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Time-delayed phase-oscillator networks model diverse biological and physical systems, yet stan-
dard first-order phase reductions cannot adequately capture their high-dimensional collective dy-
namics. In this Letter, we develop a second-order reduction for a broad class of time-delayed Ku-
ramoto—Daido networks, transforming the original delayed system of one-dimensional phase oscilla-
tors into a delay-free network of two-dimensional rotators. The resulting model shows that coupling
delay generates inertial terms in the intrinsic dynamics and higher-order (triadic) interactions, and it
accurately predicts the emergence of complex collective patterns such as splay, cyclops, and chimera
states. The reduction further reveals a qualitative division of roles: time delay acts primarily as
effective inertia for higher-dimensional dynamics, including splay states, whereas the induced tri-
adic interactions are decisive for lower-dimensional patterns such as chimeras. The method applies
to networks with arbitrary topology, higher-harmonic coupling, and intrinsic-frequency heterogene-
ity, yielding a compact, parameter-explicit reduced model. This universal reduced description of
time-delayed oscillator networks opens the door to systematic prediction and analysis of nontrivial
collective dynamics in delay-coupled systems.

PACS numbers: 05.45.-a, 46.40.Ff, 02.50.Ey, 45.30.4+s

Introduction. Networks of phase oscillators with time-
delayed interactions provide a fundamental framework
for collective dynamics in biological, physical, and tech-
nological systems with finite signal propagation speeds.
A broad literature has shown that such delays can induce
rich cooperative behavior, ranging from synchronization
and bistability [1-8] to phase and amplitude chimeras,
glassy phase-locked states and clustered chimera pat-
terns [9-13], as well as twisted waves and related struc-
tured states [14, 15|, delay-tunable multistability, and
topology-dependent transitions [16, 17| in Kuramoto,
phase-amplitude oscillator and spatially extended net-
works [18-21]. Comparable delay-induced phenomena
have been documented in neuronal systems [22-30] and
laser networks [31-33|, where heterogeneous time delays
can even generate robust disorder-induced phase locking
of laser oscillators [34, 35].

Existing first-order reductions of time-delayed systems
typically replace the delay by a static phase lag. While
effective for synchronization and simple phase-locking [1-
3], such reductions cannot adequately capture nontrivial
collective states, such as splay, clustered, and chimera
states, and their stability boundaries and basins of at-
traction. In the thermodynamic limit, the Ott—Antonsen
ansatz [36] yields low-dimensional macroscopic reduc-
tions [8, 13, 14] which allow rigorous stability analy-
sis, including delay-induced twisted states, but are re-
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stricted to purely first-harmonic coupling and specific
choices of frequency and delay distributions. Second-
order phase reductions have recently been developed for
non-delayed [37-40] and delayed oscillator pairs [6], re-
vealing how higher-order terms and amplitude variations
shape transitions between phase-locked states; for delay-
coupled Stuart-Landau oscillators, such expansions re-
cover delay-dependent bistability and synchronization
thresholds missed by first-order theory [7]. However,
these approaches are formulated for low-dimensional sys-
tems and rely on conjugacy equations at the single-
oscillator level, making them unsuitable for characteriz-
ing high-dimensional collective states, statistics, or basins
in large networks. Thus, despite significant progress, we
still lack a general predictive reduction for time-delayed
phase oscillators that accommodates arbitrary topology,
heterogeneous frequencies, and multi-harmonic coupling
while remaining accurate for high-dimensional dynamics.

In this Letter, we close this gap and develop a second-
order reduction for a broad class of time-delayed Ku-
ramoto—Daido (KD) networks [41], transforming the
original delayed system of one-dimensional (1D) phases
into a delay-free network of two-dimensional rotators.
The reduced model makes the effects of delay explicit
through inertially augmented intrinsic dynamics and tri-
adic phase interactions. It quantitatively reproduces
complex collective states such as splay and chimera pat-
terns in KD networks with time-delayed global and Ku-
ramoto—Battogtokh—type nonlocal coupling [42]. We fur-
ther show that the reduced model enables a constructive
analysis of cyclops states [43]—a distinct class of three-



cluster generalized splay states—in networks with higher-
harmonic coupling. Remarkably, the robust emergence of
these cyclops states relies on genuinely two-dimensional
intrinsic oscillator dynamics generated by delay-induced
inertia, and is therefore inaccessible to standard first-
order 1D phase reductions.

