10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

WILEY-VCH

Coherent multi-pulsing induced by engineered heterogeneity in

diode laser arrays
Greggory Scranton Kendall Golden Olivier Spitz* Arindam Mishra Igor Belykh* and Yehuda Braiman

G.S.,,0.S,A.M.,,Y.B

The College of Optics and Photonics (CREOL), University of Central Florida, Orlando, FL. 32816, USA
Email Address: olivier.spitzQucf.edu; yehuda.braiman@uecf.edu

K. G, I. B.

Department of Mathematics and Statistics and Neuroscience Institute, Georgia State University, P.O.
Box 4110, Atlanta, Georgia, 30302-410, USA

Email Address: ibelykh@gsu.edu

Y.B

Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL 32816,
USA

Keywords: Controllable pulsing, Diode laser array, Nonlinear dynamics

*

The generation of high-power controlled pulse trains in semiconductor lasers is of significant theoretical and practical interest, with
broad applications across many fields. Previous work on diode lasers has primarily focused on single-pulse emission from individual
diodes, inherently limiting output power. Here, we demonstrate that large direct-current-driven external-cavity laser arrays, subject
only to optical feedback and engineered frequency heterogeneity, can exhibit robust, coherent multi-pulsing dynamics. We uncover

a multi-pulse generation mechanism driven by two-cluster formation and heterogeneity-induced interburst oscillations, resulting in
desirable features such as multi-GHz operation, high peak power, and nearly perfect phase synchronization. Our results pave the way
for designing and manufacturing miniature photonic chip arrays capable of scalable multi-pulse generation. Beyond photonics, the
underlying multi-pulse mechanism may be broadly relevant to physical and biological networks, where oscillator heterogeneity can
give rise to coherent spiking and bursting dynamics.

1 Introduction

Semiconductor lasers are well known for their excitability under various perturbations that disrupt steady-
state operation, with pulsing dynamics playing a crucial role in applications such as optical neurons |1,
2] and photonic processors [3]. Most prior studies have focused on single-laser systems, where control-
lable pulsing typically requires external mechanisms such as AC driving [4], strong current modulation
[5, 6], or unilateral injection [7, 8, 9]. These approaches can generate short pulses, including gain-switched
and mode-locked pulses down to picoseconds [10, 11, 12, 13], often aided by saturable absorbers [14].
However, these external methods are difficult to scale, and extending synchronized pulsing to large ar-
rays remains elusive. Numerical studies of arrays with saturable absorbers have demonstrated pulsing,
but the pulses tend to propagate spatially rather than synchronize across emitters [15, 16, 17], limiting
coherent emission and power scaling [18]. Configurations with two lasers subject to both transverse cou-
pling and optical feedback showed limited success in achieving synchronous pulsing [19, 20], but larger
implementations have not exhibited robust collective pulsing [19, 21], and approaches using incoherent
feedback [22] remain largely unexplored for scalable array synchronization. Thus, despite advances in
pulse generation techniques, achieving robust, synchronized multi-pulse emission across large semicon-
ductor laser arrays without extensive active control remains a critical and open challenge.

Meanwhile, synchronization of oscillatory dynamics in laser arrays has been extensively studied [23, 24,
25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37|, with intrinsic heterogeneity and noise often regarded

as disruptive factors. However, since the discovery that disorder can tame spatiotemporal instabilities
and induce synchronization in oscillator networks [38, 39], it has been shown, both theoretically and ex-
perimentally, that under certain conditions, disorder-induced synchronization and coherent dynamics
can emerge across a wide range of physical and engineering systems [40, 41, 42, 43, 44, 45, 46, 47]. No-
tably, it has been demonstrated that a time-delayed laser array with inherent heterogeneity, composed
of broad-area diodes in an external V-shaped cavity, under the right conditions can achieve perfect syn-
chrony [48, 49]. Specifically, while frequency heterogeneity typically degrades phase synchrony, the in-
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troduction of misalignment (heterogeneity in time delays) can completely reverse this effect, leading to
nearly perfect phase-synchronized behavior [50].

In this work, we address the long-standing challenge of synchronizing single pulsing and, more critically,
the inherently difficult multi-pulse dynamics in large semiconductor laser arrays. We demonstrate that
large arrays of semiconductor lasers subject to optical feedback and non-local delayed coupling can ex-
hibit robust, high-power, coherent, and periodic pulsing dynamics at multi-GHz frequencies. This coher-
ent pulsing is induced by an engineered frequency-detuning heterogeneity among time-delayed coupled
emitters, offering a robust and effective pathway for generating synchronized multi-pulse dynamics. The
resulting pulses exhibit narrow widths of tens of picoseconds, tunable intervals between well-separated
single and multi-spike trains, and transitions from anti-phase to in-phase locking—key features for coher-
ent beam combining.

