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Abstract. We present a novel approach for studying the global dynamics of a vibro-impact pair, that is, a ball moving in4
a harmonically forced capsule. Motivated by a specific context of vibro-impact energy harvesting, we develop the method with5
broader non-smooth systems in mind. The seeming complications of the impacts of the ball with the capsule are exploited as6
useful non-smooth features in selecting appropriate return maps. This choice yields a computationally efficient framework for7
constructing return maps on short-time realizations from the state space of possible initial conditions rather than via long-time8
simulations often used to generate more traditional maps. The different dynamics in sub-regions in the state space yield a9
small collection of reduced polynomial approximations. Combined into a piecewise composite map, these capture transient and10
attracting behaviors and reproduce bifurcation sequences of the full system. Further “separable” reductions of the composite11
map provide insight into both transient and global dynamics. This composite map is valuable for cobweb analysis, which opens12
the door to computer-assisted global analysis and is realized via conservative auxiliary maps based on the extreme bounds of13
the maps in each subregion. We study the global dynamics of energetically favorable states and illustrate the potential of this14
approach in broader classes of dynamics.15
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1. Introduction. The prevalence of non-smooth dynamics, characterized by switches, impacts, sliding,18

and other abrupt alterations in behavior, permeates various fields, including physics, biology, and engineer-19

ing [3, 21, 15]. Non-smooth dynamical models are essential for understanding phenomena such as body20

component interactions with non-smooth contacts, impacts, friction, and switching in mechanical systems21

[17, 49, 32, 5], and relay systems, switched power converters, and packet-switched networks in electrical22

and control engineering [17, 18, 9, 24]. In the life sciences, non-smooth dynamics are evident in diverse23

systems such as gene regulatory networks [43, 1] and pulse-coupled neurons [20]. While piecewise smooth,24

non-smooth, and vibro-impact dynamical systems represent vast research fields in nonlinear science, histori-25

cally, non-smooth systems have received far less attention than their smooth counterparts. In recent decades,26

increased efforts have pursued a comprehensive understanding of non-smooth bifurcations and related non-27

linearities (see extensive reviews [15, 26, 27, 6] and references therein).28

Vibro-impact (VI) systems constitute a distinct class of dynamical systems where impacts substantially29

influence the nonlinear behavior. Typical classes of VI systems include a forced mass and one or more30

stationary rigid barriers or, alternatively, a pair of moving impacting masses, each of which may be subject31

to external forcing. Classic examples include balls bouncing on moving surfaces [36, 32, 31], pendulums32

impacting barriers [50, 16], and VI pairs composed of two oscillating masses that impact each other [37].33

Generally, both masses in the VI pair may undergo forcing, complemented by elastic or inelastic impacts. A34

canonical VI pair, considered in this paper, consists of a forced capsule, with an inner mass moving freely35

within a cavity of a given length and impacting the ends of the capsule. This concept has been explored as36

an effective vibration mitigation alternative to linear tuned mass dampers or continuous nonlinear dampers37

[56, 54, 58, 39, 33, 34, 13, 38]. Recently, a VI pair was proposed as an energy harvesting mechanism, where38

the impacts between the inner mass and the capsule deform flexible dielectric polymer membranes on the39

capsule ends [57]. These membranes serve as capacitors, as the impacts deform them and change their40

capacitance, thus enabling energy harvesting [30]. Previously VI pairs have been studied by approximate41

methods, including averaging, multiple scales, and complexification averaging [19, 25, 34, 55], but with42

limited applicability to non-smooth systems with impacts.43
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Recently, VI pair systems have been studied precisely using maps, combining the system’s motion be-44

tween the impacts and the impact conditions. The semi-analytical solution of these exact equations can45

provide exhaustive information regarding the bifurcation structure and local stability of different types of46

motion. In the case when the smaller mass is negligible relative to the larger one this two-degree-of-freedom47

system can be reduced to a single differential equation for the relative displacement of the two masses [46, 37],48

used to explore, e.g., the interplay between classical and grazing bifurcations [48] and comparisons of instan-49

taneous and compliant impact conditions [12]. In settings where the smaller mass is non-negligible, such as50

in targeted energy transfer, exact maps for the full system allow bifurcation analyses over a large range of51

parameters for modes with efficient energy transfer and their loss of stability to inefficient alternating chatter52

behaviors [28].53

These previous map-based results are primarily based on linear stability analyses, leaving a critical gap54

in analyzing the global, possibly chaotic dynamics of VI systems due to severe limitations of the existing55

global stability methods in handling impacts. One contributing factor for the forced VI pair is the fact it is56

non-autonomous, yielding analytically intractable coupled transcendental maps for the system response and57

impact time that prevent explicit expressions for the state of the system.58

In a broader context, global stability approaches for non-autonomous, non-smooth systems are few and59

far between. One notable example is an extension of the Lyapunov function method to prove the global60

stability of the equilibrium state of a non-autonomous bouncing ball [31]. In this setting, the Lyapunov-type61

method involves non-autonomous measure differential inclusions and constructs a decreasing step function62

above an oscillating Lyapunov function. However, its application to non-trivial dynamics of VI pairs with two-63

sided impacts seems elusive. Another notable sample is an averaging Lyapunov function approach developed64

to prove global convergence to absorbing domains of non-trivial attractors in non-smooth dynamical systems65

with a non-autonomous stochastic switching parameter rule [24]. However, this approach is not relevant for66

non-autonomous VI systems as it is based on knowledge of the averaged autonomous system’s attractor.67

Recently, a computer-assisted proof of chaos in piecewise linear maps was obtained by explicit construction68

of trapping regions and invariant cones based on word sets representing the dynamics symbolically [52]. An69

area-preserving map-based analysis for the global behavior of a rare, restricted behavior of the VI pair was70

proposed in [10]. Yet, to date, there appear to be no global analyses relevant to applications such as energy71

harvesting, for which the VI pair dynamics of interest include sustained sequences of regular impacts on both72

barriers at the capsule ends, observed over a large range of parameters. Then, we are faced with the challenge73

of global analyses of behavior with at least two (alternating) impacts per forcing cycle. This feature is in74

contrast with other studies of impacting systems that may consider the transition between no impacts and75

a single impact [40], repeated impacts on a single barrier [53], or the global attraction of a solution without76

impacts [31].77

In this paper, we present a novel computer-assisted approach for studying the global dynamics of the78

VI pair, that is, a ball moving in a harmonically forced capsule. Motivated to develop an analytical global79

analysis for this system, we prioritize approaches that include explicit expressions wherever possible. We80

exploit the seeming complications of the sustained impacts of the ball with the capsule as useful non-81

smooth features in constructing two-dimensional (2D) return maps that can characterize global dynamics82

and bifurcations of the VI pair. Computationally efficient short-time realizations of these return maps83

divide the state space according to different dynamics. Our definition of return maps does not fall into84

standard choices for maps, such as Poincaré, stroboscopic, all impacts, or all returns to a particular state85

[37, 40, 42, 51]. Instead, it divides the return maps based on the sequence of impacts that do or do not86

occur before the system returns to a particular impacting state. This innovative perspective is valuable for87

efficiently partitioning the state space into a small number of regions from which it is straightforward to88

identify attracting and transient behavior. Based on the behavior in each region, we then define reduced89

polynomial approximations for the maps in each region.90

Combining these polynomials into a piecewise smooth composite map, we demonstrate that it captures91

transient behaviors throughout the state space while reproducing the attracting behaviors. Furthermore, it92

reproduces an important sequence of period-doubling bifurcations and (apparently) chaotic behavior com-93

pared with the bifurcation sequences of the exact systems. In constructing the composite map, we find that94

in some regions with strongly transient dynamics, we can reduce the 2D return maps to a pair of 1D return95

maps without sacrificing the integrity of the attracting dynamics. While not a necessary step, these types of96

“separable” components of the composite map provide transparency for the overall dynamics. Furthermore,97
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this composite map derived from the non-smooth VI dynamics is remarkably valuable for cobweb analysis,98

as it is based on simple return maps corresponding to impacts on one end of the capsule rather than on99

compositions of map sequences. Specifically, the separable representations of the 2D map are convenient for100

visualizations within this cobweb phase analysis that captures the different attracting behaviors for different101

parameter regimes.102

Notably, this cobweb analysis motivates a valuable definition of auxiliary maps on the regions identified103

within the construction of the composite map once the transient and attracting characteristics have been104

identified. For regions with attracting dynamics, the auxiliary map is conservatively based on the extreme105

bounds on the map for each region and thus can be used to bound the attracting domain. A key feature of the106

auxiliary maps is that they simplify the 2D return maps into a set of 1D equations using the bounds for each107

region. Then, a cobweb phase space analysis is used to explore the system’s long-term dynamics. Repeated108

application of the auxiliary maps, each with updated bounds obtained from the previous application, yields109

a limiting multi-period cycle that bounds the attracting domain. With the auxiliary maps based on the110

polynomial approximations, we can obtain analytical expressions for the impact velocity map and, thus, for111

the attracting domain.112

We outline the process of generating the approximate composite map in terms of a general algorithm113

adaptable for other non-smooth dynamical systems. A key step in the algorithm includes identifying short114

sequences of impacts that give the building blocks for the return maps. The resulting division of the state115

space is relatively simple and computationally efficient compared to, e.g., the identification of basins of116

attraction, which require long time computations to find complex regions for dynamics sensitive to initial117

conditions. Likewise, flow-defined Poincaré maps for the global dynamics of periodic and chaotic systems,118

derived from long-time simulations over the entire state space, are often piecewise smooth even though119

they originate from a smooth dynamical system. Geometrical piecewise smooth Lorenz maps [2, 44, 23]120

representing the smooth chaotic dynamics of the Lorenz system are notable examples. Our approximate121

composite map constructed for only short-time realizations of the VI pair is conceptually different from122

classical piecewise smooth maps with regular and chaotic dynamics appearing in various biological, social123

science, and engineering applications [41, 4, 59, 8, 11, 22, 14]. However, it can still be interpreted as a124

geometrical model of the VI pair as it depicts the dynamics and bifurcations remarkably well and derives from125

a polynomial approximation of the state space partitions. The combination of the geometric interpretation126

and the polynomial approximation facilitates our goal of obtaining analytical results for the global dynamics127

directly related to the physical model. These results are in contrast to local analyses and computational128

studies of higher dimensional maps [42, 45].129

In this first development of the approach, we focus on parameter regimes for behaviors that drive130

favorable energy output in a VI pair-based energy harvesting device, behaviors with alternating impacts on131

either end of the capsule. The impact velocity and phase may repeat periodically with period nT , where132

T is the period of the forcing, or the states may have apparently chaotic behavior within the alternating133

behavior. Besides its physical relevance, this choice of parameters facilitates a relatively straightforward134

presentation of the approach while exploring several types of non-trivial dynamics. Nevertheless, we expect135

that foundational concepts in this analysis are adaptable to other (more complex) sequences of impacts, as136

discussed further in the conclusions.137

The remainder of the paper is organized as follows. Section 2 gives details of the VI pair model, including138

the transcendental form of the maps [47, 48] that motivates the computer-assisted analysis of global dynam-139

ics. Section 3 provides the return maps that form the building blocks of the computer-assisted approach,140

illustrating their key properties. Section 4 provides the general algorithm for constructing a composite map141

realized for the VI pair by approximating the return maps with explicit piecewise polynomial maps over142

relevant regions that comprise the state space. Section 5 compares the trajectories generated using the exact143

and composite maps in the state space and the phase plane. Section 6 develops an auxiliary map based144

on the composite map to identify the globally attracting dynamics and the corresponding domain for three145

qualitatively different types of the VI pair system behavior. Section 7 contains conclusions and a brief illus-146

tration of the relevance of the approach for a VI pair-based energy harvesting device with stochastic forcing.147

Finally, Appendix A provides additional details on the construction of the return map. The supplementary148

material contains the exact map derivation and demonstrates its analytical intractability. It also contains149

the coefficients of the polynomials used in the composite map.150
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2. The Model. The model takes the form of the canonical impact pair, comprised of an externally151

forced capsule with a freely moving ball inside. The friction between the ball and the capsule is neglected,152

so the ball’s motion is driven purely by gravity and impacts one of the membranes on the capsule’s ends.153

One application based on the impact pair is a nonlinear vibro-impact energy harvesting device. Each154

end of the capsule is closed by a membrane of dielectric (DE) polymer material with compliant electrodes155

