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The generation of high-power controlled pulse trains in semiconductor lasers is of significant theoretical and practical interest, with15

broad applications across many fields. Previous work on diode lasers has primarily focused on single-pulse emission from individual16

diodes, inherently limiting output power. Here, we demonstrate that large direct-current-driven external-cavity laser arrays, subject17

only to optical feedback and engineered frequency heterogeneity, can exhibit robust, coherent multi-pulsing dynamics. We uncover18

a multi-pulse generation mechanism driven by two-cluster formation and heterogeneity-induced interburst oscillations, resulting in19

desirable features such as multi-GHz operation, high peak power, and nearly perfect phase synchronization. Our results pave the way20

for designing and manufacturing miniature photonic chip arrays capable of scalable multi-pulse generation. Beyond photonics, the21

underlying multi-pulse mechanism may be broadly relevant to physical and biological networks, where oscillator heterogeneity can22

give rise to coherent spiking and bursting dynamics.23

1 Introduction24

Semiconductor lasers are well known for their excitability under various perturbations that disrupt steady-25

state operation, with pulsing dynamics playing a crucial role in applications such as optical neurons [1,26

2] and photonic processors [3]. Most prior studies have focused on single-laser systems, where control-27

lable pulsing typically requires external mechanisms such as AC driving [4], strong current modulation28

[5, 6], or unilateral injection [7, 8, 9]. These approaches can generate short pulses, including gain-switched29

and mode-locked pulses down to picoseconds [10, 11, 12, 13], often aided by saturable absorbers [14].30

However, these external methods are difficult to scale, and extending synchronized pulsing to large ar-31

rays remains elusive. Numerical studies of arrays with saturable absorbers have demonstrated pulsing,32

but the pulses tend to propagate spatially rather than synchronize across emitters [15, 16, 17], limiting33

coherent emission and power scaling [18]. Configurations with two lasers subject to both transverse cou-34

pling and optical feedback showed limited success in achieving synchronous pulsing [19, 20], but larger35

implementations have not exhibited robust collective pulsing [19, 21], and approaches using incoherent36

feedback [22] remain largely unexplored for scalable array synchronization. Thus, despite advances in37

pulse generation techniques, achieving robust, synchronized multi-pulse emission across large semicon-38

ductor laser arrays without extensive active control remains a critical and open challenge.39

Meanwhile, synchronization of oscillatory dynamics in laser arrays has been extensively studied [23, 24,40

25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37], with intrinsic heterogeneity and noise often regarded41

as disruptive factors. However, since the discovery that disorder can tame spatiotemporal instabilities42

and induce synchronization in oscillator networks [38, 39], it has been shown, both theoretically and ex-43

perimentally, that under certain conditions, disorder-induced synchronization and coherent dynamics44

can emerge across a wide range of physical and engineering systems [40, 41, 42, 43, 44, 45, 46, 47]. No-45

tably, it has been demonstrated that a time-delayed laser array with inherent heterogeneity, composed46

of broad-area diodes in an external V-shaped cavity, under the right conditions can achieve perfect syn-47

chrony [48, 49]. Specifically, while frequency heterogeneity typically degrades phase synchrony, the in-48
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troduction of misalignment (heterogeneity in time delays) can completely reverse this effect, leading to49

nearly perfect phase-synchronized behavior [50].50

In this work, we address the long-standing challenge of synchronizing single pulsing and, more critically,51

the inherently difficult multi-pulse dynamics in large semiconductor laser arrays. We demonstrate that52

large arrays of semiconductor lasers subject to optical feedback and non-local delayed coupling can ex-53

hibit robust, high-power, coherent, and periodic pulsing dynamics at multi-GHz frequencies. This coher-54

ent pulsing is induced by an engineered frequency-detuning heterogeneity among time-delayed coupled55

emitters, offering a robust and effective pathway for generating synchronized multi-pulse dynamics. The56

resulting pulses exhibit narrow widths of tens of picoseconds, tunable intervals between well-separated57

single and multi-spike trains, and transitions from anti-phase to in-phase locking—key features for coher-58

ent beam combining.59

Unlike prior studies on single-pulse dynamics, which begin with simplified representations such as the60

Adler model [51, 52] or the Ginzburg-Landau equations [53], our work is grounded entirely in the re-61

alistic and widely used Lang-Kobayashi laser array framework. Despite their significance as theoretical62

tools for exploring pulsing dynamics, these earlier models lack a direct connection to the physical equa-63

tions governing semiconductor lasers and were unable to exhibit coherent multi-pulse regimes. Using64

analytical techniques and numerical simulations, we uncover the underlying mechanism of pulse gener-65

ation in Lang-Kobayashi laser arrays and demonstrate that certain, possibly broad, distributions of in-66

trinsic laser frequencies lead to the emergence of a two-cluster coherent state that supports both single-67

pulse and multi-pulse regimes. To accurately predict the parameter space of interest for pulsing within68

the Lang-Kobayashi model, we further develop a reduced model that reveals an emergent frequency of69

interburst oscillations and relates it to the number of pulses per unit time, which is close to the cavity70

round-trip time. This mechanism enables controllable, coherent multi-pulsing dynamics, distinct from71

the conventional saddle-node bifurcation on an invariant circle (SNIC) that yields only single-pulse solu-72

tions [54] observed in the classical time-delayed Adler equation and termed topological solitons [55, 53,73

51, 52]. Our findings demonstrate the potential of all-optical pulsing in large laser arrays, offering a scal-74

able route for phase-locked beam combining and enhanced optical power delivery.75