Unlike prior studies on single-pulse dynamics, which begin with simplified representations such as the
Adler model [51, 52] or the Ginzburg-Landau equations [53], our work is grounded entirely in the re-
alistic and widely used Lang-Kobayashi laser array framework. Despite their significance as theoretical
tools for exploring pulsing dynamics, these earlier models lack a direct connection to the physical equa-
tions governing semiconductor lasers and were unable to exhibit coherent multi-pulse regimes. Using
analytical techniques and numerical simulations, we uncover the underlying mechanism of pulse gener-
ation in Lang-Kobayashi laser arrays and demonstrate that certain, possibly broad, distributions of in-
trinsic laser frequencies lead to the emergence of a two-cluster coherent state that supports both single-
pulse and multi-pulse regimes. To accurately predict the parameter space of interest for pulsing within
the Lang-Kobayashi model, we further develop a reduced model that reveals an emergent frequency of
interburst oscillations and relates it to the number of pulses per unit time, which is close to the cavity
round-trip time. This mechanism enables controllable, coherent multi-pulsing dynamics, distinct from
the conventional saddle-node bifurcation on an invariant circle (SNIC) that yields only single-pulse solu-
tions [54] observed in the classical time-delayed Adler equation and termed topological solitons [55, 53,
51, 52]. Our findings demonstrate the potential of all-optical pulsing in large laser arrays, offering a scal-
able route for phase-locked beam combining and enhanced optical power delivery.

2 Results
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Figure 1: (a) Array of semiconductor lasers subject to decayed non-local coupling and optical feedback. The external re-
flector provides the feedback and decayed coupling. The reflected beam from each emitter couples to the other lasers in the
array after a time delay 7. (b) The equivalent network of emitters with decayed non-local coupling. The transparency of
the links is inversely proportional to the coupling strength between emitters. @ = 30 for simulations shown in Figs. 2-3.
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2.1 Laser array model

2.1 Laser array model

We consider a large array of () delay-coupled semiconductor lasers with decayed non-local coupling de-
scribed by a version [50] of the Lang-Kobayashi equations [56]:

' Ltia (. Ng(t)=No . o &
By(r) = 25 (o =) Balt) +iwaBolt) + G 3 Ay By(t — )
]:

: Ny (t)— N,
N, (£) = B — 3Ny (1) — 92000 | 1 (1) |2,

(1)

with the gth laser complex field E,(t) = r,(t) expid,(t) and carrier number N,(t). The parameters are
customary for Lang-Kobayashi-type models: g and Ny are the differential gain coefficient and number of
carriers at transparency, respectively, v is the cavity loss rate, Jy, = 7, [No + (7/g)] is the pump cur-
rent threshold, the pump factor # > 1 means that the lasers are biased above threshold, v, is the carrier
loss rate, 7 is the feedback strength. The frequency detuning of the gth laser is w,. The time delay 7

is the external cavity round-trip time, which is identical for all lasers. A,; = dl979I € (0,1) is the en-
try of the decay non-local coupling matrix connecting the gth laser to the jth laser. Although we have
computationally verified the emergence of pulses even in the presence of noise and/or non-identical time
delays, we have not considered noise and misalignment heterogeneities here in order to explain the puls-
ing mechanism better and facilitate comparison with the reduced model. Supplementary Table 1 con-
tains the full set of parameter values and their meaning. Figure 1 schematically illustrates the laser ar-
ray (1). Previous studies within the Lang-Kobayashi framework for a single laser have extensively re-
ported on the dynamical routes to chaos, including stable locking, switching dynamics (particularly in
short-cavity regimes [57, 58]) and periodic oscillations [59, 60]. However, these studies have only doc-
umented switching dynamics rather than the distinct single-pulse or multi-pulse operation reported in
this work (see the Supplementary Material for possible single-laser non-pulsing dynamics). We will also
emphasize that pulsing conditions are encountered for moderate-to-strong feedback strengths and bias
currents high above the lasing threshold. The latter differs from most of the pulsing schemes mentioned
above, which require the laser to be biased close to the threshold to optimize the pulse characteristics.

2.2 Numerical simulations

For a large array of 30 semiconductor lasers, intensity time traces of pulsing are shown in Fig. 2. Sev-
eral conditions of operation are highlighted to prove the tunability of the pulsing pattern, with a sin-

