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ABSTRACT12

The generation of high-power controlled pulse trains in semiconductor lasers is of significant theoretical and practical interest,
with broad applications across many fields. Previous work on diode lasers has primarily focused on single-pulse emission from
individual diodes, inherently limiting output power. Here, we demonstrate that large direct-current-driven external-cavity laser
arrays, subject only to optical feedback and engineered frequency heterogeneity, can exhibit robust, coherent multi-pulsing
dynamics. We uncover a multi-pulse generation mechanism driven by two-cluster formation and heterogeneity-induced
interburst oscillations, resulting in desirable features such as multi-GHz operation, high peak power, and nearly perfect phase
synchronization. Our results pave the way for designing and manufacturing miniature photonic chip arrays capable of scalable
multi-pulse generation. Beyond photonics, the underlying multi-pulse mechanism may be broadly relevant to physical and
biological networks, where oscillator heterogeneity can give rise to coherent spiking and bursting dynamics.

13

Introduction14

Semiconductor lasers are well known for their excitability under various perturbations that disrupt steady-state operation,15

with pulsing dynamics playing a crucial role in applications such as optical neurons1, 2 and photonic processors3. Most prior16

studies have focused on single-laser systems, where controllable pulsing typically requires external mechanisms such as17

AC driving4, strong current modulation5, 6, or unilateral injection7–9. These approaches can generate short pulses, including18

gain-switched and mode-locked pulses down to picoseconds10–13, often aided by saturable absorbers14. However, these external19

methods are difficult to scale, and extending synchronized pulsing to large arrays remains elusive. Numerical studies of20

arrays with saturable absorbers have demonstrated pulsing, but the pulses tend to propagate spatially rather than synchronize21

across emitters15–17, limiting coherent emission and power scaling18. Configurations with two lasers subject to both transverse22

coupling and optical feedback showed limited success in achieving synchronous pulsing19, 20, but larger implementations have23

not exhibited robust collective pulsing19, 21, and approaches using incoherent feedback22 remain largely unexplored for scalable24

array synchronization. Thus, despite advances in pulse generation techniques, achieving robust, synchronized multi-pulse25

emission across large semiconductor laser arrays without extensive active control remains a critical and open challenge.26

Meanwhile, synchronization of oscillatory dynamics in laser arrays has been extensively studied23–37, with intrinsic27

heterogeneity and noise often regarded as disruptive factors. However, since the discovery that disorder can tame spatiotemporal28

instabilities and induce synchronization in oscillator networks38, 39, it has been shown, both theoretically and experimentally, that29

under certain conditions, disorder-induced synchronization and coherent dynamics can emerge across a wide range of physical30

and engineering systems40–47. Notably, it has been demonstrated that a time-delayed laser array with inherent heterogeneity,31

composed of broad-area diodes in an external V-shaped cavity, under the right conditions can achieve perfect synchrony48, 49.32

Specifically, while frequency heterogeneity typically degrades phase synchrony, the introduction of misalignment (heterogeneity33

in time delays) can completely reverse this effect, leading to nearly perfect phase-synchronized behavior50.34

In this work, we address the long-standing challenge of synchronizing single pulsing and, more critically, the inherently35

difficult multi-pulse dynamics in large semiconductor laser arrays, a major bottleneck in high-power optical pulse generation.36

We demonstrate that large arrays of semiconductor lasers subject to optical feedback and non-local delayed coupling can exhibit37

robust, high-power, coherent, and periodic pulsing dynamics at multi-GHz frequencies. This coherent pulsing is induced38



by an engineered frequency-detuning heterogeneity among time-delayed coupled emitters, offering a robust and effective39

pathway for generating synchronized multi-pulse dynamics. The resulting pulses exhibit narrow widths of tens of picoseconds,40

tunable intervals between well-separated single and multi-spike trains, and transitions from anti-phase to in-phase locking—key41

features for coherent beam combining. Notably, the single- and multi-pulse regimes we report occur in parameter regions42

where the array operates near a fixed-point solution, i.e., with nearly constant intensity and carrier density in the absence43

of pulsing. This regime typically corresponds to high injection currents, often several times the threshold current, resulting44

in high-intensity emitted pulses. By designing the detuning pattern to alternate between odd and even-numbered lasers, we45

effectively partition the array into two clusters that pulse out of phase with each other. The timing between the oscillations of46

these clusters introduces a slow modulation superimposed on the fast pulsing dynamics, resulting in a rich temporal structure.47

Specifically, the overall periodicity of the pulse trains reflects the external cavity round-trip time, plus an additional inter-cluster48

timing offset governed by the detuning arrangement. As a result, the system exhibits multiple intrinsic time scales: the cavity49

round-trip time, the inter-cluster delay, and the intra-train pulse spacing. Importantly, the amplitude of pulses within each train50

remains nearly constant, indicating that these dynamics are distinct from relaxation oscillations. The number of pulses per train51

depends sensitively on how closely the system operates near the fixed-point regime, and we quantify this dependence across52

key array parameters. Furthermore, due to the multistability inherent in the system, small perturbations, when properly directed,53

can induce transitions between different multi-pulse states, each characterized by a distinct pulse count and temporal spacing.54

We note that the multi-pulse generation mechanism is specific to laser arrays and cannot be realized with a solitary single laser.55

Remarkably, however, many features of the multi-pulse behavior observed in large arrays with engineered frequency detunings56

can already be qualitatively captured in a system of just two coupled lasers, providing valuable insights into the underlying57

generation mechanisms. These findings highlight not only the robustness of the pulsing regime but also its high degree of58

tunability and controllability through passive structural parameters.59

Unlike prior studies on single-pulse dynamics, which begin with simplified representations such as the Adler model51, 52
60

or the Ginzburg-Landau equations53, our work is grounded entirely in the realistic and widely used Lang-Kobayashi laser61

array framework. Despite their significance as theoretical tools for exploring pulsing dynamics, these earlier models lack a62

direct connection to the physical equations governing semiconductor lasers and were unable to exhibit coherent multi-pulse63

regimes. Using analytical techniques and numerical simulations, we uncover the underlying mechanism of pulse generation64

in Lang-Kobayashi laser arrays and demonstrate that certain, possibly broad, distributions of intrinsic laser frequencies lead65

to the emergence of a two-cluster coherent state that supports both single-pulse and multi-pulse regimes. To accurately66

predict the parameter space of interest for pulsing within the Lang-Kobayashi model, we further develop a reduced model67

that reveals an emergent frequency of interburst oscillations and relates it to the number of pulses per unit time, which is68

close to the cavity round-trip time. This mechanism enables controllable, coherent multi-pulsing dynamics, distinct from69

the conventional saddle-node bifurcation on an invariant circle (SNIC) that yields only single-pulse solutions54 observed in70

the classical time-delayed Adler equation and termed topological solitons51–53, 55. Our findings demonstrate the potential of71

all-optical pulsing in large laser arrays, offering a scalable route for phase-locked beam combining and enhanced optical power72

delivery.73

(a) (b)