2 Results76

(a) (b)

Figure 1: (a) Array of semiconductor lasers subject to decayed non-local coupling and optical feedback. The external re-
flector provides the feedback and decayed coupling. The reflected beam from each emitter couples to the other lasers in the
array after a time delay τ . (b) The equivalent network of emitters with decayed non-local coupling. The transparency of
the links is inversely proportional to the coupling strength between emitters. Q = 30 for simulations shown in Figs. 2-3.
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2.1 Laser array model

2.1 Laser array model77

We consider a large array of Q delay-coupled semiconductor lasers with decayed non-local coupling de-78

scribed by a version [50] of the Lang-Kobayashi equations [56]:79

Ėq(t) =
1+iα
2

(
g Nq(t)−N0

1+s|Eq(t)|2 − γ
)
Eq(t) + iωqEq(t) +

κf

Q

Q∑
j=1

AqjEj(t− τ)

Ṅq (t) = βJth − γnNq (t)− g Nq(t)−N0

1+s|Eq(t)|2 |Eq (t) |
2,

(1)

with the qth laser complex field Eq(t) = rq(t) exp iϕq(t) and carrier number Nq(t). The parameters are80

customary for Lang-Kobayashi-type models: g and N0 are the differential gain coefficient and number of81

carriers at transparency, respectively, γ is the cavity loss rate, Jth = γn [N0 + (γ/g)] is the pump cur-82

rent threshold, the pump factor β > 1 means that the lasers are biased above threshold, γn is the carrier83

loss rate, κf is the feedback strength. The frequency detuning of the qth laser is ωq. The time delay τ84

is the external cavity round-trip time, which is identical for all lasers. Aqj = d|q−j| ∈ (0, 1) is the en-85

try of the decay non-local coupling matrix connecting the qth laser to the jth laser. Although we have86

computationally verified the emergence of pulses even in the presence of noise and/or non-identical time87

delays, we have not considered noise and misalignment heterogeneities here in order to explain the puls-88

ing mechanism better and facilitate comparison with the reduced model. Supplementary Table 1 con-89

tains the full set of parameter values and their meaning. Figure 1 schematically illustrates the laser ar-90

ray (1). Previous studies within the Lang-Kobayashi framework for a single laser have extensively re-91

ported on the dynamical routes to chaos, including stable locking, switching dynamics (particularly in92

short-cavity regimes [57, 58]) and periodic oscillations [59, 60]. However, these studies have only doc-93

umented switching dynamics rather than the distinct single-pulse or multi-pulse operation reported in94

this work (see the Supplementary Material for possible single-laser non-pulsing dynamics). We will also95

emphasize that pulsing conditions are encountered for moderate-to-strong feedback strengths and bias96

currents high above the lasing threshold. The latter differs from most of the pulsing schemes mentioned97

above, which require the laser to be biased close to the threshold to optimize the pulse characteristics.98

2.2 Numerical simulations99

For a large array of 30 semiconductor lasers, intensity time traces of pulsing are shown in Fig. 2. Sev-100

eral conditions of operation are highlighted to prove the tunability of the pulsing pattern, with a sin-101

gle pulse per period in Fig. 2(b), two pulses per period in Fig. 2(c), three pulses per period in Fig. 2(d),102

and four pulses per period in Fig. 2(e), with the peculiarity, in the latter, that the time interval between103

each pulse differs inside a train of pulses. The periodicity of pulses and pulse trains is very close to the104

external cavity time delay τ . There can be up to three characteristic time scales (one for cavity round-105

trip time, one for intervals between pulse trains, and one for intervals between the pulses within a sin-106

gle pulse train) at stake in this nonlinear phenomenon. Figure 2 shows two distinct pulsing dynamics107

within the array, with even-numbered lasers exhibiting one pattern and odd-numbered lasers displaying108

another pattern. This stems from the choice of frequency detuning set with ωq in (1) presented in this109

study (fq = ωq/2π = 2 GHz for even-numbered lasers and fq = −2 GHz for odd-numbered lasers).110

This choice of detuning helps illustrate the pulsing mechanism but does not contrast strongly with other111

detuning configurations detailed in the Supplementary Material. This detuning configuration was en-112

gineered to better enable pulsing, although other non-alternating detuning configurations can also in-113

duce pulsing. While one might expect the pulse count dependence shown in Fig. 2(a) to exhibit a devil’s114

staircase structure - akin to frequency locking observed in modulated external-cavity semiconductor lasers115

[61], fiber lasers [62], and frequency comb lasers [63] - the presence of multiple plateaus is more likely a116

result of multistability among coexisting states in the large, 30-laser array. As we show in the following117

subsection, the devil’s staircase behavior becomes more pronounced in the simpler two-laser configura-118

tion.119

Figure 3 provides a more detailed view of the overall behavior of the 30-laser array. In the single-pulse120

case, as shown in Fig. 3(a), the lasers exhibit alternating dynamics: even-numbered lasers follow a sim-121
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2.2 Numerical simulations

(a)

(b) (c)

(d)

(b)
(c)

(d)(e)

(e)