[57]. The deformation of such a DE membrane is the vibro-impact energy harvesting device’s primary means156

of energy generation. When the ball collides with the membrane, this action changes the ball’s trajectory157

and deforms the membrane. The DE membrane’s physical property, being a variable capacitance capacitor,158

allows the change of its capacitance when it is deformed; meanwhile, a bias voltage is applied when the159

deformation reaches its maximum state. After the collision, an extra voltage charge is harvested, and the160

membrane returns to its undeformed state.161

The schematic for the VI pair is given in Fig. 1(a). Neglecting the friction, the system is driven by162

forces generated at impact, gravity, and external harmonic excitation F̂ (ωτ + ψ) with period 2π/ω. Using163

Newton’s Second Law of Motion, the model is described by the following differential equations:164

d2X

dτ2
=
F̂ (ωτ + ψ)

M
,(2.1)165

d2x

dτ2
= −g sinβ,(2.2)166

167

where X(τ) and x(τ) are the dependent variables for the absolute displacement for the capsule and the ball,168

respectively. In addition, M and m are the mass of the capsule and the ball, respectively.169

Treating the impact time as negligible compared to other time scales in the model, we use an instanta-170

neous impact model given by171 (
dx

dτ

)+

= −r
(
dx

dτ

)−
+ (1 + r)

(
dX

dτ

)
.(2.3)172

Note that this is a reduced model based on the condition M � m, as discussed in detail in [47]. The173

superscripts + and − signify the state of the ball after and before the impact, respectively. The parameter174

r is the restitution coefficient, which is a quantitative measure of the membrane’s elasticity. The range of175

r is [0, 1] with r = 1 being perfectly elastic and r = 0 being inelastic. In this paper, we consider moderate176

elasticity r = 0.5. Additionally, in (2.3), we do not distinguish the states before and after the impact for177

the capsule dX/dτ because the mass of the ball (M � m) is negligible and does not change the state of the178

capsule at impact.179

To focus on the system’s dependence on key parameters, we first non-dimensionalize the system. Fol-180

lowing [47], the dimensionless variables X∗(t), Ẋ∗(t), t are the following:181

X(τ) =
‖ F̂ ‖ π2

Mω2
·X∗(t), dX

dτ
=
‖ F̂ ‖ π
Mω

· Ẋ∗(t), τ =
π

ω
· t ,(2.4)182

where ‖ F̂ ‖ is an appropriately defined norm of the strength of the forcing F̂ . Here, we also use Newton’s183

dot notation for differentiation when the derivative is calculated with respect to dimensionless time t.184

In addition to non-dimensionalization, relative variables are used to focus on the system dynamics as185

a whole, rather than the separate motion of the ball and capsule. Using the variables X∗, the relative186

displacement Z(t) and relative velocity Ż(t) are given in the dimensionless form:187

Z = X∗ − x∗, Ż = Ẋ∗ − ẋ∗,188

Z̈ = Ẍ∗ − ẍ∗ = F (πt+ ψ) +
Mg sinβ

‖ F̂ ‖
= f(t) + ḡ,(2.5)189

where the non-dimensional forcing F (πt+ ψ) = F̂ (ωτ+ψ)

||F̂ || has the unit norm, i.e. ‖ F ‖= 1.190

Since we want to evaluate the system from one impact to the next, the system’s state at each impact is191

particularly important. Combining conditions (2.4), (2.5), the impact condition (2.3) can be rewritten using192
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Z and Ż. For the jth impact occurring at time t = tj ,193

Zj = X∗(tj)− x∗(tj) = ±d
2
, for x ∈ ∂B (∂T ) the sign is + (−),194

Ż+
j = −rŻ−j , d =

sMω2

‖ F̂ ‖ π2
.(2.6)195

196

The notations ∂B and ∂T denote the bottom and top membranes, respectively. The parameter d is the197

dimensionless length of the system, used throughout this paper as the bifurcation parameter. In contrast to198

the actual length of the capsule s, d varies with multiple factors, including the device length (s), mass (M),199

angular velocity of the external force (ω), and forcing strength (‖ F̂ ‖). As illustrated in Fig. 1(b),(c), the200

relative position of the system is bounded, Z(t) ∈ [−d/2, d/2]. At the impacts, which is when Zj = ±d/2,201

the relative velocity Żj changes sign: when the impact is on ∂B (Zj = d/2), Ż changes from positive to202

negative; when the impact is on ∂T (Zj = −d/2), Ż switches from negative to positive. To complete the203

definition of the state of the system at impact, we then need to determine (Żj , tj).204

(a) (b)

(c)

Fig. 1: (a): Illustration of the VI pair: A ball moves freely within a harmonically forced capsule enclosed by
deformable membranes on both ends. The capsule is positioned with an angle β relative to the horizontal
plane and is excited by an external harmonic excitation F̂ (ωτ + ψ). The mass, length of the capsule, and
mass of the ball are M, s, and m, respectively. (b): The two dashed black lines represent the displacement
of the top and bottom membranes, X(t)∗ ± d/2. The green stars and blue dots indicate the impacts at ∂B
and ∂T , respectively. The red solid lines connect each impact at ∂T and ∂B, representing the estimated ball
movement between each impact. (c): Phase plane in terms of relative variables. The relative displacement
Z(t) oscillates between −d/2 and d/2, and the relative velocity Ż(t) has a sign change at each impact.
Parameters: d = 0.35, Ż0 = 0.43 and ψ0 = 0.26.

We summarize results from [47] for calculating the exact maps for (Żj , tj) between two consecutive205

impacts. Between the impact at tj and the next impact at tj+1, the relative velocity and displacement can206

be derived by integrating (2.5) for t ∈ (tj , tj+1) and applying (2.6):207

Ż(t) = −rŻ−j + ḡ · (t− tj) + F1(t)− F1(tj),208

Z(t) = Z+
j − rŻ

−
j · (t− tj) +

ḡ

2
· (t− tj)2 + F2(t)− F2(tj)− F1(tj) · (t− tj),(2.7)209

210
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where F1(t) =
∫
F (πt + ψ) dt and F2(t) =

∫
F1(t) dt. At the jth impact, Z+

j = Z−j . Therefore, the211

superscripts in Ż± are omitted, since (2.7) are in terms Z− and Ż− only. Using the equations (2.7), there212

are four basic nonlinear maps PBB , PBT , PTB , PTT corresponding to motion between consecutive impacts,213

in terms of the four combinations of impact locations: ∂B → ∂B, ∂B → ∂T, ∂T → ∂B, ∂T → ∂T . All214

four maps take the form215

Żj+1 = −rŻj + ḡ · (tj+1 − tj) + F1(tj+1)− F1(tj),216

±d
2

= ±d
2
− rŻj · (tj+1 − tj) +

ḡ

2
· (tj+1 − tj)2 + F2(tj+1)− F2(tj)− F1(tj) · (tj+1 − tj).(2.8)217

218

Notice, the sign for ±d/2 is chosen depending on the impact locations of Zj , Zj+1, + (−) for ∂B (∂T ).219

Ideally, we would like to transform (2.8) into closed-form expressions for (Żj+1, tj+1) in terms of (Żj , tj),220

which can be used to analyze stability and other (global) dynamic properties of these maps and their221

compositions. Furthermore, if we wish to determine the map for the first return to ∂B for sequences as222

shown in Fig. 1(b),(c), we would seek the exact map for the impact sequence ∂B → ∂T → ∂B, or for two223

consecutive impacts on ∂B, which we refer to as BTB or BB motion, respectively. Here, we use the simpler224

case of BB motion to demonstrate the difficulties in deriving closed-form expressions for such sequences. The225

map PBB is given by (2.8), using Zj+1 = Zj = d/2, we have226

Żj+1 = −rŻj + ḡ · (tj+1 − tj) + F1(tj+1)− F1(tj),227

d

2
=
d

2
− rŻj · (tj+1 − tj) +

ḡ

2
· (tj+1 − tj)2 + F2(tj+1)− F2(tj)− F1(tj) · (tj+1 − tj).(2.9)228

229

For concreteness, we take F (πt+ψ) = cos(πt+ψ). Then F1(t) = 1
π sin(πt+ψ) and F2(t) = − 1

π2 cos(πt+ψ).230

Substituting these into (2.9) and solving for (Żj+1, tj+1), we have231

Żj+1 = −rŻj + ḡtj+1 − ḡtj +
1

π
sin(πtj+1 + ψ)− 1

π
sin(πtj + ψ),(2.10)232

0 = −rŻjtj+1 + rŻjtj +
ḡ

2
t2j+1 − ḡtj+1tj +

ḡ

2
t2j −

1

π2
cos(πtj+1 + ψ) +

1

π2
cos(πtj + ψ)(2.11)233

− 1

π
sin(πtj + ψ)tj+1 +

1

π
sin(πtj + ψ)tj .234

235

In (2.10), Żj+1 is a function of Żj , tj , as well as tj+1, determined from (2.11). Sorting terms containing tj+1236

to simplify (2.11) yields237

ḡ

2
t2j+1 −

(
rŻj + ḡtj +

1

π
sin(πtj + ψ)

)
tj+1 +

(
rŻjtj +

ḡ

2
t2j +

1

π2
cos(πtj + ψ) +

tj
π

sin(πtj + ψ)
)

238

=
1

π2
cos(πtj+1 + ψ).(2.12)239

240

Equation (2.12) has a solution if the quadratic function on the left-hand side (LHS) and the cosine function241

on the right-hand side (RHS) intersect. However, it is impossible to get a closed form expression for tj+1242

and consequently not possible to get a closed form expression for Żj+1. Further details of the derivation of243

the equations for the maps can be found in Supplementary Section I.244

For the BTB case, the same hurdle arises. In that case, the BTB motion is composed of maps PTB ◦245

PBT , and therefore a closed form first return map for ∂B would require the composition of expressions for246

(Żj+1, tj+1) and (Żj+2, tj+2). The only difference in the equations for these quantities is the sign of ±d/2247

in (2.9), so the lack of closed-form expressions follows as in (2.12). Therefore, we propose a computational248

method to reduce this non-smooth map to a composition of smooth maps using explicit polynomials.249

3. Identification and visualization of the return maps. The non-smooth maps derived above are250

based on the system (2.7), which gives the exact map when evaluated at impact times t = tj ; specifically,251

P` : (Żj , tj) → (Żj+1, tj+1) for Żj = Ż(tj). This formulation is useful when determining conditions for252

periodic solutions with a fixed number of impacts, and their local stability. For example, as in [47], a253

composition of a fixed number of maps provides the basis for previous analyses of periodic solutions, and the254
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corresponding linear stability analysis provides information about whether the periodic solutions are stable255

under small perturbations. In this previous work, different types of motion were generally categorized as256

n:m/pT , where n and m are the numbers of impacts on ∂B and ∂T , respectively, T is the excitation period,257

and p is an integer number. Furthermore, the impact pair has been demonstrated to yield n:m/pT and258

n:m/C behaviors, with C indicating complex, aperiodic, or chaotic behavior.259

Figure 2 shows the relative impact velocity Żk on ∂B, corresponding to a sequence of bifurcations with260

1:1/T , 1:1/pT for p an even integer, and 1:1/C behavior over a range of the dimensionless length d. (Note:261

relative impact velocity on ∂T not shown.) We focus here on the parameters and the range of d yielding262

1:1-type behavior, with impacts alternating between ∂B and ∂T that is typically favorable for energy output,263

and observed for the system (2.1)-(2.3) over a large range of parameters [47, 48].264

Remark 3.1. The numerical results in the bifurcation diagram (Fig. 2) are generated by solving (2.1)-(2.3)265

over a long time, recording the limiting values for Żk and ψk on ∂B for each value of d. The attracting state266

then serves as the initial condition for the next value of d, using a continuation-type method with decreasing d.267

Throughout this paper, the parameters used to generate the simulations are the following: r = 0.5, ‖F̂‖ = 5,268

M = 124.5 g, ω = 5π, β = π/3, g = 9.8 m/s2. Here, the non-dimensional parameter d varies with the length269

of the capsule s, as given in (2.6).270

While the previous analyses capture the local stability of branches corresponding to periodic solutions,271

they do not provide information about the global attraction of this behavior or the potential for other272

attracting behavior. In contrast, here, we seek to provide global stability results for the attraction of273

different types of solutions, including periodic, nearly periodic, and chaotic behavior. As shown in Fig. 2,274

we proceed with the variables (Żk, ψk), where ψk is the relative phase of the exact map at impact and ψk =275

mod (πtk + ψ, 2π), as ψk is more amenable than tk for considering transients as well as (quasi)-periodic276

behavior.277

(a) (b)

Fig. 2: Bifurcation diagrams for Żk and ψk generated using the exact map from system (2.7).

