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Evolving dynamical networks
1. Introduction

Networks of dynamical systems are common models for many
problems in physics, engineering, chemistry, biology, and social
sciences [1–3]. Recently, considerable attention has been devoted
to algebraic, statistical, and graph theoretical properties of net-
works, and their relationship to network dynamics (see [1–4] and
references therein). In particular, the interplay between network
structure and synchronization has been extensively studied, as
synchronization has been shown to play an important role in the
function or dysfunction of a wide spectrum of technological and
biological networks (see [5–14] for a sampling of this large field).

Notwithstanding the vast literature on networks of dynamical
systems, the majority of the existing studies focus on static net-
works whose connectivity and coupling strengths are constant in
time. However, inmany realistic networks the coupling strength or
the connection topology may vary in time, according to a dynam-
ical rule, whether deterministic or stochastic. The recent efforts
[15–43] are among the few to consider time-dependent couplings.
Researchers are only now starting to investigate the connection be-
tween the evolving structure and the overall network dynamics.
This is currently a hot research topic due to its potential in a vari-
ety of emerging applications.

The idea of organizing this special issue was inspired by a two-
part mini-symposium of the same title that was held at the 2011
SIAM Conference on Applications of Dynamical Systems in Snow-
bird, Utah. This special issue contains a collection of research pa-
pers from a broad spectrum of topics related to modeling, analysis,
and control of evolving dynamical networks.We hope that this col-
lectionwill generate a significant interest among themathematics,
physics, and engineering audiences of the journal. Junior re-
searchers might also find this collection useful as an inspiration to
start graduate research in this exciting field of research.

This highly interdisciplinary special issue integrates new re-
search contributions from different areas in applied mathematics,
physics, neuroscience, and engineering, including stability and bi-
furcation theory, information and ergodic theory, averaging meth-
ods, and mathematical control theory. It can be roughly divided
into three themes.

The first theme is that of evolving neuronal networks and phase
models, including epileptic brain networks [44], networks of theta
neuronswith time-varying excitability [45], and Kuramotomodels
with slow adaptive coupling [46] and coupling plasticity [47].

The second theme is representedby the general theory and appli-
cations of adaptive and switching networks, including the use of: (i)
causation entropy for identifying indirect influences in switching/
blinking networks [48]; (ii) composite centrality to evaluate node
and edge centrality in an evolving network [49]; (iii) moment-
closure approximations for discrete adaptive networks, such as an
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adaptive voter model [50]; and (iv) a multiscale adaptive network
model for the evolution of leadership in collective migration [51].

The third theme is related to monitoring, control, and optimiza-
tion in evolving engineering networks. This includes: (i) the use of
adaptive synchronization for detecting changes in the topology of
a mobile robotic network [52]; (ii) graph optimization for a multi-
agent leader–follower problem [53]; (iii) the consensus problem in
a controlled network with a delay-dependent coupling that tunes
its strength against the delay, to prevent instability [54]; and (iv) a
class of time-varying port-Hamiltonian systems for studying prob-
lems at the intersection of statistical mechanics and control of
physical systems [55].

In this brief survey, we introduce the subject and discuss cur-
rent directions of research in dynamical networks, with emphasis
on rigorous analysis. We propose a definition of an evolving net-
work and present several important classes of dynamical networks
with time-varying structures. We leverage our prior work in this
area to offer salient examples of each theme addressed in this spe-
cial issue and, most importantly, we draw the reader’s attention
to the papers contributing to this special issue by discussing their
main results and challenges.

2. What is an evolving network?

Static network models lack two fundamental characteristics
that are displayed by many complex systems: (i) the dynamic
nature of the components and their interactions that embody a
particular function and (ii) the possible evolution of the under-
lying network structure. Attempts have been made to comple-
ment static networks with these features [4,32,56]. Although in
most cases, the dynamics of the network nodes and the evolu-
tion of the network structure have been considered separately. Un-
fortunately, for most systems this is not the case, with network
topology, dynamics, and evolution all affecting one another. To
overcome these limitations, adaptive networks and evolving dynam-
ical networks have been proposed as more realistic models of com-
plex systems [43,57].