Figure 2: Multi-pulse dynamics in a 30-laser array under varying feedback strength. (a) Number of pulses per period as a
function of feedback strength κf , obtained from a parameter sweep of the 30-laser system (1) after transient dynamics have
been discarded. As κf varies, the number of pulses per period switches between discrete values, indicating multistability.
The same set of randomly chosen initial conditions is used for all simulations. (b)–(e) Time traces of representative lasers
showing distinct pulsing regimes at different values of κf : (b) single pulse per period for κf = 44.8ns−1; (c) two pulses per
period for κf = 44.4ns−1; (d) three pulses per period for κf = 44.31ns−1; (e) four pulses per period for κf = 43.99ns−1.
In each panel (b)-(e), the blue trace corresponds to laser #14, representative of the even-numbered lasers, while the orange
trace shows laser #15, representative of the odd-numbered group.

ilar pulsing pattern, while odd-numbered lasers share a distinct yet comparable behavior. The only no-122

table deviation occurs at the edges of the array, where the network interactions are slightly different, re-123

sulting in less pronounced pulsing. Figure 3(b) details the evolution of coherence over time, displaying124

the combined field intensity (black curve) and the Kuramoto order parameter in the inset (blue curve).125

The combined field intensity is given by: C(t) = |
∑Q

q=1Eq(t)|2. This metric complements the complex126

Kuramoto order parameter [64, 65], which is defined as R(t)eiΦ(t) = 1
Q

∑Q
q=1 exp (iϕq (t)) and reaches 1127

when all lasers are in-phase synchronized and 0 when they are anti-phase synchronized. For comparison,128

the green curve represents the intensity of one of the even lasers, scaled by 302, while the orange curve129

shows the intensity of one of the odd lasers, similarly scaled. Notably, the bias current used in this con-130

figuration - approximately 7 to 9 times above the lasing threshold - places the semiconductor lasers in a131

regime of highly damped relaxation oscillations [66, 67]. As a result, each emitted pulse is not followed132
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2.2 Numerical simulations

(a) (b)

(c) (d)

Figure 3: (a) Heatmap of single-pulse dynamics in a 30-laser array with distinct behaviors between odd- and even-
numbered lasers. (b) Combined field intensity (black curve) of the 30 lasers, highlighting anti-phase and in-phase syn-
chronization periods. The panel also shows the magnified intensity of an odd laser (green curve) and an even laser (orange
curve). The inset demonstrates the Kuramoto order parameter R(t), confirming transitions between anti-phase and in-
phase synchrony. The feedback strength κf = 44.8ns−1. (c-d) Same as (a)-(b) but for a pattern with two pulses per
period, κf = 44.4ns−1.

by the characteristic ripples typically associated with relaxation oscillations. Another notable feature is133

the pronounced dip in the combined field intensity, which occurs when the even-numbered lasers pulse.134

At the dip’s lowest point, the lasers are anti-phase synchronized. Within 20 or 30 picoseconds after the135

Kuramoto order reaches a minimum value, the odd-numbered lasers pulse in phase with the Kuramoto136

order parameter approaching 1. This alternating pattern between even- and odd-numbered lasers per-137

sists when the system is configured for two pulses per period, as seen in Fig. 3(c)-(d), with a strong dip138

triggered when the even lasers are pulsing. In all other multi-pulsing cases, the pattern remains consis-139

tent (not shown). The number of dips in the combined field intensity matches the number of pulses per140

period, and the Kuramoto order parameter remains high (above 96%) when the odd-numbered lasers are141

pulsing. Notably, very similar pulsing dynamics are persistent when random perturbations are added to142

the frequency-detuning values. Supplementary Table 2 gives an example of perturbed detunings that143

preserve pulsing similar to what is shown in Fig. 3 (see Supplementary Fig. 2). Similar pulse dynamics144

also robustly appear in a 20-laser array with a sparse frequency detuning configuration (Supplementary145

Fig. 3). Unlike other laser networks, particularly those using saturable absorbers [15], pulsing in our ar-146

ray occurs simultaneously across all lasers without spatial propagation over time. This results in high-147

phase synchrony during the pulsing state, which is advantageous for beam combining. Achieving nearly148

perfect coherence is particularly relevant in large laser arrays, as optical power scales with the square of149

the number of emitters along the propagation axis.150

In realistic laser arrays, the feedback strength may vary across emitters due to angular divergence and151

wavefront distortions introduced by reflections from the external mirror. While the model (1) already in-152

corporates non-uniform optical feedback through the spatially decaying coupling term Aqj, we further in-153

vestigated the robustness of pulsed dynamics under different types of perturbations, which are detailed154
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2.3 Mechanism for pulse generation

in the Supplementary Material. In particular, we study the impact of the so-called smile effect, most155

prominently reducing coupling at the array edges [68]. It is relevant to note that in the case of a moder-156

ate smile effect, the latter can be corrected with appropriate lensing. Under high-power continuous-wave157

operation, thermal loading and crosstalk are also unavoidable and may induce slow frequency drifts and158

spatially varying gain profiles. We thus assessed the impact of these thermal nonuniformities on pulse159

dynamics and synchronization robustness with two sets of simulations in the Supplementary Material.160

These results confirm that both slow thermal drift and moderate noise levels do not significantly impair161

the pulsing dynamics, further reinforcing the robustness of the proposed mechanism. These findings col-162

lectively support the robustness of the proposed pulsing mechanism under realistic imperfections, includ-163

ing thermal fluctuations, fabrication-induced asymmetries, and spontaneous emission noise, thereby rein-164

forcing the feasibility of implementing our approach in experimental semiconductor laser arrays.165

