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Synchronized cortical activities in the central
nervous systems of mammals are crucial for
sensory perception, coordination and locomotory
function. The neuronal mechanisms that generate
synchronous synaptic inputs in the neocortex are far
from being fully understood. In this paper, we study
the emergence of synchronization in networks of
bursting neurons as a highly non-trivial, combined
effect of electrical and inhibitory connections. We
report a counterintuitive find that combined electrical
and inhibitory coupling can synergistically induce
robust synchronization in a range of parameters
where electrical coupling alone promotes anti-phase
spiking and inhibition induces anti-phase bursting.
We reveal the underlying mechanism, which uses a
balance between hidden properties of electrical and
inhibitory coupling to act together to synchronize
neuronal bursting. We show that this balance is
controlled by the duty cycle of the self-coupled
system which governs the synchronized bursting
rhythm.

This article is part of the themed issue
‘Mathematical methods in medicine: neuroscience,
cardiology and pathology’.

1. Introduction
Neuronal synchrony has been shown to be central
to the function and dysfunction of human cognitive
processing, memory and locomotion [1,2]. Synchrony
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plays a positive role in hippocampal networks and its disruption due to traumatic brain injury
has been shown to severely impair cognitive processing and memory function for many years
post-injury [3]. At the same time, synchronized neuronal firing is notoriously known to induce
pathological brain states, especially during epilepsy and Parkinson’s tremors [4–7]. In particular,
epilepsy is widely considered a dynamical network disease and is characterized by short bursts of
synchronized neuronal activity and long events called seizures. This abnormal synchrony either is
localized in a specific area of the brain, yielding a simple focal seizure, or spreads across the whole
brain region, usually paralysing a patient and resulting in a complex generalized seizure [7].
Although there have been considerable advances in the treatment and understanding of the
origin of epileptic seizures, the question of why the vast regions of brain become excitable and
susceptible to synchronization remains open.

The emergence of synchronized rhythms in simple and complex networks of spiking and
bursting neurons has been extensively studied in the literature [8–20]. Bursting occurs when
neuron activities alternate between a period of quiescence and fast repetitive spiking [21–23].
There is experimental evidence that epileptic seizures are accompanied by changes in neuronal
bursting activities [24,25] where individual spikes play an important role. In contrast with spiking
neurons, whose synchronous behaviour is quite simple, coupled bursting neurons are capable of
generating various forms of neuronal synchrony. These include synchronization of individual
spikes, burst synchronization when only the envelopes of spikes synchronize while the spikes
remain unlocked, and complete synchronization. The onset of neuronal synchrony is controlled
by a non-trivial interplay between the intrinsic dynamics of individual neurons, the type of
synaptic connections and network architecture.

Electrical and synaptic connections often play different roles in inducing synchronization or
anti-phase spiking and bursting [26–32]. In contrast with slow or delayed inhibitory connections
that favour neuronal synchrony [33–37], fast non-delayed inhibition is known to promote
pairwise anti-phase bursting in a network with purely inhibitory synapses [8]. This is always
the case in a pair of spiking neurons with fast non-delayed inhibitory connections, unless each
neuron has more than one slow intrinsic variable [35]. It was also demonstrated that weak fast
non-delayed reciprocal inhibition can favour the coexistence of in-phase and anti-phase bursting
in networks of some bursting cell models; however, the in-phase rhythm is fragile and has a small
basin of attraction [38,39]. In a recent work, we have shown that the addition of pairwise repulsive
inhibition to excitatory networks of bursting neurons can induce synchrony, in contrast with one’s
expectations [40,41]. This synergistic effect originates from the transition between different types
of bursting, caused by strong excitatory–inhibitory synaptic coupling.

Many experimental findings indicate the presence of electrical coupling in GABAergic
interneurons in the central nervous systems of mammals [42], particularly among neocortical
neurons of the same class [43]. Networks of low-threshold-spiking neocortical interneurons
with fast inhibitory synapses were found to be connected locally by synchronizing electrical
coupling, a phenomenon which may be central to the coordination of strongly connected cortical
subnetworks [44]. Indeed, GABAergic networks in the neocortex are known to control spike
timing and influence rhythmogenesis throughout the entire neocortex despite a relatively small
number of such inhibitory neurons [45]. Notably, it was shown that both GABA inhibitory
currents and gap-junctional coupling are required for synchronized bursting in hippocampal
interneurons of the rat [26]. The role of the duty cycle, the fraction of the period during which
the neuron bursts, in promoting anti-phase bursting in networks with pairwise inhibitory and
gap-junctional connections was previously discussed [46]. It was demonstrated that a short duty
cycle can destabilize anti-phase bursting in an inhibitory network, but the addition of electrical
coupling can restabilize the anti-phase pattern [46].

In this paper, we contribute to further understanding of cooperative dynamics in networks
of bursting neurons with both gap-junctional (electrical) and inhibitory connections. We report a
non-trivial synchronization mechanism of the combined coupling where electrical and inhibitory
connections can synergistically induce synchronized bursting in a range of parameters where
electrical coupling alone promotes anti-phase spiking and inhibition induces anti-phase bursting.
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The synchronization mechanism, where ‘two wrongs make a right’, is based on the properties
of (i) weak electrical coupling to stabilize burst but destabilize spike synchronization and
(ii) inhibition to generally promote anti-phase bursting but stabilize spike synchrony when
initial conditions are close. The combined action of the two couplings uses the best of the two
worlds to foster synchronized bursting, provided that a balance between the repulsive and
attracting components of the combined coupling is preserved. Through analysis and numerics,
we demonstrate that this balance is controlled by the duty cycle of the self-coupled system which
governs the synchronized bursting rhythm.

