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Abstract Many complex systems throughout science and engineering display on-
off intermittent coupling among their units. Stochastically blinking networks as a
specific type of temporal networks are particularly relevant models for such spo-
radically interacting systems. In blinking networks, connections between oscillators
stochastically switch in time with a given switching period. Most of the current
understanding of dynamics of such switching temporal networks relies on the fast
switching hypothesis, where the network dynamics evolves at a much faster time
scale than the individual units. In this chapter, we go beyond fast switching and un-
cover highly nontrivial phenomena by which a network can switch between asyn-
chronous regimes and synchronize against all odds. We review a series of our recent
papers and provide analytical insight into the existence of windows of opportunity,
where network synchronization may be induced through non-fast switching. Using
stability and ergodic theories, we demonstrate the emergence of windows of oppor-
tunity and elucidate their nontrivial relationship with network dynamics under static
coupling. In particular, we derive analytical criteria for the stability of synchroniza-
tion for two coupled maps and the ability of a single map to control an arbitrary
network of maps. This work not only presents new phenomena in stochastically
switching dynamical networks, but also provides a rigorous basis for understanding
the dynamic mechanisms underlying the emergence of windows of opportunity and
leveraging non-fast switching in the design of temporal networks.
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1 Introduction

Collective behavior within networks has received a considerable amount of atten-
tion in the literature, from animal grouping to robotic motion [77, 71]. One type of
collective behavior, synchronization, is particularly important in how prevalent it is
in real-world systems [10, 59, 3]. Synchronization is one of the most basic instances
of collective behavior, and one of the easiest to diagnose: it occurs when all of the
nodes in a network act in unison. Typically, it manifests in ways similar to a school
of fish moving as one larger unit to confuse or escape from a predator [15], or a
collection of neurons firing together during an epileptic seizure [53].

Significant attention has been devoted to the interplay between node dynamics
and network topology which controls the stability of synchronization [57, 8, 46, 54].
Most studies have looked at networks whose connections are static; networks with a
dynamically changing network topology, called temporal or evolving networks, are
only recently appearing into the scientific literature [28, 20, 76, 38, 7, 30, 72, 47,
48, 51, 17, 80, 70, 69, 67, 63, 61, 60, 28, 20, 79, 21, 18, 74, 73, 31, 32, 5, 22, 27, 1,
24, 19, 49, 50] (see the recent books [36, 37] for additional references).

A particular class of evolving dynamical networks is represented by on-off
switching networks, called “blinking” networks [7, 69] where connections switch
on and off randomly and the switching time is fast, with respect to the characteristic
time of the individual node dynamics. As summarized in a recent review [6], differ-
ent aspects of synchronization, consensus, and multistability in stochastically blink-
ing networks of continuous-time and discrete-time oscillators have been studied in
the fast-switching limit where the dynamics of a stochastically switching network is
close to the dynamics of a static network with averaged, time-independent connec-
tions. While a mathematically rigorous theory of synchronization in fast-switching
blinking networks is available [7, 30, 72, 70, 69, 67, 63, 61, 60, 31, 32, 5, 40],
the analysis of synchronization in non-fast switching networks of continuous-time
oscillators has proven to be challenging and often elusive.

Non-fast switching connections yield a plethora of unexpected dynamical phe-
nomena, including (i) the existence of a significant set of stochastic sequences and
optimal frequencies for which the trajectory of a multistable switching oscillator
can converge to a “wrong” ghost attractor [5] and (ii) bounded windows of interme-
diate switching frequencies (“windows of opportunity”) in which synchronization
becomes stable in a switching network over bounded intervals of the switching fre-
quency, which may not include the fast switching limit [40]. As a result, networks
that do not synchronize in the fast switching limit may synchronize for non-fast
switching, and then lose synchronization as the frequency is further reduced. Found
numerically in networks of continuous-time Rössler and Duffing oscillators [40] and
Rosenzweig-MacArthur food chain models [41], the emergence of windows of op-
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portunity calls for a rigorous explanation of unexpected synchronization from non-
fast switching. Blinking networks of discrete-time systems (maps) with non-fast
switching offer such a mathematical treatment [26, 62, 39, 42, 66]. More precisely,
the switching period in discrete-time networks can be quantified as a number of the
individual map’s iterates such that rescaling of time yields a new, multi-iterate map
that is more convenient to work with. This enables the formulation of a rigorous
mathematical framework for the analysis of the stochastic stability of synchroniza-
tion as a function of the switching period.

The purpose of this chapter is to give a detailed overview of this rigorous math-
ematical framework and reveal the central role of non-fast switching which may
provide opportunity for stochastic synchronization in a range of switching periods
where fast switching fails to synchronize the maps. We start with a historical per-
spective and a short review of the existing fast-switching theory for networks of
continuous-time oscillators and discuss a motivating example of coupled Rössler
oscillators with non-fast switching (Sec. 2). Then, we present the stochastic model
of coupled maps and introduce the mean square stability of the transverse dynam-
ics. To isolate the delicate mechanisms underpinning stochastic synchronization,
we consider two coupled maps with independent identically distributed stochastic
switching and study the stability of synchronization as a function of the switch-
ing period (Sec. 3). In Sec. 4, we extend our rigorous toolbox to assess the mean-
square stability of controlled synchronization in broadcaster-network systems. We
examine the feasibility of on-off broadcasting from a single reference node to in-
duce synchronization in a target network with connections from the reference node
that stochastically switch in time with an arbitrary switching period. Internal con-
nections within the target network are static and promote the network’s resilience
to externally induced synchronization. Through rigorous mathematical analysis, we
uncover a complex interplay between the network topology and the switching period
of stochastic broadcasting, fostering or hindering synchronization to the reference
node. With coupled chaotic tent maps as our test-bed, we prove the emergence of
“windows of opportunity” where only non-fast switching periods are favorable for
synchronization. The size of these windows of opportunity is shaped by the Lapla-
cian spectrum such that the switching period needs to be manipulated accordingly
to induce synchronization. Surprisingly, only the zero and the largest eigenvalues of
the Laplacian matrix control these windows of opportunities for tent maps within a
wide parameter region.