Figure 1. (a) Array of semiconductor lasers subject to decayed non-local coupling and optical feedback. The external
reflector provides the feedback and decayed coupling. The reflected beam from each emitter couples to the other lasers in the
array after a time delay τ . (b) The equivalent network of emitters with decayed non-local coupling. The transparency of the
links is inversely proportional to the coupling strength between emitters. Q = 30 for simulations shown in Figs. 2-3.
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Results74

Laser array model75

We consider a large array of Q delay-coupled semiconductor lasers with decayed non-local coupling described by a version50
76

of the Lang-Kobayashi equations56:77

Ėq(t) = 1+iα
2

(
g Nq(t)−N0

1+s|Eq(t)|2
− γ

)
Eq(t)+ iωqEq(t)+ κ f

Q

Q
∑
j=1

Aq jE j(t − τ)

Ṅq (t) = βJth − γnNq (t)−g Nq(t)−N0
1+s|Eq(t)|2

|Eq (t) |2,
(1)

with the qth laser complex field Eq(t) = rq(t)exp iφq(t) and carrier number Nq(t). The parameters are customary for Lang-78

Kobayashi-type models: g and N0 are the differential gain coefficient and number of carriers at transparency, respectively, γ79

is the cavity loss rate, Jth = γn [N0 +(γ/g)] is the pump current threshold, the pump factor β > 1 means that the lasers are80

biased above threshold, γn is the carrier loss rate, κ f is the feedback strength. The frequency detuning of the qth laser is ωq.81

The time delay τ is the external cavity round-trip time, which is identical for all lasers. Aq j = d|q− j| ∈ (0,1) is the entry of82

the decay non-local coupling matrix connecting the qth laser to the jth laser. Although we have computationally verified83

the emergence of pulses even in the presence of noise and/or non-identical time delays, we have not considered noise and84

misalignment heterogeneities here in order to explain the pulsing mechanism better and facilitate comparison with the reduced85

model. Supplementary Table 1 contains the full set of parameter values and their meaning. Figure 1 schematically illustrates86

the laser array (1).87

Previous studies within the Lang-Kobayashi framework for a single laser have extensively reported on the dynamical routes88

to chaos, including stable locking, switching dynamics (particularly in short-cavity regimes57, 58) and periodic oscillations59, 60.89

However, these studies have only documented switching dynamics rather than the distinct single-pulse or multi-pulse operation90

reported in this work (see the Supplementary Material for possible single-laser non-pulsing dynamics). We will also emphasize91

that pulsing conditions are encountered for moderate-to-strong feedback strengths and bias currents high above the lasing92

threshold. The latter differs from most of the pulsing schemes mentioned above, which require the laser to be biased close to93

the threshold to optimize the pulse characteristics.94

Numerical simulations.95

For a large array of 30 semiconductor lasers, intensity time traces of pulsing are shown in Fig. 2. Several conditions of operation96

are highlighted to prove the tunability of the pulsing pattern, with a single pulse per period in Fig. 2 (b), two pulses per period97

in Fig. 2 (c), three pulses per period in Fig. 2 (d), and four pulses per period in Fig. 2 (e), with the peculiarity, in the latter,98

that the time interval between each pulse differs inside a train of pulses. The periodicity of pulses and pulse trains is very99

close to the external cavity time delay τ . There can be up to three characteristic time scales (one for cavity round-trip time,100

one for intervals between pulse trains, and one for intervals between the pulses within a single pulse train) at stake in this101

nonlinear phenomenon. Figure 2 shows two distinct pulsing dynamics within the array, with even-numbered lasers exhibiting102

one pattern and odd-numbered lasers displaying another pattern. This stems from the choice of frequency detuning set with ωq103

in (1) presented in this study ( fq = ωq/2π = 2 GHz for even-numbered lasers and fq = −2 GHz for odd-numbered lasers).104

This choice of detuning helps illustrate the pulsing mechanism but does not contrast strongly with other detuning configurations105

detailed in the Supplementary Material. This detuning configuration was engineered to better enable pulsing, although other106

non-alternating detuning configurations can also induce pulsing. While one might expect the pulse count dependence shown in107

Fig. 2 (a) to exhibit a devil’s staircase structure - akin to frequency locking observed in modulated external-cavity semiconductor108

lasers61, fiber lasers62, and frequency comb lasers63 - the presence of multiple plateaus is more likely a result of multistability109

among coexisting states in the large, 30-laser array. As we show in the following subsection, the devil’s staircase behavior110

becomes more pronounced in the simpler two-laser configuration.111

Figure 3 provides a more detailed view of the overall behavior of the 30-laser array. In the single-pulse case, as shown in112

Fig. 3 (a), the lasers exhibit alternating dynamics: even-numbered lasers follow a similar pulsing pattern, while odd-numbered113

lasers share a distinct yet comparable behavior. The only notable deviation occurs at the edges of the array, where the network114

interactions are slightly different, resulting in less pronounced pulsing. Figure 3 (b) details the evolution of coherence over time,115

displaying the combined field intensity (black curve) and the Kuramoto order parameter in the inset (blue curve). The combined116

field intensity is given by: C (t) = |∑Q
q=1 Eq(t)|2. This metric complements the complex Kuramoto order parameter64, 65, which117

is defined as R(t)eiΦ(t) = 1
Q ∑

Q
q=1 exp(iφq (t)) and reaches 1 when all lasers are in-phase synchronized and 0 when they are118

anti-phase synchronized. For comparison, the green curve represents the intensity of one of the even lasers, scaled by 302, while119

the orange curve shows the intensity of one of the odd lasers, similarly scaled. A notable feature is the pronounced dip in the120

combined field intensity, which occurs when the even-numbered lasers pulse. At the dip’s lowest point, the lasers are anti-phase121
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(a)

(b) (c)

(d)

(b)
(c)

(d)(e)

(e)