This synergistic synchronization effect differs from the ones previously observed in networks
with combined chemical and electrical synapses [30–32]. More specifically, it was shown [30]
that a small amount of electrical coupling added to already significant inhibition of the network
can increase synchronization more than a very large increase in the synchronizing inhibitory
coupling. Notably, each kind of synapse in this network setting [30] alone fosters synchrony, but
the resultant effect is much more pronounced. It was also demonstrated [31,32] that combining
electrical synapses with inhibition in a network of spiking cells can enhance synchrony, whereas
electrical synapses alone would impede synchronization. For this property to be true, the coupling
strength of both electrical and chemical synapses should be sufficiently strong. In this setting,
electrical and inhibitory synapses may both foster synchrony, or may compete, with one being an
attractive force while the other repulses the cells. By contrast, the synergistic effect reported in this
paper arises from nonlinear interaction of electrical and chemical synapses in a range of coupling
strengths where both synapses alone impede complete synchrony. The discovered synergistic
effect is due to nonlinear interactions of bursting cells at the level of bursts and spikes and is
not observed in networks of spiking cells or reduced phase models of neurons. In this regard, our
study along with our previous work [40,41] promotes the use of the detailed biophysical models
that take into account neuronal spikes and bursts.

The layout of this paper is as follows. First, in §2, we describe the individual neuron and
network models. In §3, we report the synchronization effect observed in the simplest two-cell
network with electrical and inhibitory connections. We also use Poincaré maps to demonstrate
how the number of coexisting phase-locked states changes as a function of the inhibitory coupling
strength. Then, we employ a slow–fast decomposition of the networked system to isolate the
impacts of the electrical and inhibitory coupling on the emergence of synchronized bursting. In
§4, we introduce the variational equations for the stability of the synchronous bursting solution
and explain the main synchronization mechanism via the calculations of averaged synaptic
terms and their dependence on the duty cycle of synchronous bursting. In §5, we demonstrate
that the synergistic effect is also present in larger networks and identify network topologies
with the highest and lowest resilience of synchronized bursting. In §6, a brief discussion of the
obtained results is given. Appendix A contains a rigorous proof of the stabilizing role of strong
electrical coupling in synchronization of bursting Sherman cells. Finally, appendix B describes the
numerical methods used in our study.

2. The network model
We consider a network of N Hodgkin–Huxley-type neuronal models [47] with electrical and
inhibitory synapses:

τ
dVi

dt
= F(Vi, ni, Si) + gel

N∑
j=1

cij(Vj − Vi) + ginh(Einh − Vi)
N∑

j=1

dijΓ (Vj),

τ
dni

dt
= G(Vi, ni) ≡ n∞(Vi) − ni

and τs
dSi

dt
= H(Vi, Si) ≡ S∞(Vi) − Si, i, j = 1, . . . , N.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.1)
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The intrinsic dynamics of the ith cell is represented by the membrane potential Vi, and the
gating variables ni and Si are the opening probabilities of the fast and slow potassium currents,
respectively. Function F(Vi, ni, Si) = −[ICa(Vi) + IK(Vi, ni) + IS(Vi, Si)] describes three intrinsic
currents: fast calcium, ICa, persistent potassium, IK, and slow potassium, IS, currents such that

ICa = ḡCam∞(Vi)(Vi − ECa), IK = ḡK ni (Vi − EK) and IS = ḡS S1 (Vi − EK).

According to the Hodgkin–Huxley formalism, the steady-state values for the activation and
inactivation of the fast and slow currents are represented by the Boltzmann equations as functions
of Vi,

m∞(Vi) =
[

1 + exp
(

(−20 − Vi)
12

)]−1
,

n∞(Vi) =
[

1 + exp
(

(−16 − Vi)
5.6

)]−1

and S∞(Vi) =
[

1 + exp
(

(−35.245 − Vi)
10

)]−1
.

Other intrinsic parameters are chosen and fixed as follows: τ = 20 (ms), τS = 10 000 (ms), ḡCa =
3.6 (nS), ECa = 25 (mV), ḡK = 10 (nS), EK = −75 (mV) and ḡS = 4 (nS). The individual unit of the
network (2.1), the Sherman cell model [47], was originally introduced to mimic the electrical
activity of a pancreatic β-cell. This model is known to exhibit different types of bursting such
as square-wave, plateau and pseudo-plateau bursting [48], and is often used as a generic
Hodgkin–Huxley-type model to describe neuro-computational properties of bursting neurons
and networks [23]. In the given set of parameters, the uncoupled cell generates square-
wave bursting [21] (figure 1). The presence of the large parameter τS = 10 000 (mV) makes
the system (2.1) slow–fast such that the (V, n)-equations represent the two-dimensional fast
‘spiking’ subsystem; the S-equation corresponds to the slow one-dimensional ‘bursting’ system.
The dynamics is centred around nullcline h∞ of the fast (V, n)-subsystem. The intersection
between h∞(V) and the nullcline S∞(V) of the slow S-subsystem yields a saddle fixed
point [40].

The cells are identical, and the coupling strength of the electrical (gel) and inhibitory (ginh)
synapses is uniform for each type of coupling. The electrical coupling between cells i and j is
modelled via the difference between the membrane potentials Vi and Vj. In order to make the
chemical synapse inhibitory, the reversal potential is chosen at the level Einh = −75 (mV), such
that Einh < Vi(t) for all permissible values of Vi. The inhibitory coupling is instantaneous and
non-delayed; a smooth approximation of the Heaviside function is used to model the synaptic
coupling function Γ (Vj) = 1/[1 + exp{−10(Vj − Θs)}], known as the fast threshold modulation [9].
The synaptic threshold Θs = −40 (mV) is chosen such that spikes in the single cell burst can cross
the threshold (figure 1). Therefore, a spike in presynaptic cell j activates the synaptic current
entering postsynaptic cell i (via Γ (Vj) switching from 0 to 1).