2 The Blinking Network Model: Continuous-Time Systems

“Blinking” networks were originally introduced for continuous-time oscillators in
the context of network synchronization in [7]. A blinking network consists of N
oscillators interconnected pairwise via a stochastic communication network:
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dxi

dt
= Fi(xi)+ ε

N

∑
j=1

si j(t)P(x j−xi) , (1)

where xi(t) ∈ Rd is the state of oscillator i, Fi : Rd → Rd describes the oscillators’
individual dynamics, ε > 0 is the coupling strength. The d×d matrix P determines
which variables couple the oscillators, si j(t) are the elements of the time-varying
connectivity (Laplacian) matrix G(t). The existence of an edge from vertex i to ver-
tex j is determined randomly and independently of other edges with probability
p ∈ [0,1]. Expressed in words, every switch in the network is operated indepen-
dently, according to a similar probability law, and each switch opens and closes in
different time intervals independently. All possible edges si j = s ji are allowed to
switch on and off so that the communication network G(t) is constant during each
time interval [kτ,(k+1)τ) and represents an Erdős-Rényi graph of N vertices. Fig-
ure 1 gives an example of a “blinking” graph.

t = 0.05 t = 0.06

Fig. 1: (top). Two subsequent instances of the switching network. Probability of
an edge p = 0.5, the switching time step τ = 0.01. (Bottom). The corresponding
averaged network where the switching connections of strength ε are replaced with
static all-to-all connections of strength pε, representing their mean value.

The switching network (1) is a relevant model for stochastically changing net-
works such as information processing cellular neural networks [30] or epidemio-
logical networks [70, 24, 41]. For example, independent and identically distributed
(i.i.d.) stochastic switching of packet networks communicating through the Internet
comes from the fact that network links have to share the available communication
time slots with many other packets belonging to other communication processes and
the congestion of the links by the other packets can also occur independently.



Dynamics and control of stochastically switching networks: beyond fast switching 5

As far as network synchronization is concerned, local computer clocks, that are
required to be synchronized throughout the network, are a representative example.
Clock synchronization is achieved by sending information about each computer’s
time as packets through the communication network [7]. The local clocks are typ-
ically implemented by an uncompensated quartz oscillator. As a result, the clocks
can be unstable/inaccurate and need to receive synchronizing signals, that aim to
reduce the timing errors. These signals must be sufficiently frequent to guarantee
sufficient precision of synchronization between the clocks. At the same time, the
communication network must not be overloaded by the administrative signals. This
is a compromise between the precision of synchronization and the traffic load on
the network. Remarkably, this blinking network administration can provide precise
functioning of a network composing of imprecise elements. It also indicates the
importance of optimal switching frequencies that ensure this compromise.

2.1 Historical Perspective: Fast Switching Theory

Over the years, various aspects of synchronization in fast switching networks of
continuous-time oscillators have been extensively investigated [7, 72, 70, 69, 67, 63,
61, 40]. In particularly, it was rigorously proved in both continuous and discrete-
time cases that if the switching frequency is sufficiently high, with respect to the
characteristic time of the individual oscillators (fast switching limit), the stochasti-
cally blinking network can synchronize even if the network is disconnected at every
instant of time.

Beyond synchronization, a rigorous theory for the behavior of stochastic switch-
ing networks of continuous-time oscillators in the fast switching limit was devel-
oped in [30, 31, 32, 5]. In general, it was proved in [31, 32] that for switching
dynamical systems of this type, if the stochastic variables switch sufficiently fast,
the behavior of the stochastic system will converge to the behavior of the averaged
system in finite time, where the dynamical law is given by the expectation of the
stochastic variables. These studies have also helped clarify a number of counterin-
tuitive findings about the relationship between the stochastic network and its time-
averaged counterpart. While intuition suggests that the switching network should
follow the averaged system in the fast switching limit, this is not always the case,
especially when the averaged system is multistable and its attractors are not invariant
under the switching system. These attractors act as ghost attractors for the switching
system, whereby the trajectory of the switching system can only reach a neighbor-
hood of the ghost attractor, and remains close most of the time with high probability
when switching is fast. In a multistable system, the trajectory may escape to another
ghost attractor with low probability [32]. This theory uses the Lyapunov function
method along with large deviation bounds to derive explicit conditions that connect
the probability of converging towards an attractor of a multistable blinking network,
the fast switching frequency, and the initial conditions. As the switching frequency
decreases, it was shown that there is a range of “resonant” frequencies where the
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trajectory of a multistable switching oscillator receives enough kicks in the wrong
direction to escape from the ghost attractor against all odds [5].

Indeed, there are circumstances for which not converging to the averaged system
is favorable, and the present fast-switching theory is not able to make definitive
claims about the behavior of the stochastic system. This leads us to explore the
effects of non-fast-switching on the dynamics of the switching network.

2.2 Beyond Fast Switching: A Motivating Example

We begin with a numerical example of the stochastic Erdős-Rényi network (1) com-
posed of ten x-coupled Rössler oscillators:

ẋi =−(yi + zi)+ ε
10
∑
j=1

si j(t)(x j− xi)

ẏi = xi +ayi
żi = b+ zi(xi− c).

(2)

Hereafter, the intrinsic parameters are chosen and fixed as follows: a = 0.2, b = 0.2,
c = 7. The averaged network is an all-to-all network with a fixed coupling strength
pε . Synchronization in a network of x-coupled Rössler systems is known [57] to
destabilize after a critical coupling strength ε∗, which depends on the eigenvalues
of the connectivity matrix G. We choose the coupling strengths in the stochastic net-
work such that the coupling in the averaged network is defined by one of the three
values, marked in Fig. 2. In particular, for ε = 1, synchronization in the averaged
network is unstable. As a result, synchronization in the fast-switching network is
also unstable. Surprisingly, there is a window of intermediate switching frequen-
cies for which synchronization becomes stable (see Fig. 3). In fact, the stochastic
network switches between topologies whose large proportion does not support syn-
chronization or is simply disconnected.