There are three key elements to our generalizable approach to the maps:278

1. We exploit the non-smooth impact events in the dynamics, leading to the observation that any279

transient behavior can be broken down into a sequence of a small number of types of return maps280

to ∂B, as shown in Fig. 1(b): those that impact ∂T between sequential impacts on ∂B, and those281

that do not.282

2. The second key element is the ability to approximate these return maps with polynomial functions.283

3. We focus on return maps, in contrast to those in (2.7)-(2.8), for which a valuable phase plane analysis284

follows naturally.285

With sequential impacts on ∂B as a natural framework for defining the maps, we focus on the first286

return maps to ∂B captured by PBTB and PBB. While above, we have used the subscripts j and k somewhat287

generically for impacts, for clarity with respect to the maps in (2.7)-(2.8), we reserve the subscripts j, j+1, . . .288

for sequential impacts on either ∂B or ∂T . Then, for the sequential impacts on ∂B only, in the following we289

use the subscripts k, k + 1, . . ., so that for k = j and PBTB (PBB), the (k + 1)st impact on ∂B corresponds290

to the j + 2nd (j + 1st) impact. That is, for Zj ∈ ∂B,291
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PBTB :(Żj , ψj)→ {(Żj+2, ψj+2) | Zj+1 ∈ ∂T, Zj+2 ∈ ∂B},292

PBB :(Żj , ψj)→ {(Żj+1, ψj+1)| Zj+1 ∈ ∂B}.(3.1)293

Note, for physical clarity, we have slightly abused notation in (3.1), using Zj ∈ ∂B and Zj ∈ ∂T for impacts294

on either end of the capsule, in place of Zj = ±d/2 as discussed following (2.6).295

As illustrated in Fig. 1(b), the sequence length, for example, to (nearly) periodic behavior is not uniform296

over the space of initial conditions and cannot be anticipated a priori. The return map to ∂B gives a flexible297

construction that can be applied over any length of the transient. This framework is also amenable to298

analysis that captures global dynamics via phase plane analysis, and can be used in stochastic settings for299

the VI pair [29]. In identifying potentially attracting dynamics, we use projections of the return maps in the300

Żk − Żk+1 and ψk −ψk+1 phase planes, relative to the corresponding diagonals (see Section 3.1). The maps301

in (2.7)-(2.8) do not lend themselves to these goals, as these are not (necessarily) return maps.302

For the remainder of the paper, we track the first return maps for impact velocity and impact phase303

(Żk, ψk) on ∂B, using the subscripts k, k + 1, . . . to indicate sequential impacts on ∂B, composed of the304

building blocks in (3.1). Figure 3 shows how the choice of these building blocks divides the state space305

for (Żk, ψk) by viewing this pair as the initial condition, which then yields one of these two return maps.306

Figure 3(a) shows how the (Żk, ψk) plane is divided by tracking the return maps. Figure 3(b) illustrates a307

further division of the state space, necessary for applying straightforward polynomial approximations of the308

return maps, as discussed in the context of the full algorithm described in Section 4. Note that the building309

blocks (3.1) are analogous to short words in the symbolic representations used for piecewise linear maps in310

[52], which form the basis for invariant cones and trapping regions.311

Remark 3.2. For the algorithm developed in this paper, we restrict our attention to the range of 0 ≤ ψk ≤ π,312

discussed further in the context of Fig. 7 below. As can be shown for the model (2.1)-(2.3) and the parameters313

considered in this paper, impacts with ψk > π correspond to those where the ball and capsule are moving in314

the same direction, yielding smaller impact velocities and thus transient behavior in both ψk and Żk [46].315

This point is discussed in Section 3.1 below, in the context of projections of the 2D maps for Żk, ψk into316

their corresponding phase planes. Likewise, for the parameter regimes considered in this paper, focusing on317

a range of d with energetically favorable 1:1-type sequences of alternating impacts, the impact velocities in318

the range Ż > 1.25 are transient. Figure 23 in Appendix A.1 illustrates the additional regions with transient319

BTTB behavior, which can appear for Ż > 1.25. While the approach proposed here can handle these values320

by including additional transient regions, for simplicity of exposition, we restrict our attention to 0 ≤ ψk ≤ π321

and 0 < Ż ≤ 1.25.322
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(a) (b)

Fig. 3: (a): Using the building blocks in (3.1), the state space Żk − ψk can be partitioned based on two
types of first return maps: PBB (black regions) and PBTB (magenta region). The blue square indicates the
location of R1, a region within the PBTB region that has special properties as studied in detail in Section
4. (b): Further partition of the state space into five regions: Regions R1, R2, R4 divide the state space for
the BTB motion, and Regions R3, R5 divide the state space for the BB motion. The partition in panel (b)
shows an approximation to the exact solution in panel (a), so the dividing boundaries between regions do
not match exactly those based on the exact map. Parameter d = 0.26.

Figure 4 illustrates the reduction of our representation within the dynamics, focused on the impact323

velocity Żj and phase φj on ∂B (green stars), in contrast to Fig. 1(b), which shows the exact behavior324

solution at and between the impact time. The first return maps in (3.1) are implicit in form and thus awkward325

to use directly in a global stability analysis. Then, as a first step towards a more explicit approximation, we326

visualize the return maps in (3.1).327

Fig. 4: The values (Żj , ψj) at impacts (both ∂B (green stars) and ∂T (blue circles)), starting with initial

conditions Ż0 = 0.43 and ψ0 = 0.26 with d = 0.35. Note that the location of the impact determines the sign
of the relative velocity: Żj > 0 for the impact on ∂B, and Żj < 0 for ∂T , and the dotted lines trace the

order in which the impacts happen. In this paper, we focus on the return map for ∂B, denoted (Żk, ψk).

3.1. Visualization. Given that the return maps PBTB, PBB are in terms of the 2D vector (Żk, ψk) we328

show two separate surfaces for Żk+1 and ψk+1 generated by them. To build these up, we first show the maps329

projected in the phase planes Żk − Żk+1 and ψk − ψk+1, for a fixed value of 0 < ψk < π, and sweeping330

through Żk ∈ (0, 1.25). In Fig. 5(a), the resulting first return values (Żk+1, ψk+1) are sorted according to331
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BTB and BB motion, as indicated by different colors. In Fig. 5(b), in this projection, these two types of332

behavior can interweave for a single value of ψk, as different values of Żk yield a variety of ψk+1 that appear333

in both the PBTB and PBB return maps.334

(a) (b)

Fig. 5: Illustration of Żk+1 and ψk+1, the first return maps on ∂B using (3.1) for fixed ψk = 0.4 and sweeping
through initial values Żk ∈ (0, 1.25) with d = 0.35. The magenta points correspond to the first returns via
BTB type, and the black points represent the first returns of BB type.

(a) (b)

Fig. 6: Illustration of the 3D surfaces generated using the first return maps PBTB (magenta) and PBB (black)
in (3.1), with d = 0.35. Each initial condition pair (Żk, ψk) has output (Żk+1, ψk+1), graphed on the vertical
axes in panels (a) and (b), respectively.

Repeating the application of the first return map (3.1) over the range of initial phase values ψk yields the335

surface visualized in Fig. 6, over a range of initial values in the horizontal Żk−ψk plane. For PBB, shown by336

the black points, in general small values of Żk (approximately Żk < 0.55) map into small values of Żk+1, while337
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ψk+1 tends towards values either near 0 or above 2. In the case of PBTB, shown by magenta points, larger Żk338

map into larger values of Żk+1, with the corresponding ψk+1 spread out between 0 and π. The visualization339

of the return maps PBB and PBTB indicates a few features that are important in approximating these surfaces340

with polynomial maps. Not only are the surfaces disconnected, but the surfaces have dramatically different341

gradients corresponding to different regions in the Zk − ψk state space, which leads to the partitioning as342

shown in Fig. 3(b). These regions are identified as part of the algorithm for approximating the surfaces, as343

discussed in detail in Section 4.344

Comparison of the return maps with the diagonals in the Żk - Żk+1 and ψk - ψk+1 phase planes is345

achieved via projections of the return map surfaces on the phase planes, as shown in Appendix A.2, Fig. 24.346

This projection is valuable as we identify potential regions for attracting and transient behaviors, following347

from comparisons of the map surfaces with the diagonals in the phase planes. For example, as discussed348

in Section 4, intersections of the projections and the diagonals in both phase planes suggest a potential349

attracting region for (Żk, ψk) near R1 in Fig. 3(b), depending on the slopes of the maps for these values. In350

contrast, the projection shown in Fig. 7, particularly for the (ψk, ψk+1) phase plane, illustrates the highly351

transient nature of any step with a value π < ψ < 2π, as discussed above in Remark 3.2. Section 4 includes352

this information in the application of the algorithm, combining visualizations of Figs. 6, 7, 24, and 23 to353

give further insight into behavior on subdivisions of the return map surfaces together with approximating354

these surfaces with polynomials.355

4. Composition of the Approximate Map. We provide an algorithm for deriving a set of explicit356

piecewise polynomial maps fn and gn for each region Rn in the state space Żk − ψk, approximating the357

surfaces Żk+1 and ψk+1 as shown in Fig. 6. The approximate return maps are given in terms of the variables358

(vk, φk) that denote the approximate relative impact velocity on ∂B and the corresponding impact phase,359

respectively, at the kth return to ∂B. We define the composite approximate map M that combines the360

continuous maps fn, gn for the regions Rn in Fig. 3(b), taking the form361

(vk+1, φk+1) =M(vk, φk) ≡ (fn(vk, φk), gn(vk, φk)), where (vk, φk) ∈ Rn.(4.1)362

Given the complex nature of the surfaces for Żk+1 and ψk+1, the algorithm for constructing the maps363

(fn, gn), leads to refining the regions shown in Fig. 3(a), resulting in the regions Rn for n = 1, 2, 3, 4, 5 in364

Fig. 3(b).365

Fig. 7: The 2D projection of Fig. 6 on the phase plane Żk − Żk+1 and ψk − ψk+1 for initial condition
ψk ∈ [π, 2π] and d = 0.35. Since there is no common point of intersection on both diagonals in (a) and (b),
we conclude that the states generated from the initial states (Żk, ψk) with ψk ∈ [π, 2π], always leave this
range. The colored points represent the BTB motion, and the black points represent the BB motion.

As a first illustration thatM in (4.1) (derived below, with specifics given in Appendix A.8) captures the366
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critical features of (2.7)-(2.8) in the parameter range of interest, we use it to obtain the bifurcation diagram367

analogous to Fig. 2. Figure 8 shows the results for vk, φk vs. d, generated usingM via the continuation-type368

method described in Remark 3.1. Comparing with the corresponding bifurcation diagram for the exact map369

in Fig. 2, we see that the results from M capture a number of features of the original system, including d370

values for the period-doubling bifurcations, the attracting values of vk and φk for the different branches, and371

the approximate range of values of vk and φk for the chaotic behavior obtained for smaller d in the range372

shown in Figs. 2, 8.373

(a) (b)

Fig. 8: Bifurcation diagrams generated using the composite approximate map M, defined in (4.1) and
Appendix A.8, with coefficients given in Supplementary Section II. The bifurcation structure obtained using
M reproduces remarkably well that obtained for the exact map (2.7)-(2.8) presented in Fig. 2.

Fig. 9: Illustration of the general algorithm for constructing the composite map.