In (2.1), N × N connectivity matrices C = (cij) and D = (dij) describe the network structure
of the electrical and inhibitory synapses, respectively. The electrical coupling matrix C = (cij) is
symmetric as the electrical coupling is always undirected such that cij = cij and cij = 1, if neuron
i receives an input from neuron j. The nodes of the electrical network may have different in-
degrees and receive a different number of inputs. The inhibitory coupling matrix D can be
asymmetric such that both mutual and unidirectional couplings are allowed. As in matrix C,
dij = 1 if neuron i receives an input from neuron j; however, dii = 0. We require the connectivity
matrix D to have all row-sums equal to kinh. This property implies that each cell on the inhibitory
network receives kinh inputs from other cells and this number is uniform for each cell. This
requirement is a necessary condition for the existence of the synchronization subspace M = {V1 =
· · · = VN = V(t), n1 = · · · = nN = n(t), S1 = · · · = SN = S(t)} that defines complete synchronization
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Figure 1. Square-wave bursting in the uncoupled Shermanmodel (2.1) with ginh = 0 (nS) and gel = 0 (nS). (Main graph) The
dotted curve schematically indicates the route for the bursting solution. The plane V = Θs = −40 (mV) corresponds to the
synaptic threshold. (Inset) Corresponding time series of square-wave bursting. (Online version in colour.)

between the cells. The dynamics of completely synchronized cells is governed by the following
system:

τ
dV
dt

= F(V, n, S) + kinhginh(Einh − V)Γ (V), τ
dn
dt

= G(V, n) and τs
dS
dt

= H(V, S). (2.2)

It is worth noticing that the synchronous behaviour differs from that of the uncoupled cell with
ginh = 0 and gel = 0 due to the presence of the additional inhibitory synaptic term. As the electrical
coupling disappears when Vi = Vj, the electrical coupling term is not present in system (2.2). As a
result, changing the strength of inhibitory coupling can change the synchronous dynamics. In the
following, we will show that these changes, induced by moderately weak inhibitory coupling,
result in small variations of the duty cycle of synchronous bursting in system (2.2) and lead to
stable synchronization.

3. Tug-of-war synchronization effect of combined coupling
We begin with the simplest network (2.1) where two cells are symmetrically coupled through
electrical and inhibitory connections with kinh = 1. We will study this two-cell network to reveal
the synergistic effect of combined coupling and describe its stability mechanism. We will then
demonstrate that this effect is also present in larger networks and discuss the role of network
structure.

(a) Multistability and emergent synchronized bursting
Figure 2 demonstrates the onset of synchronized bursting in the two-cell network as a function
of the electrical (gel) and inhibitory (ginh) coupling strengths. Figure 2a,b indicates that a strong
electrical coupling, exceeding a threshold value gel ≈ 0.18, synchronizes the cells in the absence
of inhibition (ginh = 0). The addition of inhibition to the strong electrical coupling impedes
complete synchrony, as one would expect, and gradually increases the threshold value of
electrical coupling gel. Appendix A contains a rigorous derivation of an upper bound for the
electrical coupling threshold, required for stable synchronization in the absence of inhibition.
This analytical bound is very conservative and yields the synchronization threshold at gel = 3.925
compared with the actual threshold gel ≈ 0.18 (figure 2). However, it rigorously proves that
the electrical coupling always promotes synchronization when it reaches the threshold value.
Surprisingly, there is a range of much weaker electrical coupling gel ∈ (0, 0.02) (figure 2c,d) where
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Figure 2. The combined effect of electrical and inhibitory synapses on complete synchronization in the two-cell network. The
colour bar indicates the voltage difference �V = |V1 − V2| (mV), averaged over the last three bursting periods. The black
(blue) zone corresponds to the zero voltage difference (complete synchronization). The dark grey (red) colour indicates anti-
phase bursting with the maximum voltage difference (approx. 40 mV). (a,b) Established phase locking from initial conditions
where the first cell is in the active spiking phase while the second is silent (a) and initial conditions close to complete
synchrony (b). (c,d). Zoom-ins of the corresponding top diagrams. Coexistence of synchronized and anti-phase bursting. The
scattered black (blue) regions (c) correspond to the onset of complete synchronization from the unfavourable initial conditions.
The synchronization effect is much more pronounced when the cells start from close initial conditions, as indicated by the
black (blue) tongue-shaped region (d). Parameters corresponding to points A (ginh = 0.0001; gel = 0.0001 (nS)); B (ginh = 0;
gel = 0.01 (nS)); C (ginh = 0.01; gel = 0.01 (nS)); D (ginh = 0.01; gel = 0 (nS)); E (ginh = 0.02; gel = 0.01 (nS)); and
F (ginh = 0.01; gel = 0.02 (nS)). (Online version in colour.)

the electrical coupling alone always impedes synchronization but the addition of inhibition
can yield complete synchrony. The fact that increasing the electrical coupling within the range
gel ∈ (0, 0.02) makes the synchronization solution more unstable is verified via the calculation of
the largest transversal Lyapunov exponent of the synchronous solution which is positive and
monotonically increases within the interval gel ∈ (0, 0.02) (figure 3) (the details on the calculation
of the transversal Lyapunov exponent are given in appendix B). Note that, once the electrical
coupling becomes stronger and lies beyond this coupling interval, its repulsive force becomes
attractive and promotes synchrony, ultimately stabilizing complete synchrony at the threshold
value gel ≈ 0.18.

