm (rbmin)a ¢max) = Ex(xll\fr)l(pv) .

These values p, and q,, together with the limiting behavior indicated by the red boxes for sufficiently large
N, are shown in Figs. 16-20 for the FP, PD, and CD cases.

Similarly, the limit cycles for ¢y, are based on the definition of n%N) in (6.2). For the FP and PD cases,
we consider

(612) ¢k+2 (¢k) - nmm (nmax(d)k))
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Fig. 16: Mlustration of the 15,27 and 11*" update of the auxiliary map M (6.3) for Case FP (d = 0.35).
For each N, 400 steps are taken, and the last 40 steps are highlighted in red. This red orbit also defines
AEN) C Rf for N > 1, based on the limiting orbit from the (N — 1)** update (see (6.4)-(6.5)). In (a) and
(b), N =1 and A" = R}, defined in (6.6). As in Fig. 15, the initial condition is in Ro, and the first
few steps are governed by (fa,g2) (4.5) (green line). In (c),(d) N = 2, and (e),(f) N = 11, with the N"
initial conditions for N > 1 given by the last state from the N — 1%* update, obtained from the attracting
orbit in red. The gray boxes and dashed orange lines between figures indicate the zoom-in region shown
in the subsequent row. The stars with (p,,q,) and (pg, ¢s) in panels (e) and (f) indicate the min and max
of the attracting orbit. For N = 2, A§2) s, € [0.772,0.908] and ¢ € [0.297,0.791], and for N = 11,
A Loy € [0.8488,0.8490] and ¢, € [0.3804,0.3811).
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Fig. 17: Ilustration of the size of the domain Ay for each N, showing that the absorbing domain size
decreases monotonically for Case FP, reaching 0.000185 and 0.0001867 in the vy, ¢ directions, respectively.

In contrast to (6.10) for vy, the family of curves gi(vk, ¢r), in the definition of Ny /max (6.2) cross each
other for different fixed v € [Umax, Umin], analogous to Fig. 14(b). Then, there is no closed-form expression
for the first and second iterative maps ¢x11 and ¢x42, and 7pmax/min are determined numerically in (6.12).
For the FP and PD cases, we calculate ps and g4, which give the minimum and maximum of the limiting
behavior shown by the red boxes in Fig. 16(f) and Fig. 18(f) for sufficiently large N. They are given by

(6.13) Ok = Do, Ohy1 =y = nggl(vk, oK) = ngxgl(vk,pgﬁ) =N (ps),

= Gyz = o = min g1 (k. Gir1) = mings (v, go) = min g (vg, max g1 (v, P3)) = My (BN (Po))-

Similarly, for the CD case, the minimum and maximum for ¢, are generated computationally using the
fourth iterate map for ¢gy4.

(6.14) raton) = i) (12 (1) o)) ).

For sufficiently large N as illustrated in Fig. 20(d), there are four fixed points for the period-4 cycle ¢4,
calculated as

Ok = Py = Ort4, Pri1 = 0o = NSk (Do),
(6.15) G2 =16 = Nn(@0) = Mo (10K (P6)),
s = 05 = 15 (1) = 1L (0 (00 ().
(6.16) Srra = 1oin(04) = N (10 (NS (10 (o))

Notice that for the CD case, there is a period-2 orbit in vy (6.12) and a period-4 orbit in ¢j. This unusual
property follows from the fact that the auxiliary maps for vy and ¢, are uncoupled, each using the (fixed)
max and min of the other variable as provided by the previous update.