Figure 2. Multi-pulse dynamics in a 30-laser array under varying feedback strength. (a) Number of pulses per period as a
function of feedback strength κ f , obtained from a parameter sweep of the 30-laser system (1) after transient dynamics have
been discarded. As κ f varies, the number of pulses per period switches between discrete values, indicating multistability. The
same set of randomly chosen initial conditions is used for all simulations. (b)–(e) Time traces of representative lasers showing
distinct pulsing regimes at different values of κ f : (b) single pulse per period for κ f = 44.8ns−1; (c) two pulses per period for
κ f = 44.4ns−1; (d) three pulses per period for κ f = 44.31ns−1; (e) four pulses per period for κ f = 43.99ns−1. In each panel
(b)-(e), the blue trace corresponds to laser #14, representative of the even-numbered lasers, while the orange trace shows laser
#15, representative of the odd-numbered group.

synchronized. A few tens of picoseconds later, the odd-numbered lasers pulse in phase with the Kuramoto order parameter122

approaching 1. This alternating pattern between even- and odd-numbered lasers persists when the system is configured for123

two pulses per period, as seen in Fig. 3 (c)-(d), with a strong dip triggered when the even lasers are pulsing. In all other124

multi-pulsing cases, the pattern remains consistent (not shown). The number of dips in the combined field intensity matches the125

number of pulses per period, and the Kuramoto order parameter remains high (above 96%) when the odd-numbered lasers are126

pulsing. Notably, very similar pulsing dynamics are persistent when random perturbations are added to the frequency-detuning127

values. Supplementary Table 2 gives an example of perturbed detunings that preserve pulsing similar to what is shown in Fig. 3128

(see Supplementary Fig. 2). Similar pulse dynamics also robustly appear in a 20-laser array with a sparse frequency detuning129

configuration (Supplementary Fig. 3). Unlike other laser networks, particularly those using saturable absorbers15, pulsing in our130

array occurs simultaneously across all lasers without spatial propagation over time. This results in high-phase synchrony during131

the pulsing state, which is advantageous for beam combining. Achieving nearly perfect coherence is particularly relevant in132

large laser arrays, as optical power scales with the square of the number of emitters along the propagation axis.133
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(a) (b)

(c) (d)

Figure 3. (a) Heatmap of single-pulse dynamics in a 30-laser array with distinct behaviors between odd- and even-numbered
lasers. (b) Combined field intensity (black curve) of the 30 lasers, highlighting anti-phase and in-phase synchronization periods.
The panel also shows the magnified intensity of an odd laser (green curve) and an even laser (orange curve). The inset
demonstrates the Kuramoto order parameter R(t), confirming transitions between anti-phase and in-phase synchrony. The
feedback strength κ f = 44.8ns−1. (c-d) Same as (a)-(b) but for a pattern with two pulses per period, κ f = 44.4ns−1.

Mechanism for pulse generation.134

To isolate the fundamental mechanisms of pulsing without the complexity of larger arrays, we consider the minimal laser array135

(1) with Q = 2 and Aq j = 1. This system can be expressed in polar coordinates for the laser field Eq(t) as:136

ṙq = Grq(t)+ κ f

2

2
∑
j=1

r j(t − τ)cos(φ j(t − τ)−φq(t)) ,

φ̇q = αG+ωq +
κ f

2

2
∑
j=1

r j(t−τ)

rq(t)
sin(φ j(t − τ)−φq(t)) ,

Ṅq = βJth − γnNq − (2G(rq,Nq)+ γ)r2
q, q = 1,2,

(2)

where function G = 1
2

(
g Nq(t)−N0

1+sr2
q(t)

− γ

)
, rq(t), and φq(t) are the complex field magnitude and phase, respectively. We aim to137

derive an analytically tractable model that captures how rapid, periodic phase destabilization and pulsing period oscillations,138

driven by frequency detuning, lead to the emergence of single- and multi-pulse dynamics. Simulations of the array (2), as shown139

in Supplementary Fig. 4, suggest two key approximations near the coherent pulsing state: (i) the pulsing period is close to the140

time-delay τ, implying that phase differences η1(t) = φ1(t − τ)−φ1(t) and η2(t) = φ1(t − τ)−φ1(t) are small; and (ii) r1(t)141

and N1(t) are close to r2(t) and N2(t), i.e., r1(t − τ) ≈ r1(t) ≈ r2(t − τ) ≈ r2(t) ≡ r(t) and N1(t − τ) ≈ N1(t) ≈ N2(t − τ) ≈142

N2(t)≡ N(t), where r(t) and N(t) correspond to a nearly coherent state. Further, our simulations indicate that variations in143

the pulsing periods of both lasers are approximately equal, i.e., we set η1(t) = η2(t) = η(t). We then introduce the phase144

difference θ = φ1 −φ2 whose evolution is governed by θ̇ = ∆ω + κ f

2 (sin(φ2(t − τ)−φ1(t))− sin(φ1(t − τ)−φ2(t)) , where145

∆ω = ω1 −ω2 is a frequency detuning. Similarly, the evolution of r is governed by ṙ = Gr+ κ f

2 r(t)(cos(φ1(t − τ)−φ1(t))+146

cos(φ2(t − τ)−φ1(t)). Applying the trigonometric identity for the difference of sines, we simplify the θ equation and obtain147
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the reduced system that approximately describes the collective dynamics close to the coherent state:148

ṙ = Gr+ κ f

2 (cosη(t)+ cos(θ −η(t)))r(t),
θ̇ = ∆ω −κ f cosη(t)sinθ ,
Ṅ = βJth − γN(t)− (2G+ γ)r2.

(3)

(a) (b)

(c) (d)

Sweep in 
Fig. 5

Figure 4. Pulse generation in the two-laser array (2) (a) and its reduced model (3) with η = 0 (c) as a function of the
frequency detuning, ∆ f = ∆ω/2π, and feedback coupling strength, κ f (in ns−1). The color in the heatmaps (left panels, (a)
and (c)) indicates the number of peaks per time period T = τ = 8 ns. The blue region shows one-pulse dynamics, calculated
over 100 trials in (a) to account for multistability and one trial in (c), all from random initial conditions. The white and dark red
regions correspond to the lasers’ steady operation and fast oscillatory behavior, respectively. The dark red color indicates five or
more peaks per period. The red dashed curve in (a) represents the reduced model’s saddle-node bifurcation curve κ f = ∆ f that
adequately predicts the pulse generation boundary in (2). Note the gap on the x-axis highlighting the non-zero minimal
frequency detuning required to induce pulsing at ∆ f ∗ ≈ 0.9 GHz. The white star (left panels) and accompanying time traces
(right panels, (b) and (d)) correspond to ∆ f = 2.9192 GHz and κ f = 17.5808 ns−1. Only the r2 time series is plotted in (a),
with nearly coherent r1(t) [not shown]. Parameters for these runs are shown in Supplementary Table 3. The inset in (a)
highlights the region of the sweep the starred example comes from, and the arrow shows the location and direction of the
parameter sweep featured in Fig. 5.