Time-delayed model and its second-order reduction.
We study a generalized KD network with heterogeneous
natural frequencies, external forcing, and time-delayed
pairwise coupling:
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where 6,(t) is the phase of oscillator j (j = 1,...,N),
w is a baseline (mean) natural frequency, n;(¢) collects
deviations from this baseline (including external forcing
or detuning), s is the coupling strength, and Fj(-) are
2m-periodic pairwise coupling functions that may differ
across oscillator pairs and represent, for example, ran-
dom interactions. The parameter 7 > 0 is a uniform
coupling delay. The results extend straightforwardly to
heterogeneous node-wise delays 7;, provided all incoming
connections to node j share the same delay 7;.

We analyze system (1) in the regime of weak frequency
heterogeneity and coupling by introducing a small pa-
rameter € < 1 so that n;(t) = ew; + (;(t), 2 = ek,
where w; are small detunings from the baseline frequency
w and (;(¢) is a zero-mean time-dependent perturbation.
In the limit e = 0, all oscillators rotate uniformly with
frequency w. Treating € as a small parameter, we per-
form a lengthy multiple-time-scale expansion to capture
the slow modulation of phases by weak disorder and cou-
pling (see the Supplementary Material for details). We
introduce slow times t; = %t (s =0,1,2,...) and write
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where wty represents the leading-order, fast oscillatory
behavior, ¢, describes the slow phase dynamics, and cpg.p )
are higher-order fast corrections that average out over
the longer-term evolution of the system. Substituting
(2) into (1), expanding the delayed terms, and eliminat-
ing secular contributions yields a solvability hierarchy in
powers of . At O(g), we obtain the familiar delay-free

KD phase model with a delay-induced phase shift [1]
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where 7;(t) = ew; +£(;(t) is the averaged frequency per-
turbation. At O(e?), the delay couples the slow time
derivatives, and in the original time variable, the com-
bined phase dynamics take the form of a second-order
equation
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FIG. 1: (a) Probabilities of convergence to full synchrony
(white) and generalized splay states (orange) for the time-
delayed model with global, single-harmonic coupling and its
first-order (3) and second-order (6) reductions, estimated
from 5 x 10* simulations with random initial conditions (uni-
form phases; for the delayed system, random phase histories
on [—7,0]). (b) Probability density functions of ro = |Z5|
for realized splay states in the time-delayed system (cyan his-
togram), compared with the first-order reduction (red curve)
and the second-order reduction (green triangles). Parameters
in (a,b): N =11, =0.1,7 =1, w = 1, « = 0.62 (gray
dot in (c)). (c) Stability regions of full synchrony (white)
and splay states with ro < 0.8 (orange) for the time-delayed
model in the (5, &) plane, where > = 73 and & = a + wT.
The hatched region indicates multistability of synchrony and
generalized splay states. The solid cyan curves I'y and I'2
are the stability boundaries for synchrony and splay states
in the delayed system (the analytic curve I'y corresponds to
the condition * = @ — /2, I'; is obtained numerically). The
dashed cyan curve I's and dashed green curve I'4 show the nu-
merically computed stability boundaries for generalized splay
states with r2 = 0 in the delayed system and in the second-
order reduced model (6), respectively.
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where A, = ¢ — ¢; — wr. The reduced model (4)
shows that the time delay 7 manifests as an effective
inertia, transforming the originally overdamped phase
dynamics with time delay into a second-order system.
The delay also generates higher-order (triadic) interac-
tions: in Eq. (4), the second-order correction appears
as a product of two sums, which yields a double sum
corresponding to triplet couplings. This structure be-
comes particularly transparent for identical oscillators,
where we set 7;(t) = 0 (assumed hereafter) and consider
single-harmonic coupling Fji(9) = Gjsin(d — o) and
F.(9) = Gy cos(¥ — ), with G, denoting the coupling
weights. Using trigonometric identities and the cancella-
tion of antisymmetric double sums, Eq. (4) can be rewrit-
ten as
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where & = « 4+ w7. The first sum corresponds to the
standard pairwise Kuramoto—Sakaguchi coupling with a
delay-induced phase shift. In contrast, the second sum is
a purely delay-induced triadic interaction that couples os-
cillator j to phase triplets (4, k, £). This structure mirrors
the triplet interactions obtained via higher-order phase
reduction for non-delayed Stuart-Landau oscillators [40],
but here arises solely from memory (delay) without in-
troducing amplitude degrees of freedom.