To better isolate the above effect and gain insight into what happens when switch-
ing between a connected network in which the synchronous solution is unstable,
and a completely disconnected network in which the nodes’ trajectories behave in-
dependently of one another, we consider a two-node Rössler network (2). Figure 4
demonstrates the emergence of synchronization windows for various intermediate
values of τ for which the fast-switching network does not support synchronization.
In essence, the system is switching between two unstable systems, and yet when
the switching period τ is in a favorable range within a window of opportunity, the
system stabilizes.

Observed numerically in the network of continuous-time oscillators, this phe-
nomenon calls for a more rigorous study to isolate the principal mechanisms under-
pinning unexpected synchronization from non-fast switching. The following sec-
tions aim at establishing such an analytical insight in more analytically tractable
networks of discrete-time oscillators.
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Fig. 2: Transversal stability of synchronization in the averaged ten-node x-coupled
Rössler system, expressed via the largest transversal Lyapunov exponent. Synchro-
nization is stable within the interval ε− < ε < ε+ [not shown]. The values of ε used
in Fig. 3 are marked with dot in red, light blue, and navy.

3 Revealing Windows of Opportunity in Two Stochastically
Coupled Maps

We focus on a discrete-time setting, where the coupling between the maps is held
fixed for a finite number of time steps (switching period) and then it stochastically
switches, independent of the time history. In this case, non-fast switching can be
studied by re-scaling the time variable and consequently modifying the individual
dynamics of the coupled maps. This enables the formulation of a rigorous mathe-
matical framework for the analysis of the stochastic stability of synchronization as
a function of the switching period. We restrict our analysis to two coupled maps
with the two-fold aim of: i) providing a clear demonstration for the origin of this
phenomenon, which may be hidden by topological factors in large networks and
ii) establishing a toolbox of closed-form results for the emergence of windows of
opportunity.

3.1 Network Model

We study the stochastic synchronization of two maps characterized by the state vari-
ables xi ∈ R, i ∈ {1,2}. We assume that the individual dynamics of each node
evolves according to xi(k + 1) = F(xi(k)), where k ∈ Z+ is the time step and
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Fig. 3: Probability of synchronization in the ten-node stochastic Rössler network
with differing coupling strengths, showing the effects of varying τ . These are cou-
pling strengths for which synchronization in the averaged system is stable (red),
weakly unstable (light blue), and strongly unstable (navy), respectively (cf. Fig. 2
for the values marked with appropriately colored dots). The bell-shaped curve cor-
responds to an optimal range of non-fast switching 0.6 < τ < 2.2 (the “window of
opportunity”), where synchronization in the stochastic network becomes stable with
high probability, whereas synchronization in the corresponding averaged system is
unstable (ε = 1). Switching probability p = 0.5. Probability calculations are based
on 1000 trials.

F : R→ R is a smooth nonlinear scalar function. The maps are linearly coupled
through the stochastic gains ε1(k),ε2(k) ∈ R, such that[

x1(k+1)
x2(k+1)

]
=

[
F(x1(k))+ ε1(k)(x2(k)− x1(k))
F(x2(k))+ ε2(k)(x1(k)− x2(k))

]
. (3)

Each of the sequences of coupling gains, ε1(0), ε1(1), ε1(2), . . . and ε2(0),
ε2(1), ε2(2), . . ., is assumed to be switching stochastically with the same period
m ∈ Z+ \ {0}. Every m time steps, the coupling gains simultaneously switch, such
that ε1(mk)= ε1(mk+1)= . . .= ε1(mk+m−1)= ε̃1(k) and ε2(mk)= ε2(mk+1)=
. . . = ε2(mk + m− 1) = ε̃2(k) for every time step k, where ε̃1(0), ε̃1(1), . . . and
ε̃2(0), ε̃2(1), . . . are two sequences of independent and identically distributed ran-
dom variables.

The evolution of the coupled maps in equation (3) is determined by the random
variables ε̃1 and ε̃2, from which the coupling gains are drawn. In general, these ran-
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Fig. 4: Probability of synchronization in the two-node Rössler network (2) as a func-
tion of the switching probability p and switching period τ . Yellow (lighter) colors
correspond to higher probability of convergence (with light yellow at probability 1)
and blue (darker) colors correspond to lower probabilities (dark blue at probability
0). The coupling strength of the connection is fixed at ε = 7. As p increases, pε , the
effective coupling in the averaged/fast-switching network progresses through the
window of synchrony indicated in Fig. 2. For the two-node network this interval is
pε ∈ [0.08 2.2], yielding the stability range p ∈ [0.011 0.31] (the yellow interval on
the y-axis) for ε = 7 and small τ . Probability calculations are based on 1000 trials.

dom variables may be related to each other and may not share the same distribution.
For example, in the case of uni-directional stochastic coupling, one of the random
variables is zero; on the other hand, for bi-directional interactions, the two random
variables coincide.

The majority of the work on stochastic synchronization of coupled discrete maps
is largely limited to the case m= 1, for which the coupling gains switch at every time
step [60]. In this case, the random variables εi(0),εi(1),εi(2), . . ., for i ∈ {1,2}, are
mutually independent. For each value of k, x1(k + 1) and x2(k + 1) are functions
only of the previous values x1(k) and x2(k), and equation (3) reduces to a first order
Markov chain with explicit dependence on time through the individual dynamics. In
the case of m > 1, the random variables εi(0),εi(1),εi(2), . . ., for i ∈ {1,2}, are no
longer independent, which poses further technical challenges for the analysis of the
system, while opening the door for rich behavior to emerge from the stochastically
driven coupling.
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The oscillators synchronize at time step k if their states are identical, that is,
x1(k) = x2(k). From equation (3), once the oscillators are synchronized at some
time step, they will stay synchronized for each subsequent time step. The com-
mon synchronized trajectory s(k) is a solution of the individual dynamics, whereby
s(k+ 1) = F(s(k)). The linear stability of synchronization can be studied through
the following variational equation, obtained by linearizing equation (3) in the neigh-
borhood of the synchronization manifold:

ξ (k+1) =
[
F ′(s(k))−d(k)

]
ξ (k), (4)

where prime indicates differentiation, d(k) = ε1(k)+ ε2(k) is the net coupling, and
ξ (k) = x1(k)−x2(k) is the synchronization error at time step k. Equation (4) defines
the linear transverse dynamics of the coupled oscillators, measured with respect to
the difference between their states ξ (k). This quantity is zero when the two os-
cillators are synchronized. Equation (4) relies on the assumption that the mapping
governing the individual dynamics, F , is differentiable everywhere. This assumption
can be relaxed, however, to functions that are differentiable almost everywhere [58].