gle pulse per period in Fig. 2(b), two pulses per period in Fig. 2(c), three pulses per period in Fig. 2(d),
and four pulses per period in Fig. 2(e), with the peculiarity, in the latter, that the time interval between
each pulse differs inside a train of pulses. The periodicity of pulses and pulse trains is very close to the
external cavity time delay 7. There can be up to three characteristic time scales (one for cavity round-
trip time, one for intervals between pulse trains, and one for intervals between the pulses within a sin-
gle pulse train) at stake in this nonlinear phenomenon. Figure 2 shows two distinct pulsing dynamics
within the array, with even-numbered lasers exhibiting one pattern and odd-numbered lasers displaying
another pattern. This stems from the choice of frequency detuning set with w, in (1) presented in this
study (f, = wy/2m = 2 GHz for even-numbered lasers and f, = —2 GHz for odd-numbered lasers).
This choice of detuning helps illustrate the pulsing mechanism but does not contrast strongly with other
detuning configurations detailed in the Supplementary Material. This detuning configuration was en-
gineered to better enable pulsing, although other non-alternating detuning configurations can also in-
duce pulsing. While one might expect the pulse count dependence shown in Fig. 2(a) to exhibit a devil’s
staircase structure - akin to frequency locking observed in modulated external-cavity semiconductor lasers
[61], fiber lasers [62], and frequency comb lasers [63] - the presence of multiple plateaus is more likely a
result of multistability among coexisting states in the large, 30-laser array. As we show in the following
subsection, the devil’s staircase behavior becomes more pronounced in the simpler two-laser configura-
tion.

Figure 3 provides a more detailed view of the overall behavior of the 30-laser array. In the single-pulse
case, as shown in Fig. 3(a), the lasers exhibit alternating dynamics: even-numbered lasers follow a sim-
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2.2 Numerical simulations
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Figure 2: Multi-pulse dynamics in a 30-laser array under varying feedback strength. (a) Number of pulses per period as a
function of feedback strength x/, obtained from a parameter sweep of the 30-laser system (1) after transient dynamics have
been discarded. As xf varies, the number of pulses per period switches between discrete values, indicating multistability.
The same set of randomly chosen initial conditions is used for all simulations. (b)—(e) Time traces of representative lasers
showing distinct pulsing regimes at different values of x7: (b) single pulse per period for k/ = 44.8ns™'; (c) two pulses per
period for kf = 44.4ns~'; (d) three pulses per period for x/ = 44.31ns™'; (e) four pulses per period for k/ = 43.99ns7!.
In each panel (b)-(e), the blue trace corresponds to laser #14, representative of the even-numbered lasers, while the orange
trace shows laser #15, representative of the odd-numbered group.

ilar pulsing pattern, while odd-numbered lasers share a distinct yet comparable behavior. The only no-
table deviation occurs at the edges of the array, where the network interactions are slightly different, re-
sulting in less pronounced pulsing. Figure 3(b) details the evolution of coherence over time, displaying
the combined field intensity (black curve) and the Kuramoto order parameter in the inset (blue curve).
The combined field intensity is given by: C(t) = | ZQQZI E,(t)|?. This metric complements the complex

Kuramoto order parameter [64, 65], which is defined as R(t)e’®® = %ZQQZI exp (i¢, (t)) and reaches 1
when all lasers are in-phase synchronized and 0 when they are anti-phase synchronized. For comparison,
the green curve represents the intensity of one of the even lasers, scaled by 302, while the orange curve
shows the intensity of one of the odd lasers, similarly scaled. Notably, the bias current used in this con-
figuration - approximately 7 to 9 times above the lasing threshold - places the semiconductor lasers in a
regime of highly damped relaxation oscillations [66, 67]. As a result, each emitted pulse is not followed
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2.2 Numerical simulations
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Figure 3: (a) Heatmap of single-pulse dynamics in a 30-laser array with distinct behaviors between odd- and even-
numbered lasers. (b) Combined field intensity (black curve) of the 30 lasers, highlighting anti-phase and in-phase syn-
chronization periods. The panel also shows the magnified intensity of an odd laser (green curve) and an even laser (orange
curve). The inset demonstrates the Kuramoto order parameter R(t), confirming transitions between anti-phase and in-
phase synchrony. The feedback strength s/ = 44.8ns7 ! (c-d) Same as (a)-(b) but for a pattern with two pulses per
period, x/ = 44.4ns™1.

by the characteristic ripples typically associated with relaxation oscillations. Another notable feature is
the pronounced dip in the combined field intensity, which occurs when the even-numbered lasers pulse.
At the dip’s lowest point, the lasers are anti-phase synchronized. Within 20 or 30 picoseconds after the
Kuramoto order reaches a minimum value, the odd-numbered lasers pulse in phase with the Kuramoto
order parameter approaching 1. This alternating pattern between even- and odd-numbered lasers per-
sists when the system is configured for two pulses per period, as seen in Fig. 3(c)-(d), with a strong dip
triggered when the even lasers are pulsing. In all other multi-pulsing cases, the pattern remains consis-
tent (not shown). The number of dips in the combined field intensity matches the number of pulses per
period, and the Kuramoto order parameter remains high (above 96%) when the odd-numbered lasers are
pulsing. Notably, very similar pulsing dynamics are persistent when random perturbations are added to
the frequency-detuning values. Supplementary Table 2 gives an example of perturbed detunings that
preserve pulsing similar to what is shown in Fig. 3 (see Supplementary Fig. 2). Similar pulse dynamics
also robustly appear in a 20-laser array with a sparse frequency detuning configuration (Supplementary
Fig. 3). Unlike other laser networks, particularly those using saturable absorbers [15], pulsing in our ar-
ray occurs simultaneously across all lasers without spatial propagation over time. This results in high-
phase synchrony during the pulsing state, which is advantageous for beam combining. Achieving nearly
perfect coherence is particularly relevant in large laser arrays, as optical power scales with the square of
the number of emitters along the propagation axis.