2.3 Mechanism for pulse generation166

To isolate the fundamental mechanisms of pulsing without the complexity of larger arrays, we consider167

the minimal laser array (1) with Q = 2 and Aqj = 1. This system can be expressed in polar coordinates168

for the laser field Eq(t) as:169

ṙq = Grq(t) +
κf

2

2∑
j=1

rj(t− τ) cos (ϕj(t− τ)− ϕq(t)) ,

ϕ̇q = αG+ ωq +
κf

2

2∑
j=1

rj(t−τ)
rq(t)

sin (ϕj(t− τ)− ϕq(t)) ,

Ṅq = βJth − γnNq − (2G(rq, Nq) + γ) r2q , q = 1, 2,

(2)

where function G = 1
2

(
gNq(t)−N0

1+sr2q(t)
− γ
)
, rq(t), and ϕq(t) are the complex field magnitude and phase,170

respectively. We aim to derive an analytically tractable model that captures how rapid, periodic phase171

destabilization and pulsing period oscillations, driven by frequency detuning, lead to the emergence of172

single- and multi-pulse dynamics. Simulations of the array (2), as shown in Supplementary Figs. 10 and173

11, suggest two key approximations near the coherent pulsing state: (i) the pulsing period of approxi-174

mately 8.039 ns is close to the time-delay τ = 8 ns, implying that phase differences η1(t) = ϕ1(t − τ) −175

ϕ1(t) and η2(t) = ϕ1(t − τ) − ϕ1(t) are small; and (ii) r1(t) and N1(t) are close to r2(t) and N2(t), i.e.,176

r1(t − τ) ≈ r1(t) ≈ r2(t − τ) ≈ r2(t) ≡ r(t) and N1(t − τ) ≈ N1(t) ≈ N2(t − τ) ≈ N2(t) ≡ N(t),177

where r(t) and N(t) correspond to a nearly coherent state. Further, our simulations indicate that varia-178

tions in the pulsing periods of both lasers are approximately equal, i.e., we set η1(t) = η2(t) = η(t). We179

then introduce the phase difference θ = ϕ1 − ϕ2 whose evolution is governed by180

θ̇ = ∆ω + κf

2
(sin (ϕ2(t− τ)− ϕ1(t))− sin (ϕ1(t− τ)− ϕ2(t)) ,181

where ∆ω = ω1 − ω2 is a frequency detuning. Similarly, the evolution of r is governed by ṙ = Gr +182

κf

2
r(t)(cos (ϕ1(t− τ)− ϕ1(t)) + cos (ϕ2(t− τ)− ϕ1(t)). Applying the trigonometric identity for the dif-183

ference of sines, we simplify the θ equation and obtain the reduced system that approximately describes184

the collective dynamics close to the coherent state:185

ṙ = Gr + κf

2
(cos η(t) + cos(θ − η(t)))r(t),

θ̇ = ∆ω − κf cos η(t) sin θ,

Ṅ = βJth − γN(t)− (2G+ γ) r2.

(3)

Note that the phase difference equation does not contain r and N and represents a variation of the non-186

autonomous Adler equation [69]. Its behavior is critically governed by the magnitude and evolution of187

pulsing period variation η(t). In what follows, we show how the dynamics of η give rise to generating188

multi-pulse dynamics.189

Supplementary Figure 10 indicates that for single-pulse dynamics, η ≈ 0, allowing us to simplify the θ190

equation in (3) to the classical non-uniform oscillator form [54]: θ̇ = ∆ω − κf sin θ. This equation has191

two fixed points that disappear when ∆ω exceeds κf . Under the condition that ∆ω is slightly greater192
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2.3 Mechanism for pulse generation

(a) (b)

(c) (d)

Sweep in 
Fig. 5

Figure 4: Pulse generation in a two-laser array. (a) Heatmap depicting the number of pulses per round-trip period
(T = τ = 8 ns) as a function of the frequency detuning ∆f = ∆ω/2π (GHz, x-axis) and the feedback coupling strength κf

(ns−1, y-axis) in the full Lang-Kobayashi model (2). Each pixel summarizes the outcome of 100 simulations with random-
ized initial conditions. The color indicates the lowest nonzero number of pulses per period observed, with dark blue rep-
resenting a single pulse, dark red corresponding to five or more pulses (often associated with fast oscillations), and white
indicating steady-state behavior with no pulsing. The inset zooms into the region near the starred parameter set and the
arrow marks the direction of the sweep used in Fig. 5. Notably, a gap near ∆f ≈ 0.9 GHz marks the minimum detuning
required to initiate pulsing. (b) Time trace of r2(t) for the marked parameter set (∆f = 2.9192 GHz, κf = 17.5808 ns−1).
Although only r2 is shown, r1(t) exhibits similar pulse dynamics. (c) Heatmap for the reduced model (3) with η = 0,
plotted over the same parameter range using a single initial condition per pixel. The red dashed curve in (a) indicates the
saddle-node bifurcation κf = ∆f in the reduced model, accurately predicting the pulsing onset in the full model. (d) Cor-
responding time trace from the reduced model at the same parameter values. Model parameters for these simulations are
listed in Supplementary Table 3.