The reduced model (4) establishes a direct correspon-
dence between time-delayed oscillator networks and iner-
tial Kuramoto-type systems, making the memory effects
of delay explicit in the effective dynamics. In what fol-
lows, we validate this reduction by comparing the second-
order model (4), the first-order model (3), and the orig-
inal delayed system under global, nonlocal, small-world,
and two-harmonic coupling. We show that the second-
order reduction accurately reproduces the statistics and
dynamics of the time-delayed system (1), including coex-
istence of synchrony and splay states, the structure and
prevalence of chimera patterns, and the emergence of cy-
clops cluster states, whereas the first-order model (3) sys-
tematically fails to capture these delay-induced regimes.

Global, one-harmonic coupling. We first test the re-
duced model (5) for single-harmonic mean-field cou-
pling, Fjr(¥) = Gjpsin(¥ — a) with G, = 1 for all
7, k. Introducing the Kuramoto order parameters Z,, =
chvzl e””‘z’k/N7 Eq. (5) can be written in the compact
mean-field form

*¢; | do; iy TH —2iw,
T dtzj +d7tj = s»Im[Ze” 7] —TIm[Zfe 2 wﬂ], (6)
where ¢; = ¢; + & and & = a + wr. Thus, de-

lay induces an effective state-dependent second har-
monic proportional to ZZ. For high-dimensional col-
lective dynamics with small first-order parameter r; =
|Z1] < 1 (e.g., generalized splay states [44]), the tri-
adic term is negligible, and the delay acts primarily
as effective inertia. In contrast, for lower-dimensional
patterns such as chimera states with intermediate 7y,
the triadic term becomes significant and encodes delay-
induced higher-order correlations. The model (6) is an-
alytically tractable. For generalized splay states ¢; =
qﬁg = const with Z; = Zivzl ei‘bg/N = 0, Eq. (6)
reduces to the Kuramoto model with inertia [44, 45].
The generalized splay-state stability condition derived in
[43] can be written in terms of the parameters of (6)
as < #* = 2cosa/(r3 —sin?@), for |sina| > ry, or
% > 0, for cosa < —4/1—7r3, where 5x = 73 and
ro = |Zs| is the magnitude of the second Kuramoto

moment. Similarly, linearizing (6) about the fully syn-
chronous state ¢; = wt yields the stability condition:
% > & = cosda/cos(2a), for |sina| > 1/v2, or
3 < &* = cosa/cos(2@), for cos@ > 1/v/2, in agree-
ment with classical necessary and sufficient condition
[46]: »F'(—w,7) > 0 obtained directly from the time-
delayed system, up to terms of order 2.
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FIG. 2: Dynamics of the order parameter r; for the time-
delayed system (1) with Kuramoto—Battogtokh nonlocal cou-
pling (central panel), compared with the first-order reduction
(3) (top) and the second-order reduction (6) (bottom). Each
panel shows results from 250 simulations with random initial
phases ¢;(0) € [—m,n] (and zero initial velocities ¢;(0) = 0
for the second-order model). The black curve highlights a
representative chimera trajectory; the inset shows the corre-
sponding phase distribution ¢; = ¢; — ¢n/2 aligned to the
central oscillator, with the gray band indicating the synchro-
nized cluster. Right panels display the probabilities P of con-
vergence to full synchrony and to chimera states. Parameters:
N =1024, L =1.0, k =5.2, 7 = 0.08, w = 5.125, o = 1.047.