In realistic laser arrays, the feedback strength may vary across emitters due to angular divergence and
wavefront distortions introduced by reflections from the external mirror. While the model (1) already in-
corporates non-uniform optical feedback through the spatially decaying coupling term A,;, we further in-
vestigated the robustness of pulsed dynamics under different types of perturbations, which are detailed
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2.3 Mechanism for pulse generation

in the Supplementary Material. In particular, we study the impact of the so-called smile effect, most
prominently reducing coupling at the array edges [68]. It is relevant to note that in the case of a moder-
ate smile effect, the latter can be corrected with appropriate lensing. Under high-power continuous-wave
operation, thermal loading and crosstalk are also unavoidable and may induce slow frequency drifts and
spatially varying gain profiles. We thus assessed the impact of these thermal nonuniformities on pulse
dynamics and synchronization robustness with two sets of simulations in the Supplementary Material.
These results confirm that both slow thermal drift and moderate noise levels do not significantly impair
the pulsing dynamics, further reinforcing the robustness of the proposed mechanism. These findings col-
lectively support the robustness of the proposed pulsing mechanism under realistic imperfections, includ-
ing thermal fluctuations, fabrication-induced asymmetries, and spontaneous emission noise, thereby rein-
forcing the feasibility of implementing our approach in experimental semiconductor laser arrays.

2.3 Mechanism for pulse generation

To isolate the fundamental mechanisms of pulsing without the complexity of larger arrays, we consider
the minimal laser array (1) with @ = 2 and A,; = 1. This system can be expressed in polar coordinates
for the laser field E,(t) as

fu = Grylt) + 5 3 ry(t =) cos (80 = 7) = 6,(0),

bo =G +wy + & ﬁf z B0 in (65t — 7) — 64(1)) @)
Nq :ﬁJth_ (2G(rq7 )+’7) , 4§ = 1727

where function G = % (g 1\171(3;01\7)0 — fy) , rq(t), and ¢,(t) are the complex field magnitude and phase,
q

respectively. We aim to derive an analytically tractable model that captures how rapid, periodic phase
destabilization and pulsing period oscillations, driven by frequency detuning, lead to the emergence of
single- and multi-pulse dynamics. Simulations of the array (2), as shown in Supplementary Figs. 10 and
11, suggest two key approximations near the coherent pulsing state: (i) the pulsing period of approxi-
mately 8.039 ns is close to the time-delay 7 = 8 ns, implying that phase differences 1, (t) = ¢1(t — 7) —
¢1(t) and ma(t) = ¢1(t — 7) — ¢1(t) are small; and (ii) r1(¢) and N;(t) are close to () and No(t), i.e
r(t —7) &= ri(t) = ro(t —7) & ro(t) = r(t) and Ni(t — 7) = Ni(t) = No(t — 7) = Ny(t) = N(t),
where 7(t) and N(t) correspond to a nearly coherent state. Further, our simulations indicate that varia-
tions in the pulsing periods of both lasers are approximately equal, i.e., we set ny(t) = no(t) = n(t). We
then introduce the phase difference 6 = ¢; — ¢ whose evolution is governed by

0= Aw + 5 (sin (éa(t — 1) = 1(8)) = sin (61(¢ — 1) = d(1))

where Aw = w; — wy is a frequency detuning. Similarly, the evolution of r is governed by 7 = Gr +
%r(t)(cos (p1(t —7) — ¢1(t)) + cos (p2(t —7) — ¢1(t)). Applying the trigonometric identity for the dif-
ference of sines, we simplify the 6 equation and obtain the reduced system that approximately describes
the collective dynamics close to the coherent state:

i=Gr+ ”—;(Cos n(t) + cos(d —n(t)))r(t),
0 =Aw — ! cosn(t)sin 6, (3)
N = BJy, —yN(t) — (2G +7) r?

Note that the phase difference equation does not contain » and N and represents a variation of the non-
autonomous Adler equation [69]. Its behavior is critically governed by the magnitude and evolution of
pulsing period variation 7(t). In what follows, we show how the dynamics of 7 give rise to generating
multi-pulse dynamics.