than κf , θ slowly drifts near a ghost state, emerging from a saddle-node bifurcation at ∆ω = kf , be-193

fore rapidly completing the cycle. This rapid increase in the phase difference with θ reaching π desta-194

bilizes the r equation via the increased positive term (1 + cos θ) and induces a pulse in r. The time be-195

tween the pulses is determined by the nonuniform oscillator’s period [54]: Tperiod = 2π/
√
∆ω2 − (kf )2,196

where the denominator is small. Figure 4 shows that the reduced model (3) with η = 0 accurately pre-197

dicts the onset of coherent single-pulse dynamics in the full Lang-Kobayashi model (2), induced by fre-198

quency heterogeneity through a saddle-node bifurcation on an invariant circle (SNIC) [54]. This mech-199

anism is consistent with earlier analyses of the autonomous, time-delayed Adler equation and has been200

linked phenomenologically to pulsing in laser arrays [53, 51, 52]. However, unlike prior work, our deriva-201

tion explicitly connects this mechanism to the Lang-Kobayashi model via the reduced system (3). It is202

important to emphasize an essential distinction between the single-pulsing observed in our system and203

conventional mode-locking [70]. In standard mode-locking, the pulse repetition rate must exactly match204
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2.3 Mechanism for pulse generation

the round-trip time of the external cavity; even slight deviations disrupt phase coherence and break the205

mode-locking condition. In contrast, the coherent pulsing observed here does not require an exact match206

between the pulse period and the cavity delay. Although the periods are close, they are not identical.207

This is clearly demonstrated in Supplementary Fig. 11, where the observed pulse periods are 8.039 ns208

and 3.037 ns for external cavity delays of 8 ns and 3 ns, respectively. Nevertheless, as with its autonomous209

Adler counterpart, the simplified, reduced model (3) with η ≈ 0 has a fundamental limitation: it cannot210

account for multi-pulse dynamics. Capturing such behavior requires retaining the time-dependent nature211

of η(t), allowing the pulsing period to oscillate.212

From a historical perspective, we first derived the reduced model (3), which suggested that small, persis-213

tent oscillations in η could introduce a second emergent frequency governing the number and spacing of214

multiple pulses per cycle. This theoretical insight was subsequently confirmed through simulations of the215

full model (2), which revealed the critical role of oscillatory pulsing periods in the emergence of multi-216

pulse dynamics.217

Figure 5 illustrates the emergence of multi-pulse dynamics in the full model (2), focusing on the param-218

eter region highlighted in the inset of Fig. 4. By varying the feedback strength κf and the frequency219

detuning magnitude in a way that keeps the system near the saddle-node bifurcation transition from220

single- to multi-pulse regimes, we observe a dependence of the pulse number p that resembles a devil’s221

staircase (Fig. 5(a)). Unlike the more fragmented dependence seen in the 30-laser array (Fig. 2), the222

two-laser system (2) exhibits a classical, well-defined staircase structure. Remarkably, Figs. 5(b)-(d) re-223

veal predicted oscillating behavior in η2 = ϕ2(t− τ)−ϕ2(t) which governs the number of generated pulses224

per period. This oscillatory behavior is evident in the periodic repetition of the local maxima of η2.225

Figure 6 presents simulations of the reduced model (3) where η(t) is taken from the full model (2). These226

results confirm that the reduced model successfully captures the emergence and structure of multi-pulse227

dynamics observed in the full Lang-Kobayashi system (2). Moreover, it sheds light on the underlying228

mechanism of multi-pulse generation, which rests on two key features: (i) the θ equation of reduced sys-229

tem (3) undergoes a saddle-node bifurcation at fixed values of η∗ = ± arccos(∆ω/κf ); and (ii) the oscil-230

lating behavior of η(t) enables the phase θ to make multiple 2π rotations during intervals where |η(t)| >231

|η∗|, i.e., when θ̇ > 0. The number of such rotations per cycle determines the number of pulses p. During232

the remaining portion of the cycle where |η(t)| < |η∗|, the phase θ remains at a stable fixed point corre-233

sponding to a quiescent (non-pulsing) phase.234

To illustrate the multi-pulse generation mechanism more transparently, we introduce a phenomenological235

model in the form of a non-autonomous Adler equation [69], which captures the behavior of the reduced236

model’s phase dynamics and simplifies analytical treatment. The model takes the form:237

dθ

dt
= ∆ω − κf (1 + a cosΩt) sin θ, (4)

where Ω represents the emerging angular frequency associated with the oscillations in η(t) and a is a238

scaling factor modulating the amplitude of the periodic forcing. The motivation behind the system (4)239

lies in replacing the periodic term cos η(t) with a periodically modulated expression, (1+a cos(Ωt)). This240

substitution transforms a model that would otherwise support a single-pulse regime into one capable of241

generating single and multiple pulses per period, with the modulation amplitude a governing the emer-242

gence, strength and the shape of the pulsing behavior. As shown in Supplementary Figure 12, the mini-243

mum of the potential energy is directly related to the number of pulses in each pulse train. The analysis244

of this phenomenological model (4), detailed in the Methods section, yields an explicit expression for the245

number of pulses per modulation cycle as a function of the system parameters:246

p = F (a,Ω,∆ω, kf ) (5)

with the right-hand side function given via (13)-(14) (see Methods). As shown in Fig. 7, the analytical247

prediction for p closely matches the results from the direct simulations of the phenomenological model248

(4), further validating the proposed multi-pulse mechanism.249

To further elucidate the mechanism behind the emergence of multi-pulse dynamics, we draw an anal-250

ogy between the phenomenological model (4) and an overdamped pendulum with a periodically varying251
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length. Specifically, consider a pendulum of length l(t) = L+ A cosΩt subject to a constant torque Γ. In252

the overdamped regime, where inertial terms are negligible, the equation of motion reduces to253