Figure 2c,d also demonstrates that inhibition alone can foster or destabilize complete
synchrony, depending on the coupling strength and initial conditions. When one cell is initially
in the spiking phase, and the other is in the quiescent inactive state, inhibition also impedes
synchrony and promotes anti-phase bursting in the absence of electrical coupling (see the dark
grey (red) colour area adjacent to the ginh-axis in figure 2c). When both cells start close to each
other, inhibition can promote complete synchrony via the mechanism of nonlinear interaction
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Figure 3. Largest transversal Lyapunov exponentλ⊥ for the stability of the synchronous solution in the two-cell networkwith
purely electrical connections (gin = 0). Positive (negative) values indicate instability (stability) of synchronization. Increasing
gel from0firstmakes the electrical coupling desynchronize the cellswithin a range ofmoderate coupling (see the zoomed region
gel ∈ (0, 0.02), where the dependence ofλ⊥ on gel is monotonic). Any further increase in gel beyond 0.04 makes the electrical
coupling synchronizing, as the Lyapunov exponent becomes less positive. The zoomed region corresponds to the heatmap in
figure 2c,d. (Online version in colour.)

between the spikes, described in [38,39]. For this property to be true, the inhibitory coupling must
be weak such that ginh ∈ (0, 0.008) (see the black (blue) tongue-shaped region adjacent to the ginh-
axis in figure 2d). Further increase of ginh makes the inhibition desynchronizing, independent
from the initial conditions. Remarkably, the combination of the electrical and inhibitory coupling,
where each synapse alone impedes complete synchrony, can promote synchrony, regardless of
the initial conditions (see the black (blue) areas in figure 2c,d), even though the synchronization
effect is much more pronounced when the cells start from close initial conditions. Figure 2d
illustrates the synergistic effect, when ‘two wrongs make a right’, at point C, which corresponds
to the combined attractive action of the repulsive electrical and inhibitory coupling. Note the
instability of synchronization at points B and D, where the electrical and inhibitory coupling alone
destabilizes complete synchrony. We are especially interested in the transition from point B via
point C to point E. This transition along the horizontal line gel = 0.01 corresponds to a route where
the repulsive electrical coupling first competes with the weak synchronizing inhibition (within
the range ginh ∈ (0, 0.008)), then acts synergistically with the repulsive inhibition to promote
synchrony (point C), and finally cooperates with the repulsive inhibition in a linear fashion to
promote anti-phase bursting (point E). Similarly, the transition from D via point C to point F along
the vertical line ginh = 0.01 is accompanied by the transition from anti-phase bursting at point D
to complete synchrony at point C, and back to out-of-phase bursting at point F. Here, increasing
gel from 0 makes the electrical coupling alone more repulsive (figure 3); yet, it yields a region
of stable synchrony when combined with the (repulsive) inhibition at ginh = 0.01. Thus, the same
forces can switch their stabilizing and destabilizing roles, similar to playing tug of war. In addition
to the coexistence of complete synchrony and anti-phase bursting, the combined coupling can also
induce multiple coexisting phase-locked states, as shown in figure 4.

Our goal is to explain this counterintuitive synergistic effect and reveal the properties of the
coupled system (2.1) which make the combined coupling attractive. Towards this goal, we will
first use Poincaré maps for the phase differences between two interacting cells to reveal the
existence of multistable phase-locked states and their dependence on the strength of electrical
and inhibitory coupling (see §8 for details of how the phases are introduced and calculated).
Figure 4a illustrates how the phase differences between two cells stabilize after 40 bursts.
The number of bursts to skip (k = 40) is chosen large enough to avoid transient stages. Note
that the B − C − E transition (see figure 2) originates from the phase-locked state where the
electrical coupling alone tends to establish burst synchrony; at the same time, it promotes anti-
phase spiking (figure 4a, (B)). Increasing the inhibition up to point C (see figure 2) helps to
synchronize the spikes within the bursts (figure 4a, (C)). Further increase in ginh up to point
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Figure4. Poincarémaps for the evolution of the phase difference in the two-cell network and the corresponding voltage traces.
Initial phase differences�φn (horizontal axes) versus the phase differences after k bursts�φn+k , with k = 40. The phase
difference is normalized to 1, where the zero phase difference�φ = 0 corresponds to complete synchrony and�φ = 0.5
indicates anti-phase bursting. Intersections of the graphΦ(�φ) (solid curve) with the diagonal (dashed) line yield phase-
locked states. (a) Graphs A, B, C and E correspond to points A, B, C and E in figure 2. (A) Weak electrical and inhibitory synapses
yield multiple phase-locked states as fixed points of the phase map. These include stable anti-phase bursting (star), complete
synchrony (solid circle) and an unstable state at�φn ≈ 0.015 which separates the attraction basins of the stable states. Note
a much larger attraction basin of anti-phase bursting. Arrowed lines on the cobweb diagram illustrate the convergence to the
anti-phase state from a given initial condition (a). Voltage traces of coexisting anti-phase bursting and complete synchrony (b).
(B) Electrical coupling induces phase-locking with a small phase difference between the bursts; however, the spikes within
the bursts are in anti-phase. (C) Stable complete synchronization with a large basin of attraction. (E) Phase-locking with
�φ ≈ 0.4, close to anti-phase bursting. The cloud of dots rather than a baseline phase-shift curve originates from varying
duty cycles of the cells and numerical difficulties in identifying the initial ratio of the burst period over the phase shift to the
terminal ratio of the same quantities. (Online version in colour.)