In these classes of networks, the local dynamical process that
takes place over the network structure is coupled to the evolution-
ary rules of the network itself. Therefore, the dynamics influence
the evolution and vice versa. Thus, a wide range of dynamical pro-
cesses have been considered, including those of ordinary differ-
ential equations, probabilistic mappings, and games on networks
(see [92] and references therein). Here, we focus on evolving net-
works as defined in [43], which can be regarded as an attempt to
merge the concept of dynamic graphs, first introduced in the pio-
neeringwork by Siljak [58], with that of complex adaptive systems,
presented by Holland in the late seventies [59,60].

Following [43], we begin by considering a directed graph G =

(V, E), where V = {v1, v2, . . . , vn} is a set of nodes and E = {e1,
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Fig. 1. (a) Schematic of the two levels of an evolving dynamical network. (b) Example of a specific EDN exhibiting dynamics and evolution. The set D represents all possible
generalized dynamical graphs. Of those reached by the evolutionary process D1,D2,D3 ∈ D, each consists of a state space over which the network dynamics can take place.
This is in accordance with the associated dynamical mappings, here denoted by Φ1 and Φ2 . The evolution of the underlying network topology, dynamics mapping and state
space occur through the application of the evolutionary operator τ with ω1 = τ(I,D1) and ω2 = τ(I,D2).
Source: The figure is reproduced from [43] with permission from Complexity [John Wiley & Sons].
Table 1
EDN models as multi-level complex systems: key elements.

Neural networks Communication networks Ecological systems

V Neurons Routers Species/patches
E Synapses Communication lines Prey–predator relationships/dispersal
V Neural firing Internal router state Population size
E Synaptic strength Capacity and usage Predation/dispersal rates
U External stimuli Central congestion control External invasions
Ω Addition/removal of neurons and synapses,

synaptic plasticity
Addition/removal of routers and communication
links, alteration of router dynamics and link
capacities

Creation/extinction of species/patches and
prey–predator relationships, changes to
predation and dispersal rates

I Developmental signals User demands, network dynamics Environmental conditions, population dynamics
e2, . . . , em} where ei ∈ V × V is a set of directed edges. To enable
dynamics to take place on this fixed network structure, a general
state is associated with each node and edge. To simplify the nota-
tion, the current state of a node vi or edge ei is denoted by vi ∈ Vi or
ei ∈ Ei respectively,withVi andEi being the sets of admissible state
values. These states are typically functions of time, whereby vi(t)
and ei(t) define the network dynamics. In general, we also con-
sider a set of external control inputs U = {u1,u2, . . . ,up}, where
ui ∈ Ui can affect the node and edge state dynamics. Thus, the over-
all evolution is described by an appropriate evolution operator, say
Φ : (V × E × U × T) → V×E, where T is the time interval.We de-
fine the collection (G, V, E,U, T, Φ) as a generalized dynamic graph
(GDG).

While GDGs allow for the description of many features of a
complex system, they are still constrained by a fixed underlying
topology (V, E) and form of dynamics Φ . To explore feasible al-
ternatives, we consider the set of all possible generalized dynamic
graphs D, and we define a complex adaptive system over this set.
We view actions taken by the complex adaptive system to embody
evolution of the system occurring concurrently with the network
dynamics (even if at different time scales).

Specifically, as illustrated in Fig. 1, we define an evolving
dynamical network (EDN) as a collection (D, Ω, I, τ ), where D =

{D1,D2, . . .} is the set of generalized dynamic graphs under
consideration (each characterized by its structure, and dynamics
on the nodes and edges); Ω = {ω1, ω2, . . .} is the set of structural
operatorsωi mapping aGDG inD to a different GDG inD; I is the set
of inputs from the environment or control inputs; and, following
the concept of a complex adaptive system proposed in [59,60], τ :