4.1. General Algorithm: Construction of the composite map M. Illustrated in Fig. 9, the374

general algorithm consists of three main activities: identifying an initial partition of the state space based375

on the return map building blocks, iterating on approximations of the return maps on these regions, and376

including updates of the regions as necessary to improve the approximation.377

378

Initialize: steps 0)-ii): Partition state space for the definition of the composite map.379

0). Choose a state as the basis for return behavior.380
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i). Generate surfaces (Żk+1, ψk+1) corresponding to the first return maps for this state;381

ii). Partition regions in the state space based on different types of first returns. Label these regions as Rn.1,382

denoting Region n defined on iteration 1.383

384

Iterate on steps iii)-vi) until appropriate fit for surfaces corresponding to first return map for all re-385

gions Rn.m, Region n on mth iteration.386

iii). Identify potential regions of attraction or transient behavior.387

iv). Choose an appropriate order of polynomial fit for each, via testing different orders of polynomials and,388

depending on the resolution needed, to identify fn and gn for each Rn.m389

v). If the fit of the polynomial is unsatisfactory, adjust the size of the regions and/or locate new regions for390

additional partitions.391

vi). Optional reduction: for regions that yield immediate transitions to other regions, replace with appro-392

priate resetting conditions.393

394

Finalize395

vii). Once the polynomial approximations are defined for maps for all regions, finalize definitions of regions,396

labeled as Rn, dropping the .m label, together with their corresponding maps (fn, gn). This final step in-397

cludes a definition of the range for each map, as discussed further in the demonstration in Section 5.398

399

Steps iii)-vi) depend on the analysis of several different features of the first return map surfaces found400

in ii), both dynamics and geometric characteristics and combinations of these. We illustrate these next in401

the concrete context of (2.1)-(2.3) and the corresponding non-dimensional form (2.6).402

Remark 4.1. As demonstrated below, in certain regions Rn where the shape of the map clearly indicates403

transient dynamics, we look for a simple approximation that takes the form of a single variable polynomial404

for each of the variables of interest, e.g., vk+1 = fn(vk) and φk+1 = gn(φk). We refer to these as separable405

maps since we approximate the 2D map for (vk, φk) with two 1D maps that each depend on a single variable.406

Such an approximation supports a cleaner visualization in the phase plane by simplifying the details of the407

transient behavior while approximating it as dictated by the shape of the exact map.408

4.2. Algorithm implementation: a composite map for the VI pair model. We apply the gen-409

eral algorithm outlined above - Initialize, Iterate, and Finalize - to identify appropriate partitions of the410

state space and the approximations for the return maps on these regions for the non-dimensionalized VI pair411

model as in (2.7). Here, we present this application step-by-step, with the specific details of the composite412

map M given in Appendix A.8.413

414

415

Initialize the partition of the state space.416

0). Choose Z ∈ ∂B as the state for the basis of the first return maps.417

i). Generate surfaces Żk+1 and ψk+1 for BTB and BB behavior as first return maps (2.8) over the range of418

possible initial conditions in the state space (Żk, ψk) (see, e.g., Fig. 3(a)).419

ii). Partition the state space into regions Rn.1 according to these building blocks: BTB and BB: R1.1 cor-420

responds to BTB, R3.1 corresponds to BB behavior for smaller ψk, and R5.1 corresponds to BB behavior421

with larger ψk.422

423

Iteration 1: steps iii)-vi)424

iii). Identify regions of potential attraction and transients as follows.425

• R1.1: entire region of BTB behavior, including both transient regions and potential attracting426

dynamics near the diagonals in the Żk − Żk+1 and ψk − ψk+1 planes.427

• R3.1: The surfaces for BB behavior with sharp gradients in the map near the diagonals. Thus,428

transient BB behavior is expected.429

• R5.1: The surfaces for BB behavior are away from the diagonal in the ψk-ψk+1 plane, thus430

transient BB behavior is expected.431

iv). Polynomial approximation of surfaces for Żk+1 and ψk+1 in R1.1, R3.1, and R5.1 (see Fig. 6):432

• R1.1, BTB behavior: There is a combination of subregions where the surfaces for Żk+1 and433
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ψk+1 have more gradual variation, contrasted with others with sharp gradients. Thus, an434

accurate polynomial fit is challenging, which also limits an accurate approximation of potentially435

attracting dynamics near the diagonals in the Żk − Żk+1 and ψk − ψk+1 phase planes. This436

motivates a further partitioning the BTB region, as described in step v).437

• R3.1, BB behavior: As can be observed in Fig. 6, there are two disjoint surfaces for Żk+1.438

One is a curved surface with sharp gradients for which we use fifth/fourth order polynomials in439

vk/φk for the approximate map (f3, g3) (see Appendix A.6). There is a second segment, nearly440

vertical in Żk+1, discussed in (vi) below.441

• R5.1: As the surfaces for Żk+1 and ψk+1 in R5.1 are away from the diagonal, we use a “sep-442

arable” approximation, as discussed in Remark 4.1. See Appendix A.7 for a discussion of the443

resulting approximate map (f5, g5).444

v). Update regions in terms of additional partitions for R1.1. The different features of the Żk+1 and445

ψk+1 surfaces in R1.1 motivates sub-dividing into two regions:446

• R1.2: identify potentially attracting states, e.g. states for which the repeated images of the447

return map PBTB are near the diagonals in the Żk − Żk+1 and ψk − ψk+1 phase planes. This448

choice of R1.2 limits to cases where the slopes of the surfaces near the diagonals are primarily449

small, e.g., less than unity for some values of d.450

• R2.2: the remaining states that produce clearly transient BTB behavior. This region includes451

sections of the PBTB map located away from the phase plane diagonals and sections near the452

diagonals with sharp gradients.453

vi). From physical considerations, some maps are replaced with resetting functions and/or approximate454

maps in nearby regions.455

• π < φ < 2π: The transient behavior for this range of φk is discussed in Remark 3.2 above.456

Then, we employ the reset: φk+1 = 1.2 and vk+1 = vk if φk > π or φk < 0 (see Appendix A.8).457

• The nearly vertical surface in R3.1 mentioned above represents strongly transient behavior,458

consisting of transitions to BTB behavior or other states in R3. This transient behavior is459

captured by using equations (A.2) throughoutR3.1, without approximating the vertical surface.460

Likewise, there is a small vertical section of the surface ψk+1 inR5.1, also discussed in Appendix461

A.7.462

Iteration 2: steps iii)-vi)463

Iteration 2 is focused on the newly defined R1.2 and R2.2.464

iii). Considering attracting and transient BTB behavior:465

• To identify R1.2 as described in Iteration 1 step v), we introduce a filter R1.2(d) for a given d466

that selects states (Żk, ψk) near the diagonals (Żk, ψk) in the Żk − Żk+1 and ψk − ψk+1 phase467

planes with images (Żk+1, ψk+1) from PBTB near the same diagonals. We then take the union468

of these regions to obtain a region valid for the full range of d of interest. Then, R1.2 is given469

by470

R1.2(d) =
{

(Żk, ψk) :
1

δ
<

∣∣∣∣ψk+1

ψk

∣∣∣∣ < δ and
1

δ
<

∣∣∣∣∣ Żk+1

Żk

∣∣∣∣∣ < δ
}
,471

R1.2 = ∪d∈[0.26,0.35]R1.2(d).(4.2)472473

Of course, the size of R1.2 depends on the choice of δ, which characterizes proximity to the474

diagonals, as discussed further in Appendix A.3. Figure 10 shows an example of the definition475

of R1.2.476
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(a) (b)

Fig. 10: The surface corresponding to PBTB (magenta and blue combined), where R1.2 (blue region), is
obtained by using the filter (4.2) (δ = 1.2) to identify return maps located near diagonals in both the Żk+1

- Żk and ψk+1 - ψk phase planes.

• R2.2 is defined as the remainder of the BTB region, with transient behavior.477

iv). Polynomial approximation of surfaces Żk+1 and ψk+1.478

• R1.2: To capture subtle changes in the attracting behavior near the diagonals, the surfaces for479

Żk+1 and ψk+1 are approximated with polynomials of degree 3 in vk and degree 2 in φk480

vk+1(vk, φk) = f1(vk, φk)481

= b0 + b1φk + b2vk + b3φ
2
k + b4φkvk + b5v

2
k + b6φ

2
kvk + b7φkv

2
k + b8v

3
k,(4.3)482

φk+1(vk, φk) = g1(vk, φk)483

= a0 + a1φk + a2vk + a3φ
2
k + a4φkvk + a5v

2
k + a6φ

2
kvk + a7φkv

2
k + a8v

3
k.(4.4)484485

• R2.2: We use a “separable” approximation (see Remark 4.1) that takes the form486

vk+1(vk) = f2(vk) = b20v
5
k + b21v

4
k + b22v

3
k + b23v

2
k + b24vk + b25,487

φk+1(φk) = g2(φk) = a20φ
5
k + a21φ

4
k + a22φ

3
k + a23φ

2
k + a24φk + a25.(4.5)488489

Figure 11(a)-(c) shows (green) curves representative of the transient behavior for this region,490

following from the shape of the surfaces for Żk+1 and ψk+1 shown in panel c) for R2.2. The491

orange curves, showing the separable map in (4.5), approximates this green curve. See further492

discussion in Appendix A.4.493
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(a) (b) (c)

(d) (e) (f)

Fig. 11: Illustration of the PBTB surface (magenta surfaces in panels c,f) and its corresponding separable
approximation (green and orange curves) for R2 (panels a, b, c) and R4 (panels d, e, f), with d = 0.35.
Generated using the exact map (3.1), the green curves are chosen to represent the variation of the surface
for fixed ψk or Żk. Specifically, for (c): ψk = 0.35 (left) and Żk = 0.85 (right); for (f): ψk = 1.35 (left)
Żk = 0.12 (right). Panels (a)-(b) and (d)-(e) compare the green curves and the orange curves for the
approximate separable map (4.5) in the phase planes. See Appendices A.4 and A.5 for details.

v). Update regions/additional partitions for R2.2: As seen from the curve shown in Fig. 11, which494

forms the basis of the separable map, the map is not defined on smaller values of Żk in R2.2. This495

suggests a further partition of R2.2 into R2.3 and R4.3, to capture all values of Żk+1, as described496

in Appendices A.4 and A.5.497

vi). No further updates on this optional step.498

499

Remark 4.2. Here, we note that the individual curves vk+1 = f2(vk) and φk+1 = g2(φk) shown for R2.2500

each overlap with the intervals for vk and φk in R1.2. At first glance, this may seem to cause indeterminacy501

in the application of the map. However, since R2 surrounds R1, it is possible that one of vk or φk in R2.2502

can take a value that also appears in the range for R1.2. However, for (vk, φk) in R1.2, i.e. both vk and φk503

in the intervals corresponding to R1.2, then (vk+1, φk+1) = (f1, g1) as in (4.3)-(4.4), and not the separable504

approximation (f2(vk), g2(φk)).505

Iteration 3: steps iii)-vi)506

This iteration focuses on R2.3 and R4.3.507

508

iii). Considering transient dynamics for R4.3: For values of small vk not covered by the map (4.5) in509

R2.2, we consider surfaces as shown in Fig. 11(f).510

iv). Polynomial approximation of R4.3: Similar to the separable maps defined for R2.2, we use separable511

single variable approximations (f4, g4) for the transient dynamics, given in equation (A.1) and shown512

in Fig. 11(d) and 11(e) .513

v). No additional partitions are needed.514

vi). No further updates needed.515

Finalize516
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vii) We finalize definitions of the regions Rn, n = 1, 2, . . . , 5 dropping the .m label. The correspond-517

ing maps (fn, gn) that define the composite mapM are given in the detailed algorithm in Appendix518

A.8.519

5. Validation of the Composite Map. In this section, the composite map M is validated using520

three distinct types of solutions, showing that it can reproduce the dynamics of different types of solutions.521

The first type of solution is the fixed point ofM, which we call Case FP, corresponding to the 1:1/T solution522

of the full system (2.1)-(2.3). The second type is the period doubled case, i.e., the period-2 orbit of M,523

called Case PD, corresponding to the 1:1/2T behavior in the full system. Lastly, the chaotic dynamics ofM,524

called Case CD, corresponds to the chaotic 1:1/C behavior in the full system. These different dynamics can525

be observed from the bifurcation diagrams in Figs. 2, 8 for d = 0.35, d = 0.30, and d = 0.26, respectively.526

(a) (b)

(c) (d)

Fig. 12: Comparison of trajectories in state space from the exact map (3.1) (orange) and the composite map
M (4.1) (green), superimposed on regions Rn used in the definition ofM as specified in Appendix A.8. (a)
and (b) correspond to Case FP, also shown in cobweb phase portraits in Fig. 13(a),(b); (c) corresponds to
Case PD, also shown in Fig. 13(c),(d); (d) corresponds to Case CD, also shown in Fig. 13(e),(f). Parameter
and initial conditions: (a) d = 0.35, φ0 = π/2, v0 = 0.35; (b) d = 0.35, φ0 = 0.1, v0 = 0.2; (c) d = 0.30,
φ0 = 0.1, v0 = 0.2; (d) d = 0.26, φ0 = 0.1, v0 = 0.2. Here, we show representative results for initial conditions
in the transient regions R3 and R4.