E destabilizes complete synchrony and establishes a phase-locked state close to anti-phase
bursting (figure 4a, (E)). Remarkably, while being destabilizing for complete synchronization
when acting alone, the impact of electrical and inhibitory coupling is different. The electrical
coupling promotes (destabilizes) burst (spike) synchrony, whereas inhibition does the reverse and
fosters spike synchrony and impedes burst synchrony. This suggests how the combined action of
both types of coupling can stabilize complete synchrony. To further validate this observation and
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Figure 5. Transformation of the full coupled system into two subsystems: fast (a) and slow (b). Fixing the slow variable S at a
given value, S= 0.18, turns the coupled system into a network of interacting tonic spiking cells. This fast system accounts for
the interaction in the full system when both cells are in the spiking phase. Ignoring the spikes transforms the coupled system
into a network of two slow relaxation oscillators,whichmimics the interaction between the cells at the level of bursts (envelopes
of spikes). (Online version in colour.)
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Figure 6. The effect of electrical and inhibitory synapses on the synchronization properties of the dissected, fast (a) and slow
(b) subsystems. Electrical and inhibitory synapses play opposite roles in promoting synchrony in the fast and slow subsystems.
When isolated, electrical synapses promote anti-phase spiking in the coupled fast system (a,c) and synchrony in the slow system
(b,d). Inhibitory coupling induces spike synchrony in the fast subsystem and fosters anti-phase bursting in the slow one. (a,b)
Heatmaps and colour-coding are similar to those of figure 2. The circle and the triangle correspond to point B in figure 2. The
square and diamond indicate point D in figure 2. (c,d) The corresponding voltage traces. (Online version in colour.)

isolate the impact of the electrical and inhibitory coupling, we will use a slow–fast decomposition
of the two-cell coupled system (2.1).

(b) Insight from the slow–fast decomposition
To better understand the action of electrical and inhibitory coupling on the dynamics of two cells
during two distinct phases of active spiking and quiescence, we employ the slow–fast property
of square-wave bursting and dissect the network dynamics into the fast and slow components
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(figure 5). We choose and fix the slow variable S at some level S = 0.18, which corresponds to the
middle of the spiking phase (see figure 1). This yields the fast (Vi, ni) systems (i = 1, 2), which
are coupled via the electrical and inhibitory coupling and mimic the interaction between the
cells during the spiking phase of both cells. Similarly, decreasing the time constant τ for the
second variable ni, we effectively get rid of all the spikes and turn the coupled system into a
two-relaxation-oscillator network. This network aims at reproducing the cooperative dynamics
of the full system (2.1) during the stage when one cell is active while the other is inactive. In this
setting, the active cell keeps the inhibition on such that the inactive (inhibited) cell is kept at the
inactive state as long as the active cell is in the spiking phase, causing anti-phase bursting.

This slow–fast decomposition reveals striking differences between the impacts of the electrical
and inhibitory synapses on synchronization in the networks of fast and slow subsystems
(figure 6). In the given range, the electrical synapses always repel the spikes and attract their
envelopes (bursts) (compare the circle from figure 6a,c with the triangle from figure 6b,d). At
the same time, the inhibitory connections bring the spikes together but push the bursts apart
(compare the square with the diamond from the diagrams). While the heatmaps of figure 6 can
slightly differ, depending on the value of S (not shown), they remain qualitatively the same
and indicate the same effect. Combined together, the two seemingly counter-actions of electrical
and inhibitory synapses make up a rich multistable pattern in the full system and induce the
synchronization mechanism that we have called a ‘tug of war’.

4. Stability mechanism: why does the duty cycle matter?
To better quantify the stability mechanism and reveal the property of the coupled system
that controls the stability of complete synchronization, we use the stability equations for the
infinitesimal transverse perturbations �V = V1 − V2, �n = n1 − n2, �S = s1 − s2 [13]:

τ
d
dt

�V = FV(V, n, S)�V + Fn(V, n, S)�n + FS(V, n, S)�S

− [ginhΩ(V) + 2gel]�V

and τ
d
dt

�n = GV(V, n)�V + Gn(V, n)�n,

τ
d
dt

�S = HV(V, S)�V + HS(V, S)�S,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.1)

where Ω(V) = S1 + S2 with S1 = Γ (V) and S2 = (Einh − V)ΓV(V) is due to the contribution of the
inhibitory coupling. Here, {V(t), n(t), s(t)} denotes the synchronous solution which corresponds
to the self-coupled system (2.2), ΓV(V) is the partial derivative of Γ (V) with respect to V. The
stability of the completely synchronous solution corresponds to the zero fixed point {�V =
0, �n = 0, �S = 0} of the variational equations (4.1). The function Ω(x) promotes the stability of
synchronization when it becomes positive and has a destabilizing impact when it is negative [13].

The two terms S1 and S2, composing Ω(V), play opposite roles in stabilizing synchronization.
The first (stabilizing) term S1 ≥ 0 remains turned on when the voltage V(t) is above the synaptic
threshold Θs. The second (destabilizing) term S2 ≤ 0 contains the derivative ΓV(V), which has a
negative peak around Θs (in the case of the Heaviside function, ΓV(V) turns into the negative delta
function). Hence, the term S2 switches and remains on for the values of V close to the threshold
Θs when the spikes cross the threshold (figure 7). Thus, the terms S1 and S2 compete with each
other to stabilize and destabilize the completely synchronous rhythm.