Supplementary Figure 10 indicates that for single-pulse dynamics, n ~ 0, allowing us to simplify the ¢
equation in (3) to the classical non-uniform oscillator form [54]: # = Aw — / sin . This equation has
two fixed points that disappear when Aw exceeds /. Under the condition that Aw is slightly greater
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2.3 Mechanism for pulse generation
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Figure 4: Pulse generation in a two-laser array. (a) Heatmap depicting the number of pulses per round-trip period

(I' = 7 = 8 ns) as a function of the frequency detuning Af = Aw/27 (GHz, x-axis) and the feedback coupling strength x/
(ns™!, y-axis) in the full Lang-Kobayashi model (2). Each pixel summarizes the outcome of 100 simulations with random-
ized initial conditions. The color indicates the lowest nonzero number of pulses per period observed, with dark blue rep-
resenting a single pulse, dark red corresponding to five or more pulses (often associated with fast oscillations), and white
indicating steady-state behavior with no pulsing. The inset zooms into the region near the starred parameter set and the
arrow marks the direction of the sweep used in Fig. 5. Notably, a gap near Af =~ 0.9 GHz marks the minimum detuning
required to initiate pulsing. (b) Time trace of ro(t) for the marked parameter set (Af = 2.9192 GHz, x/ = 17.5808 ns~1).
Although only 7o is shown, ri(¢) exhibits similar pulse dynamics. (c¢) Heatmap for the reduced model (3) withn = 0,
plotted over the same parameter range using a single initial condition per pixel. The red dashed curve in (a) indicates the
saddle-node bifurcation s = Af in the reduced model, accurately predicting the pulsing onset in the full model. (d) Cor-
responding time trace from the reduced model at the same parameter values. Model parameters for these simulations are
listed in Supplementary Table 3.

than &/, 0 slowly drifts near a ghost state, emerging from a saddle-node bifurcation at Aw = k7, be-
fore rapidly completing the cycle. This rapid increase in the phase difference with 6 reaching 7 desta-
bilizes the r equation via the increased positive term (1 + cosf) and induces a pulse in 7. The time be-
tween the pulses is determined by the nonuniform oscillator’s period [54]: Tperioa = 27/+/Aw? — (kf)2,
where the denominator is small. Figure 4 shows that the reduced model (3) with n = 0 accurately pre-
dicts the onset of coherent single-pulse dynamics in the full Lang-Kobayashi model (2), induced by fre-
quency heterogeneity through a saddle-node bifurcation on an invariant circle (SNIC) [54]. This mech-
anism is consistent with earlier analyses of the autonomous, time-delayed Adler equation and has been
linked phenomenologically to pulsing in laser arrays [53, 51, 52]. However, unlike prior work, our deriva-
tion explicitly connects this mechanism to the Lang-Kobayashi model via the reduced system (3). It is
important to emphasize an essential distinction between the single-pulsing observed in our system and
conventional mode-locking [70]. In standard mode-locking, the pulse repetition rate must exactly match
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2.3 Mechanism for pulse generation

the round-trip time of the external cavity; even slight deviations disrupt phase coherence and break the
mode-locking condition. In contrast, the coherent pulsing observed here does not require an exact match
between the pulse period and the cavity delay. Although the periods are close, they are not identical.
This is clearly demonstrated in Supplementary Fig. 11, where the observed pulse periods are 8.039 ns
and 3.037 ns for external cavity delays of 8 ns and 3 ns, respectively. Nevertheless, as with its autonomous
Adler counterpart, the simplified, reduced model (3) with n ~ 0 has a fundamental limitation: it cannot
account for multi-pulse dynamics. Capturing such behavior requires retaining the time-dependent nature
of n(t), allowing the pulsing period to oscillate.

From a historical perspective, we first derived the reduced model (3), which suggested that small, persis-
tent oscillations in 7 could introduce a second emergent frequency governing the number and spacing of
multiple pulses per cycle. This theoretical insight was subsequently confirmed through simulations of the
full model (2), which revealed the critical role of oscillatory pulsing periods in the emergence of multi-
pulse dynamics.

Figure 5 illustrates the emergence of multi-pulse dynamics in the full model (2), focusing on the param-
eter region highlighted in the inset of Fig. 4. By varying the feedback strength x/ and the frequency
detuning magnitude in a way that keeps the system near the saddle-node bifurcation transition from
single- to multi-pulse regimes, we observe a dependence of the pulse number p that resembles a devil’s
staircase (Fig. 5(a)). Unlike the more fragmented dependence seen in the 30-laser array (Fig. 2), the
two-laser system (2) exhibits a classical, well-defined staircase structure. Remarkably, Figs. 5(b)-(d) re-
veal predicted oscillating behavior in 7y = ¢o(t — 7) — ¢o(t) which governs the number of generated pulses
per period. This oscillatory behavior is evident in the periodic repetition of the local maxima of 7,.
Figure 6 presents simulations of the reduced model (3) where n(t) is taken from the full model (2). These
results confirm that the reduced model successfully captures the emergence and structure of multi-pulse
dynamics observed in the full Lang-Kobayashi system (2). Moreover, it sheds light on the underlying
mechanism of multi-pulse generation, which rests on two key features: (i) the 6 equation of reduced sys-
tem (3) undergoes a saddle-node bifurcation at fixed values of * = +arccos(Aw/k’); and (ii) the oscil-
lating behavior of 7(t) enables the phase 6 to make multiple 27 rotations during intervals where |n(t)| >
In*|, i.e., when 6 > 0. The number of such rotations per cycle determines the number of pulses p. During
the remaining portion of the cycle where |n(t)| < |n*|, the phase § remains at a stable fixed point corre-
sponding to a quiescent (non-pulsing) phase.