Only the sum of the two coupling gains ε1(k) and ε2(k) affects the transverse dy-
namics, thereby only the statistics of the random variable d(k) modulate the linear
stability of the synchronization manifold. To simplify the treatment of the varia-
tional problem in equation (4), we can rescale the time variable with respect to the
switching period as follows:

ξ̃ (k+1) =
m−1

∏
i=0

(F ′(s(mk+ i))− d̃(k))ξ̃ (k), (5)

where ξ̃ (k) = ξ (mk) and d̃(k) = ε̃1(k)+ ε̃2(k). Equation (5) casts the variational
dynamics in the form of a first order time-dependent Markov chain, generated by a
linear time-varying stochastic finite difference equation [23, 44].

It is important to emphasize that the synchronization manifold x1(k) = x2(k) is
an invariant set of the stochastic equation (3). Therefore, the dynamics of the syn-
chronization manifold is governed by an attractor of the mapping function F(s(k)).

3.2 Mean Square Stability of Synchronization

In determining the stability of the synchronous state, various criteria can be consid-
ered, such as almost sure, in probability, and mean square [23, 44, 66]. The concept
of mean square stability is particularly attractive, due to its practicality of imple-
mentation and its inclusiveness with respect to other criteria. Mean square stability
of the synchronous state is ascertained through the analysis of the temporal evolu-
tion of the second moment of the error E[ξ̃ 2], where E[·] indicates expectation with
respect to the σ -algebra generated by the switching. By taking the square of each
side of equation (5) and computing the expectation, we obtain
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E
[
ξ̃

2(k+1)
]
= E

[
m−1

∏
i=0

(F ′(s(mk+ i))− d̃(k))2

]
E
[
ξ̃

2(k)
]
. (6)

This recursion is a linear, time-varying, deterministic finite difference equation
whose initial condition is ξ̃ 2(0), which is treated as a given value and not as a
random variable. We say that equation (5) is mean square asymptotically stable if
equation (6) is asymptotically stable, that is, if the Lyapunov exponent λ of equation
(6) is negative. This implies that any small difference between the states of the
oscillators will converge to zero in the mean square sense as time increases.

The Lyapunov exponent is a function of the switching period m and can be com-
puted from equation (6) as follows [58]:

λ (m) = lim
k→∞

1
k

ln
k−1

∏
j=0

E

[
m−1

∏
i=0

(F ′(s(m j+ i))− d̃( j))2

]
. (7)

In general, the stability of the synchronization manifold depends on the underly-
ing synchronous solution, whereby λ (m) in equation (7) explicitly depends on s(k).
In what follows, we focus on the case where s(k) is a chaotic trajectory. We com-
ment that our approach is based on the linearized dynamics in equation (4), which
describes small perturbations from the synchronous state. Thus, our analysis is only
applicable to the study of local stability of the synchronization manifold, and initial
conditions cannot be arbitrarily selected in the basin of attraction.

3.3 Preliminary Claims

We assume that d̃(k) takes values on a finite sample space D = {d1,d2, . . . ,dn} of
cardinality n. For l = 1, . . . ,n, the probability that the net coupling is equal to dl is
chosen to be equal to pl . For example, in the case of simple on-off connections, the
individual coupling gains take values 0 and ε with corresponding probabilities p and
1− p. Therefore, the net coupling gain d̃(k) takes values d1 = 0,d2 = ε , and d3 = 2ε

with corresponding probabilities p1 = p2, p2 = 2p(1− p) and p3 = (1− p)2.
From the individual values of the net coupling and their probabilities, we can

evaluate the Lyapunov exponent in equation (7) as

λ (m) = lim
k→∞

1
k

k−1

∑
j=0

ln

[
n

∑
l=1

pl

m−1

∏
i=0

(F ′(s(m j+ i))−dl)
2

]
. (8)

One of the central objectives of this study is to understand the relationship be-
tween the synchronizability of the coupled maps when statically coupled through
the net coupling gains in D and their stochastic synchronizability when the net cou-
pling randomly switches at a period m. Toward this aim, we adjust equation (8) to
the case of statically coupled maps with a net coupling d?
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λ
st(d?) = lim

k→∞

1
k

k−1

∑
j=0

ln
[
(F ′(s( j))−d?)2] . (9)

For convenience, we write λ st
l = λ st(dl) for l = 1, . . . ,n. Depending on the value of

dl , the statically coupled systems may synchronize or not, that is, the corresponding
error dynamics may be asymptotically stable or unstable.

If all of the Lyapunov exponents of the statically coupled systems are finite, then
we can establish the following relationship between the Lyapunov exponent of the
stochastic error dynamics (8) and {λ st

r }n
r=1:

λ (m) = mλ
st
r + lim

k→∞

1
k

k−1

∑
j=0

ln

[
∑

n
l=1 pl ∏

m−1
i=0 (F ′(s(m j+ i))−dl)

2

∏
m−1
i=0 (F ′(s(m j+ i))−dr)2

]
. (10)

Equation (10) is derived from equation (8) by: i) dividing and multiplying the argu-
ment of the logarithm by ∏

m−1
i=0 (F ′(s(m j+ i))− dr)

2; ii) using the product rule of
logarithms; and iii) applying equation (9) upon rescaling of the time variable by the
period m.

By multiplying both sides of equation (10) by pr and summing over r, we obtain
the following compact relationship between the Lyapunov exponent of the stochastic
dynamics and the individual Lyapunov exponents for statically coupled maps:

λ (m) = m
n

∑
l=1

plλ
st
l + lim

k→∞

1
k

k−1

∑
j=0

ln
∑

n
l=1 plζl( j)

∏
n
l=1 ζ

pl
l ( j)

. (11)

Here, we have introduced:

ζl( j) =
m−1

∏
i=0

(F ′(s(m j+ i))−dl)
2, (12)

which we assume to be different than zero to ensure that the Lyapunov exponent
stays finite.