Note that the phase difference equation does not contain r and N and represents a variation of the non-autonomous Adler149

equation66. Its behavior is critically governed by the magnitude and evolution of pulsing period variation η(t). In what follows,150

we show how the dynamics of η give rise to two distinct scenarios for generating either single or multi-pulse dynamics.151

1. Single-pulse generation mechanism: η = 0.152

Supplementary Figure 4 indicates that for single-pulse dynamics, η ≈ 0, allowing us to simplify the θ equation in (3) to153

the classical non-uniform oscillator form54: θ̇ = ∆ω −κ f sinθ . This equation has two fixed points that disappear when ∆ω154

exceeds κ f . Under the condition that ∆ω is slightly greater than κ f , θ slowly drifts near a ghost state, emerging from a155
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saddle-node bifurcation at ∆ω = k f , before rapidly completing the cycle. This rapid increase in the phase difference with θ156

reaching π destabilizes the r equation via the increased positive term (1+ cosθ) and induces a pulse in r. The time between the157

pulses is determined by the nonuniform oscillator’s period54: Tperiod = 2π/
√

∆ω2 − (k f )2, where the denominator is small.158

Figure 4 shows that the reduced model (3) with η = 0 accurately predicts the onset of coherent single-pulse dynamics in the159

full Lang-Kobayashi model (2), induced by frequency heterogeneity through a saddle-node bifurcation on an invariant circle160

(SNIC)54. This mechanism is consistent with earlier analyses of the autonomous, time-delayed Adler equation and has been161

linked phenomenologically to pulsing in laser arrays51–53. However, unlike prior works, our derivation connects this mechanism162

explicitly to the Lang-Kobayashi model via the reduced system (3). Nevertheless, as with its autonomous Adler counterpart, the163

simplified, reduced model (3) with η = 0 has a fundamental limitation: it cannot account for multi-pulse dynamics. Capturing164

such behavior requires retaining the time-dependent nature of η(t), allowing the pulsing period to oscillate. From a historical165

perspective, we first derived the reduced model (3), which suggested that small, persistent oscillations in η could introduce a166

second emergent frequency governing the number and spacing of multiple pulses per cycle. This insight was then validated167

through simulations of the full model (2), leading to the following understanding.168

169

2. Multi-pulse generation mechanism: the role of oscillating pulsing periods170

Figure 5 illustrates the emergence of multi-pulse dynamics in the full model (2), focusing on the parameter region highlighted171

in the inset of Fig. 4. By varying the feedback strength κ f and the frequency detuning magnitude in a way that keeps the system172

near the saddle-node bifurcation transition from single- to multi-pulse regimes, we observe a dependence of the pulse number p173

that resembles a devil’s staircase (Fig. 5 (a)). Unlike the more fragmented dependence seen in the 30-laser array (Fig. 2), the174

two-laser system (2) exhibits a classical, well-defined staircase structure. Remarkably, Figs. 5(b)-(d) reveal predicted oscillating175

behavior in η2 = φ2(t − τ)− φ2(t) which governs the number of generated pulses per period. This oscillatory behavior is176

evident in the periodic repetition of the local maxima of η2.177

Figure 6 presents simulations of the reduced model (3) where η(t) is taken from the full model (2). These results confirm178

that the reduced model successfully captures the emergence and structure of multi-pulse dynamics observed in the full Lang-179

Kobayashi system (2). Moreover, it sheds light on the underlying mechanism of multi-pulse generation, which rests on two key180

features: (i) the θ equation of reduced system (3) undergoes a saddle-node bifurcation at fixed values of η∗ =±arccos(∆ω/κ f );181

and (ii) the oscillating behavior of η(t) enables the phase θ to make multiple 2π rotations during intervals where |η(t)|> |η∗|,182

i.e., when θ̇ > 0. The number of such rotations per cycle determines the number of pulses p. During the remaining portion of183

the cycle where |η(t)|< |η∗|, the phase θ remains at a stable fixed point corresponding to a quiescent (non-pulsing) phase.184

To illustrate the multi-pulse generation mechanism more transparently, we introduce a phenomenological model in the form185

of a non-autonomous Adler equation66, which captures the behavior of the reduced model’s phase dynamics and simplifies186

analytical treatment. The model takes the form:187

dθ

dt
= ∆ω −κ

f (1+acosΩt)sinθ , (4)

where Ω represents the emerging angular frequency associated with the oscillations in η(t) and a is a scaling factor modulating188

the amplitude of the periodic forcing. The analysis of this phenomenological model (4), detailed in the Methods section, yields189

an explicit expression for the number of pulses per modulation cycle as a function of the system parameters:190

p = F(a,Ω,∆ω,k f ) (5)

with the right-hand side function given via (12)-(13) (see Methods). As shown in Fig. 7, the analytical prediction for p closely191

matches the results from the direct simulations of the phenomenological model (4), further validating the proposed multi-pulse192

mechanism.193

Discussion194

While single pulsing in diode lasers is a well-established phenomenon, it typically requires additional mechanisms, such as195

external current modulation or saturable absorbers, to induce pulsation. In contrast, the multi-pulsing dynamics we uncovered196

arise naturally from engineered frequency detuning and appropriate selection of diode and external cavity parameters, without197

any active modulation. Building on this foundation, we addressed a long-standing challenge in photonics, namely the realization198

of synchronized multi-pulse generation in large semiconductor laser arrays—a key bottleneck in scaling high-power pulsed199

optical systems. We show that direct-current-driven external-cavity arrays, subject only to optical feedback and non-local200

time-delayed coupling, can robustly produce periodic, coherent, high-power pulse trains, including complex multi-pulse201

structures. Rather than relying on external forcing, this behavior emerges intrinsically through engineered heterogeneity in202

intrinsic laser frequencies, offering a powerful and experimentally accessible design principle for achieving scalable and highly203

controllable multi-pulsing in integrated photonic platforms.204
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We uncovered the underlying mechanism within the Lang-Kobayashi laser framework, showing that certain, potentially205

wide, distributions of intrinsic laser frequencies give rise to a two-cluster coherent state that supports both single- and multi-pulse206

regimes. The transition to multi-pulsing is driven by heterogeneity-induced interburst oscillations. These dynamics are captured207

by a reduced model explicitly linked to the Lang-Kobayashi equations and further clarified through a phenomenological,208

analytically tractable version resembling a non-autonomous Adler equation. Together, these models reveal that the number of209

pulses per burst is accurately determined by the emergent interburst frequency. Importantly, the period of coherent pulsing210

closely follows the external cavity round-trip time, with subtle, time-varying deviations. These deviations align with the phase211

difference between the two laser clusters, as supported by Supplementary Fig. 5. This observation highlights a crucial role for212

frequency heterogeneity, both between and within clusters, in shaping the phase dynamics that ultimately determine the number213

of pulses in each cycle.214

Our analysis assumes an identical feedback phase across the array, i.e., no feedback misalignment, which allows for the215

derivation of a consistent analytical framework that bridges the Lang-Kobayashi and Adler models. However, our findings are216

not limited to this idealized setting. Simulations incorporating delay-time perturbations (e.g., standard deviations of 20 ps)217

show that coherent pulsing persists even when the feedback phase varies randomly between lasers. This robustness suggests218

that phase alignment is not a strict requirement for realizing coherent, controllable pulsing in large arrays. Remarkably, we219

demonstrate that pulse characteristics are strongly dependent on the detuning pattern across the array. This suggests that220

coherent pulse generation can be experimentally controlled via methods such as individual bias current tuning and other means.221