I×D → Ω is the evolutionary plan determining the operatorωi ∈

Ω to be applied when transitioning from one structure to the next.
According to this definition, an EDN can be seen as amulti-level

complex system as shown in Fig. 1 where the intrinsic dynamics of
the nodes and the evolution of the network structure are strongly
intertwined, giving rise to complex, emerging behavior.
3. Evolving dynamical networks of neurons and phase oscilla-
tors

3.1. Example: neural networks

Numerous examples of complex systems can be modeled as an
EDN (see Table 1) [43]. A notable example is that of neural net-
works in the brain which are known to adapt and evolve their
structure as well as the strength of their synaptic connections to
perform different functions [61]. An EDNmodel can describe all of
these features in an integrated manner. In particular, referring to
the framework above, such a neural network can be described as an
EDNwhereV is the set of neurons; E is the set of synapses between
neurons; V is the state space for neuron dynamics; E is the state
space for synaptic weights; U is the set of external control inputs,
that is, stimuli from the environment; T is the set of continuous
times in R;Φ is themapping of both neuronal and synaptic weight
dynamics; D is the set of possible neural network configurations;
Ω is the set of operators describing the possible types of structural
evolution of the neural network (for example, the addition or re-
moval of neurons or synapses); I are inputs from the current dy-
namics of the neural network and external factors that might be
present during development, such as chemical patterning; and τ
is the evolutionary plan describing how the stochastic process of
network growth and development occurs, including the coupling
with the underlying dynamics and the external inputs through I .

The major theme of investigating the dynamics of neuronal
and neuronal-like Kuramoto networks with time-varying coupling
structure and/or strength is addressed by four papers in this special
issue.

3.2. Contributions to the special issue

Lehnertz et al. [44] present methodologies for inferring
brain networks from empirical time series, aiming at improving
inference and characterization of human epileptic brain networks.
They report on findings obtained for evolving epileptic networks
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on time scales ranging from a few seconds to days or even weeks.
This effort provides evidence for properties of evolving brain
networks during epileptic seizures. It describes the evolution of the
network structure as it transitions from a random to amore regular
topology and back. Notably, the authors find the highest resilience
and least stability of the synchronous state when the more regular
topology is active. These results may provide clues as to how
seizures self-terminate and how to control epileptic networks.

So, Luke, and Barreto [45] study a large heterogeneous net-
work of coupled theta neurons that interact globally, via pulse-like
synapses, and whose excitability parameter varies in time. They
demonstrate that such variations can lead to the emergence of
macroscopic chaos, multi-stability, and final-state uncertainty in
the collective behavior of the neuronal network. Analytical tech-
niques are used to identify the asymptotic behavior of the macro-
scopic mean field dynamics of the network. Finite size network
effects and rudimentary control via an accessible macroscopic net-
work parameter are also investigated in this paper.

Skardal, Taylor, and Restrepo [46] analyze complex macro-
scopic behavior in a network of coupled phase oscillators, which
arise when the coupling between oscillators slowly evolves as a
function of either the macroscopic or the local system proper-
ties. They findmacroscopic excitability and intermittent synchrony
in a system of time-delayed Kuramoto oscillators with Hebbian
and anti-Hebbian learning. Transitions between macroscopic in-
coherent and synchronized states in response to one or more
slowly changing coupling strengths are studied in three networks
of increasing complexity, including time-delayed oscillators, with
adaptive network structure and community interaction.

Finally, Chandrasekar et al. [47] demonstrate the occurrence of
multi-stable states in a systemof phase oscillators, induced by cou-
pling plasticity. Themulti-stable state is comprised of a two-cluster
synchronization state, where the clusters are in anti-phase with
each other, and a desynchronization state. Through analysis and
numerics, the authors demonstrate that the effect of the coupling
time scale is not only to introduce a two-cluster state but also to
change the number of oscillators in the two clusters.

4. Adaptive and switching networks

4.1. Example: stochastically blinking networks

Other important examples of EDNs are those in which the indi-
vidual network nodes interact only sporadically via short on–off
interactions. Packet switched networks and event-triggered dis-
tributed control strategies for multi-agent systems are relevant
examples of such systems [62,63]. To describe the dynamics of re-
alistic networks with intermittent connections, a class of evolving
dynamical networks with fast on–off connections, called ‘‘blink-
ing’’ networks, has been extensively studied [17–19,25–28,30,40,
41].