Figure 12 shows the implementation of the composite map M (dashed green line), with corresponding527

pseudocode given in Appendix A.8. Initial condition pairs (vk, φk) are selected from transient regions R3 and528

R4 to demonstrate thatM can reliably predict the long-term system behavior, reaching an attracting region529

after traveling through other transient regions Rn. Similar results were obtained for other randomly selected530

initial pairs (not shown here). Trajectories forM are plotted together with the trajectories generated with the531

exact map (3.1) (solid orange line). Panels (a) and (b) correspond to Case FP. Panels (c) and (d) correspond532

to Case PD and Case CD, respectively. In all cases, bothM and the exact map (3.1) trajectories follow each533

other to reach the same attracting dynamics. Of course, the transient dynamics are not reproduced exactly,534

e.g., given the separable approximations used in M to facilitate visualization of the maps.535

Complementary to the validation of M in Fig. 12, Fig. 13 demonstrates the attracting behavior in the536

projected vk−vk+1 and φk−φk+1 phase planes with initial conditions for small vk and φk (v0 = 0.2, φ0 = 0.1).537

Repeated application of the composite map is demonstrated via cobweb phase portraits, indicating the steps538
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Fig. 13: Application of M (4.1) projected on the vk and φk phase planes, with step navigation for (fn, gn)
discussed in the text. Curves show (separable) maps for RegionsR2 (green),R4 (red), andR5 (olive). Shaded
regions are for approximate 2D maps for R1 (gray) and R3 (light blue), which can not be drawn in these
projections. Black dashed lines show the respective diagonals. Parameters: Case FP (a),(b): d = 0.35, v0 =
0.2, φ0 = 0.1; Case PD (c),(d): d = 0.30, v0 = 0.2, φ0 = 0.1; Case CD (e),(f): d = 0.26, v0 = 0.1, φ0 = 0.2.
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toward the attracting behavior. The dynamic behavior is shown for the three types of solutions listed539

above. In both Case FP and PD, the trajectories limit to values within R1 while in Case CD, the long-term540

trajectory takes values in R1 and R2. All of these are consistent with the bifurcation structure shown in541

Fig. 8.542

For the projection of the maps (fn, gn) into the vk−vk+1 and φk−φk+1 phase planes shown in Fig. 13, it543

is possible to visualize the curves for the maps in R2, R4, and R5, as we use separable (1D) approximations544

in those regions. In R1 and R3 we can not show a single curve in this projection, given the 2D polynomial545

map used in (4.3)-(4.4) and (A.2). Instead, shaded regions show the range of vk and φk in R1 (gray) and546

R3 (purple). Then, the cobweb steps in these regions follow the (surface) maps (4.3)-(4.4) and (A.2) for547

R1 and R3, respectively, for (vk, φk) in these regions, even though specific curves are not shown. Given the548

width of these shaded regions, it is possible to give a maximum and minimum for vk+1 and φk+1, which also549

motivates the auxiliary map defined and applied in Section 6 for R1.550

We provide some navigation in order to trace the cobweb behavior forM as shown in Fig. 13. Since the551

panels show projections of the higher dimensional maps (fj , gj) in the phase planes, there is an overlap in552

these projections, and thus, it is not necessarily obvious how to trace the dynamics. For each cobweb step,553

vk+1, φk+1 takes a value according to the map for the region that is common for both (vk, φk). In all cases554

shown, the initial condition (vk, φk) for k = 0 takes small values in R3. We observe that R3, R4, and R5555

overlap in the vk − vk+1 phase plane for these smaller values of vk, while in the φk − φk+1 phase plane the556

curve for R2 and region R3 overlap for smaller φk. Since R3 is the only region in common for vk and φk557

for these small values, we conclude that (vk, φk) ∈ R3, and the first step follows (f3, g3) in (A.2), as shown558

in Fig. 13. In the next step, vk remains small while φk increases (before reaching the attracting dynamics).559

Again R3, R4, and R5 overlap in the vk − vk+1 phase plane for these smaller values of vk, while in the560

φk − φk+1 plane, φk takes a value corresponding to the range for R4 only, so that vk+1 φk+1 follow the map561

(f4, g4) for R4. Note that the curve for R5 is not applied for vk, even though vk takes values in its range,562

since φk has not reached R5. Eventually vk has increased to a range with an overlap between R2 and R1,563

while φk decreases back to the region with overlap between R2, R1 and R3. Then, the cobweb steps are564

governed by (f2, g2) for (vk, φk) ∈ R2, and by (f1, g1) in (4.3)-(4.4) for (vk, φk) ∈ R1, as already discussed565

in Remark 4.2 about the overlap between the green curves and the grey shaded R1 region. From there,566

the dynamics are dictated by the attracting dynamics of R1 for panels (a),(b) and (c),(d) corresponding to567

Cases FP and PD, respectively. In panels (e) and (f), the attracting chaotic dynamics for Case CD alternate568

between R1 and R2.569

6. Global Stability and the Auxiliary Maps. The trajectories above indicate visually that Regions570

R1 and R2 contain an absorbing domain that attracts all non-trivial trajectories in R1 and R2 for the571

considered range of parameter d. In Fig. 13, iterations of the closed-form composite map visualize the572

system’s long-term behavior, with explicit curves shown only for regions R2, R4, and R5 when projected573

onto the Żk+1 − Żk and φk+1 − φk planes. In contrast, for R1 and R3 the maps cannot be visualized under574

this projection, suggesting that an alternate approach is needed to capture global attraction using these575

cobweb phase portraits. The difference between the regions follows from the separable form of the maps576

in R2, R4, and R5, in contrast to the 2D maps of R1 and R3. This observation inspires the design of an577

auxiliary map, in which we dissect each 2D map into a pair of 1D maps based on the lower and upper bounds578

of the 2D map domain. This definition can then take advantage of the separable form and lead to bounds579

on the composite map’s absorbing domain.580

6.1. Constructing the Auxiliary Maps. The auxiliary map is constructed using the bounds on the581

approximate maps (fn, gn) for each Region Rn, where (fn, gn) depends on both variables vk and φk. In our582

case, these regions are R1 and R3. We define the auxiliary maps in terms of the maxima and minima of583

(fn, gn), yielding the form: ξmax(vk) : vk → vk+1 and ηmax(φk) : φk → φk+1, and similarly for the minima.584

This decouples the two 2-D equations into two separable 1-D equations for each Rn. The advantage of this585

formulation is its ability to track the dynamics of velocity vk and the phase φk separately, thus facilitating586

a 1D cobweb phase portrait for each. At the same time, it captures the worst-case scenario and provides587

conservative bounds on the maximum and minimum range of (fn, gn) at each iterate. Furthermore, we show588

that a repeated application of this auxiliary definition hones in on the attracting solutions or regions of the589

full map. While here we give the construction in terms of general n, we emphasize that below it is applied590

for R1 only, as we focus on the attracting behavior.591
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The construction of the auxiliary map begins with the bounds for vk and φk for a given Rn: vk ∈592

[vmin, vmax] and φk ∈ [φmin, φmax]. Then two curves ξmax(vk) and ξmin(vk) are determined for vk+1 in terms593

of the max and min of fn over the range of possible φk values, and the auxiliary map ξ
(N)
n alternates between594

these two curves:595

ξ(N)
n =

{
vk+1 = ξ

(N)
max(vk), where ξ

(N)
max := max

φk∈A(N)
n
{fn(vk, φk)},

vk+1 = ξ
(N)
min(vk), where ξ

(N)
min := min

φk∈A(N)
n
{fn(vk, φk)}.

(6.1)596

The superscript N gives the index of updates of the auxiliary map after the first and subsequent appli-597

cations, particularly valuable when the auxiliary map is contracting, as demonstrated below for the specific598

cases considered in Section 6.2. To track the (possible) contraction of the region for each update, we define599

A(N)
n in (6.4)-(6.5) below. There A(N)

n = Rn for all N if the region does not contract, while A(1)
n = Rn and600

A(N)
n ⊆ Rn for N > 1 for a contracting region, updated as the auxiliary map is updated. For the system601

studied here, it is only for n = 1 that A(N)
n contracts.602

Likewise, the auxiliary map η
(N)
n is given in terms of two maps ηmax, ηmin that bound φk+1 for vk ∈603

[vmin, vmax]:604

η(N)
n =

{
φk+1 = η

(N)
max(φk), where η

(N)
max := max

vk∈A(N)
n
{gn(vk, φk)},

φk+1 = η
(N)
min(φk), where η

(N)
min := min

vk∈A(N)
n
{gn(vk, φk)}.

(6.2)605

We then write the full auxiliary map, replacing M (4.1) with M(N)
A , which is composed of a combination606

of maps (fn, gn) and (ξ
(N)
n , η

(N)
n ), with vk, φk corresponding to impact velocities on ∂B as in (4.1). For our607

system it is only A(N)
1 that contracts as N increases, so we define the full auxiliary map as608

(vk+1, φk+1) =M(N)
A (vk, φk),609

M(N)
A (vk, φk) ≡


(ξ

(N)
1 (vk), η

(N)
1 (φk)) for (vk, φk) ∈ A(N)

1 ,

(ξ
(N)
3 (vk), η

(N)
3 (φk)) for (vk, φk) ∈ R3,

(fn(vk, φk), gn(vk, φk)) for (vk, φk) ∈ Rn, n = 2, 4, 5.

(6.3)610

We define region A(N)
1 ⊆ R1 to allow a change in its size over the N updates of the auxiliary construction,611

A(N)
1 =

{
R1 for N = 1,

B(N)
1 otherwise.

(6.4)612

B(N)
1 ≡ [min vk+`,max vk+`]× [minφk+`,maxφk+`](6.5)613

for (vk+`, φk+`) =
(
M(N−1)
A

)`
(vk, φk), `� 1.614

Stated in words, (6.4)-(6.5) simply indicate that for the N th (N > 1) update of (ξ
(N)
1 (vk), η

(N)
1 (φk)), the615

region A(N)
1 is updated to the limiting range of (vk, φk) obtained from a large number of iterations of616

(ξ
(N−1)
1 (vk), η

(N−1)
1 (φk)).617

Remark 6.1. As demonstrated below, updating the region A(N)
1 and M(N)

A is valuable for the region(s)618

in which the dynamics are contracting since these updates allow a relaxation of the worst-case scenario619

imposed by the maxima and minima used in the definitions. Thus, we apply this update accordingly below to620

approximate the size of the attracting region.621

6.2. Application of the auxiliary mapM(N)
A . In Section 5, the application ofM via cobweb phase622

portraits indicates that the absorbing dynamics are concentrated in R1 for the larger values of d considered623

in this study. Specifically, in Fig. 13, we see attracting solutions contained in R1 in Case FP and PD, while624

the trajectories oscillate between R1 and R2 in Case CD.625
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Fig. 14: Visualization of the auxiliary maps ξ
(1)
1 and η

(1)
1 ((6.1) and (6.2)) for R+

1 , as the lower (orange
diamonds) and upper (blue diamonds) bounds of the maps for vk+1 = f1(vk, φk) and φk+1 = g1(vk, φk). In
(a), the family of curves corresponds to the map f1 for fixed φk values. Likewise, in (b) for g1 with fixed vk
values.

While we could construct an auxiliary map in the setting where the dynamics revisit regions with626

transient dynamics (e.g., R2), this would require a different construction to be useful in demonstrating627

global stability. Instead, the absorbing dynamics suggest a more efficient approach. From Fig. 13, the628

absorbing domain covers values in R1 for Cases FP and PD, and in a region just outside of R1 for Case CD.629

This suggests constructing the auxiliary map on a slightly expanded region R+
1 ⊇ R1, noting that this does630

not reduce the accuracy of the approximation as it uses the more accurate 2D approximation over a larger631

region, reducing the region over which the separable approximation (f2, g2) is used. Then we can expand632

the size of Region R1 to R+
1 sufficiently so that the long-term dynamics remain in R+

1 and R+
1 ⊇ R1, and633

here we consider the auxiliary map for R+
1 only.634

The following are the ranges of the initial region A(1)
1 = R+

1 for the three cases, the fixed point (FP)635

case, the period-doubling (PD) case, and the chaotic dynamics (CD) case of the composite map M:636

Case FP: R+
1 := {(vk, φk) : vk ∈ [0.7, 1] and φk ∈ [0.2, π/3]}(6.6)637

Case PD: R+
1 := {(vk, φk) : vk ∈ [0.65, 1] and φk ∈ [0.13, π/3]}(6.7)638

Case CD: R+
1 := {(vk, φk) : vk ∈ [0.64, 1] and φk ∈ [0.08, π/3]}(6.8)639

Figure 14 illustrates this construction of ξ
(1)
1 and η

(1)
1 in (6.1) and (6.2) for Case FP, with A1 = R+

1 and640

N = 1. In the phase plane (vk, vk+1), the family of curves f1(vk, φk) do not cross each other, so ξ
(1)
max :=641

f1(vk,min(φk)) and ξ
(1)
min := f1(vk,max(φk)) for φk ∈ [0.2, π/3] , thus yielding closed-form expressions for642

ξ
(1)
1 in terms of f1. In contrast for φk, the family of curves for g1(vk, φk) with fixed vk cross each other so643

that the envelope for g1 is found computationally from the definition of η
(1)
max and η

(1)
min in (6.2). Note that644

the shape of the auxiliary map (ξ
(1)
1 , η

(1)
1 ) indicates its contracting properties in R+

1 , discussed further below.645

Auxiliary maps for R3 can also be constructed using the method described in Section 6.1. However, since646

R3 is a transient region, we do not pursue its construction here but focus on the use of the auxiliary map in647

R+
1 .648
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Fig. 15: Application of M(1)
A (6.3) for d = 0.35 with initial conditions (v0, φ0) in R2. The green lines show

R2 approximate maps (4.5), and the blue and orange curves show (ξ
(1)
max, η

(1)
max) and (ξ

(1)
min, η

(1)
min), respectively

for R+
1 (6.1)-(6.2). The areas between these curves are shaded in blue, representing the possible values

of vk and φk in R+
1 . Analogous to the cobweb phase portraits for M above, the map (f2, g2) is used for

(vk, φk) ∈ R2, and the auxiliary map is used for (vk, φk) ∈ R+
1 , as discussed in Remark 4.2. The last 40

steps of the cobwebs are shown in red, indicating the attracting orbit within R+
1 for M(1)

A .