Very recently, coherent picosecond bright solitons were experimentally demonstrated on a DC-driven mid-infrared quantum222

cascade laser chip67. In that work, laser pulses emerge from a fast bistable nonlinear resonator, eliminating the need for external223

modulation or saturable absorbers68 — a significant milestone toward realizing a miniature, integrated photonic chip that emits224

very narrow, high-frequency pulses. While the specific laser architecture, pulse generation mechanisms, and pulsation patterns225

may differ—particularly in the recent demonstration, which focuses on single-pulse emission—the generation of narrow,226

high-frequency, high-power, periodic, and controllable multi-pulse trains in DC-driven external-cavity diode laser arrays in227

our model also makes it a promising candidate for compact photonic designs targeting diode lasers governed by relaxation228

oscillation limits. This self-organized, periodic pulse formation arises solely from direct current drive and time-delayed optical229

feedback, with a notable distinction in our setting: the emergence of coherent multi-pulse dynamics across large laser arrays.230

These recent experimental advances67 support the broader relevance of our theoretical findings and underscore the growing231

convergence between active and passive nonlinear photonic systems. Our findings pave the way for practical applications,232

including high-power pulsed beam combining and neuromorphic photonic computing. More broadly, the multi-pulse generation233

mechanism we described may apply to a range of excitable physical and biological systems where coherent burst dynamics are234

shaped by structural heterogeneity and delayed interactions.235

Methods236

Analysis of the phenomenological model237

The dynamics of the phenomenological model (4) can be analyzed using a slow-fast decomposition. Rewriting the model in238

rescaled time tnew = κ f t, we obtain239

dθ

dtnew
= ν − (1+acosψ)sinθ ,

dψ

dtnew
= µ,

(6)

where ν = ∆ω

κ f , Ω

κ f = µ, and the auxiliary variable ψ =Ωt captures the phase of the time-varying modulation. In this formulation,240

θ is the fast variable, and ψ evolves slowly when µ ≪ 1, enabling the use of singular perturbation techniques to analyze the241

system. We treat ψ as a slowly varying parameter in the fast subsystem, which provides a sequence of phase portraits that242

govern the overall system dynamics and shape the emergence of multi-pulsing behavior.243

1. Fast subsystem. Setting µ = 0, we obtain the fast system:244

dθ

dtnew
= ν − (1+acosψ)sinθ ,

ψ =C,
(7)

where C is a constant. This system mimics the reduced model (3) with constant η and, as such, supports only single-pulse245

generation via a SNIC bifurcation.246

Case I. When cosψ < ν−1
a , the system (7) has no fixed points and undergoes continuous phase rotation with the period247

T (ψ) =
2π√

ν2 − (1+acosψ)2
. (8)
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(a)

(b)

(c)

(d) 

(b) (c) (d)

Figure 5. Multi-pulse dynamics in the two-laser model (2). (a) Number of pulses per period obtained from a parameter sweep,
where the feedback strength κ f is increased while the frequency detuning ∆ f is decreased by the same numerical value,
following the dependence shown in the inset in Fig. 4. (b)–(d) Time traces of r2(t) and cos(φ1(t)−φ2(t)), along with the peak
values η2 = φ2(t − τ)−φ2(t), for representative cases exhibiting increasing numbers of pulses per period: (b) two pulses per
period: κ f = 17.5805 ns−1 and ∆ f = 2.9195 GHz; (c) three pulses per period: κ f = 17.5795 ns−1 and ∆ f = 2.9205 GHz; (d)
four pulses per period: κ f = 17.5779 ns−1 and ∆ f = 2.9221 GHz. In all cases, oscillations in η2 exhibit periodic behavior
with a period close to τ. Similar behavior is observed in η1 = φ1(t − τ)−φ1(t) [not shown].
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(a) (b) (c)

Figure 6. Multi-pulse dynamics in the reduced model. Time traces of r(t) and cosθ , calculated from the reduced model (3)
with time-dependent η(t)≡ η1 = φ1(t − τ)−φ1(t), where η(t) is taken from the full model. (a)-(c) Simulations correspond to
the two-, three-, and four-pulsing regimes observed in Fig. 5 (b)-(d), using the same values of κ f and ∆ f . (a) Two pulses per
period: κ f = 17.5805 ns −1, ∆ f = 2.9195 GHz; (b) three pulses per period: κ f = 17.5795 ns −1, ∆ f = 2.9205 GHz; (c) four
pulses per period: κ f = 17.5779 ns −1, ∆ f = 2.9221 GHz. The reduced model predicts the pulsing dynamics of the full system
with high accuracy, capturing both pulse multiplicity and timing.

The interval of the system’s phase rotation is248

Irot = {ψ0 < ψ < 2π −ψ0}, where ψ0 = arccos
(

ν −1
a

)
. (9)

Case II. When cosψ > ν−1
a , the system (7) has a stable fixed point θ ∗ = arcsin( ν

1+acosψ
) and phase rotation ceases. The249

fixed-point regime occurs within the interval I f p = {−ψ0 < ψ < ψ0}.250

2. Full system dynamics. For µ > 0, ψ evolves slowly, and the full system (6) alternates between rotational (Case I) and251

fixed-point (Case II) dynamics. The duration spent in the rotation interval Irot is:252

Trot = (2π −2ψ0)/µ. (10)

During this interval, the phase θ can make full 2π rotations. The number of such rotations determines the number of pulses p253

within the rotation interval Irot . The average period of the rotation time that yields one pulse can be estimated as:254

Tpulse =
1

2π −2ψ0

2π−ψ0∫
ψ0

T (ψ)dψ, (11)

with T (ψ) and ψ0 are given in (8) and (10), respectively. Therefore, the average number of pulses can be calculated as:255

p =
Trot

Tpulse
=

(2π −2ψ0)
2

µ
∫ 2π−ψ0

ψ0
T (ψ)dψ

=
(2π −2ψ0)