These networks are composed of dynamical systems with con-
nections that switch on and off randomly; switching is fast and oc-
curs stochastically and independently for different time intervals.
The rapidity of the switching process and its lack of time memory
allow for a rigorous analysis of the problem, whereby the evolving
graph is replaced by an average topology controlling the network
dynamics [17–19,25–30,40,41].

The ‘‘blinking’’ network was originally introduced in [17] in the
context of network synchronization. The network consists of N os-
cillators interconnected pairwise via a stochastic information net-
work, whether directed [27] or undirected [17]:

ẋi(t) = f (xi(t)) − ε

N
j=1

Lij(t)h(xj(t)), i = 1, . . . ,N, (1)

where xi(t) ∈ Rn is the state of oscillator i, f : Rn
→ Rn describes

the oscillators’ individual dynamics, h(xj(t)) models coupling
between agents, ε > 0 is a control parameter that partially assigns
the strength of coupling between oscillators, and scalars Lij(t) are
the elements of the time-varying graph Laplacian L(t).

The network topology, defined by the graph Laplacian L(t),
switches at a series of time instants {Tk|k ∈ Z+

}, where T is a
fixed period. The existence of an edge from vertex j to vertex i ≠ j
is determined randomly and independently of other edges with a
given probability. Thus, every switch in the network is operated
independently, according to a similar probability law, and each
switch opens and closes in different time intervals independently.
During each time interval [kT , (k + 1)T ), the communication net-
work G(t) is constant, and if all possible edges Lij are allowed to
switch on and off, the network equals thewell known Erdös–Rényi
graph [64]. The network model (1) allows for other specific net-
work configurations, including small-world graphs [1] and scale-
free graphs [2]. A similar concept to that of a blinking network is
that of a system of so-called conspecific agents [65–67]. This con-
cept has been introduced to describe information sharing in animal
groups, by assuming that the cardinality of an agent’s neighbor set
and the weights assigned to its links are controlled by two jointly
distributed random variables and the neighbors of an agent are se-
lected with equal probability.

Many practical networks can be modeled as stochastically
blinking networks [17,25–28,68]. Examples include cellular neural
networks [17,18], multivehicle teams [69], epidemic spreading
[19], mobile ad hoc networks [70], opinion dynamics [71], and
power converters [72].

The network (1) has two characteristic time scales, namely the
characteristic time of the individual dynamical system and the
characteristic time scale of the stochastic switching. If the stochas-
tic switching is fast enough [17,18,25–30,40,41], the stochastically
blinking system (1) behaves like an averaged system where the
dynamics are controlled by the expectation of the stochastic vari-
ables. This corresponds to replacing the stochastic time-varying
L(t) with its average E[L], corresponding to a static averaged net-
work (see Fig. 2).

The relationship between the dynamics of the stochastically
blinking network and its average is a non-trivial problemandmany
efforts have focused on investigating this issue [17,18,25–28,30,
40,41]. For example, in [17,25,28] it was proven that switching
networks (1) can synchronize even if the network is insufficiently
coupled to support synchronization at every instant of time.

Four papers in this special issue represent this second theme of
adaptive and switching networks.

4.2. Contributions to the special issue

Sun and Bollt [48] study information transfer in the dynam-
ics of small-scale coupled oscillator networks, including switch-
ing/blinking networks. Several examples are used to show that the
causal relationships, inferred from the transfer entropy, are often
misleading when the underlying system contains indirect connec-
tions, dominance of neighboring dynamics, or anticipatory cou-
plings. To account for these effects, a measure called causation
entropy is introduced and it is demonstrated that its application
can lead to reliable identification of true couplings and indirect in-
fluences, even in an evolving network.

Motivated by the observation of the lack of a unified framework
for describing evolving complex networks in general, Joseph and
Chen [49] present the concept of composite centrality for evaluat-
ing node and edge centralities, based on a set of several graphmea-
sures. The composite centrality measure for general weighted and
directed complex networks is based on measure standardization
and invariant statistical inheritance schemes. Two real-world cases
of the world trade web and the world migration web, both during
a time span of 40 years, are used to demonstrate the remarkable
normative power and accuracy of the proposed measure.