To illustrate the multi-pulse generation mechanism more transparently, we introduce a phenomenological
model in the form of a non-autonomous Adler equation [69], which captures the behavior of the reduced
model’s phase dynamics and simplifies analytical treatment. The model takes the form:

% = Aw — K7 (1 + acosQt)sin b, (4)
where ) represents the emerging angular frequency associated with the oscillations in 7(t) and a is a
scaling factor modulating the amplitude of the periodic forcing. The motivation behind the system (4)
lies in replacing the periodic term cos7(t) with a periodically modulated expression, (1+ acos(§2t)). This
substitution transforms a model that would otherwise support a single-pulse regime into one capable of
generating single and multiple pulses per period, with the modulation amplitude a governing the emer-
gence, strength and the shape of the pulsing behavior. As shown in Supplementary Figure 12, the mini-
mum of the potential energy is directly related to the number of pulses in each pulse train. The analysis
of this phenomenological model (4), detailed in the Methods section, yields an explicit expression for the
number of pulses per modulation cycle as a function of the system parameters:

p = F(a,Q,Aw, k) (5)

with the right-hand side function given via (13)-(14) (see Methods). As shown in Fig. 7, the analytical
prediction for p closely matches the results from the direct simulations of the phenomenological model
(4), further validating the proposed multi-pulse mechanism.

To further elucidate the mechanism behind the emergence of multi-pulse dynamics, we draw an anal-
ogy between the phenomenological model (4) and an overdamped pendulum with a periodically varying
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length. Specifically, consider a pendulum of length [(t) = L + A cos Qt subject to a constant torque I'. In
the overdamped regime, where inertial terms are negligible, the equation of motion reduces to

0 =T — L(1 + ay cos ) sin 6, (6)

with a; = A/L. This model is mathematically equivalent to the phenomenological model (4), with the
constant torque I' representing the frequency detuning Aw. In this analogy, the pendulum accumulates
potential energy while resting near the bottom of the potential well, and releases it as kinetic energy
during rapid rotations, akin to optical pulse emission. As the length [(t) increases, the gravitational restor-
ing force strengthens, deepening the potential well. Conversely, when [(¢) decreases, the well flattens,
reducing the energy barrier for escape. This modulation of potential depth effectively controls the tim-
ing and number of phase slips (rotations) per cycle. As shown in Supplementary Fig. 12, there is a clear
correlation between the number of emitted pulses and the depth of the potential energy minima: larger
modulation amplitudes a; lead to deeper wells, which correspond to greater energy accumulation and
subsequently more pulses. These results support the interpretation of multi-pulsing as a mechanism of
energy storage and periodic release, regulated by the external modulation. Full derivation and additional
illustrations of the pendulum model are provided in the Supplementary Material.

3 Discussion

While single-pulsing in diode lasers is a well-established phenomenon, it typically requires additional
mechanisms, such as external current modulation or saturable absorbers, to induce pulsing. In contrast,
the multi-pulsing dynamics we uncovered arise naturally from engineered frequency detuning and ap-
propriate selection of diode and external cavity parameters, without any active modulation. Building on
this foundation, we addressed a long-standing challenge in photonics, namely the realization of synchro-
nized multi-pulse generation in large semiconductor laser arrays—a key bottleneck in scaling high-power
pulsed optical systems. We show that direct-current-driven external-cavity arrays, subject only to opti-
cal feedback and non-local time-delayed coupling, can robustly produce periodic, coherent, high-power
pulse trains, including complex multi-pulse structures. Rather than relying on external forcing, this be-
havior arises intrinsically from engineered heterogeneity in intrinsic laser frequencies, offering a powerful,
experimentally accessible design principle for achieving scalable, highly controllable multi-pulsing in inte-
grated photonic platforms.