2

µ
∫ 2π−ψ0

ψ0
2π√

ν2−(1+acosψ)2
dψ

, (12)

where the integral in the denominator can be calculated symbolically as:256 ∫ 2π√
ν2 − (1+acos(ψ))2

dψ =

32π cos2
(

ψ

2

)√ acos(ψ)−ν+1
(a−ν+1)(cos(ψ)+1)

√
acos(ψ)+ν+1

(a+ν+1)(cos(ψ)+1)

√
−a2 cos2(ψ)−2acos(ψ)+ν2−1

(cos(ψ)+1)2 F√
a−ν−1
a+ν+1

√
a2(−cos(2ψ))−a2 −4acos(ψ)+2ν2 −2

√
−sec4

(
ψ

2

)
(a2 cos(2ψ)+a2 +4acos(ψ)−2ν2 +2)

, (13)

with F = F

(
sin−1

(√
a−ν−1
a+ν+1 tan

(
ψ

2

))∣∣∣∣∣ (a+ν−1)(a+ν+1)
a2−2νa+ν2−1

)
, where F(x|m) is the elliptic integral of the first kind. By rescaling257

the parameters in (12)-(13) back to the original parameters in the phenomenological model (4) and taking the integer part258

to ensure p ∈ Z, we arrive at the general formula (5) for predicting the number of pulses per cycle. This formula is used to259

generate the analytical estimate shown in Fig. 7 (a).260
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(a) (b)

(c) (d) (e)

(b) 

(d) 

(e) 

(c) 

Figure 7. Multi-pulse generation in the phenomenological model. (a) Number of pulses per period as a function of the
modulation amplitude a, computed from direct numerical simulations of the phenomenological model (4) (blue dots) and from
the analytical prediction based on Eqs. (12)-(13), with only the integer part p shown (orange dots). (b)-(e) Time traces θ(t)
(blue) and cos(Ωt) (orange) for representative cases with increasing numbers of pulses per period: (b) two pulses per period,
a = 0.03, (c) three pulses per period, a = 0.07, (d) four pulses per period, a = 0.12, (e) five pulses per period, a = 0.017.
Ω = 0.785 corresponds to the time period of η in the reduced model in Fig. 6 (a). κ f = 17.52 ns−1.
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Data availability261

All relevant data are available from the authors upon reasonable request.262

Code availability263

Matlab or Python code is also available from the authors upon reasonable request.264
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Single-laser dynamics with the Lang-Kobayashi models14

The peculiarity of pulsing within the framework of this study is that it requires a network of emitters to be triggered. This15

process can be optimized with adequate engineered frequency detuning, as highlighted in the main text. Yet, our model can16

also be studied in the context of a single laser subject to external optical feedback, and in this case, it does not show pulsing17

dynamics. Details about the nonlinear dynamics that can be observed in this configuration are found in Supplementary Fig. 1,18

and those states are in good agreement with prior studies about the same configuration.1, 2 It is relevant to note that, in the case19

of an array of lasers, the same dynamics can also be observed, but we only focused on the pulsing state as it has not been20

reported previously. For a high bias current (seven times) above the threshold, Supplementary Fig. 1 (a) shows that the single21

laser exhibits a steady-state behavior up to an intermediate feedback level of 10 ns−1. The corresponding unwrapped phase22

in Supplementary Fig. 1 (b) is monotonically decreasing and no specific feature is highlighted in the electrical spectrum of23

Supplementary Fig. 1 (c). Further increase of the feedback strength to 10.8 ns−1 triggers a first kind of switching dynamics in24

the output of the laser, as one can observe in Supplementary Fig. 1 (d). Switching dynamics correspond to a train of pulses,25

as opposed to the pulsing dynamics shown in the main text for arrays of lasers. Each train of pulses is composed of many26

pulses, and the overall behavior is periodic. As mentioned, we found no single pulsing configuration for the lone laser under27

external optical feedback. The typical phase behavior of switching dynamics, shown in Supplementary Fig. 1 (e), is also28

very different from the phase behavior during pulsing, which will be discussed in an upcoming figure. Phase increases in29

steps during the pulse train and then abruptly decreases outside the pulse train, with a diminution over several periods. The30

electrical spectrum in Supplementary Fig. 1 (f) comprises several broad components of discrete peaks. The interval between31

these multiple peaks corresponds to the repetition frequency of the switching dynamics. The oscillation frequency within the32

switching dynamics corresponds to the maximum of the electrical spectrum. From this feedback strength value, a slight increase33

tunes the switching dynamics, as visualized in Supplementary Fig. 1 (g). The laser output still displays a train of pulses, but the34

number of pulses within the train has increased, and the amplitude of the pulses is more consistent. The evolution of phase in35

Supplementary Fig. 1 (h) underscores that the two switching dynamics share similar features, and that confirms the difference36

with pulsing dynamics. The electrical spectrum shown in Supplementary Fig. 1 (i) does not differ much from that shown in37

Supplementary Fig. 1 (f), but each peak is broadened. A wide variety of switching dynamics (not shown here) can be obtained38

when varying κ f around 11-14 ns−1. When the feedback strength is increased, the train of pulses contains more and more39

pulses until it becomes continuous, and only the fast oscillation remains. Such state can be observed in Supplementary Fig. 1 (j)40

for κ f = 17 ns−1. The phase decreases over long time scales and otherwise follows the oscillation pattern at short time scales,41

as seen in Supplementary Fig. 1 (k). The electrical spectrum in Supplementary Fig. 1 (l) contains the frequency component42

related to the oscillation frequency and several harmonics of the main frequency. Each contribution is narrow-band, contrasting43

with the electrical spectra for switching dynamics. In this single-laser configuration, intermediate feedback strength can also44

lead to low-complexity chaos dynamics, and this is illustrated in Supplementary Fig. 1 (m) for κ f = 25 ns−1. The phase in45

Supplementary Fig. 1 (n) now decreases much faster with time and shows small amplitude fluctuations that seem to retain an46

almost periodic behavior with a typical scale close to roundtrip time (3 ns). The electrical spectrum in Supplementary Fig. 147



(o) displays a wide component, which is a typical feature of chaos dynamics, but discrete peaks can still be found within the48

structure, hence explaining why the temporal pattern of Supplementary Fig. 1 (m) belongs to low-complexity chaos.49