We apply the cobweb phase portrait method, combined with the update of the auxiliary map region649

A(N)
1 within the composite auxiliary map M(N)

A , to three cases with distinct dynamics: Case FP, Case PD,650

and Case CD.651

Figure 15 illustrates the cobweb phase portraits for M(1)
A , with initial conditions in R2 for simplicity of652

exposition. The cobweb trajectories for vk and φk quickly leave R2 after two steps, with (vk, φk) reaching653

the attracting region R+
1 . Then in both of the vk − vk+1 and φk − φk+1 phase planes, the cobweb iterations654

follow the auxiliary map A1
1. Specifically, this maps vk to vk+1 using the upper-bound auxiliary map ξ

(1)
max,655

followed by vk+1 to vk+2 using the lower-bound auxiliary map ξ
(1)
min, and then continuing with alternating656

upper and lower auxiliary maps. Then, the auxiliary map captures the worst-case scenario of the trajectory657

in R+
1 , yielding the maximum range in this region. Likewise, the auxiliary maps for φk ∈ R+

1 are iterated,658

yielding a trajectory that covers the range of φk. In contrast to the composite mapM, for which vk, φk reach659

fixed points (see Fig. 13), M(N)
A has an attracting orbit, due to the use of the max and min in (6.1)-(6.2).660

We use the bounds on this limiting behavior, shown in red in Fig. 15, to provide an update to A(N+1)
1 in661

M(N+1)
A as in (6.4)-(6.5) for the N + 1st step of the computer-assisted characterization of the attracting662

dynamics.663

Figure 16 illustrates the updates of region A(N)
1 andM(N)

A in the FP case. Each row shows results for a664

different update, specifically N = 1, N = 2, and N = 11. The red box highlights the last 10% of the cobweb665

iterations, indicating the limiting dynamics forM(N)
A . For N = 1, A1

1 = R+
1 is defined as in (6.6) and is also666

the same as in Fig. 15. The size of the corresponding absorbing domain (indicated by the red box) shrinks667

with N , and A(N)
1 for N > 1 is updated accordingly, as in (6.4)-(6.5). For increasing N , Figs. 16 (c),(d) and668

(e),(f) illustrate the smaller range of vk and φk given by ξ
(N)
max/min and η

(N)
max/min, mirroring the smaller size669

of A(N)
1 . Figure 17 then shows how the length and width of the absorbing domain for vk and φk decreases670

with increasing N . Thus, even though the max/min characteristics of the auxiliary map do not allow the671

limiting behavior of MA to be a fixed point, nevertheless, for Case FP, we see that region A(N)
1 shrinks to672

a negligible size for large N .673

Similar to the cobweb illustration of the updates in the Case FP, Fig. 18 and Fig. 20 illustrate the updates674

of the region A(N)
1 and M(N)

A in Case PD and Case CD, respectively. The setup in Fig. 18 and Fig. 20 is675

the same as in Fig. 16, with each row showing results from updates of A(N)
1 . In Case PD, N = 1, N = 2,676

and N = 11 are shown; while in Case CD, N = 1 and N = 6 are shown. Moreover, in contrast to the677
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Case FP, where the limiting dynamics approaches a point for N large, for Cases PD and CD, the size of the678

absorbing domain saturates to its limiting size at a finite N . In Case PD, the limiting dynamics converge to679

an attracting period-2 orbit (2-cycle) for both vk and φk when N is large, with much of the size reduction of680

A(N)
1 occurring in the first two updates, as shown in Fig. 19. In contrast to case FP, the attracting 2-cycle681

has a limiting size dictated by |pv − qv| and |pφ − qφ|.682

Similar to Case PD, Fig. 20 shows that the limiting dynamics of Case CD when N is large yields683

attracting orbits over a larger range of vk and φk. In addition to the larger size of the attracting region,684

the limiting behavior of φk is an orbit with period-4 (4-cycle), while for vk, the orbit has period 2 (2-685

cycle), as shown in Fig. 20(c),(d). While the difference in the periodic behavior in the auxiliary map for686

vk and φk may seem like a contradiction at first glance, in fact, there is no reason for vk and φk to have687

the same periodicity, since their auxiliary maps have been decoupled through the use of the bounds on the688

region A(N)
1 and the corresponding max/min in (6.1)-(6.2). In this case, the attracting region obtained689

from the auxiliary map slightly underestimates that of the exact map (approximately 2% error). Additional690

computational exploration (not shown) indicates this error follows from sensitivity of the relatively simple691

approximate polynomial maps in this region where the maps are more complex.692

The pairs of points (pv, qv) and (pφ, qφ) shown in Figs. 16 -20 for the largest value of N indicate the693

maximum q• and minimum p• of the attracting orbits for v and φ. Likewise, these values can be used to694

determine the size of the globally absorbing domain, as discussed in the next section.695

6.3. Global Dynamics. The auxiliary map method developed in the previous subsection opens the696

door to characterizing the global dynamics of the composite map. The cobweb phase plane dynamics697

simulated for the auxiliary map M(N)
A , as shown in Figs. 16-20, demonstrate the convergence to stable698

period-m orbits, or m-cycles, in the FP, PD, and CD cases. Since these m-cycles bound a subset of the699

auxiliary map’s phase space, their existence and global stability imply the existence of a globally stable700

absorbing domain for the trajectories of the composite mapM (4.1). The bounds on the absorbing domains701

are indicated as qv, pv, qφ, and pφ in Figs. 16 - 20 for the largest value of N shown. Computing these values702

as the roots of m iterations of the maps (6.1) and (6.2) for appropriate m, we obtain their stability and thus703

bounds on the absorbing domain for the dynamics.704

First, to obtain the bounds on vk used in the N + 1st update, we consider the second iterate map for705

vk+2, given by (6.1)706

vk+2(vk) = ξ
(N)
min

(
ξ(N)
max(vk)

)
.(6.9)707

The maps ξ
(N)
min/max can be written explicitly in terms of f1 evaluated at φmin/max (6.1), since the family of708

curves f1(vk, φk) for fixed φk ∈ [φmin, φmax] do not cross each other, analogous to f1 shown in Fig. 14(a).709

Then we have the closed-form expression for the first and second iterate maps for vk, where the second710

iterate map for vk+2 is a 9th-order polynomial of the form711

vk+2(vk) = f1(f1(vk, φmax), φmin)712

= α0 + α1v
1
k + α2v

2
k + α3v

3
k + α4v

4
k + α5v

5
k + α6v

6
k + α7v

7
k + α8v

8
k + α9v

9
k .(6.10)713714

Here αi, i = 1, ..., 9 are polynomials that depend on d and on φmin and φmax, whose coefficients b0, b1, ..., b9715

are listed in Supplementary Section III. The (stable) root vk+2 = vk = pv of (6.10) corresponds to the716

minimum on the limiting behavior of ξ
(N)
1 (6.1), with the maximum qv obtained by717

vk = pv, vk+1 = qv = f1(vk, φmin) = f1(pv, φmin) = ξ(N)
max(pv),(6.11)718

=⇒ vk+2 = pv = f1(vk+1, φmax) = f1(qv, φmax) = f1(f1(pv, φmin), φmax) = ξ
(N)
min(pv) .719

These values pv and qv, together with the limiting behavior indicated by the red boxes for sufficiently large720

N , are shown in Figs. 16-20 for the FP, PD, and CD cases.721

Similarly, the limit cycles for φk are based on the definition of η
(N)
1 in (6.2). For the FP and PD cases,722

we consider723

φk+2(φk) = η
(N)
min

(
η(N)
max(φk)

)
.(6.12)724
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Fig. 16: Illustration of the 1st, 2nd, and 11th update of the auxiliary mapM(N)
A (6.3) for Case FP (d = 0.35).

For each N , 400 steps are taken, and the last 40 steps are highlighted in red. This red orbit also defines

A(N)
1 ⊆ R+

1 for N > 1, based on the limiting orbit from the (N − 1)st update (see (6.4)-(6.5)). In (a) and

(b), N = 1 and A(1)
1 = R+

1 , defined in (6.6). As in Fig. 15, the initial condition is in R2, and the first
few steps are governed by (f2, g2) (4.5) (green line). In (c),(d) N = 2, and (e),(f) N = 11, with the N th

initial conditions for N > 1 given by the last state from the N − 1st update, obtained from the attracting
orbit in red. The gray boxes and dashed orange lines between figures indicate the zoom-in region shown
in the subsequent row. The stars with (pv, qv) and (pφ, qφ) in panels (e) and (f) indicate the min and max

of the attracting orbit. For N = 2, A(2)
1 : vk ∈ [0.772, 0.908] and φk ∈ [0.297, 0.791], and for N = 11,

A(11)
1 : vk ∈ [0.8488, 0.8490] and φk ∈ [0.3804, 0.3811].
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Fig. 17: Illustration of the size of the domain AN for each N , showing that the absorbing domain size
decreases monotonically for Case FP, reaching 0.000185 and 0.0001867 in the vk, φk directions, respectively.

In contrast to (6.10) for vk, the family of curves g1(vk, φk), in the definition of ηmin/max (6.2) cross each725

other for different fixed vk ∈ [vmax, vmin], analogous to Fig. 14(b). Then, there is no closed-form expression726

for the first and second iterative maps φk+1 and φk+2, and ηmax/min are determined numerically in (6.12).727

For the FP and PD cases, we calculate pφ and qφ, which give the minimum and maximum of the limiting728

behavior shown by the red boxes in Fig. 16(f) and Fig. 18(f) for sufficiently large N . They are given by729

φk = pφ, φk+1 = qφ = max
vk

g1(vk, φk) = max
vk

g1(vk, pφ) = η(N)
max(pφ),(6.13)730

=⇒ φk+2 = pφ = min
vk

g1(vk, φk+1) = min
vk

g1(vk, qφ) = min
vk

g1(vk,max
vk

g1(vk, pφ)) = η
(N)
min(η(N)

max(pφ)).731

Similarly, for the CD case, the minimum and maximum for φk are generated computationally using the732

fourth iterate map for φk+4.733

φk+4(φk) = η
(N)
min

(
η(N)
max

(
η
(N)
min

(
η(N)
max(φk)

)))
.(6.14)734

For sufficiently large N as illustrated in Fig. 20(d), there are four fixed points for the period-4 cycle φk+4,735

calculated as736

φk = pφ = φk+4, φk+1 = qφ = η(N)
max(pφ),737

φk+2 = γφ = η
(N)
min(qv) = η

(N)
min(η(N)

max(pφ)),(6.15)738

φk+3 = σφ = η(N)
max(γφ) = η(N)

max(η
(N)
min(η(N)

max(pφ))),739

φk+4 = η
(N)
min(σφ) = η

(N)
min(η(N)

max(η
(N)
min(η(N)

max(pφ)))).(6.16)740

Notice that for the CD case, there is a period-2 orbit in vk (6.12) and a period-4 orbit in φk. This unusual741

property follows from the fact that the auxiliary maps for vk and φk are uncoupled, each using the (fixed)742

max and min of the other variable as provided by the previous update.743

The curves obtained from applying the iterates given in (6.10), (6.12), and (6.14) are shown in Fig. 21.744