The curves obtained from applying the iterates given in (6.10), (6.12), and (6.14) are shown in Fig. 21.
Panels (a)-(d) illustrate the stability of the fixed points p, and py for the period-2 cycles in Cases FP and
PD. There, the curves show the limiting behavior of the second iterate of M&N)7 given by (6.9) and (6.12).
They intersect the diagonals in the vio —vi and ¢g4+2 — ¢ phase planes with a slope less than unity. Then,
for sufficiently large N we obtain the stable fixed points p, and pg, likewise implying the stability of the
fixed points ¢, and g4, which all together provide the range of the attracting region for M;N) in Fig. 16
and Fig. 18. Similarly, for the CD case, in Fig. 21(e),(f) the curves show the limiting behavior of M;N)
for sufficiently large N. These curves, obtained from (6.9) for vy and the fourth iterate map for ¢, (6.14),
again intersect the diagonals in the phase planes with a slope less than unity, indicating the stability of p,,
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Fig. 18: Tllustration of the 15¢, 274 and 11*" update of the auxiliary map MEL‘N) (6.3), for Case PD (d = 0.30),
using the same procedure as in Fig. 16. Here Agl) = R{ (6.7) in (a) and (b); for N = 2 in (c) and (d),
Ay, € [0.666,0.850] and ¢, € [0.146,0.977); and for N = 11 in(e) and (£), A" : v, € [0.684,0.832]
and ¢y € [0.156,0.758], where the size of AgN) for N > 1 follows directly from the limiting (red) behavior in
N — 1% update ((6.4)-(6.5)). As in Fig. 16, the gray boxes and dashed arrows between figures indicate the

zoom-in region in the next row. The stars with (p,,¢,) and (pg, ge) in panels (e) and (f) indicate the min
and max of the attracting orbit.
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Fig. 19: Mlustration of the size of the absorbing domain for case PD that decreases to a limiting size, with
the final limiting size as 0.1472 and 0.5991 for v and ¢, respectively.

qv and py, ¢4, 04 and v, in Fig. 20. Then p,, g, pg and g4, provide the range of the attracting region. The
unstable fixed point ¢, between py and v, confirms that all trajectories are absorbed into the 4-cycle, as
shown in Fig. 20(d), and py,ys correspond to the two smallest values of the period-4 fixed points. Further
discussion is given in Remark 6.2.

The following statement summarizes the results for the existence of a globally attracting absorbing
domain on the auxiliary composite map ./\/lE4N), also indicating the extension of the result to higher-order
cycles of the auxiliary map that may appear for parameters not considered here, e.g., other values of d. To
streamline this Remark 6.2, we assume that the update index N is sufficiently large so that the periodic
cycle and corresponding absorbing domain of MEL‘N) has reached its limiting size, thus not changing with
increased IN. For example, for the PD case shown in Fig. 18, a good choice would be N > 11.

Remark 6.2. [Existence of an Absorbing Domain (sufficient conditions)]. A globally stable m-cycle of the
auziliary map ME4N) with A(IN) € Rf bounds a globally stable absorbing domain DY) = {pv < v < @, Py <
o1 < qg.} Here, p, and q, are, respectively, the smallest and largest values of the period-m fized point of the
mth iterate map for viy . (vi), obtained analogously to (6.12) and (6.14) via m iterates of (6.1). Similarly,
Dy and gy are the smallest and largest values of the period-m fized points of the corresponding m™ iterate map
Ok+m (D). In general, we expect the m-cycles of the auziliary map to occur for m even, given its maz/min
structure.

As described in Section 6.1, one can apply the auxiliary approach for all regions R; for j = 2,3,4,5,
which confirms the transient behavior for regions outside of R;. Combining this transient behavior with the
results of this section, we have the complete confirmation of the bounds on the attracting domains for M
for different d, obtained via the limiting regions of the auxiliary map as applied in Sections 6.2, 6.3.

7. Conclusion. While the study of VI systems through local stability analysis has gained significant
momentum, understanding their global dynamics and bifurcations remains challenging due to the limited
applicability of classical global stability methods developed for smooth dynamical systems. In particular,
the focus in the engineering literature has been on linear stability and bifurcations, yet global behavior is
important in design.