We uncovered the underlying mechanism within the Lang-Kobayashi laser framework, showing that cer-
tain, potentially wide, distributions of intrinsic laser frequencies give rise to a two-cluster coherent state
that supports both single- and multi-pulse regimes. The onset of multi-pulsing is governed by interburst
oscillations induced by frequency heterogeneity. These dynamics are captured by a reduced model ex-
plicitly linked to the Lang-Kobayashi equations and further clarified through a phenomenological, ana-
lytically tractable version resembling a non-autonomous Adler equation. Together, these models reveal
that the number of pulses per burst is accurately determined by the emergent interburst frequency. Im-
portantly, the period of coherent pulsing closely follows the external cavity round-trip time, with subtle,
time-varying deviations. These deviations align with the phase difference between the two laser clusters,
as supported by Supplementary Fig. 11. This observation underscores the crucial role of frequency het-
erogeneity, both between and within clusters, in shaping the phase dynamics that ultimately determine
the number of pulses in each cycle.

Our analysis assumes identical feedback phases across the array, i.e., no feedback misalignment, enabling
the derivation of a consistent analytical framework that bridges the Lang-Kobayashi and Adler models.
However, our findings are not limited to this idealized setting. Simulations incorporating delay-time per-
turbations (e.g., a 20 ps standard deviation) show that coherent pulsing persists even when the feedback
phase varies randomly between lasers. This robustness suggests that phase alignment is not a strict re-
quirement for realizing coherent, controllable pulsing in large arrays. Remarkably, we demonstrate that
pulse characteristics are strongly dependent on the detuning pattern across the array. This suggests that
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coherent pulse generation can be experimentally controlled via methods such as individual bias-current
tuning and other means.

The pulsing dynamics reported in this work fundamentally differ from conventional mode-locking, which
requires equidistant longitudinal modes with fixed phase relations in a single multimode cavity. In con-
trast, our system consists of delay-coupled semiconductor lasers with engineered detunings and coupling
structure that support robust multi-pulsing even in the presence of phase disorder. Although the lasers
become effectively multimode during pulsing, the observed pulses arise not from the standard balance of
dispersion and nonlinearity but from the underlying phase-space topology of the coupled system. These
localized structures are discrete, robust, and topological, similar in spirit to the dissipative phase solitons
described in other nonlinear systems [53].

Very recently, coherent picosecond bright solitons were experimentally demonstrated on a DC-driven
mid-infrared quantum cascade laser chip [71]. In that work, laser pulses emerge from a fast bistable non-
linear resonator, eliminating the need for external modulation or saturable absorbers [72] — a significant
milestone toward realizing a miniature, integrated photonic chip that emits very narrow, high-frequency
pulses. While the specific laser architecture, pulse generation mechanisms, and pulsation patterns may
differ—particularly in the recent demonstration, which focuses on single-pulse emission—the genera-
tion of narrow, high-frequency, high-power, periodic, and controllable multi-pulse trains in DC-driven
external-cavity diode laser arrays in our model also makes it a promising candidate for compact pho-
tonic designs targeting diode lasers governed by relaxation oscillation limits. This self-organized, peri-
odic pulse formation arises solely from direct current drive and time-delayed optical feedback, with a no-
table distinction in our setting: the emergence of coherent multi-pulse dynamics across large laser arrays.
These recent experimental advances [71] support the broader relevance of our theoretical findings and
underscore the growing convergence between active and passive nonlinear photonic systems.

4 Conclusion

We demonstrated that direct-current-driven external-cavity laser arrays, relying solely on optical feed-

back and non-local time-delayed coupling, can generate periodic, coherent, high-power, and high-frequency
pulses and pulse trains. We have uncovered the pulse generation mechanism originating from a disorder-
induced saddle-node bifurcation, which facilitates energy accumulation and subsequently triggers the
emission of pulses. Pulse characteristics depend on diode array detuning patterns, allowing pulses to be
experimentally realized and controlled by engineering frequency detunings via, for example, individual
control of bias currents or other means. Our approach opens new avenues for practical applications, in-
cluding high-power pulse beam combining and neuromorphic optical computing. Furthermore, the disorder-
induced mechanism of coherent pulse generation promises to have substantial implications beyond laser
arrays, extending to other excitable physical and biological systems.

5 Method Section

5.1 Analysis of the phenomenological model

The dynamics of the phenomenological model (4) can be analyzed using a slow-fast decomposition. Rewrit-
ing the model in rescaled time t,., = x’t, we obtain

9 — 1 —(1+acosi))sinb,
Ty ( V) (7)

dtnew - u,

where v = %, I% = u, and the auxiliary variable ¢ = Qt captures the phase of the time-varying mod-

ulation. In this formulation, 6 is the fast variable, and v evolves slowly when u < 1, enabling the use of
singular perturbation techniques to analyze the system. We treat ¢ as a slowly varying parameter in the
fast subsystem, which provides a sequence of phase portraits that govern the overall system dynamics
and shape the emergence of multi-pulsing behavior.
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Figure 5: Multi-pulse dynamics in the two-laser model (2). (a) Number of pulses per period obtained from a parameter
sweep, where the feedback strength s/ is increased while the frequency detuning A f is decreased by the same numerical
value, following the dependence shown in the inset in Fig. 4. (b)-(d) Time traces of r3(t) and cos(¢1(t) — ¢2(t)), along with

the peak values 79

da(t — T) — @a(t), for representative cases exhibiting increasing numbers of pulses per period: (b)

two pulses per period: 7 = 17.5805 ns™! and Af = 2.9195 GHz; (c) three pulses per period: xf = 17.5795 ns~! and