The first summand on the right-hand side of equation (11) is linearly proportional
to the switching period m and the “effective” Lyapunov exponent λ̄ = ∑

n
l=1 plλ

st
l ,

which corresponds to the average of the Lyapunov exponents associated with the
statically coupled maps, weighted by the probability of the corresponding switch-
ing. The second summand is a residual quantity, which is always nonnegative and
encapsulates the complex dependence of the transverse dynamics on the switching
period beyond the linear dependence associated with the first summand.

3.4 Necessary Condition for Mean Square Synchronization

Proposition 3.1. The synchronization of the stochastic system (3) is mean square
stable only if the effective Lyapunov exponent λ̄ is negative.
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Proof. A lower bound for the Lyapunov exponent λ (m) can be obtained by applying
the weighted arithmetic-geometric mean inequality [13]

n

∏
l=1

ζ
pl
l 6

n

∑
l=1

plζl . (13)

From inequality (13), it follows that the argument of the logarithm in equation (11)
is larger than or equal to 1. As a result, we obtain

λ (m)> mλ̄ . (14)

This inequality establishes that for λ (m) to be negative, λ̄ must also be negative.
ut

Remark 1. From the previous claim, we posit if none of the Lyapunov exponents
{λ st

r }n
r=1 are negative, synchronization is not feasible for any selection of m and

{pr}n
r=1. Thus, stochastic synchronization cannot be achieved without at least one

coupling configuration to support synchronization. This is in contrast with obser-
vations from continuous-time systems which indicate the possibility of stable syn-
chronization even if none of the coupling configurations support synchronization
[40, 41].

Remark 2. The weighted arithmetic and geometric mean, introduced in (13), are
equal if and only if ζ1 = ζ2 = . . .= ζn. Thus, inequality (14) reduces to an equality
if and only if

m−1

∏
i=0

(F ′(s(m j+ i))−d1)
2 =

m−1

∏
i=0

(F ′(s(m j+ i))−d2)
2 =

. . .=
m−1

∏
i=0

(F ′(s(m j+ i))−dn)
2 (15)

holds for any j ∈ Z+. For the case of chaotic dynamics, where s(k) does not evolve
periodically in time, this condition cannot be satisfied and equation (15) is a strict
inequality.

For continuous-time systems [7, 30, 69, 70, 63, 64, 65, 67, 68], it was shown
that under fast switching conditions the synchronizability of stochastically switch-
ing system can be assessed from the synchronizability of the averaged system. Here,
we re-examine this limit in the case of coupled maps, whereby the averaged system
is obtained by replacing the switching gain by its expected values. The synchroniz-
ability of the averaged system is ascertained by studying the Lyapunov exponent
obtained by replacing d? with E[d] in equation (9), that is,

λ
aver = lim

k→∞

1
k

k−1

∑
j=0

ln
[
(F ′(s( j))−E[d])2] . (16)
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In what follows, we demonstrate through examples that the weighted average
Lyapunov exponent λ̄ can be positive or negative, independent of the value of λ aver.
Therefore, the averaged system does not offer valuable insight on the stability of
the synchronization manifold of the stochastically coupled maps. For the sake of
illustration, we consider the case in which the individual dynamics corresponds to
the identity, such that[

x1(k+1)
x2(k+1)

]
=

[
x1(k)+ ε1(k)(x2(k)− x1(k))
x2(k)+ ε2(k)(x1(k)− x2(k))

]
. (17)

In this case, the transverse dynamics in (4) takes the simple form

ξ (k+1) = [1−d(k)]ξ (k). (18)

Statically coupled identity maps should have a Lyapunov exponent given by (9) with
F ′(s( j)) = 1, that is,

λ
st(d?) = ln

[
(1−d?)2] . (19)

Suppose that the net switching gain is a random variable that takes values d1 = 1
and d2 =−1 with equal probabilities 0.5. Then, using equation (19) we compute

λ̄ =
1
2
(
λ

st(1)+λ
st(−1)

)
=−∞, (20a)

λ
aver = λ

st(0) = 0 > λ̄ . (20b)

Thus, the average coupling does not support synchronization, even though the ef-
fective Lyapunov exponent is negative.

Now, we assume d1 = 0 and d2 = 2 with the same probability 0.5, which yields

λ̄ =
1
2
(
λ

st(0)+λ
st(2)

)
= 0, (21a)

λ
aver = λ

st(1) =−∞ < λ̄ . (21b)

This posits that the stochastically coupled maps cannot synchronize for any selec-
tion of the period m, even though the average coupling affords synchronization in a
single time step.

If the difference between the possible values of the net coupling gain in D is
sufficiently small, the stability of the stochastic system can be related to the stability
of the error dynamics of the averaged system. In this case, if for all l = 1, . . . ,n,
we can write F ′(x)− dl as F ′(x)−∆dl +E[d], where |∆dl | � |F ′(x)−E[d]| is the
deviation of the stochastic switching with respect to their expected value. Thus, we
obtain
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λ̄ =
n

∑
l=1

pl lim
k→∞

1
k

k−1

∑
j=0

ln
[
(F ′(s( j))−E[d]+∆dl)

2]≈
lim
k→∞

1
k

k−1

∑
j=0

(
ln
[
(F ′(s( j))−E[d])2])+ n

∑
l=1

lim
k→∞

k−1

∑
j=0

2pl∆dl

F ′(s( j)−E[d]
= λ

aver, (22)

where we have expanded the logarithm in series in the neighborhood of F ′(s( j))−
E[d] and we have used the fact that ∑

n
l=1 pl∆dl = 0 by construction.

3.5 Chaotic Dynamics

Direct computation of the Lyapunov exponent as a limit of a time series from equa-
tion (8) or (11) may be challenging or even not feasible; for example, if F ′(x) is
undefined on a finite set of points x. Following the approach of [33], we replace the
summation with integration using Birkhoff’s ergodic theorem [14].