In this paper, we propose a computer-assisted analysis based on reduced smooth maps for studying
the global dynamics of the VI pair. The framework is designed to be generic, ideally for application to
other non-smooth dynamical systems. The global stability analysis is facilitated by an approximation of
the exact map for the states at impact, specifically the relative impact velocity 7y between the outer (the
capsule) and the inner (the ball) masses and the impact phase 1y relative to the forcing. The exact non-
smooth maps for these quantities are given by complex coupled transcendental equations for Zi and V.
While the non-smooth dynamics present a challenge in using commonly defined maps, they also provide
an opportunity for designing a new approach for impacting systems. Specifically, we use short sequences
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Fig. 20: Illustration of the 1%t and 2" update of the auxiliary map MEL\N) (6.3), for d = 0.26, corresponding
to Case CD, using the same procedure as in Fig. 16. Here, A§1> = R} (6.8) in (a) and (b); for N = 6
in (c) and (d), v, € [0.673,0.789] and ¢, € [0.093,0.725]. As above, the size of A" for N > 1 follows
directly from the limiting (red) behavior at the N — 15% update ((6.4)-(6.5)). As in Fig. 16, the gray boxes
and dashed arrows between figures indicate the zoom-in region in row 2. The limiting periodic behavior is
2-cycle and 4-cycle for the (decoupled) auxiliary maps of vy and ¢y. Panels (e) and (f) show the decrease of
the size of the absorbing domain to a limiting size with the limiting size equal to 0.115 and 0.631 for v and
¢, respectively. The stars with (p,,qy) and (pg,¢s) in panels (c¢) and (d) indicate the min and max of the
attracting orbit.

of returns to one side of the capsule to define building blocks for the maps. The output of such a return
map yields surfaces for Zk+1 and 41 in terms of Zr and k. Return maps based on these building blocks
give the foundation for dividing the state space into a small number of regions with potentially attracting or
transient behavior, thus yielding valuable, distinguishing features that can be used for global stability results.
Generating polynomial approximations of the exact return maps for Z;, and 1. on each region in state space,
we combine these to obtain a piecewise smooth approximate composite map to reconstruct the dynamics of
the system. This framework is computationally efficient. It reduces the main computation to constructing
polynomial return maps for only short-time realizations of the impact pair over the space of initial conditions,
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Fig. 21: Curves for the m'" iterate maps of M(N), obtained from (6.9) and (6.12), intersecting the diagonals
at Umin and ¢min, with limiting values p, and pg, respectively, for sufficiently large N. Panels (a),(b): the
FP case for N = 1,2; by p, and and pg, obtained for N = 11. Panels (c),(d): the PD case for N = 1,2, 11.
Panels (e) and (f): Case CD with the second iterate map for vy (6.9) and the fourth iterate map for ¢
(6.14) for N = 6. The zoomed inset in (f) highlights the intersection of two smallest fixed points, p, and
v, of the period-4 cycle of the auxiliary map, also shown in Fig. 20(b). The point ¢, is the unstable fixed
point between these two values.
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in contrast to long-time simulations over the entire state space traditionally used in deriving flow-defined
Poincaré maps for global dynamics of limit-cycle or chaotic systems. Yet, our approximate return maps can
be viewed as geometrical models of VI pair systems, analogous to geometrical Lorenz maps used to analyze
global dynamics and bifurcations in the chaotic Lorenz system [2, 44, 23] and its more analytically tractable
piecewise smooth counterpart [7]. While certain aspects of the computation-based analysis do not rely on
finding polynomial approximations for the return maps, we pursue them with the goal of explicit expressions
for the global analysis.

Anchored in relatively simple return maps, our framework is valuable for cobweb analysis in the phase
planes of the state variables. The relevant global analysis is facilitated by introducing 1D auxiliary maps
based on the extreme bounds of the 2D maps in the regions with different types of dynamics. Repeated
updates of these auxiliary maps within regions with attracting dynamics yield attraction basins for limit-
cycle and chaotic dynamics. Thus, our computer-assisted method of reducing non-smooth systems into a
composite piecewise smooth map provides a framework to study the global dynamics of non-smooth systems
with impacts. Here, we have focused on parameter regions corresponding to energetically favorable states
in VI pair-based energy harvesting systems, so that the results are relevant for recent designs of VI-based
energy harvesters [57] and nonlinear energy transfer [28]. While motivated by a specific vibro-impact energy
harvester, nevertheless, our approach uses generic return maps composed of short sequences of impacts that,
in turn, decompose the full dynamics. Thus, the paradigm can be generalized for application in other non-
smooth systems. It may also be interesting to see if this approach, motivated by a particular class of applied
models, is relevant for 2D maps considered in generic mathematical settings [35].