Demirel et al. [50] investigate the performance of moment-
closure approximations for discrete adaptive networks. The adap-
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Fig. 2. (a) Example of a stochastic network with local static connections and blinking shortcuts [17]. The probability of switching is p = 0.01. (b) The averaged network;
blinking connections of strength ε are replaced with static all-to-all connections of strength pε.
tive voter model is used as a benchmark model to assess different
approaches. Comparisons with agent-based simulations reveal
that both homogeneous and heterogeneous moment-closure ap-
proximations capture qualitative properties of the fragmentation
transition, but fail to provide good quantitative estimates close to
the fragmentation point. Remarkably, even very sophisticated het-
erogeneous approaches can produce results that are less good than
those from simple homogeneous schemes. This paper concludes
that even the evolution of problematicmodels can be captured if an
expansion is used that is specifically tailored to the system at hand.

Pais and Leonard [51] study the evolution of leadership in mi-
gratory populations, which depends not only on costs and benefits
of leadership investments but also on the opportunities for indi-
viduals to rely on cues from others through social interactions.
This work presents an analytically tractable adaptive dynamical
network model of collective migration with fast time scale migra-
tion dynamics and slow time scale adaptive dynamics of individual
leadership investment and social interaction. The analysis shows
how the topology of the underlying social interaction network in-
fluences the emergence and location of leaders in the adaptive sys-
tem.

5. Monitoring, control, and optimization in evolving networks

5.1. Example: pinning control of networks

Pinning control problems entail the design of control laws for
taming the dynamics of a complex network of nonlinear systems
onto a common desired reference trajectory by exerting control
actions on a relatively small fraction of network nodes [73–86]. The
reference trajectory is commonly generated by a reference system,
that acts as a master for the rest of the network. The effects of the
control inputs applied at the so-called pinned sites are spread to
the rest of the nodes in the network through theirmutual coupling.

Notably, several efforts have demonstrated that pinning con-
trol efficiency can benefit from the adaptation of the edge dynam-
ics and evolution of the network structure [34,73,74,87–91,93]. For
example, in [73,74], a simple control strategy termednode-to-node
pinning control is presented, to reduce the number of pinning sites
and optimize the pinning effectiveness. This approach consists in
randomly pinning all the network nodes at a fast switching rate
and at a uniform gain level. Under fast switching conditions, the
node-to-node pinning scheme is virtually equivalent to simulta-
neously pinning all the network nodes with a homogeneous gain
level. An alternative strategy is proposed in [91], where the struc-
ture of the connections between the master and the nodes, that
will be controlled, self-evolves in time through so-called ‘‘edge-
snapping’’. The broader problem of how to control a network of
dynamical systems via real-time evolution of its structure remains
a pressing open challenge.

The third theme of monitoring, control, and optimization in
evolving engineering networks is represented by four papers in
this special issue.
5.2. Contributions to the special issue

Bezzo et al. [52] present a decentralized framework for track-
ing variations of the network topology for a set of coupled mobile
agents. The network may evolve in time due to both the relative
motion of the mobile robots and unknown environmental condi-
tions, such as the presence of obstacles in the environment. Each
robotic agent is equipped with a chaotic oscillator whose state is
propagated to the other robots through wireless communication,
with the goal of synchronizing the oscillators. This paper proposes
an adaptive technique based on synchronization of chaotic oscilla-
tors which, by obtaining limited information about the local net-
work connectivity, is shown to be effective in synchronizing the
oscillators and providing information on the local connectivity of
the oscillators.

Shi et al. [53] consider an informed-agents selectionproblem for
tracking control of first-order multi-agent systems. In this frame-
work, n follower nodes are taskedwith tracking a static leader, and
only k of themcan be connected to it. These followers that can com-
municate with the leader are called informed agents. The weights
of the arcs are normalized, so the optimal choice of the selected in-
formed agents leads to a structure optimization problem. The pa-
per shows that the optimal selection of the k informed followers
can be approximately obtained by minimizing this maximal dis-
tance, which corresponds to a metric k-center problem in combi-
natorial optimization.