Toward this aim, we introduce ρ(x) as the probability density function of the
map F(x), defined on a set B and continuously differentiable on B except for a
finite number of points. The probability density function of each map can be found
analytically or numerically [9, 12]. Using Birkhoff’s ergodic theorem, equations (8),
(9), and (11) can be written as

λ
st
l =

∫
B

ln
[
(F ′(t)−dl)

2]
ρ(t)dt, (23a)

λ (m) =
∫

B
ln

n

∑
l=1

plYl(t,m)ρ(t)dt, (23b)

λ (m) = m
n

∑
l=1

plλ
st
l +

∫
B

ln
∑

n
l=1 plYl(t,m)

∏
n
l=1 Y pl

l (t,m)
ρ(t)dt. (23c)

Here, we have introduced the function of time and switching period

Yl(t,m) =
m−1

∏
i=0

(F ′(F i(t))−dl)
2, (24)

where F i(t) = [F ◦F ◦ . . .◦F ] (t) is the composite function of order i.
If the analytical expression of the probability density function is known, the Lya-

punov exponents can be found explicitly as further detailed in what follows when
we study coupled tent maps. Numerical analysis can also benefit from the above
formulation, which obviates with computational challenges related to uncertainties
in rounding variables in equations (8), (9), and (11) for large values of k. This may
be especially evident for large curvatures of the individual map, which could result
in sudden changes in the synchronization dynamics.
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Remark 3. Equation set (23) can be used to explore the synchronizability of an N-
periodic trajectory s(Nk+ i)= si, where i= 0,1, . . . ,N−1,k∈Z+, and N ∈Z+/{0},
by using the appropriate probability density function [12] ρ(s) = 1

N ∑
N−1
i=0 δ (s− si),

where δ (·) denotes the Dirac delta distribution. Specifically, from (23a) and (23b),
we establish

λ (m) =
1
N

N−1

∑
i=0

ln
n

∑
l=1

plYl(si,m). (25)

3.6 A Representative Example: Coupled Tent Maps

To illustrate our approach, we use the paradigm of two linearly coupled one-
dimensional tent maps. Statically coupled tent maps are known to have two sym-
metric ranges of positive and negative coupling for which synchronization is locally
stable [33] (see Fig. 5). In our setting, we let the coupling stochastically switch be-
tween values within and outside these stability regions to explore the emergence
of windows of opportunity. We will demonstrate that while fast switching, occur-
ring at each time step may not synchronize the maps, there can be a range of lower
frequencies that yields stable synchronization. We argue that this is possible for
coupled maps where the probability of switching between stable and unstable con-
figurations is uneven, inducing a non-trivial balance between the dynamics of the
coupled maps and the switching periods.

The chaotic tent map, described by the equation

x(k+1) = F(x(k)) =
{

ax(k), x(k)< 1/2
a(1− x(k)), x(k)≥ 1/2 (26)

with parameter a= 2 is known to have a constant invariant density function ρ(t) = 1
[33].

3.6.1 Statically Coupled Maps

The stability of synchronization in a static network (3) of tent maps (26) is controlled
by the sign of the transversal Lyapunov exponent [33]

λ
st = ln |2− ε|+ ln |2+ ε|. (27)

Figure 5 indicates two disjoint regions given by ε ∈
[
−
√

5,−
√

2
]

and ε ∈
[√

2,
√

5
]

in which λ st < 0 and synchronization is stable.
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Fig. 5: Transversal Lyapunov exponent, λ st , for stability of synchronization in the
static network of tent maps (3), calculated through (27) as a function of coupling ε.

3.6.2 Stochastically Coupled Maps

To elucidate synchronizability of stochastically coupled tent maps, we assume that
the net coupling gain d takes values d1 and d2 with corresponding probabilities p1
and p2 = 1− p1. The numerical computation of the Lyapunov exponent in (8) is
performed for different values of d2 from −4 to 4 with a step of 0.01 and m from 1
to 25 with a step of 1. The probability p1 is held fixed to 0.5 and the net coupling
gain d1 to −1.90.

This wide parameter selection allows for exploring the connection between the
stability of synchronization for static coupling and the resulting stochastic synchro-
nization. We consider different cases, where stochastic switching is implemented
on coupling gains which could individually support or hamper synchronization for
statically coupled maps. Specifically, we contemplate the case in which: none (case
I), one (case II), or both (case III) of the coupling gains yield synchronization.

A closed-form expression for the Lyapunov exponent of coupled tent maps can
be derived from equation (23b) using the probability density function ρ(t) = 1, see
[26] for a precise derivation,

λ (m) =
1

2m

m

∑
i=0

(
m
i

)
ln

(
n

∑
l=1

pl(2−dl)
2(m−i)(2+dl)

2i

)
. (28)
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We comment that for large m the binomial coefficient grows as 2m/
√

m according
to Stirling’s formula, which ensures that the summation is well behaved in the slow
switching limit [55].

Figure 6(top) provides the Lyapunov exponent of two stochastically tent maps,
analytically computed from equation (28). The effective Lyapunov exponent is di-
rectly computed from equation (27), which for the select parameters, p1 = p2 = 0.5
and d1 =−1.90, yield the following intervals for

d2 :

(
−
√

4+
1

0.39
,−
√

4− 1
0.39

)
∪

(√
4− 1

0.39
,

√
4+

1
0.39

)
.

Importantly, analytical results for large periods in Fig. 6(bottom) confirm that slow
switching in case III favors stochastic synchronization. Figure 6(bottom) also con-
firms the existence of a thin green zone surrounding the blue bands, where synchro-
nization is stable even though one of the coupling gains does not support synchro-
nization (case II). For example, in the case of fast switching, m= 1, these regions are
(−2.33,−2.24) and (−1.73,−1.64) from the closed-form expressions in equations
(27) and (28).

The analytical solution in equation (28) allows for shedding further light on
the possibility of synchronizing coupled maps in case II. Specifically, in Fig. 7
we consider switching between coupling gains d1 = −1.9999 and d2 = 1.7000,
which are associated with λ st

1 =−7.82 (strongly stable synchronization) and λ st
2 =

0.10 (weakly unstable synchronization). We systematically vary the probability of
switching p1 from 0.6 to 1 with a step 0.001, so that when the coupled maps spend
most of the time with the coupling gain that would support synchronization. In this
case, the effective Lyapunov exponent is always negative, and synchronization may
be attained everywhere in the parameter space.