Adapting these findings to realistic external environments remains critical for future exploration. Fu-
ture work will focus on refining these theoretical frameworks and methodologies to effectively integrate
vibro-impact systems into practical applications. This pursuit involves enhancing our understanding of the
underlying dynamics and engineering solutions that can withstand and thrive in realistic external environ-
ments.
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Fig. 22: Bifurcation diagrams for Zj from (2.6) based on continuation-type methods for decreasing d (top)
and increasing d (bottom). Blue and black open circles correspond to deterministic forcing, and green and
red dots correspond to additive noise forcing via an Ornstein-Uhlenbeck process ¢, with limiting behavior
¢ ~ N(0,0.002). Parameters: r = 0.25, § = 7/6.

One example of a realistic external setting is the consideration of the VI energy harvester, illustrated in
Fig. 1(a), under stochastic external forcing. Figure 22 gives the bifurcation structure with two different types
of periodic behavior for the system (2.1)-(2.3), shown via the impact velocity Z; vs. the non-dimensional
capsule length parameter d. Both panels show deterministic (open circles) vs. stochastic (dots) results for
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Zj. The top and bottom panels show bifurcation diagrams obtained via a continuation-type method for
decreasing and increasing d, respectively. Comparing these indicates bi-stability of two different periodic
behaviors. For larger d, we observe 1:1 periodic behavior with alternating impacts on 9T with le < 0and 0B
with Zj > 0 per forcing period. For smaller d, we observe 2:1 behavior with two impacts on 0B followed by a
single impact on T per forcing period. The bi-stability is apparent from the co-existence of branches for the
1:1 and 2:1 solutions in a range of d, approximately 0.221 < d < .216. At the same time, the stochastic results
shown by the green and red points indicate the regular appearance of 2:1 behavior, even for larger values of
d beyond the region of bi-stability. A preliminary analysis, based on the algorithm from Section 4 with an
augmented set of return maps analogous to (3.1), includes both Pprp to capture 1:1 behavior and a new
map Ppprp to capture 2:1 behavior. These maps capture the attraction to either 1:1 and 2:1 behaviors or
both. Furthermore, this novel return map framework also provides critical information about the stochastic
sensitivity of the 1:1 behavior. Specifically, the geometry of the surfaces of these maps, analogous to those
shown in Fig. 6, indicates how the noise can bias the dynamics towards 2:1 behavior. We leave the details
of that analysis to future work, noting that the algorithm’s combined flexibility and efficiency allow for a
straightforward augmentation that includes new return maps representing the 2:1 behavior. Then, within the
dynamical characterization of the state space provided by our algorithm, we can study non-smooth dynamics
in a stochastic setting.

This paper has focused on the development of a novel return map formulation as the basis for a computer-
assisted global analysis, obtaining explicit expressions wherever possible. There are a number of other fea-
tures that we expect are valuable for future generalizations that we have not pursued here. For example,
we expect that more steps of the algorithm could be automated, such as integrating defined criteria to aid
in partitioning and comparing approximations for different orders of polynomials for the composite map.
Furthermore, while we have given the algorithm in terms of 2D maps for simplicity of exposition, we expect
that the ideas of this approach can be adapted to higher dimensions. In addition, if we relax the demand for
a nearly explicit global analysis, we anticipate that accurate auxiliary maps that are purely computation-
based could be used to approximate the attracting region(s).
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Appendix A. Return Maps and Composite Map Construction.