θ̇ = Γ− L(1 + a1 cosΩt) sin θ, (6)

with a1 = A/L. This model is mathematically equivalent to the phenomenological model (4), with the254

constant torque Γ representing the frequency detuning ∆ω. In this analogy, the pendulum accumulates255

potential energy while resting near the bottom of the potential well, and releases it as kinetic energy256

during rapid rotations, akin to optical pulse emission. As the length l(t) increases, the gravitational restor-257

ing force strengthens, deepening the potential well. Conversely, when l(t) decreases, the well flattens,258

reducing the energy barrier for escape. This modulation of potential depth effectively controls the tim-259

ing and number of phase slips (rotations) per cycle. As shown in Supplementary Fig. 12, there is a clear260

correlation between the number of emitted pulses and the depth of the potential energy minima: larger261

modulation amplitudes a1 lead to deeper wells, which correspond to greater energy accumulation and262

subsequently more pulses. These results support the interpretation of multi-pulsing as a mechanism of263

energy storage and periodic release, regulated by the external modulation. Full derivation and additional264

illustrations of the pendulum model are provided in the Supplementary Material.265

3 Discussion266

While single-pulsing in diode lasers is a well-established phenomenon, it typically requires additional267

mechanisms, such as external current modulation or saturable absorbers, to induce pulsing. In contrast,268

the multi-pulsing dynamics we uncovered arise naturally from engineered frequency detuning and ap-269

propriate selection of diode and external cavity parameters, without any active modulation. Building on270

this foundation, we addressed a long-standing challenge in photonics, namely the realization of synchro-271

nized multi-pulse generation in large semiconductor laser arrays—a key bottleneck in scaling high-power272

pulsed optical systems. We show that direct-current-driven external-cavity arrays, subject only to opti-273

cal feedback and non-local time-delayed coupling, can robustly produce periodic, coherent, high-power274

pulse trains, including complex multi-pulse structures. Rather than relying on external forcing, this be-275

havior arises intrinsically from engineered heterogeneity in intrinsic laser frequencies, offering a powerful,276

experimentally accessible design principle for achieving scalable, highly controllable multi-pulsing in inte-277

grated photonic platforms.278

We uncovered the underlying mechanism within the Lang-Kobayashi laser framework, showing that cer-279

tain, potentially wide, distributions of intrinsic laser frequencies give rise to a two-cluster coherent state280

that supports both single- and multi-pulse regimes. The onset of multi-pulsing is governed by interburst281

oscillations induced by frequency heterogeneity. These dynamics are captured by a reduced model ex-282

plicitly linked to the Lang-Kobayashi equations and further clarified through a phenomenological, ana-283

lytically tractable version resembling a non-autonomous Adler equation. Together, these models reveal284

that the number of pulses per burst is accurately determined by the emergent interburst frequency. Im-285

portantly, the period of coherent pulsing closely follows the external cavity round-trip time, with subtle,286

time-varying deviations. These deviations align with the phase difference between the two laser clusters,287

as supported by Supplementary Fig. 11. This observation underscores the crucial role of frequency het-288

erogeneity, both between and within clusters, in shaping the phase dynamics that ultimately determine289

the number of pulses in each cycle.290

Our analysis assumes identical feedback phases across the array, i.e., no feedback misalignment, enabling291

the derivation of a consistent analytical framework that bridges the Lang-Kobayashi and Adler models.292

However, our findings are not limited to this idealized setting. Simulations incorporating delay-time per-293

turbations (e.g., a 20 ps standard deviation) show that coherent pulsing persists even when the feedback294

phase varies randomly between lasers. This robustness suggests that phase alignment is not a strict re-295

quirement for realizing coherent, controllable pulsing in large arrays. Remarkably, we demonstrate that296

pulse characteristics are strongly dependent on the detuning pattern across the array. This suggests that297
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coherent pulse generation can be experimentally controlled via methods such as individual bias-current298

tuning and other means.299

The pulsing dynamics reported in this work fundamentally differ from conventional mode-locking, which300

requires equidistant longitudinal modes with fixed phase relations in a single multimode cavity. In con-301

trast, our system consists of delay-coupled semiconductor lasers with engineered detunings and coupling302

structure that support robust multi-pulsing even in the presence of phase disorder. Although the lasers303

become effectively multimode during pulsing, the observed pulses arise not from the standard balance of304

dispersion and nonlinearity but from the underlying phase-space topology of the coupled system. These305

localized structures are discrete, robust, and topological, similar in spirit to the dissipative phase solitons306

described in other nonlinear systems [53].307

Very recently, coherent picosecond bright solitons were experimentally demonstrated on a DC-driven308

mid-infrared quantum cascade laser chip [71]. In that work, laser pulses emerge from a fast bistable non-309

linear resonator, eliminating the need for external modulation or saturable absorbers [72] — a significant310

milestone toward realizing a miniature, integrated photonic chip that emits very narrow, high-frequency311

pulses. While the specific laser architecture, pulse generation mechanisms, and pulsation patterns may312

differ—particularly in the recent demonstration, which focuses on single-pulse emission—the genera-313

tion of narrow, high-frequency, high-power, periodic, and controllable multi-pulse trains in DC-driven314

external-cavity diode laser arrays in our model also makes it a promising candidate for compact pho-315

tonic designs targeting diode lasers governed by relaxation oscillation limits. This self-organized, peri-316

odic pulse formation arises solely from direct current drive and time-delayed optical feedback, with a no-317

table distinction in our setting: the emergence of coherent multi-pulse dynamics across large laser arrays.318

These recent experimental advances [71] support the broader relevance of our theoretical findings and319

underscore the growing convergence between active and passive nonlinear photonic systems.320