Surprisingly, under fast switching conditions, synchronization is not attained if
p1 / 1 as shown in Fig. 7. Although the maps spend most of the time in a configura-
tion that would strongly support synchronization, the sporadic (p2 ≈ 0) occurrence
of a coupling gain which would lead to weak instability hampers stochastic syn-
chronization under fast switching. Increasing the switching period, synchronization
may be attained for p1 > 0.995 (see the “Pinocchio nose” in Fig. 7(bottom)). For
0.753 < p1 < 0.795, we observe a single window of opportunity, whereby synchro-
nization is achieved in a compact region around m = 10. For 0.795 / p1 / 0.824, a
second window of opportunity emerges for smaller values of m around 5. The two
windows ultimately merge for p1 ≈ 0.83 in a larger window that grows in size as p1
approaches 1.

In summary, we have studied the stochastic stability of the transverse dynamics
using the notion of mean square stability, establishing a mathematically-tractable
form for the Lyapunov exponent of the error dynamics. We have demonstrated the
computation of the stochastic Lyapunov exponent from the knowledge of the prob-
ability density function. A necessary condition for stochastic synchronization has
been established, aggregating the Lyapunov exponents associated with each static
coupling configuration into an effective Lyapunov exponent for the stochastic dy-
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Fig. 6: Analytical demonstration of synchronization through non-fast switching.
(top) Lyapunov exponent of two stochastically tent maps, where the net coupling
is switching with equal probability between d1 = −1.90 and d2 at a period m, an-
alytically computed from equation (28). The color bar illustrates the range of Lya-
punov exponents attained for each value of γ . The dashed line identifies the values
of d2 and m for which the Lyapunov exponent is zero; the regions within such con-
tours correspond to negative values of the Lyapunov exponent and thus stochastic
synchronization. The solid lines refer to the values of d2 and m for which the ef-
fective Lyapunov exponent is zero. The vertical bands identified by such solid lines
correspond to regions where stochastic synchronization is feasible, as predicted by
Proposition 3.1. (bottom) Interplay between synchronization in stochastically and
statically coupled tent maps. The partition into cases I, II, and III is based on the
sign of the Lyapunov exponent in equation (27), corresponding to the net couplings
d1 and d2. The regions are colored as follows: orange (case II without stochastic
synchronization); yellow (case III without stochastic synchronization); green (case
II with stochastic synchronization); and blue (case III with stochastic synchroniza-
tion).
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Fig. 7: Analytical demonstration of emergence of windows of opportunity. (top)
Lyapunov exponent of two stochastically tent maps as a function of the switching
probability p1 and the period m, analytically computed from equation (28) with
d1 = −1.9999 and d2 = 1.7000. The color bar illustrates the range of Lyapunov
exponents attained for each value of γ . The dashed line identify the values of d2
and m for which the Lyapunov exponent is zero; the regions within such contours
correspond to negative values of the Lyapunov exponent and thus stochastic syn-
chronization. (bottom) Interplay between synchronization in stochastically and stat-
ically coupled tent maps. For the select values of the net couplings, λ st

1 = −7.82
and λ st

2 = 0.10, which correspond to case II. The regions are colored as follows: or-
ange (case II without stochastic synchronization) and green (case II with stochastic
synchronization).
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namics. For tent maps, we have established a closed-form expression for the stochas-
tic Lyapunov exponent, which helps dissecting the contribution of the coupling
gains, switching probabilities, and switching period on stochastic synchronization.

We have demonstrated that non-fast switching may promote synchronization of
maps whose coupling alternates between one configuration where synchronization
is unstable and another where synchronization is stable (case II). These windows
of opportunity for the selection of the switching period may be disconnected and
located away from the fast switching limit, where the coupling is allowed to change
at each time step.

In contrast to one’s expectations, fast switching may not even be successful in
synchronizing maps that are coupled by switching between two configurations that
would support synchronization (case III). However, a sufficiently slow switching
that allows the maps to spend more time in one of the two stable synchronization
states will induce stochastic synchronization. The emergence of a lower limit for the
switching period to ensure stochastic synchronization is highly non-trivial, while the
stabilization of synchronization by slow switching in the dwell time limit should be
expected as the maps will spend the time necessary to synchronize in one of the
stable configurations, before being re-wired to the other stable configuration.

4 Network Synchronization Through Stochastic Broadcasting

Building on our results from the previous section on the stochastic synchronization
of two intermittently coupled maps, in this section, we go further and address an
important problem of how non-fast switching can be used to control synchronization
in a target network through stochastic broadcasting from a single external node.

This problem of controlling synchronous behavior of a network towards a de-
sired common trajectory [52] arises in many technological and biological systems
where agents are required to coordinate their motion to follow a leader and maintain
a desired formation [71]. In our setting, each node of the target network, imple-
mented as a discrete-time map, is coupled to the external node with connections
that stochastically switch in time with an arbitrary switching period. The network is
harder to synchronize than its isolated nodes, as its structure contributes to resilience
to controlled synchronization probed by the externally broadcasting node.

In the following, we will rigorously study the mean square stability of the syn-
chronous solution in terms of the error dynamics and provide an explicit dependence
of the stability of controlled synchronization on the network structure and the prop-
erties of the underlying broadcasting signal, defined by the strength of broadcasting
connections and their switching period and probability. Via an analytical treatment
of the Lyapunov exponents of the error dynamics and the use of tools from ergodic
theory, we derive a set of stability conditions that provide an explicit criterion on
how the switching period should be manipulated to overcome network resilience to
synchronization as a function of the Laplacian spectrum of the network [25].
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Through the lens of chaotic tent maps, we discover that the network topology
shapes the windows of opportunity of favorable non-fast switching in a highly non-
linear fashion. In contrast to mutual synchronization with a network whose stability
is determined by the second smallest and largest eigenvalue of the Laplacian ma-
trix via the master stability function, [57] controlled synchronization by the external
node is defined by all its eigenvalues, including the zero eigenvalue. In the case of
chaotic tent maps, the zero and the largest eigenvalue appear to effectively control
the size of these windows of opportunity. This leads to the appearance of a persis-
tent window of favorable switching periods where all network topologies sharing
the largest eigenvalue become more prone to controlled synchronization.