Panels (a)-(d) illustrate the stability of the fixed points pv and pφ for the period-2 cycles in Cases FP and745

PD. There, the curves show the limiting behavior of the second iterate of M(N)
A , given by (6.9) and (6.12).746

They intersect the diagonals in the vk+2−vk and φk+2−φk phase planes with a slope less than unity. Then,747

for sufficiently large N we obtain the stable fixed points pv and pφ, likewise implying the stability of the748

fixed points qv and qφ, which all together provide the range of the attracting region for M(N)
A in Fig. 16749

and Fig. 18. Similarly, for the CD case, in Fig. 21(e),(f) the curves show the limiting behavior of M(N)
A750

for sufficiently large N . These curves, obtained from (6.9) for vk and the fourth iterate map for φk (6.14),751

again intersect the diagonals in the phase planes with a slope less than unity, indicating the stability of pv,752
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Fig. 18: Illustration of the 1st, 2nd, and 11th update of the auxiliary mapM(N)
A (6.3), for Case PD (d = 0.30),

using the same procedure as in Fig. 16. Here A(1)
1 = R+

1 (6.7) in (a) and (b); for N = 2 in (c) and (d),

A(2)
1 : vk ∈ [0.666, 0.850] and φk ∈ [0.146, 0.977]; and for N = 11 in(e) and (f), A(11)

1 : vk ∈ [0.684, 0.832]

and φk ∈ [0.156, 0.758], where the size of A(N)
1 for N > 1 follows directly from the limiting (red) behavior in

N − 1st update ((6.4)-(6.5)). As in Fig. 16, the gray boxes and dashed arrows between figures indicate the
zoom-in region in the next row. The stars with (pv, qv) and (pφ, qφ) in panels (e) and (f) indicate the min
and max of the attracting orbit.
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Fig. 19: Illustration of the size of the absorbing domain for case PD that decreases to a limiting size, with
the final limiting size as 0.1472 and 0.5991 for v and φ, respectively.

qv and pφ, qφ, σφ and γφ in Fig. 20. Then pv, qv, pφ and qφ, provide the range of the attracting region. The753

unstable fixed point φu between pφ and γφ confirms that all trajectories are absorbed into the 4-cycle, as754

shown in Fig. 20(d), and pφ,γφ correspond to the two smallest values of the period-4 fixed points. Further755

discussion is given in Remark 6.2.756

The following statement summarizes the results for the existence of a globally attracting absorbing757

domain on the auxiliary composite map M(N)
A , also indicating the extension of the result to higher-order758

cycles of the auxiliary map that may appear for parameters not considered here, e.g., other values of d. To759

streamline this Remark 6.2, we assume that the update index N is sufficiently large so that the periodic760

cycle and corresponding absorbing domain of M(N)
A has reached its limiting size, thus not changing with761

increased N . For example, for the PD case shown in Fig. 18, a good choice would be N ≥ 11.762

763

Remark 6.2. [Existence of an Absorbing Domain (sufficient conditions)]. A globally stable m-cycle of the764

auxiliary mapM(N)
A with A

(N)
1 ∈ R+

1 bounds a globally stable absorbing domain D(N) = {pv < vk < qv, pφ <765

φk < qφ.} Here, pv and qv are, respectively, the smallest and largest values of the period-m fixed point of the766

mth iterate map for vk+m(vk), obtained analogously to (6.12) and (6.14) via m iterates of (6.1). Similarly,767

pφ and qφ are the smallest and largest values of the period-m fixed points of the corresponding mth iterate map768

φk+m(φk). In general, we expect the m-cycles of the auxiliary map to occur for m even, given its max/min769

structure.770

As described in Section 6.1, one can apply the auxiliary approach for all regions Rj for j = 2, 3, 4, 5,771

which confirms the transient behavior for regions outside of R1. Combining this transient behavior with the772

results of this section, we have the complete confirmation of the bounds on the attracting domains for M773

for different d, obtained via the limiting regions of the auxiliary map as applied in Sections 6.2, 6.3.774

7. Conclusion. While the study of VI systems through local stability analysis has gained significant775

momentum, understanding their global dynamics and bifurcations remains challenging due to the limited776

applicability of classical global stability methods developed for smooth dynamical systems. In particular,777

the focus in the engineering literature has been on linear stability and bifurcations, yet global behavior is778

important in design.779

In this paper, we propose a computer-assisted analysis based on reduced smooth maps for studying780

the global dynamics of the VI pair. The framework is designed to be generic, ideally for application to781

other non-smooth dynamical systems. The global stability analysis is facilitated by an approximation of782

the exact map for the states at impact, specifically the relative impact velocity Żk between the outer (the783

capsule) and the inner (the ball) masses and the impact phase ψk relative to the forcing. The exact non-784

smooth maps for these quantities are given by complex coupled transcendental equations for Żk and ψk.785

While the non-smooth dynamics present a challenge in using commonly defined maps, they also provide786

an opportunity for designing a new approach for impacting systems. Specifically, we use short sequences787
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Fig. 20: Illustration of the 1st and 2nd update of the auxiliary map M(N)
A (6.3), for d = 0.26, corresponding

to Case CD, using the same procedure as in Fig. 16. Here, A(1)
1 = R+

1 (6.8) in (a) and (b); for N = 6

in (c) and (d), vk ∈ [0.673, 0.789] and φk ∈ [0.093, 0.725]. As above, the size of A(N)
1 for N > 1 follows

directly from the limiting (red) behavior at the N − 1st update ((6.4)-(6.5)). As in Fig. 16, the gray boxes
and dashed arrows between figures indicate the zoom-in region in row 2. The limiting periodic behavior is
2-cycle and 4-cycle for the (decoupled) auxiliary maps of vk and φk. Panels (e) and (f) show the decrease of
the size of the absorbing domain to a limiting size with the limiting size equal to 0.115 and 0.631 for v and
φ, respectively. The stars with (pv, qv) and (pφ, qφ) in panels (c) and (d) indicate the min and max of the
attracting orbit.

of returns to one side of the capsule to define building blocks for the maps. The output of such a return788

map yields surfaces for Żk+1 and ψk+1 in terms of Żk and ψk. Return maps based on these building blocks789

give the foundation for dividing the state space into a small number of regions with potentially attracting or790

transient behavior, thus yielding valuable, distinguishing features that can be used for global stability results.791

Generating polynomial approximations of the exact return maps for Żk and ψk on each region in state space,792

we combine these to obtain a piecewise smooth approximate composite map to reconstruct the dynamics of793

the system. This framework is computationally efficient. It reduces the main computation to constructing794

polynomial return maps for only short-time realizations of the impact pair over the space of initial conditions,795
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Fig. 21: Curves for the mth iterate maps ofM(N)
A , obtained from (6.9) and (6.12), intersecting the diagonals

at vmin and φmin, with limiting values pv and pφ, respectively, for sufficiently large N . Panels (a),(b): the
FP case for N = 1, 2; by pv and and pφ, obtained for N = 11. Panels (c),(d): the PD case for N = 1, 2, 11.
Panels (e) and (f): Case CD with the second iterate map for vk (6.9) and the fourth iterate map for φk
(6.14) for N = 6. The zoomed inset in (f) highlights the intersection of two smallest fixed points, pφ and
γφ, of the period-4 cycle of the auxiliary map, also shown in Fig. 20(b). The point φu is the unstable fixed
point between these two values.
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in contrast to long-time simulations over the entire state space traditionally used in deriving flow-defined796

Poincaré maps for global dynamics of limit-cycle or chaotic systems. Yet, our approximate return maps can797

be viewed as geometrical models of VI pair systems, analogous to geometrical Lorenz maps used to analyze798

global dynamics and bifurcations in the chaotic Lorenz system [2, 44, 23] and its more analytically tractable799

piecewise smooth counterpart [7]. While certain aspects of the computation-based analysis do not rely on800

finding polynomial approximations for the return maps, we pursue them with the goal of explicit expressions801

for the global analysis.802

Anchored in relatively simple return maps, our framework is valuable for cobweb analysis in the phase803

planes of the state variables. The relevant global analysis is facilitated by introducing 1D auxiliary maps804

based on the extreme bounds of the 2D maps in the regions with different types of dynamics. Repeated805

updates of these auxiliary maps within regions with attracting dynamics yield attraction basins for limit-806

cycle and chaotic dynamics. Thus, our computer-assisted method of reducing non-smooth systems into a807

composite piecewise smooth map provides a framework to study the global dynamics of non-smooth systems808

with impacts. Here, we have focused on parameter regions corresponding to energetically favorable states809

in VI pair-based energy harvesting systems, so that the results are relevant for recent designs of VI-based810

energy harvesters [57] and nonlinear energy transfer [28]. While motivated by a specific vibro-impact energy811

harvester, nevertheless, our approach uses generic return maps composed of short sequences of impacts that,812

in turn, decompose the full dynamics. Thus, the paradigm can be generalized for application in other non-813

smooth systems. It may also be interesting to see if this approach, motivated by a particular class of applied814

models, is relevant for 2D maps considered in generic mathematical settings [35].815

Adapting these findings to realistic external environments remains critical for future exploration. Fu-816

ture work will focus on refining these theoretical frameworks and methodologies to effectively integrate817

vibro-impact systems into practical applications. This pursuit involves enhancing our understanding of the818

underlying dynamics and engineering solutions that can withstand and thrive in realistic external environ-819

ments.820

Fig. 22: Bifurcation diagrams for Żj from (2.6) based on continuation-type methods for decreasing d (top)
and increasing d (bottom). Blue and black open circles correspond to deterministic forcing, and green and
red dots correspond to additive noise forcing via an Ornstein-Uhlenbeck process ζ, with limiting behavior
ζ ∼ N(0, 0.002). Parameters: r = 0.25, β = π/6.

One example of a realistic external setting is the consideration of the VI energy harvester, illustrated in821

Fig. 1(a), under stochastic external forcing. Figure 22 gives the bifurcation structure with two different types822

of periodic behavior for the system (2.1)-(2.3), shown via the impact velocity Żj vs. the non-dimensional823

capsule length parameter d. Both panels show deterministic (open circles) vs. stochastic (dots) results for824
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Żj . The top and bottom panels show bifurcation diagrams obtained via a continuation-type method for825

decreasing and increasing d, respectively. Comparing these indicates bi-stability of two different periodic826

behaviors. For larger d, we observe 1:1 periodic behavior with alternating impacts on ∂T with Żj < 0 and ∂B827

with Żj > 0 per forcing period. For smaller d, we observe 2:1 behavior with two impacts on ∂B followed by a828

single impact on ∂T per forcing period. The bi-stability is apparent from the co-existence of branches for the829

1:1 and 2:1 solutions in a range of d, approximately 0.221 < d < .216. At the same time, the stochastic results830

shown by the green and red points indicate the regular appearance of 2:1 behavior, even for larger values of831

d beyond the region of bi-stability. A preliminary analysis, based on the algorithm from Section 4 with an832

augmented set of return maps analogous to (3.1), includes both PBTB to capture 1:1 behavior and a new833

map PBBTB to capture 2:1 behavior. These maps capture the attraction to either 1:1 and 2:1 behaviors or834

both. Furthermore, this novel return map framework also provides critical information about the stochastic835

sensitivity of the 1:1 behavior. Specifically, the geometry of the surfaces of these maps, analogous to those836

shown in Fig. 6, indicates how the noise can bias the dynamics towards 2:1 behavior. We leave the details837

of that analysis to future work, noting that the algorithm’s combined flexibility and efficiency allow for a838

straightforward augmentation that includes new return maps representing the 2:1 behavior. Then, within the839

dynamical characterization of the state space provided by our algorithm, we can study non-smooth dynamics840

in a stochastic setting.841

This paper has focused on the development of a novel return map formulation as the basis for a computer-842

assisted global analysis, obtaining explicit expressions wherever possible. There are a number of other fea-843

tures that we expect are valuable for future generalizations that we have not pursued here. For example,844

we expect that more steps of the algorithm could be automated, such as integrating defined criteria to aid845

in partitioning and comparing approximations for different orders of polynomials for the composite map.846

Furthermore, while we have given the algorithm in terms of 2D maps for simplicity of exposition, we expect847

that the ideas of this approach can be adapted to higher dimensions. In addition, if we relax the demand for848

a nearly explicit global analysis, we anticipate that accurate auxiliary maps that are purely computation-849

based could be used to approximate the attracting region(s).850

851
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Appendix A. Return Maps and Composite Map Construction.967

A.1. Division of state space for the return maps. We show the regions in the state space (Żk, ψk)968

whose images correspond to BB, BTB, and BTTB motion, with PBB and PBTB as defined in (3.1) in Section969

3, and PBTTB . Figure 23 shows the full range of ψk, from 0 to 2π, and a larger range of Żk as compared970

to Fig. 3. The region with φk > π is comprised of mostly BB motion and, as discussed in Remark 3.2 and971

shown in Fig. 7, is strongly transient. Likewise, the yellow regions, corresponding to BTTB motion, are972

strongly transient for β > 0, which drives the motion away from multiple impacts on the top membrane ∂T .973

Therefore, we restrict our attention to the state space with range ψk ∈ [0, π] and Żk ≤ 1.25 (below the yellow974

regions) when constructing the composite mapM, with a focus on understanding the attracting region and975

those regions in state space in close proximity to it.976

Fig. 23: Division of the (Żk, ψk) state space, corresponding to exact return maps with BTB motion (blue
and magenta regions), BB motion (black regions), and BTTB motion (yellow regions). Parameter: d = 0.26.