A.1. Division of state space for the return maps. We show the regions in the state space (Zk, ()
whose images correspond to BB, BTB, and BTTB motion, with Ppp and Pprp as defined in (3.1) in Section
3, and Pprrp. Figure 23 shows the full range of ¢y, from 0 to 27, and a larger range of i as compared
to Fig. 3. The region with ¢y > 7 is comprised of mostly BB motion and, as discussed in Remark 3.2 and
shown in Fig. 7, is strongly transient. Likewise, the yellow regions, corresponding to BTTB motion, are
strongly transient for 5 > 0, which drives the motion away from multiple impacts on the top membrane 0T
Therefore, we restrict our attention to the state space with range ¢, € [0, 7] and Zp <1.25 (below the yellow
regions) when constructing the composite map M, with a focus on understanding the attracting region and
those regions in state space in close proximity to it.
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Fig. 23: Division of the (Zk,wk) state space, corresponding to exact return maps with BTB motion (blue
and magenta regions), BB motion (black regions), and BTTB motion (yellow regions). Parameter: d = 0.26.

A.2. Phase plane projection of the exact maps. Figure 24 shows the projections of the exact
maps, defined by (3.1) in Section 3, on the Zi — Zk+1 and ¥y — ¥g41 phase planes, as referenced in Remark
3.2. This 2-D projection of Fig. 6 gives separate views of the dynamics for Z;, and 11 in their respective
phase planes. The points delineate curves for Zk+1 and 941 in the image of the return map, some of which
cross both diagonals in the Zr — Zk+1 and ¥y — ¥ry1 planes. The slopes of the curves that intercept the
diagonals suggest that there is a smaller subregion of the state space (Zk, 1) that is attracting.

A.3. Comments on Region R;. In the next six sections of the appendix, we further comment on
the details of the algorithm implementation for the specific VI pair model, as discussed in Section 4.2.
In order to capture the full dynamics for all d near the diagonals of both phase planes Z; — Zj41 and
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Fig. 24: (a),(b): Using the method illustrated in Fig. 5, we show the first return on 9B using (3.1) for fixed
values of ¢y in the range of [0, 27| and sweeping through initial values Zy € (0,1.25) with d = 0.35. The
colored points correspond to BTB motion, and the black points correspond to BB motion. The points with
the same color on the left and right panels correspond to images from the same 1. (c),(d): Zoomed-in
results from (a)-(b) on the region of state space for ¢y € (0, 7), complementing the region shown in Fig. 7.

Y — Vi1, we define region Ry as the union of the subregions obtained using (4.2). Figure 25 illustrates the
location of the subregion (green) based on the filter in (4.2) corresponding to one d value. These are shown
relative to the union of the subregions over all d in the range of interest (blue). Through this definition, we
can use the same map for R, for all d considered rather than finding different approximate maps for each d.

We have explored a range of 0 values, 6 = 1.2,1.3, 1.4, which is the filter parameter in (4.2). In summary,
a smaller ¢§ yields a smaller R; which allows a more accurate approximation of f; and g; to the surface of the
exact map. On the other hand, a larger R; can capture more dynamics near this region which is desirable. In
that case, one can compensate for the increased error associated with larger J by increasing the polynomial
orders in the approximation. Here, we chose § = 1.2 for the benefit of a simpler expression to construct the
approximate map.

In considering the choice for the order of polynomials, we note that higher-order polynomials give
more accurate approximations, but this will increase the complexity of the 2D map. Hence, we choose the
lowest order polynomial such that the approximation can also reproduce similar dynamics to the exact map.
In this case, the polynomial map is quadratic in ¢ and cubic in vg. Specifically, the polynomials given
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in the map (f1(vk, dk), g91(vk, ¢r)) (4.3)-(4.4) in Rq.2 approximate the surface using the Matlab function
fit([x,y],z,fitType) with argument fitType set to "poly23". A detailed comparison between the order
of the polynomials used in the approximation and the associated error is given in Table 1 and Fig. 26.