Figure 1(a,b) tests the predictive power of the second-
order model (6) by comparing it with the original de-
layed system (1) and the first-order reduction (3). Fig-
ure 1(a) shows that the second-order model reproduces
the statistics of the delayed system almost perfectly,
whereas the first-order model misestimates these prob-
abilities and frequently misses the synchronous state al-
together. Figure 1(b) compares probability density func-
tions (PDFs) of generalized splay states at fixed ro: the
PDFs (and the individual phase configurations, inset)
from the second-order and delayed models coincide, while



the first-order reduction exhibits a pronounced bias. Fig-
ure 1(c) presents the stability diagram of synchrony
and generalized splay states in terms of x = 7 and
& = a+ wr. For generalized splay states with ro = 0,
the numerical stability curves I's (the delayed system)
and T'y (second-order system) begin to diverge around
s = 0.5, indicating the range of quantitative validity
of the second-order approximation. Since the effective
expansion parameter is > = 71, small delays permit rel-
atively strong coupling, while weak coupling allows pre-
dictive use of the reduced model even for comparatively
large delays.

Nonlocal Kuramoto-Battogtokh coupling. To high-
light the power and generality of the second-order re-
duction, we apply it to what is arguably a strin-
gent testbed: the time-delayed system (1) with Ku-
ramoto—Battogtokh—type nonlocal coupling, which sup-
ports chimera states whose shape is highly sensitive to
approximation [47]. We consider identical oscillators ar-
ranged at equal intervals on a ring segment of length
L, with positions x; = jL/N. The nonlocal coupling
is defined by the exponential kernel [42, 47]: G(z) =

KCOSh(KJ|$D/2 sinh(kL/2), and the coupling functions
Fik(or(t—7)—;(t)) = G sin(dp(t—7)—¢;(t) —c) with

phase shift o and coupling coefficients G, = G(xr — ;).
Figure 2 compares the dynamics of the delayed Ku-
ramoto—Battogtokh system with its first- and second-
order reductions. For 250 random initial conditions,
the time series of the order parameter r; in the second-
order model closely reproduces the ensemble of trajec-
tories of the delayed system, including the characteristic
chimera branch (black curve), while the first-order reduc-
tion yields clearly distorted r; dynamics and often fails to
reach full synchrony. The inset shows that the phase pro-
file of a representative chimera, such as its cluster size and
shape of the synchronized domain, matches almost per-
fectly between the delayed system and the second-order
reduction. In contrast, the first-order model produces
a visibly different pattern. The probability panels on
the right confirm this claim quantitatively: the second-
order model captures the coexistence statistics of fully
synchronous and chimera states observed in the delayed
system, while the first-order reduction both underesti-
mates full synchronization and misidentifies the preva-
lence of chimera states.

Small-world network. We also tested the reduction in a
more demanding setting: a Watts—Strogatz small-world
network [48] with the time-delayed coupling function
Fu(oult—7) = 6;(t) = Agesin(@(t—7) —6;(0)).
where Aj;, = Naji/kj, k; is the degree of node j,
and aj form the adjacency matrix shown in Fig. 3(a).
This network supports twisted states [14, 41], i.e., par-
tially synchronous patterns in which the phases wind
nontrivially around the circle and form nonuniform spa-
tial profiles. Figure 3 shows that the second-order re-
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FIG. 3: (a) Adjacency matrix of the time-delayed small-world
network (N = 100, mean degree (k) = 16, rewiring probabil-
ity p = 0.08). (b) Probabilities P of realizing different stable
regimes for random initial conditions in the delayed network
and in the corresponding first- and second-order reduced mod-
els (2,000 runs; initial phases drawn as random constants).
Triangle and diamond markers indicate bins corresponding to
the examples shown in (d) and (g). (c,f) Time series of the or-
der parameter r1 for selected regimes, comparing the delayed
system (cyan), the second-order reduction (green), and the
first-order reduction (red) under identical initial conditions.
(d,g) Instantaneous phase snapshots, and (e,h) phase-density
profiles (PDFs), illustrating partially synchronous nonuniform
twisted states. Parameters: s = 0.05, w = 0.94, 7 = 1.

duced model reproduces these inhomogeneous twisted
states with high accuracy, both in the time series of
the order parameter and in the instantaneous phase and
phase-density profiles, while also matching the coexis-
tence statistics of twisted and more synchronized regimes
obtained from the full delayed system. In contrast, the
first-order reduction yields noticeably different statistics
and distorted twisted-state profiles, underscoring again
that delay-induced inertial and triadic terms are essential
for capturing the collective dynamics in complex network
topologies.