A.2. Phase plane projection of the exact maps. Figure 24 shows the projections of the exact977

maps, defined by (3.1) in Section 3, on the Żk − Żk+1 and ψk −ψk+1 phase planes, as referenced in Remark978

3.2. This 2-D projection of Fig. 6 gives separate views of the dynamics for Żk and ψk in their respective979

phase planes. The points delineate curves for Żk+1 and ψk+1 in the image of the return map, some of which980

cross both diagonals in the Żk − Żk+1 and ψk − ψk+1 planes. The slopes of the curves that intercept the981

diagonals suggest that there is a smaller subregion of the state space (Żk, ψk) that is attracting.982

A.3. Comments on Region R1. In the next six sections of the appendix, we further comment on983

the details of the algorithm implementation for the specific VI pair model, as discussed in Section 4.2.984

In order to capture the full dynamics for all d near the diagonals of both phase planes Żk − Żk+1 and985
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Fig. 24: (a),(b): Using the method illustrated in Fig. 5, we show the first return on ∂B using (3.1) for fixed
values of ψk in the range of [0, 2π] and sweeping through initial values Żk ∈ (0, 1.25) with d = 0.35. The
colored points correspond to BTB motion, and the black points correspond to BB motion. The points with
the same color on the left and right panels correspond to images from the same ψk. (c),(d): Zoomed-in
results from (a)-(b) on the region of state space for ψk ∈ (0, π), complementing the region shown in Fig. 7.

ψk−ψk+1, we define region R1 as the union of the subregions obtained using (4.2). Figure 25 illustrates the986

location of the subregion (green) based on the filter in (4.2) corresponding to one d value. These are shown987

relative to the union of the subregions over all d in the range of interest (blue). Through this definition, we988

can use the same map for R1 for all d considered rather than finding different approximate maps for each d.989

We have explored a range of δ values, δ = 1.2, 1.3, 1.4, which is the filter parameter in (4.2). In summary,990

a smaller δ yields a smaller R1 which allows a more accurate approximation of f1 and g1 to the surface of the991

exact map. On the other hand, a larger R1 can capture more dynamics near this region which is desirable. In992

that case, one can compensate for the increased error associated with larger δ by increasing the polynomial993

orders in the approximation. Here, we chose δ = 1.2 for the benefit of a simpler expression to construct the994

approximate map.995

In considering the choice for the order of polynomials, we note that higher-order polynomials give996

more accurate approximations, but this will increase the complexity of the 2D map. Hence, we choose the997

lowest order polynomial such that the approximation can also reproduce similar dynamics to the exact map.998

In this case, the polynomial map is quadratic in φk and cubic in vk. Specifically, the polynomials given999
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in the map (f1(vk, φk), g1(vk, φk)) (4.3)-(4.4) in R1.2 approximate the surface using the Matlab function1000

fit([x,y],z,fitType) with argument fitType set to "poly23". A detailed comparison between the order1001

of the polynomials used in the approximation and the associated error is given in Table 1 and Fig. 26.1002

Table 1 compares different types of approximation error statistics, R2, and the Summation Squared1003

Error (SSE), using different δ and different orders of polynomials. Figure 26 indicates that a smaller δ gives1004

a better approximation for a given polynomial order, as a larger δ includes more variability of the surfaces1005

for (Ż+1, ψk+1). Table 1 shows that the combination of δ = 1.2 and the polynomial order poly23 gives the1006

best result.1007

δ Poly degree
vk+1 φk+1

R2 SSE R2 SSE

1.2 poly23 0.9992 2.2705×10−5 0.9998 2.2181×10−5

1.3 poly23 0.99827 0.0025092 0.99984 0.0032939

1.3 poly33 0.99827 0.0025055 0.99994 0.0011577

1.4 poly23 0.99735 0.0055033 0.99981 0.0055713

1.4 poly33 0.99735 0.0054874 0.9999 0.0031359

Table 1: Comparison of the approximation error R2 and SSE in R1 for different δ and different polynomial
orders. Here, R2 = 1 − SSE

SST , where the Summation Squared Error and the Summation Squared Total are
given by SSE =

∑n
i (yi−ŷi)2 and SST =

∑n
i (yi−y)2, respectively. Here, yi is the exact value corresponding

to Żk+1 or ψk+1, and ŷi is the estimation vk+1 or φk+1, and y is the average of all exact values Żk+1 or
ψk+1.

A.4. Comments on Region R2. The surfaces generated over R2 correspond to the BTB behavior.1008

As described in Remark 4.1, we use separable maps to represent the dynamics of Region R2. Recall that the1009

separable map takes the form of a single variable polynomial, e.g. vk+1 = f2(vk) and φk+1 = g2(φk) (4.5)1010

in this case. Given the strongly transient nature of the dynamics in R2, also indicated by the steep surfaces1011

shown in Fig. 6, this 1-D approximation with separable maps is sufficient to represent the dynamics of R2.1012

A.5. Comments on Region R4. Similar to Region R2, the surfaces over R4 also correspond to the1013

BTB behavior. However, the surfaces in this region must be approximated separately because of its steep1014

descending surfaces over smaller values of Żk, making it difficult to obtain a good approximation over the1015

combined regions of R2 and R4. The approximate location of R4 is given by {(Ż, ψk) : Żk < 0.55, 1.1 <1016

ψk < 2.5, and Żk > 0.63− 0.53ψk}.1017

Similar to R2, we use separable maps for the approximation in R4, choosing two 1-D maps that represent1018

the dynamics given by the surfaces for Żk+1 and ψk+11019

vk+1(vk) = f4(vk) = b40v
8
k + b41v

7
k + b42v

6
k + b43v

5
k + b44v

4
k + b45v

3
k + b46v

2
k + b47vk + b48,1020

φk+1(φk) = g4(vk) = a40φ
4
k + a41φ

3
k + a42φ

2
k + a43φk + a44.(A.1)10211022

The steep drop of the surface for smaller values of Żk+1, as shown in Fig. 11(f), indicates that the dynamics1023

in R4 is also strongly transient. That is, at the fixed point of vk+1 = f4(vk) the slope is |f ′4(vk)| > 1, as1024

shown in Fig. 11(e).1025

A.6. Comments on Region R3. The approximation for R3 covers the surfaces in Fig. 6 over the1026

region {(Żk, ψk) : 0 < Żk < 0.63 − 0.53ψk} within the state space considered. The approximations for the1027
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Fig. 25: Illustration of the location change of the subregions filtered by (4.2), as shown in green. The blue
region surrounding it is the union of all such regions ∪d∈[0.26,0.35]R1.2, as described in (4.2). (a),(b): d = 0.35;
(c),(d):d = 0.30; (e),(f): d = 0.26.
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Fig. 26: Heat maps corresponding to the approximation error in Region R1 with different δ in (4.2). The
approximation errors εv = |Żk+1 − vk+1| are shown in (a),(c),(e) and εφ = |ψk+1 − φk+1| are shown in

(b),(d),(f) for (Żk+1, φk+1) in the exact map and (vk+1, φk+1) in the coupled 2-D approximate map (4.3)-
(4.4) for R1. Note lighter colors indicate larger errors ε. As δ increases, the size of R1 increases, which
includes more variation that yields the larger approximation error. (a)-(b): δ = 1.2; (c)-(d): δ = 1.3; (e)-(f):
δ = 1.4, and d = 0.35 in all panels.

lower triangular surfaces in this region are given by1028

vk+1(vk, φk) = f3(vk, φk) = b300 + b301φk + b302vk + b303φ
2
k + b304φkvk + b305v

2
k + b306φ

3
k + b307φ

2
kvk1029

+ b308φkv
2
k + b309v

3
k + b310φ

3
kvk + b311φ

2
kv

2
k + b312φkv

3
k + b313v

4
k + b314φ

3
kv

2
k1030

+ b315φ
2
kv

3
k + b316φkv

4
k + b317v

5
k,1031

φk+1(vk, φk) = g3(vk, φk) = a300 + a301φk + a302vk + a303φ
2
k + a304φkvk + a305v

2
k + a306φ

3
k + a307φ

2
kvk1032

+ a308φkv
2
k + a309v

3
k + a310φ

4
k + a311φ

3
kvk + a312φ

2
kv

2
k + a313φkv

3
k + a314v

4
k + a315φ

4
kvk1033

+ a316φ
3
kv

2
k + a317φ

2
kv

3
k + a318φkv

4
k + a319v

5
k.(A.2)10341035
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As discussed in Section 4.1, Iteration 1 steps iv) and vi), there is also a nearly vertical surface in this1036

region, shown in Fig. 6. It represents strongly transient dynamics corresponding to rapid transitions from1037

BB to BTB behavior, so we treat this as immediately transient. As a result, we use the lower triangular1038

surface to capture the dynamics of this region, taking the map (A.2) over all of R3. We find that these1039

surfaces do not shift or change shape with d varying. Therefore, the coefficients in (A.2) are constant instead1040

of being functions of d.1041

A.7. Comments on Region R5. Region R5 corresponds to smaller Żk < 0.55, as in R4, and for1042

larger ψ: 2.5 < ψk < π. The dynamics in this region are BB motion instead of BTB motion, with the map1043

(f5, g5) based on a separable approximation as in R2 and R4. The green curves in Fig. 27(a),(b) capture1044

the dynamics on the surfaces for Żk+1 and ψk+1, and are approximated with orange curves that give the1045

separable maps1046

vk+1(vk) = f5(vk) = |b50v4k + b51v
3
k + b52v

2
k + b53vk + b54|,1047

φk+1(φk) = g5(φk) = a50φ
3
k + a51φ

2
k + a52φk + a53.(A.3)10481049

The coefficients a5i, b5i, i = 0, 1, ..., 4, are functions of d, with a54 = 0 in φk+1.1050

Note there is a small nearly vertical area in the surface for ψk+1, similar to that observed inR3 mentioned1051

in Appendix A.6. As discussed in step vi) of Iteration 1 of the algorithm (Section 4), we treat this as1052

immediately transient, taking the map (A.3) over all of R5.1053

(a) (b) (c)

Fig. 27: Approximation of (Zk+1, ψk+1) in R5 for d = 0.35, which has ranges Żk < 0.55 and 2.5 < ψk < π.
Panels (a),(b) compare the orange curves for the approximate separable map (A.3) with the green curves
in the corresponding phase planes. In panel (c), the green curves are generated with the exact map (3.1),
giving a separable representation of the variation of the surface for fixed ψk = 3.05 (left) and Żk = 0.12
(right).

A.8. The pseudocode used in the programming the composite map. Here, we provide the1054

pseudocode for the approximate composite map for (vn, φn), as used in Figure 12, with references to the1055

bounds and maps for each region Rn.1056

Algorithm: Composite map for (vn, φn)1057

if φk > π OR φk < 0, then1058

Reset as in Section 4.2, Iteration 1, step vi): φk+1 = 1.2 and vk+1 = vk1059

else if 0.63 ≤ vk ≤ 0.94 AND 0.15 ≤ φk ≤ 0.45. then1060

Use Region R1 approximate maps (4.3)-(4.4):1061

else if vk > 0.63− 0.53φk AND vk > 0.55 AND (vk, φk) /∈ R1, then1062

Use R2 approximate map (4.5):1063

else if vk > 0.63− 0.53φk AND 1.1 < φk < 2.5 and vk < 0.55, then1064

Use R4 approximate map (A.1):1065

else if 2.5 < φk < π AND vk < 0.55, then1066
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Use R5 approximate map (A.3):1067

else if vk < 0.63− 0.53φk, then1068

Use R3 approximate map (A.2):1069

end if1070
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