Af = 2.9205 GHz; (d) four pulses per period: xk/ =

175779 ns~! and Af = 2.9221 GHz. In all cases, oscillations in 7,

exhibit periodic behavior with a period close to 7. Similar behavior is observed in m; = ¢1(t — 7) — ¢1(t) [not shown].
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Figure 6: Multi-pulse dynamics in the reduced model. Time traces of r(t) and cos 6, calculated from the reduced model (3)
with time-dependent n(t) = n1 = ¢1(t — 7) — ¢1(t), where n(t) is taken from the full model. (a)-(c) Simulations correspond
to the two-, three-, and four-pulsing regimes observed in Fig. 5(b)-(d), using the same values of xf and Af. (a) Two pulses
per period: xf = 17.5805 ns ~', Af = 2.9195 GHz; (b) three pulses per period: x/ = 17.5795 ns !, Af = 2.9205 GHz;
(c) four pulses per period: xf = 17.5779 ns ~!, Af = 2.9221 GHz. The reduced model predicts the pulsing dynamics of the
full system with high accuracy, capturing both pulse multiplicity and timing.

1. Fast subsystem. Setting ;1 = 0, we obtain the fast system:
®_ —y— (14 acost)sinb,

dtnew

(8)

Y

where C'is a constant. This system mimics the reduced model (3) with constant n and, as such, sup-
ports only single-pulse generation via a SNIC bifurcation.
Case I. When cos) < ”T_l, the system (8) has no fixed points and undergoes continuous phase rotation

with the period )
™
Tw) = V12— (1 +acosy)? ©)

The interval of the system’s phase rotation is

Lot = {tho < <27 —1hg}, where 1y = arccos (y ; 1) i (10)

Case II. When cost) > =1, the system (8) has a stable fixed point % = arcsin( 557
tion ceases. The fixed-point regime occurs within the interval Iy, = {—1y < ¢ < ¢y}

2. Full system dynamics. For 1 > 0, ¢ evolves slowly, and the full system (7) alternates between
rotational (Case I) and fixed-point (Case II) dynamics. The duration spent in the rotation interval I,
is:

and phase rota-

Trot = (27T - 2¢0)/M (11>
During this interval, the phase 6 can make full 27 rotations. The number of such rotations determines
the number of pulses p within the rotation interval I,,;. The average period of the rotation time that
yields one pulse can be estimated as:

2m—o

! T($) di, (12)

Tpulse - 271__—27700

%o
with T'(¢) and v are given in (9) and (11), respectively. Therefore, the average number of pulses can be
calculated as:

Trot . (271' - 2w0)2 (271' - 2w0)2
T - 2w —1o T 27 —1o

pise p fo W)Y [T e dy

p= (13)
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Figure 7: Multi-pulse generation in the phenomenological model. (a) Number of pulses per period as a function of the
modulation amplitude a, computed from direct numerical simulations of the phenomenological model (4) (blue dots) and
from the analytical prediction based on Egs. (13)-(14), with only the integer part p shown (orange dots). (b)-(e) Time
traces 6(t) (blue) and cos(2t) (orange) for representative cases with increasing numbers of pulses per period: (b) two
pulses per period, a = 0.03, (c) three pulses per period, a = 0.07, (d) four pulses per period, a = 0.12, (e) five pulses per
period, a = 0.017. Q = 0.785 corresponds to the time period of 7 in the reduced model in Fig. 6(a). xf = 17.52 ns™L.

where the integral in the denominator can be calculated symbolically as:

/ Vi —(1+ acos(w))

327 cos? (%) \/ acos(yp)—v+1 \/( acos(¢)+v+1 \/fa2 cos? (1) —2a cos()+v2—1 i
)

(a—v+1)(cos(¢)+1) a+v+1)(cos(¥)+1) (cos())+1)2

Z;Zﬁ Va2(—cos(2¢)) — a® — 4acos(v) + 202 — 2\/ sect w) (a? cos(2v) + a® + 4a cos(vp) — 22 + 2)7
(14)

with F = F | sin™! (, /441 tan (g)) tatv-Diatvil) ) where F(x|m) is the elliptic integral of the first

a?—2va+v?—1

kind. By rescaling the parameters in (13)-(14) back to the original parameters in the phenomenological
model (4) and taking the integer part to ensure p € Z, we arrive at the general formula (5) for predict-
ing the number of pulses per cycle. This formula is used to generate the analytical estimate shown in

Fig. 7(a).
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Supporting Information is available from the Wiley Online Library or from the author.
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