The contribution of the electrical coupling to the stability of the variational equations is always
favourable due to the negative term −2gel�V. As we seek to quantify the B − C − E transition (see
figure 2) where the electrical coupling is fixed, we study the changes in the overall dynamics of
the variational equations (4.1) as a function of the averaged contribution of the inhibitory synaptic
terms S1 and S2 (figure 8). However, it is important to emphasize that, once the phase difference
between the cells is no longer infinitesimal, the variational equations lose their credibility. As
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Figure 7. Stabilizing and destabilizing components of the inhibitory coupling. (a) Voltage trace of 12-spike synchronous
bursting. The horizontal line indicates the synaptic thresholdΘs = −40 (mV), above which the inhibition activates. (b) The
synaptic term S1 ≥ 0,which promotes spike synchrony, is turned on during the duration of a spike. (c) The destabilizing synaptic
term S2 ≤ 0 is on during instances when the voltage crosses the synaptic threshold. (Online version in colour.)
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Figure 8. Largest transversal Lyapunov exponentλ⊥, the duty cycle of synchronous bursting, and the averaged synaptic terms
〈S1 + S2〉 as a function of the inhibitory coupling (electrical coupling gel = 0.01 is fixed; this diagram corresponds to the
B − C − E route in figure 2). The dotted line (a) is zero and hence represents the transition to stable synchrony, which occurs
whenλ⊥ < 0. The sign ofλ⊥ changes at the values gin ≈ 0.009 and gin ≈ 0.017, which bound the stable region (see figure 2)
andare indicatedby the vertical lines in eachplot. Theduty cycle of the self-coupled system(2.2),whichgoverns the synchronous
solution, reaches its minimal values within the stable region (b(i)). The shorter duty cycle yields maximal values of the synaptic
terms S1 + S2 averaged over one period of oscillations (b(ii)), such that the overall stabilizing effect of the inhibitory coupling
can stabilize the synchronous solution. The sharp drop (rise) in the size of the duty cycle (synaptic terms) is due to the addition
of one spike in the burst. (Online version in colour.)

a result, the role of the electrical coupling for non-infinitesimal voltage differences cannot be
assessed from the variational equations. As the phase map and slow–fast decomposition analysis
suggest, this role is destabilizing for spike synchrony.

It is also important to stress that increasing the inhibitory coupling strength ginh from 0 along
the B − C − E route changes the dynamics of the self-coupled system (2.2) and alters the duty
cycle of synchronous bursting in a nonlinear fashion (figure 8). This change turns out to be the
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Figure 9. Stability diagrams for network synchronization in four-cell networks, similar to the heatmaps of figure 2. The
corresponding topologies illustrated underneath each figure; spring-like (solid circle) lines indicate electrical (inhibitory)
connections. The colour bar depicts the mean voltage difference

∑n
j=i

∑n
i=1(2/n(n + 1))(Vi − Vj) (mV), calculated and

averaged over four bursting periods. The black (blue) bounded region represents complete synchrony. Note the maximal area
of stable synchrony in the network with both local electrical and inhibitory connections (d); this indicates that the combined
synergistic effect is strongest in sparse configurations with connected graphs. (Online version in colour.)

critical quantity which shifts the balance between the competing terms S1 and S2. As a result, a
shorter duty cycle maximizes the averaged contribution of the resultant force S1 + S2 and induces
complete synchronization.

5. Larger networks
The combined effect of electrical and inhibitory coupling is also present in larger networks
(2.1). Figure 9 presents stability diagrams for synchronization in four-cell networks with
different network structures of electrical and inhibitory connections. Our previous results on
synchronization in excitatory–inhibitory networks [41] suggest that the structure of the added
inhibitory connections is not important and only the number of inhibitory inputs controls the
onset of synchronization, independent from all other details of their network topology. However,
this is only true if the synchronizing excitatory connections are strong enough and form a
connected graph which involves all the cells [41].

As figure 9 indicates, the sparse network topology with both local electrical and inhibitory
connections (figure 9d) has the maximal horizontal and vertical size of the stability region.
Notice that each cell in this network receives two inhibitory inputs such that kinh = 2. Similarly
to the above-mentioned scaling law in excitatory–inhibitory networks [41], the horizontal size
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Figure 10. (a) Thirty-cell random network with electrical and inhibitory connections. The structure of directed inhibitory
connections (thin (blue) lines) is random, with a constraint on the uniform node degree kinh = 8. Undirected electrical
connections (thick (red) lines) are randomly generated; the node degree ranges randomly from 1 to 15. (b) The stability diagram
and colour coding are similar to those of figure 9. Note the presence of the combined effect of electrical and inhibitory coupling.
(Online version in colour.)

of the stability region in network configurations, where the combined effect is observed (the
three networks in figure 9a–c), is inversely proportional to the number of incoming inhibitory
connections kinh. For example, the network with both global electrical and inhibitory connections
(figure 9a) has the stability region whose horizontal size scales down by a factor 3

2 to offset the
effect of increasing the number of inhibitory inputs, kinh, from two (as in the locally connected
network with the maximal stability region) to three (as in the fully connected four-cell network).
This scaling law originates from the self-coupled system (2.2) which governs the synchronous
rhythm via the term kinhginh(Einh − V)Γ (V), whose impact remains the same as long as the
quantity kinhginh is preserved.

At the same time, the interplay between network structures of electrical and inhibitory
connections and its impact on the stability of synchronization are highly non-trivial. Figure 9
demonstrates that global electrical connections should be compensated for by global inhibitory
connections to enlarge the stability region (see figure 9a,c, network configurations). Note that
the figure 9b,e networks do not exhibit the combined synchronizing effect in the region where
inhibition is repulsive. Indeed, only two electrical connections in the figure 9b,e network can
not burst synchronize all four cells, such that repulsive inhibition induces anti-phase bursting
between the left and right sides of the network. The global structure of electrical connections in
the figure 9d network does induce burst synchrony (not shown); however, the sparse directed
inhibitory coupling is insufficient to overcome the impact of electrical coupling and synchronize
the spikes. As a result, the combined effect cannot be achieved.