Qiao and Sipahi [54] propose a delay-dependent coupling de-
sign on a multi-agent consensus system with homogeneous inter-
agent delays. The coupling among the agents is designed as an
explicit parameter of the delays, allowing couplings to autono-
mously adapt on the basis of the delay value. This process seeks to
guarantee stability and a certain degree of robustness in the net-
work despite the destabilizing effect of the delays. Design proce-
dures, as well as analysis on the speed of consensus, are presented
in connection with Laplacian eigenvalues.

Delvenne and Sandberg [55] identify a class of time-varying
port-Hamiltonian systems that are able to modify their internal
structure and their interconnection with the environment in time.
This work shows how to use linear control theory to optimally ex-
tract work from a single heat source over a finite time interval.
The optimal controller is a time-varying port-Hamiltonian system,
which can be physically implemented as a variable linear capaci-
tor and transformer. This paper provides a unique example for the
feasibility of integrating established control and information the-
oretical tools, such as Kalman filtering, port-Hamiltonian theory,
and passivity theory, with statistical physics, to explore the funda-
mental limits of work extraction, actuation, measurement, or com-
putation.

6. Open questions and future challenges

The area of evolving dynamical networks is ripe with open
problems and challenges, and wehope that the collection of papers
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included in this special issue will encourage and motivate junior
readers to enter this exciting field of research. In addition to the
open questions and problems highlighted in the papers included
in the issue, we list some fundamental questions on the analysis
and control of evolving networks, which we believe are central to
this research domain.

An important research problem is to develop a rigorous the-
ory for understanding and controlling the evolution of dynamical
networks beyond fast switching. In fact, many practical switching
networks, whether continuous-time or discrete-time, operate at
lower frequencies than those required for implementing fast
switching arguments. Synchronization of computer clocks is a rep-
resentative example, whereby the clocks that generate the local
time for the computer need to be synchronized throughout the net-
work [17]. In addition, the independence of the switching events
leveraged in fast switching arguments is sometimes difficult to
guarantee and efforts should be devoted to studying adaptive dy-
namical networks where switching is a Markov process, instead of
sequences of independent random variables, that could depend on
the state of the dynamical systems.

A crucial challenge in evolving dynamical networks is not only
to understand the interplay between the evolution of the net-
work structure and the overall network dynamics but also to ex-
ploit these mechanisms for synchronization, pattern formation,
and control. In fact, in many natural networks, agents are observed
to rewire or form new interconnections in order to perform a cer-
tain function, such as escaping from a predator in the case of bio-
logical groups. With respect to such real-world networks, a central
problem is the identification of the critical feedback mechanisms
linking the adaptation and dynamics of real-world networks and
often preserving synchronization performance when parts of the
individual systems or links are destroyed. In engineering design,
a key open problem is to devise distributed feedback strategies for
network evolution to support the achievement of prescribed global
objectives. Such strategies can be based on decentralized rewiring
to form new connections that are based on local measurements or
state observations. This evolution could in principle regulate the
controllability and observability of the network and, as a result, af-
ford pinning control schemes thatwouldnot be possible otherwise.
As suggested in [91,35], pinning control strategies can be synthe-
sized to allow for the master node to self-select the number and
location of the nodes to control in order to achieve synchroniza-
tion onto a reference trajectory or even induce the formation of
select community structures. In the context of switching networks,
a very relevant question entails the optimization of the switching
frequency and the design of rewiring strategies for desired perfor-
mance objectives.

In general, solving these problems requires overcoming a num-
ber of technically challenging issues and even developing entirely
new analytical methods. More importantly, it demands a truly in-
terdisciplinary approach that integrates tools and techniques from
different disciplines, ranging from dynamical systems and control
to statistical physics, biology, and sociology.We hope that this spe-
cial issuewill contribute to further igniting interest in this area and
promoting interdisciplinary collaborations.
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