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Supplementary figure 1. Nonlinear dynamics that can be observed for a bias current high above threshold (β = 7) and
several conditions of feedback strength in a single laser; (a) Intensity time trace, (b) phase time trace, and (c) electrical spectrum
for κ f = 10 ns−1, illustrating steady-state dynamics at low feedback strength; (d-f) identical to (a-c) but for κ f = 10.8 ns−1,
corresponding to a first type of switching dynamics; (g-i) identical to (a-c) but for κ f = 11 ns−1, corresponding to a second
type of switching dynamics; (j-l) identical to (a-c) but for κ f = 17 ns−1, corresponding to fast oscillations in the output of the
laser; (m-o) identical to (a-c) but for κ f = 25 ns−1, corresponding to low-complexity chaos dynamics. The frequency detuning
for this laser is 0. Other parameters not mentioned here are as shown in Supplementary Table. 1
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Default parameters for the Lang-Kobayashi model simulations50

The Lang-Kobayashi model in the context of an array of semiconductor lasers takes into account various dynamical parameters51

that we list in this section, and the values for each parameter used in the 30 laser models of the main text are gathered in52

Supplementary Table 1. The relationship between the threshold current Jth, defined as a number of electrons per unit of time53

(used in the equations) and Ith, the threshold current in unit of A (described in the table) is Jth = Ith
e , with e the charge of54

an electron. The external cavity time delay is held constant across all lasers in the simulations presented. While we also55

computationally verified the persistence of pulsing dynamics in the presence of disordered time delays, we focus here on56

non-disordered configurations to better elucidate the underlying mechanism and facilitate comparison with the reduced models.57

Supplementary Table 2 lists the frequency detuning parameters used in the 30-laser Lang-Kobayashi model, corresponding to58

the simulation results presented in Supplementary Fig. 2. This is similar to the 30 laser model mentioned in the main text, but59

with the addition of random variation in the frequency detuning values. Supplementary Table 3 shows the parameters used in60

the two-laser Lang-Kobayashi model, whose simulation results are shown in Fig. 4(a) in the main text.61

Supplementary table 1. Details of the parameters for simulating the 30-Lang-Kobayashi laser model array. The values used
in the simulations are compatible with those usually found in semiconductor lasers.3, 4

Symbol Description Value

λ Wavelength 770 nm
α Linewidth enhancement factor 5.0
g Differential gain coefficient 1.5×10−5 ns−1

s Gain saturation coefficient 2×10−7

γ Cavity loss 500 ns−1

N0 Carrier number at transparency 1.5×108

γn Carrier loss rate 0.5 ns−1

fodd = ωodd/2π Frequency detuning for odd lasers -2 GHz
feven = ωeven/2π Frequency detuning for even lasers 2 GHz

τ Feedback delay time 3 ns
κ f Feedback strength varied
d Cross-laser reinjection efficiency 0.75
β Pump factor 7.0
Ith Threshold pump current for a single laser 14.7 mA

Perturbation of the frequency detuning in the 30-laser configuration62

The main manuscript details the pulsing dynamics in an array of 30 lasers with frequency detuning. To optimize the pulsing63

dynamics, which includes the juxtaposition of anti-phase and in-phase synchrony, we focused on a configuration with a64

frequency detuning of -2 GHz for odd lasers and 2 GHz for even lasers. However, this requirement can be relaxed without65

significantly impacting the observed dynamics. With the frequency detuning values listed in Supplementary Tab. 2, one can66

observe the pulsing dynamics displayed in Supplementary Fig. 2, among others. A configuration with a single pulse per period67

is illustrated in Supplementary Fig. 2 (a) for the full array of 30 lasers, and the alternate behavior between the even and the odd68

lasers is still observed. In Supplementary Fig. 2 (b) the phase time trace for an even and an odd laser shows that the phase69

behavior strongly differs compared to what was described in Supplementary Fig. 1 for a single laser. The phase is overall70

decreasing and there is a positive step every time a pulse is triggered for the even lasers while there is a negative step every time71

a pulse is triggered for the odd lasers. The synchrony behavior is detailed in Supplementary Fig. 2 (c) and shows again that72

anti-phase synchrony is followed by in-phase synchrony. Pulsing in the odd lasers aligns with the anti-phase behavior, while73

pulsing in the even lasers coincides with the in-phase behavior. We also highlight a case with two pulses per period, as seen in74

Supplementary Fig. 2 (d). The phase time trace in Supplementary Fig. 2 (e) confirms that the number of steps is related to the75

number of pulses, as two steps per period can be observed. The last panel, meaning Supplementary Fig. 2 (f), showcases the76

synchrony features already observed without the perturbation of the frequency detuning. Overall, this example underscores that77

the frequency detuning does not need to be strictly -2 or 2 GHz to observe pulsing and an uncertainty of more than 0.1 GHz can78

be tolerated for some lasers in the array. This finding is noteworthy as it can be complex to experimentally manufacture an79

array of lasers with extremely precise frequency detuning. A typical uncertainty of 0.1 GHz can be achieved more realistically80

and should not impact the pulsing phenomenon. This alternating configuration of detuning values was engineered to encourage81
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Supplementary table 2. Frequency detuning values for the 30-lasers array in the perturbed detuning case.

Laser number Frequency detuning (GHz)

1 -2.059
2 2.008
3 -2.079
4 1.887
5 -1.998
6 2.117
7 -2.041
8 2.035
9 -1.930

10 2.008
11 -1.952
12 2.155
13 -1.781
14 2.020
15 -2.178
16 2.033
17 -1.982
18 1.893
19 -1.998
20 2.032
21 -1.883
22 2.011
23 -2.108
24 2.128
25 -2.016
26 2.068
27 -1.978
28 2.072
29 -2.028
30 2.017

pulsing, but pulsing can be achieved with other non-alternating configurations, as demonstrated in the next section.82

Example with sparse frequency detuning configuration83

In addition to the perturbed frequency detuning that is underscored in the previous section, pulsing was achieved in an example84

with a non-alternating detuning configuration. This example has an array of 20 lasers, and its behavior is illustrated in85

Supplementary Fig. 3. The frequency detuning on lasers 5, 10, and 15 is 4 GHz. All other lasers have a detuning of zero. Other86

parameters are the same as those shown in Supplementary Tab. 1. Pulsing has the greatest amplitude on the three lasers with87

4 GHz detuning. The amplitude of the pulses is weaker for lasers farther from these detuned lasers, with the lasers on the88

edges showing the lowest amplitude pulses. This further proves that pulsing is driven by differences in frequency detuning89

between lasers in an array. The synchrony behavior shows anti-phase synchrony followed by in-phase synchrony, as seen in90

Supplementary Fig. 3(c) and (f), although neither is as pronounced as in the alternating-detuning cases.91