4 Conclusion321

We demonstrated that direct-current-driven external-cavity laser arrays, relying solely on optical feed-322

back and non-local time-delayed coupling, can generate periodic, coherent, high-power, and high-frequency323

pulses and pulse trains. We have uncovered the pulse generation mechanism originating from a disorder-324

induced saddle-node bifurcation, which facilitates energy accumulation and subsequently triggers the325

emission of pulses. Pulse characteristics depend on diode array detuning patterns, allowing pulses to be326

experimentally realized and controlled by engineering frequency detunings via, for example, individual327

control of bias currents or other means. Our approach opens new avenues for practical applications, in-328

cluding high-power pulse beam combining and neuromorphic optical computing. Furthermore, the disorder-329

induced mechanism of coherent pulse generation promises to have substantial implications beyond laser330

arrays, extending to other excitable physical and biological systems.331

5 Method Section332

5.1 Analysis of the phenomenological model333

The dynamics of the phenomenological model (4) can be analyzed using a slow-fast decomposition. Rewrit-334

ing the model in rescaled time tnew = κf t, we obtain335

dθ
dtnew

= ν − (1 + a cosψ) sin θ,
dψ

dtnew
= µ,

(7)

where ν = ∆ω
κf

, Ω
κf

= µ, and the auxiliary variable ψ = Ωt captures the phase of the time-varying mod-336

ulation. In this formulation, θ is the fast variable, and ψ evolves slowly when µ ≪ 1, enabling the use of337

singular perturbation techniques to analyze the system. We treat ψ as a slowly varying parameter in the338

fast subsystem, which provides a sequence of phase portraits that govern the overall system dynamics339

and shape the emergence of multi-pulsing behavior.340
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5.1 Analysis of the phenomenological model

(a)

(b)

(c)

(d) 

(b) (c) (d)

Figure 5: Multi-pulse dynamics in the two-laser model (2). (a) Number of pulses per period obtained from a parameter
sweep, where the feedback strength κf is increased while the frequency detuning ∆f is decreased by the same numerical
value, following the dependence shown in the inset in Fig. 4. (b)-(d) Time traces of r2(t) and cos(ϕ1(t)− ϕ2(t)), along with
the peak values η2 = ϕ2(t − τ) − ϕ2(t), for representative cases exhibiting increasing numbers of pulses per period: (b)
two pulses per period: κf = 17.5805 ns−1 and ∆f = 2.9195 GHz; (c) three pulses per period: κf = 17.5795 ns−1 and
∆f = 2.9205 GHz; (d) four pulses per period: κf = 17.5779 ns−1 and ∆f = 2.9221 GHz. In all cases, oscillations in η2
exhibit periodic behavior with a period close to τ. Similar behavior is observed in η1 = ϕ1(t− τ)− ϕ1(t) [not shown].
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5.1 Analysis of the phenomenological model

(a) (b) (c)

Figure 6: Multi-pulse dynamics in the reduced model. Time traces of r(t) and cos θ, calculated from the reduced model (3)
with time-dependent η(t) ≡ η1 = ϕ1(t − τ) − ϕ1(t), where η(t) is taken from the full model. (a)-(c) Simulations correspond
to the two-, three-, and four-pulsing regimes observed in Fig. 5(b)-(d), using the same values of κf and ∆f. (a) Two pulses
per period: κf = 17.5805 ns −1, ∆f = 2.9195 GHz; (b) three pulses per period: κf = 17.5795 ns −1, ∆f = 2.9205 GHz;
(c) four pulses per period: κf = 17.5779 ns −1, ∆f = 2.9221 GHz. The reduced model predicts the pulsing dynamics of the
full system with high accuracy, capturing both pulse multiplicity and timing.

1. Fast subsystem. Setting µ = 0, we obtain the fast system:341

dθ
dtnew

= ν − (1 + a cosψ) sin θ,
ψ = C,

(8)

where C is a constant. This system mimics the reduced model (3) with constant η and, as such, sup-342

ports only single-pulse generation via a SNIC bifurcation.343

Case I. When cosψ < ν−1
a
, the system (8) has no fixed points and undergoes continuous phase rotation344

with the period345

T (ψ) =
2π√

ν2 − (1 + a cosψ)2
. (9)

The interval of the system’s phase rotation is346

Irot = {ψ0 < ψ < 2π − ψ0}, where ψ0 = arccos

(
ν − 1

a

)
. (10)

Case II. When cosψ > ν−1
a
, the system (8) has a stable fixed point θ∗ = arcsin( ν

1+a cosψ
) and phase rota-347

tion ceases. The fixed-point regime occurs within the interval Ifp = {−ψ0 < ψ < ψ0}.348

2. Full system dynamics. For µ > 0, ψ evolves slowly, and the full system (7) alternates between349

rotational (Case I) and fixed-point (Case II) dynamics. The duration spent in the rotation interval Irot350

is:351

Trot = (2π − 2ψ0)/µ. (11)

During this interval, the phase θ can make full 2π rotations. The number of such rotations determines352

the number of pulses p within the rotation interval Irot. The average period of the rotation time that353

yields one pulse can be estimated as:354

Tpulse =
1

2π − 2ψ0

2π−ψ0∫
ψ0

T (ψ) dψ, (12)

with T (ψ) and ψ0 are given in (9) and (11), respectively. Therefore, the average number of pulses can be355

calculated as:356

p =
Trot
Tpulse

=
(2π − 2ψ0)

2

µ
∫ 2π−ψ0

ψ0
T (ψ) dψ

=
(2π − 2ψ0)