Table 1 compares different types of approximation error statistics, R?, and the Summation Squared
Error (SSE), using different § and different orders of polynomials. Figure 26 indicates that a smaller 0 gives
a better approximation for a given polynomial order, as a larger ¢ includes more variability of the surfaces
for (Z+1, Yg+1). Table 1 shows that the combination of § = 1.2 and the polynomial order poly23 gives the
best result.

§ Poly degree o vk\HSSE - o - ¢k\+1SSE

1.2 poly23 0.9992 2.2705x10~° | 0.9998 2.2181x107°
1.3 poly23 0.99827 0.0025092 0.99984 0.0032939
1.3 poly33 0.99827 0.0025055 0.99994 0.0011577
1.4 poly23 0.99735 0.0055033 0.99981 0.0055713
14 poly33 0.99735 0.0054874 0.9999 0.0031359

Table 1: Comparison of the approximation error R? and SSE in R; for different § and different polynomial

orders. Here, R? =1 — %, where the Summation Squared Error and the Summation Squared Total are

given by SSE = >""(y;—9;)* and SST = Y. (y; —)?, respectively. Here, y; is the exact value corresponding

to Zk+1 or Yr+1, and g; is the estimation vgy1 or ¢r41, and 7 is the average of all exact values Zk+1 or
Yyt

A.4. Comments on Region Ry. The surfaces generated over Ry correspond to the BTB behavior.
As described in Remark 4.1, we use separable maps to represent the dynamics of Region Ro. Recall that the
separable map takes the form of a single variable polynomial, e.g. vgy1 = fa(vr) and @r1 = go(dr) (4.5)
in this case. Given the strongly transient nature of the dynamics in R, also indicated by the steep surfaces
shown in Fig. 6, this 1-D approximation with separable maps is sufficient to represent the dynamics of Rs.

A.5. Comments on Region R,. Similar to Region R, the surfaces over R4 also correspond to the
BTB behavior. However, the surfaces in this region must be approximated separately because of its steep
descending surfaces over smaller values of Z, making it difficult to obtain a good approximation over the
combined regions of Ry and R4. The approximate location of R4 is given by {(Z,Q/Jk) : Zp <055, 1.1 <
Y < 2.5, and Zj, > 0.63 — 0.531 }.

Similar to R2, we use separable maps for the approximation in R4, choosing two 1-D maps that represent
the dynamics given by the surfaces for Zk+1 and Y41

Uk 1 (V) = fa(vr) = byl + by vy + bagv + byzv? + bagvi + basvi + bygvi + bazv + bas,

(A1) Or+1(dk) = ga(vi) = aso@) + an1d; + asedy + aszr, + aaa.

The steep drop of the surface for smaller values of Zj 1, as shown in Fig. 11(f), indicates that the dynamics
in Ry is also strongly transient. That is, at the fixed point of v = fi(vg) the slope is |fi(vi)| > 1, as
shown in Fig. 11(e).

A.6. Comments on Region Rj3. The approximation for Rz covers the surfaces in Fig. 6 over the
region {(Zg,vr) : 0 < Z < 0.63 — 0.53¢) } within the state space considered. The approximations for the
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Fig. 25: Tllustration of the location change of the subregions filtered by (4.2), as shown in green. The blue

region surrounding it is the union of all such regions Uge[o.26,0.35)R1.2, as described in (4.2). (a),(b): d = 0.35;
(¢),(d):d = 0.30; (e),(f): d =0.26.
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Fig. 26: Heat maps corresponding to the approximation error in Region R; with different ¢ in (4.2). The
approximation errors €, = |Zy41 — vg4+1| are shown in (a),(c),(e) and €y = |41 — Gr+1| are shown in
(b),(d),(f) for (Zkt1, dr+1) in the exact map and (vg41,Pr+1) in the coupled 2-D approximate map (4.3)-
(4.4) for Ry. Note lighter colors indicate larger errors €. As ¢ increases, the size of Ry increases, which

includes more variation that yields the larger approximation error. (a)-(b): § = 1.2; (¢)-(d): § = 1.3; (e)-(f):
0 = 1.4, and d = 0.35 in all panels.