Computational support for deriving the reduced model92

The objective of the reduced model is to explain the origin of the pulsing behavior in the minimum network required to93

generate pulsing, which is a network of two lasers with transverse coupling. The parameters used in the two-laser model94

shown in Fig. 4(a) of the main text are summarized in Supplementary Tab. 3. To derive the reduced model, we approximate95

r1(t −τ)≈ r1(t)≈ r2(t −τ)≈ r2(t), φi(t −τ)≈ φi(t), and N1(t −τ)≈ N1(t)≈ N2(t −τ)≈ N2(t). To demonstrate the validity96
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(a) (b) (c)

(d) (e) (f)

Supplementary figure 2. Robustness of pulsing dynamics in a 30-laser array under perturbed frequency detuning.
Investigation of a 30-laser pulsing case similar to the one highlighted in the main text, but with the addition of perturbed
frequency detuning. (a) Single-pulsing dynamics in the array of 30 lasers, with the odd and even-numbered lasers showing
alternate behaviors. (b) Phase time traces for one selected odd-numbered laser and one selected even-numbered laser, both
showing a sharp phase step at the instant of pulsing that contrasts with the otherwise linear evolution of the phase. (c)
Combined field intensity (black curve) of the 30 lasers in the array, illustrating when the lasers are anti-phase synchronized and
in-phase synchronized. Also shown are the magnified intensities of an odd-numbered laser (green curve) and an
even-numbered laser (cyan curve). (d-f) Same as panels (a-c) but for a configuration with two pulses per period.

of these approximations for the two-laser case, example plots are shown in Supplementary Fig. 4 for the pulsing case in which97

κ f = 18.0ns−1 and ∆ω = 3.0GHz.98

The normalized differences between the non-delayed and time-delayed versions of r2(t), φ2(t), and N2(t) are plotted in99

Supplementary Fig. 4(a). The absolute value of (φ2(t)−φ2(t − τ))/φ2(t) is below 5×10−5 for all time, and remains below100

1.2× 10−5 between pulses. The absolute value of (N2(t)−N2(t − τ))/N2(t) is below 0.02 for all time and remains below101

2× 10−6 between pulses. The absolute value of (r2(t)− r2(t − τ))/r2(t) is slightly larger, at a maximum around 0.2, but102

remains below 1×10−5 between pulses. This maximum value may be due to a period that differs slightly from τ or small103

differences in pulse shapes. The fact that all these values remain around zero for most of the time supports the approximations104

r2(t − τ) ≈ r2(t), φ2(t − τ) ≈ φ2(t), and N2(t − τ) ≈ N2(t). The same trends hold true for laser 1, so r1(t − τ) ≈ r1(t),105

φ1(t − τ)≈ φ1(t), and N1(t − τ)≈ N1(t).106

The normalized differences between the ri(t) and Ni(t) values for the two lasers are shown in Supplementary Fig. 4(b).107

The absolute value of (N2(t)−N1(t))/N2(t) is below 0.025 for all time, and remains below 4.1×10−3 between pulses. The108

absolute value of (r2(t)− r1(t))/r2(t) is slightly larger, at a maximum under 0.2, but remains below 0.013 between pulses. As109

before, the fact these values are generally around zero validates the approximation r1(t)≈ r2(t) and N1(t)≈ N2(t).110
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(a) (b) (c)

(d) (e) (f)

Supplementary figure 3. Investigation of a 20-laser pulsing case when a limited number of emitters in the array exhibit
frequency detuning, with only ω5 = ω10 = ω15 = 4 GHz being non-zero. (a) Overview of single pulsing in the array of 20
lasers. (b) Phase time trace for laser #14 and laser #15, both showing a step at the instant of pulsing that contrasts with the
otherwise linear evolution of the phase. (c) Combined field intensity (black curve) of the 20 lasers in the array, illustrating when
the lasers are anti-phase synchronized and in-phase synchronized. This panel also shows the magnified intensity of laser #14
(cyan curve) and the magnified intensity of laser # 15 (green curve). (d-f) similar to (a-c) but for a configuration with two
pulses per period.

Supplementary table 3. Details of the parameters for simulating the two-Lang-Kobayashi laser model array.

Symbol Description Value

λ Wavelength 770 nm
α Linewidth enhancement factor 2.5
g Differential gain coefficient 1.5×10−5 ns−1

s Gain saturation coefficient 2×10−7

γ Cavity loss 500 ns−1

N0 Carrier number at transparency 1.5×108

γn Carrier loss rate 0.5 ns−1

ω1 Frequency detuning for laser 1 -∆ω/2
ω2 Frequency detuning for laser 2 ∆ω/2
τ Feedback delay time 8 ns
κ f Feedback strength varied
d Cross-laser reinjection efficiency 1.0
β Pump factor 9.0
Ith Threshold pump current for a single laser 14.7 mA
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(a) (b)

Supplementary figure 4. Plots demonstrating the validity of the approximations used for the reduced model. These are
shown for the two-laser full Lang-Kobayashi model simulations for the pulsing case in which κ f = 18.0ns−1 and
∆ω = 3.0GHz. (a) normalized differences between non-delayed and time-delayed versions of r2(t), φ2(t), and N2(t). (b)
normalized differences between the ri(t) and Ni(t) values for the different lasers.

(a) (b)

Supplementary figure 5. Time difference between the pulsing of the odd and even lasers. (a) Two coupled lasers: The time
difference between the pulsing of the odd and even lasers is illustrated in the time series of intensities for two coupled lasers.
The blue solid line represents the intensity of the first laser, while the orange solid line represents the intensity of the second
laser. The black vertical dashed lines indicate the pulse timing for the first and second lasers. The time window between these
pulses is approximately 0.036 ns. The total time period between pulsing events for the array is approximately 8.039 ns, slightly
longer than the feedback delay time of τ = 8 ns, indicating that the additional time unaccounted for, is approximately 0.039 ns.
This is very close to the time difference between peaks in intensity for laser 1 and laser 2, as previously mentioned, 0.036 ns.
The parameters are set as follows: ∆ f = 3.5 GHz, κ f = 19.5ns−1, with all other parameters as described in Supplementary
Table 3. (b) 30 laser array: The odd and even groups are represented by blue and orange lines, respectively. Laser #3 and Laser
#30 are depicted by bold lines. In terms of pulse timing, Laser #3 is the last laser in the odd group, while Laser #30 is the first
laser in the even group. The time difference between the pulses of Laser #3 and Laser #30 is approximately 0.035 ns, which is
very close to the additional time (≈ 0.037 ns) in the time period for this case. The parameters used are the same as those in Fig.
2(b) of the main text.
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