2

µ
∫ 2π−ψ0

ψ0

2π√
ν2−(1+a cosψ)2

dψ
, (13)

12



5.1 Analysis of the phenomenological model

(a) (b)

(c) (d) (e)

(b) 

(d) 

(e) 

(c) 

Figure 7: Multi-pulse generation in the phenomenological model. (a) Number of pulses per period as a function of the
modulation amplitude a, computed from direct numerical simulations of the phenomenological model (4) (blue dots) and
from the analytical prediction based on Eqs. (13)-(14), with only the integer part p shown (orange dots). (b)-(e) Time
traces θ(t) (blue) and cos(Ωt) (orange) for representative cases with increasing numbers of pulses per period: (b) two
pulses per period, a = 0.03, (c) three pulses per period, a = 0.07, (d) four pulses per period, a = 0.12, (e) five pulses per
period, a = 0.017. Ω = 0.785 corresponds to the time period of η in the reduced model in Fig. 6(a). κf = 17.52 ns−1.

where the integral in the denominator can be calculated symbolically as:357 ∫
2π√

ν2 − (1 + a cos(ψ))2
dψ =

32π cos2
(
ψ
2

)√ a cos(ψ)−ν+1
(a−ν+1)(cos(ψ)+1)

√
a cos(ψ)+ν+1

(a+ν+1)(cos(ψ)+1)

√
−a2 cos2(ψ)−2a cos(ψ)+ν2−1

(cos(ψ)+1)2
F√

a−ν−1
a+ν+1

√
a2(− cos(2ψ))− a2 − 4a cos(ψ) + 2ν2 − 2

√
− sec4

(
ψ
2

)
(a2 cos(2ψ) + a2 + 4a cos(ψ)− 2ν2 + 2)

,

(14)

with F = F

(
sin−1

(√
a−ν−1
a+ν+1

tan
(
ψ
2

)) ∣∣∣∣∣ (a+ν−1)(a+ν+1)
a2−2νa+ν2−1

)
, where F (x|m) is the elliptic integral of the first358

kind. By rescaling the parameters in (13)-(14) back to the original parameters in the phenomenological359

model (4) and taking the integer part to ensure p ∈ Z, we arrive at the general formula (5) for predict-360

ing the number of pulses per cycle. This formula is used to generate the analytical estimate shown in361

Fig. 7(a).362
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[35] J. Hillbrand, D. Auth, M. Piccardo, N. Opačak, E. Gornik, G. Strasser, F. Capasso, S. Breuer,416

B. Schwarz, Physical Review Letters 2020, 124, 2 023901.417

[36] M. Khajavikhan, A. Hoyer-Leitzel, J. R. Leger, Optics Letters 2008, 33, 20 2377.418

[37] P. Nyaupane, O. Spitz, G. Scranton, S. Koyu, M. A. Berrill, P. L. LiKamWa, Y. Braiman, ACS419

Photonics 2025, 12, 2 597.420

[38] Y. Braiman, J. F. Lindner, W. L. Ditto, Nature 1995, 378, 6556 465.421

[39] Y. Braiman, W. Ditto, K. Wiesenfeld, M. Spano, Physics Letters A 1995, 206, 1-2 54.422

[40] T. Nishikawa, A. E. Motter, Physical Review Letters 2016, 117, 11 114101.423

[41] I. Belykh, R. Jeter, V. Belykh, Science Advances 2017, 3, 11 e1701512.424

[42] J. D. Hart, Y. Zhang, R. Roy, A. E. Motter, Physical Review Letters 2019, 122, 5 058301.425

[43] K. Daley, K. Zhao, I. V. Belykh, Chaos: An Interdisciplinary Journal of Nonlinear Science 2020,426

30, 4 043102.427

[44] Y. Zhang, J. L. Ocampo-Espindola, I. Z. Kiss, A. E. Motter, Proceedings of the National Academy428

of Sciences 2021, 118, 21 e2024299118.429

[45] F. Molnar, T. Nishikawa, A. E. Motter, Nature Communications 2021, 12, 1 1457.430

[46] N. Punetha, L. Wetzel, Physical Review E 2022, 106, 5 L052201.431

[47] Y. Eliezer, S. Mahler, A. A. Friesem, H. Cao, N. Davidson, Physical Review Letters 2022, 128, 14432

143901.433

[48] B. Liu, Y. Liu, Y. Braiman, Optics Express 2008, 16, 25 20935.434

[49] B. Liu, Y. Braiman, Optics Express 2013, 21, 25 31218.435

[50] N. Nair, K. Hu, M. Berrill, K. Wiesenfeld, Y. Braiman, Physical Review Letters 2021, 127, 17436

173901.437

[51] S. Yanchuk, S. Ruschel, J. Sieber, M. Wolfrum, Physical Review Letters 2019, 123, 5 053901.438

[52] L. Munsberg, J. Javaloyes, S. V. Gurevich, Chaos: An Interdisciplinary Journal of Nonlinear Sci-439

ence 2020, 30, 6 063137.440

[53] B. Garbin, J. Javaloyes, G. Tissoni, S. Barland, Nature Communications 2015, 6, 1 5915.441

15



REFERENCES

[54] S. H. Strogatz, Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and442

engineering, CRC press, 2018.443

[55] Z. Chen, M. Segev, D. N. Christodoulides, Reports on Progress in Physics 2012, 75, 8 086401.444

[56] R. Lang, K. Kobayashi, IEEE Journal of Quantum Electronics 1980, 16, 3 347.445
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