Global bi-harmonic coupling. As a further test of the
reduction framework in a challenging setting with a richer
coupling structure, we consider globally coupled oscil-
lators with bi-harmonic interactions, Fji(¢r(t — 7) —

¢j(t)) = Z: K, Sin(¢k(t —7)— ¢;(t) — aq), where K,

and aq are the strength and phase shift of the ¢g-th har-
monic. The second-order reduction yields (4) with the
bi-harmonic coupling and is capable of capturing cyclops



states [43] — three-cluster generalized splay states com-
posed of two coherent clusters and a solitary oscillator
— as well as their nonstationary breathing and switch-
ing variants [49, 50]. In this regime, the delay-induced
inertial term and the resulting two-dimensional intrinsic
dynamics are essential: cyclops states are prevalent at-
tractors in the delayed system and in the second-order
model, yet remain essentially invisible to the first-order
(1D) reduction, which fails to capture their nearly global
basins of attraction. Figure 4 illustrates that the second-
order reduction faithfully reproduces not only station-
ary but also nonstationary cluster dynamics in the bi-
harmonic case. For representative parameter sets, the
reduced model tracks the time evolution of the order pa-
rameters r; and 79, and the instantaneous phase config-
urations of stationary, breathing, and switching cyclops
states with high accuracy, demonstrating that it accu-
rately captures even strongly non-stationary cluster dy-
namics in the delayed bi-harmonic regime.

t t

FIG. 4: Cyclops, breathing and switching cyclops states in the
delayed bi-harmonic KD model (cyan) and its second-order
reduction (green). Panels show the time evolution of the first
(r1, solid) and second (r2, dashed) Kuramoto order parame-
ters for (a) a stationary cyclops state (a1 = 1.9, az = —2.4),
(b,d) a breathing cyclops state (a1 = 0.42, ag = —2.3), and
(c,e) a switching cyclops state (1 = 0.6, a2 = —0.92). In-
sets in (a,d,e) display instantaneous phase snapshots for the
delayed system (colored circles) and the second-order reduc-
tion (crosses), illustrating the match of cluster structure and
solitary oscillator position. Initial conditions are uniformly
random constant phases. Parameters: N =9, 7 =1, % = 0.1,
K, =10, K =05, w =1.2.

Conclusions. We have developed a universal second-

order reduction for time-delayed KD networks that maps
delayed 1D phase dynamics to a delay-free network of
2D rotators. This framework establishes a rigorous link
between delay-induced memory and effective inertia plus
higher-order (triadic) interactions, providing an analyt-
ically tractable, compact, and parameter-explicit model
for delayed oscillator ensembles. Across global, nonlo-
cal, and small-world topologies and biharmonic coupling,
the second-order reduction nearly perfectly reproduces
the emergence statistics and shapes of complex, possi-
bly nonstationary patterns, whereas first-order reduc-
tions fail to do so. Taken together, these results indi-
cate that the second-order reduction provides an optimal
balance: it is sufficiently high-order to encode the key
delay-induced mechanisms, yet remains low-dimensional
enough to be analytically transparent and computation-
ally efficient, without requiring higher-order (e.g., third-
order) corrections. Notably, our reduction shows that,
in the weak-coupling regime, the time-delayed 1D Ku-
ramoto model (as a particular case of the KD setting) is
dynamically equivalent to a delay-free 2D Kuramoto-type
model with inertia (and additional higher-order interac-
tion terms, where applicable). This mapping provides
an independent validation and a new application domain
for inertial Kuramoto models, extending their relevance
beyond their established roles as effective descriptions
of adaptive-frequency firefly synchronization [51], power-
grid oscillator networks [52]], and theta-neuron popula-
tions with adaptive synaptic coupling [30, 43]. Because
many physical and biological systems with delays, such
as networks of integrate-and-fire neurons [53] , Josephson
junction arrays [54-56], and laser oscillators with delayed
feedback [34, 57|, can be reduced to KD-type phase dy-
namics, the present reduction offers a broadly applicable
tool for predicting and designing delay-controlled collec-
tive behavior in real-world oscillator networks.
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