To show that the combined effect of electrical and inhibitory coupling appears in neural
networks with complex topologies, we have simulated a 30-cell random network where each
cell receives eight inhibitory connections (kinh = 8), whereas the number of electrical connections
varies from one cell to another (figure 10). The uniform node in-degree of the inhibitory
connections (kinh = 8) is preserved to guarantee the existence of the completely synchronized
solution. Node degrees of the electrical connections do not affect this condition, and, therefore,
were chosen freely. Figure 10b demonstrates the emergence of stable synchrony as a result of the
synergistic interaction between the electrical and inhibitory coupling. Note that the size of the
stability zone (black (blue) region) has shrunk, compared with the four-cell networks of figure 9.
This is due to the increased node-degree of the inhibitory network and the above-mentioned
scaling law.
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The detailed analysis of the interplay between synchronization and the network structure
of electrical and inhibitory connections is beyond the scope of this paper and will be reported
elsewhere. This analysis can be based on the variational equations, similar to (4.1), and the
application of the Connection Graph method [49–51], which uses Lyapunov functions and graph
theoretical reasoning.

6. Conclusion
We have discovered a highly nonlinear effect of combined electrical and chemical synapses
in promoting synchronization of bursting cells in a parameter region where each type of
synapse alone destabilizes synchronization. This unexpected effect where ‘two wrongs make
a right’ is caused by a sudden decay in the duty cycle of synchronous bursting. This change
can induce stable synchronization as a result of the separable and counter-balancing effect of
both coupling types on the slow (bursting) and fast (spiking) subsystems, corresponding to
potassium and calcium ion channels. More precisely, fairly weak electrical coupling stabilizes
burst synchronization but repels the individual spikes, whereas the inhibition does the opposite,
promoting spike synchrony when the phases of the cells are close to each other and destabilizing
burst synchronization when one of the cells is in an inactive state. The duty cycle controls a
fragile balance between the two opposite forces, such that shorter duty cycles with a longer
quiescent period increase the stabilizing impact of the electrical coupling in establishing burst
synchronization. By the same token, these short duty cycles maximize the impact of inhibition in
stabilizing spike synchrony. This dependence is non-trivial and increasing the inhibitory strength
changes the duty cycle of synchronous bursting via the self-coupled system in a nonlinear fashion.
The observed combined effect is not limited to networks of bursting Sherman cells but is also
present in, for example, coupled Purkinje neuron models [52], capable of generating square-
wave bursting. Our preliminary studies also indicate that synchronized bursting induced by the
combined coupling persists under small parameter mismatch, including the intrinsic parameters
and coupling strength.

Our study reinforces previous work [41], in which it was shown that the addition of strong
pairwise repulsive inhibition to excitatory networks of bursting neurons can induce synchrony
due to the transition between different types of bursting. Remarkably, the addition of the
inhibitory coupling can promote synchronization much more significantly than strengthening
the present excitatory connections. In contrast with excitatory–inhibitory networks studied
in [41] where the excitatory connections are synchronizing, the combined effect of electrical and
inhibitory coupling reported in this paper originates from two types of connections which are
both repulsive. Our studies of neuronal synchronization form a basis for understanding the
counterintuitive dynamics of bursting networks, which may yield meaningful insight into the
phenomenon of pathological synchrony in epileptic networks. Epileptic seizures are strongly
associated with a synchronized state of certain brain networks. Our results together with [41]
suggest that promoting normally repulsive inhibition in an attempt to prevent seizures can have
an unintended effect of inducing pathological synchrony.
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Appendix A. The synchronizing role of strong electrical coupling
In this appendix, we rigorously prove that strong electrical coupling never changes its
synchronizing role as long as it exceeds a synchronization threshold. We derive a rigorous upper
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bound on the strength of electrical coupling sufficient to induce globally stable synchronization
in the two-cell network (2.1) in the absence of inhibitory connections.

Theorem A.1. Complete synchronization in the network (2.1) of two mutually coupled cells with only
electrical synapses is globally asymptotically stable if gel ≥ g∗, where g∗ = (1/8(ECa − EK))[g2

K + g2
S +

4gCa max(m′∞)(ECa − EK)2].

Proof. It can be seen from system (2.1) that each single cell with or without connections has an
absorbing domain: 0 ≤ n, S ≤ 1, EK ≤ V ≤ ECa such that any trajectory will eventually converge to
this domain. Henceforth, we can assume that all the values of our system variables are inside this
absorbing domain.

Similar to (4.1), we introduce the differences �V = V1 − V2, �n = n1 − n2, �S = s1 − s2. As we
target the global stability of synchronization, these differences do not have to be infinitesimal as
in (4.1). Therefore, we obtain the following difference equation system from system (2.1) with
ginh = 0 :

τ�V̇ = F(V1, n1, S1) − F(V2, n2, S2) − 2gel�V

and τ�ṅ = G(V1, n1) − G(V2, n2), τ�Ṡ = H(V1, S1) − H(V2, S2).

}
(A 1)

To have the explicit presence of �V, �n and �S, we apply the mean value theorem such that

F(V1, n1, S1) − F(V2, n2, S2) = FV(Ṽ, ñ, S̃)�V + Fn(Ṽ, ñ, S̃)�n + FS(Ṽ, ñ, S̃)�S,

G(V1, n1) − G(V2, n2) = GV(Ṽ, ñ)�V + Gn(Ṽ, ñ)�n

and H(V1, S1) − H(V2, S2) = HV(Ṽ, S̃)�V + HS(Ṽ, S̃)�S,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(A 2)

where Ṽ ∈ [V1, V2], ñ ∈ [n1, n2] and S̃ ∈ [S1, S2]. Strictly speaking, the values of Ṽ, ñ and S̃ in the
partial derivatives of functions F, G and H are not the same. However, we will later bound them
by the same conservative quantity, so we keep this abused notation.