lower triangular surfaces in this region are given by

Vg1 (Vs &) = f3(k, dk) = bsoo + bso1dk + bso20k + b303d% + b30adrvk + bsosvi + baosdy, + bsor Dk
+ b3osdrVi + bsoovi + bs1oBivr + b311dRvi + bsr2dwvy + bs1svy + bs1adpui
+ b31503 03 + b316dkvs + ba17vy,
Drt1 (Vis Or) = g3 (vis Pk) = G300 + A301 Pk + A3020% + A3030% + A3040KVk + A305V% + A3060) + A307DRVK
+ azos PRV + az09Vi + a3100% + a31108VK + a3120708 + a3130KV + A314V + A3150RVk
(A.2) + 3160507 + az1703UE + az18PKVE + az19vy.
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As discussed in Section 4.1, Tteration 1 steps iv) and vi), there is also a nearly vertical surface in this
region, shown in Fig. 6. It represents strongly transient dynamics corresponding to rapid transitions from
BB to BTB behavior, so we treat this as immediately transient. As a result, we use the lower triangular
surface to capture the dynamics of this region, taking the map (A.2) over all of R3. We find that these
surfaces do not shift or change shape with d varying. Therefore, the coefficients in (A.2) are constant instead
of being functions of d.

A.7. Comments on Region R5. Region R5 corresponds to smaller Zk < 0.55, as in R4, and for
larger ¢: 2.5 < 9, < . The dynamics in this region are BB motion instead of BTB motion, with the map
(f5,95) based on a separable approximation as in Ry and R4. The green curves in Fig. 27(a),(b) capture
the dynamics on the surfaces for Zk+1 and 41, and are approximated with orange curves that give the
separable maps

Ukt1(vk) = f5(vr) = |bsovi + bs10R + bsavj + bssvk + bsal,

(A.3) Grt1(Pr) = g5(Pr) = asody + azs19; + asady + ass.

The coefficients as;, bs;,7 = 0,1, ..., 4, are functions of d, with as4 =0 in ¢g41.

Note there is a small nearly vertical area in the surface for 141, similar to that observed in R3 mentioned
in Appendix A.6. As discussed in step vi) of Iteration 1 of the algorithm (Section 4), we treat this as
immediately transient, taking the map (A.3) over all of Rs5.

(a) (b) (c)
1.25 n

. . 0.8

— - - .

M tr : '—T—

S os §? / N N
; 0

% 05 125 % o p 08 o,
Vi bk 7

Fig. 27: Approximation of (Zxt1,%k+1) in R5 for d = 0.35, which has ranges Z < 0.55 and 2.5 < ¢y < .
Panels (a),(b) compare the orange curves for the approximate separable map (A.3) with the green curves
in the corresponding phase planes. In panel (c), the green curves are generated with the exact map (3.1),
giving a separable representation of the variation of the surface for fixed ¢, = 3.05 (left) and Zi = 0.12
(right).

A.8. The pseudocode used in the programming the composite map. Here, we provide the
pseudocode for the approximate composite map for (v,, ¢, ), as used in Figure 12, with references to the
bounds and maps for each region R,,.

Algorithm: Composite map for (v,, ¢,)

if ¢, > ™ OR ¢, <0, then
Reset as in Section 4.2, Iteration 1, step vi): ¢p+1 = 1.2 and vp41 = vk
else if 0.63 < vy < 0.94 AND 0.15 < ¢, < 0.45. then
Use Region R; approximate maps (4.3)-(4.4):
else if v, > 0.63 — 0.53¢; AND vg, > 0.55 AND (vg, ¢r) ¢ R1, then
Use Ry approximate map (4.5):
else if v > 0.63 — 0.53¢r AND 1.1 < ¢ < 2.5 and v < 0.55, then
Use R4 approximate map (A.1):
else if 2.5 < ¢, < ™ AND v < 0.55, then
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Use R5 approximate map (A.3):

else if vy < 0.63 — 0.53¢%, then

Use R3 approximate map (A.2):
end if
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