Calculating the partial derivatives and regrouping terms in (A 1) yields

τ�V̇ = −[gCa(m′
∞(Ṽ)(Ṽ − ECa) + m∞(Ṽ)) + gKñ + gSS̃ + 2gel]�V

− gK(Ṽ − EK)�n − gS(Ṽ − EK)�S

and τ�ṅ = n′
∞(Ṽ)�V − �n, τ�Ṡ = S′

∞(Ṽ)�V − �S.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(A 3)

In order to prove the global asymptotic stability of synchronization, it suffices to show that the
origin of system (A 3) �V = �n = �S = 0 becomes globally stable when gel exceeds some critical
value. To this end, we construct a Lyapunov function in the following form:

W(t) = τ�V2

2(ECa − EK)2.5 + τ�n2

2
+ τS�S2

2
,

where parameter ECa is always greater than EK. The exponent 2.5 is chosen to minimize the bound
on the synchronization threshold.

We need to show that the derivative of this quadratic form with respect to the trajectories of
system (A 3) is negative everywhere except of the origin. Thus,

Ẇ = −[gCa(m′
∞(Ṽ)(Ṽ − ECa) + m∞(Ṽ)) + gKñ + gSS̃ + 2gel]

�V2

(ECa − EK)2.5

− gK
Ṽ − EK

(ECa − EK)2.5 �n�V − gS
Ṽ − EK

(ECa − EK)2.5 �S�V + n′
∞(Ṽ)�n�V

− �n2 + S′
∞(Ṽ)�S�V − �S2.

This quadratic form simplifies as follows:

Ẇ = −[A�V2 + B�n�V + C�S�V + �n2 + �S2],
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where

A = 1
(ECa − EK)2.5 [gCa(m′

∞(Ṽ)(Ṽ − ECa) + m∞(Ṽ)) + gKñ + gSS̃ + 2gel],

B = 1
2

[
gK

Ṽ − EK

(ECa − EK)2.5 − n′
∞(Ṽ)

]
and C = 1

2

[
gS

Ṽ − EK

(ECa − EK)2.5 − S′
∞(Ṽ)

]
.

To prove that the quadratic form −Ẇ is positive definite, we use the Sylvester criterion:

(1) A > 0; (2)

∣∣∣∣∣A B
B 1

∣∣∣∣∣ > 0; and (3)

∣∣∣∣∣∣∣
A B C
B 1 0
C 0 1

∣∣∣∣∣∣∣ > 0. (A 4)

All the conditions are satisfied if the last one is true: A − B2 − C2 > 0. From which, it follows that

gel > g∗ = 1
8(ECa − EK)

[g2
K + g2

S + 4gCa max(m′
∞)(ECa − E)2],

where we have used the absorbing domain bounds Ṽ = ECa, ñ = 1 and S̃ = 1. �

The theoretical estimate for the synchronization threshold bound is conservative (gel >

3.925) compared with the numerically computed bound gel ≈ 0.18 shown in figure 2. However,
it guarantees that the electrical coupling remains synchronizing as long as it exceeds the
synchronization threshold.

We point the reader to the connection graph method [49–51], which allows us to use the
bound g∗ for the two-cell network to calculate the critical value of electrical coupling sufficient
for globally stable synchronization in large N-cell networks (2.1) with arbitrary topologies of
electrical connections in the absence of inhibition. The following proposition is a direct application
of the connection graph method [49] to the network (2.1) with only electrical connections.

Theorem A.2. Complete synchronization in the network (2.1) of N electrically coupled Sherman models
without inhibitory connections (ginh = 0) is globally asymptotically stable if for every edge k on the
connection graph associated with the connectivity matrix C

gel > 2g∗bk/N, (A 5)

where g∗ is the bound given in theorem A.1 for the two-cell network and the quantity bk = ∑n
j>i; k∈Pij

|Pij|
is the sum of the lengths of all chosen paths Pij which pass through a given edge k.

Proof. The proof directly follows from that of the main theorem of the connection graph
method [49]. �

More details on the calculation of graph quantity bk for a given network topology are given
in [49,53].

Appendix B. Numerical methods

(a) Phase difference
The phase difference �φn used for the Poincaré maps in figure 4 was introduced via a time
delay between the nth onsets of bursting in the two cells. The time delay was normalized over
the full period of bursting oscillations such that �φn = 0 corresponds to complete synchrony
and �φn = 0.5 indicates anti-phase bursting. The phase of bursting in either cell is reset to zero
when the voltage of the cell increases from its quiescent state to reach an auxiliary threshold
Θaux = −50 (mV). The auxiliary threshold Θaux = −50 (mV) is chosen such that it lies between the
minimum values of spikes and the quiescent state. Therefore, the time when the voltage of the
reference cell increases from its quiescent state and crosses this threshold is the time for the onset
of bursting. More details on the calculations of the phase differences and the Poincaré maps using
this procedure can be found in [39].
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(b) Transversal Lyapunov exponent
Transversal Lyapunov exponents for the stability of synchronization correspond to eigenvectors
transversal to the synchronization subspace M. When all N − 1 transversal Lyapunov exponents
are negative, an initial synchronization error converges to zero, yielding stable synchronization.
The largest transversal Lyapunov exponent λ⊥ shown in figures 3 and 8 was calculated from
simulated time-series data of the variational equations (4.1) via the orbit separation algorithm [54]
and the standard fourth-order explicit Runge–Kutta method of numerical integration.
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