We study the synchronization of a network of N discrete-time oscillators given by
the state variables yi ∈R for i = 1,2, . . . ,N 1 that are driven by an external reference
node given by x∈R via a signal that is stochastically broadcasted to all of the nodes
in the network. The topology of the network is undirected and unweighted. It is
described by the graph G = (V ,E ), where V is the set of vertices and E is the set
of edges. The broadcaster-network system is depicted in Fig. 8. The evolution of the
oscillators in the network and the reference node are given by the same mapping
function F : R→R, such that x(k+1) = F(x(k)). The switching of the broadcasted
signal is an independent and identically distributed (i.i.d) stochastic process that re-
switches every m time steps. That is, the coupling strength of the reference node
ε(mk) = ε(mk + 1) = · · · = ε(m(k + 1)− 1) is drawn randomly from a set of n
coupling strengths {ε1, . . . ,εn} with probabilities p1, . . . , pn, respectively (∑n

l=1 pl =
1).

Fig. 8: The reference node (blue) stochastically broadcasts a signal to each of the
nodes in a static network of N oscillators (pink).

The evolution of the discrete-time broadcaster-network system can be written
compactly as

1 These results generalize for yi ∈ Rn.
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x(k+1) = F(x(k)),
y(k+1) = F(y(k))−µLy(k)− ε(k)IN (y(k)− x(k)1N) ,

(29)

where F is the natural vector-valued extension of F , µ is the coupling strength within
the network, 1N is the vector of ones of length N, IN is the N×N identity matrix,

and L is the Laplacian matrix of G i.e., Li j = −1 for i j ∈ E , Lii = −
N
∑

j=1, j 6=i
Li j,

i= 1,2, . . . ,N. Without loss of generality, we order and label the Laplacian spectrum
of L: γ1 = 0≤ γ2 ≤ ·· · ≤ γN .

We study the stability of the stochastic synchronization of the network about the
reference node’s trajectory, or y1(k)= y2(k)= · · ·= yN(k)= x(k). Towards this goal,
it is beneficial to re-format the problem and study the evolution of the error dynamics
ξ (k) = x(k)1N −y(k). When all of the nodes yi(k) have converged to the reference
trajectory, ξ (k) = x(k)1N−y(k) = 0N . To study the stability of synchronization, we
linearize the system about the reference trajectory

ξ (k+1) = [DF(x(k))IN−µL− ε(k)IN ]ξ (k), (30)

where DF(x(k)) is the Jacobian of F evaluated along the reference trajectory x(k).
As is typical of linearization, we assume that the perturbations ξi(k) in the vari-
ational equation (30) are small and in directions transversal to the reference tra-
jectory. Convergence to the reference trajectory along these transversal directions
ensures the local stability of the synchronous solution. Despite the stochastic and
time-dependent nature of the broadcasting signal ε(k), it only appears on the diag-
onal elements underlying the evolution of the error vector ξ (k). Because µL is the
only matrix in (30) that is not diagonal, we can diagonalize (30) with respect to the
eigenspaces of the Laplacian matrix.

We obtain the stochastic master stability equation

ζ (k+1) = [DF(x(k))−µγ− ε(k))]ζ (k), (31)

where γ ∈ {γ1, . . . ,γN} and ζ ∈ R is a generic perturbation along the eigendirection
of L. Notice that γ1 = 0 corresponds to the evolution of the error dynamics in the
absence of a network. Lastly, in order to simplify the analysis of the evolution of
the variational equations, we re-scale the time variable with respect to the switching
period

ζ̃ (k+1) =
m−1

∏
i=0

[DF(x(mk+ i))−µγ− ε̃(k)] ζ̃ (k), (32)

where ζ̃ (k) = ζ (mk) and ε̃(k) = ε(mk). This scalar equation provides the explicit
dependence of the synchronization error on the network topology (via µγ) and the
strength of the broadcasted signal (via ε). With this in mind, we continue by dis-
cussing the stability of the synchronization to the reference trajectory.

Definition 4.1. The synchronous solution yi(k) = x(k) for i = 1,2, . . . ,N in the
stochastic system (29) is locally mean square asymptotically stable if lim

k→∞
E[ζ̃ 2(k)]=
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0 for any ζ̃ (0) and γ ∈ {γ1, ...,γN} in (32), where E[·] denotes expectation with re-
spect to the σ -algebra generated by the stochastic process underlying the switching.

Mean square stability of the stochastic system in (32), and by extension synchro-
nization in the original system (29), corresponds to studying the second moment of
ζ̃ (k). We take the expectation of the square of the error in (32)

E[ζ̃ 2(k+1)] =
n
∑

l=1
pl

(
m−1
∏
i=0

[
DF(x(mk+ i))−µγ− εl

])2

E[ζ̃ 2(k)]. (33)

Reducing the stochastically switching system (29) to a deterministic system (33) al-
lows for the use of standard tools from stability theory, such as Lyapunov exponents
[56]. The Lyapunov exponent for (33) is computed as

λ = lim
k→∞

1
k ln
[

E[ζ̃ 2(k)]
ζ̃ 2(0)

]
= lim

j→∞

1
j

j
∑

k=1
ln
[
E[ζ̃ 2(k+1)]

]
. (34)

There are numerous pitfalls that can undermine the numerical computation of
Lyapunov exponent from a time series, such as E[ζ̃ 2] falling below numerical pre-
cision in a few time steps and incorrectly predicting stochastic synchronization for
trajectories that would eventually diverge. With the proper assumptions, one can use
Birkoff’s ergodic theorem [56] to avoid these confounds and form the main analyti-
cal result of this section.

Proposition 4.1. The synchronous solution x(k) of the stochastic system (29) is
locally mean square asymptotically stable if

λ =
∫
B

ln

[
n
∑

l=1
pl

(
m−1
∏
i=0

[
DF(t)−µγ− εl

])2
]

ρ(t)dt (35)

is negative for ∀γ ∈{γ1, . . . ,γN}. Here, B is the region for which the invariant density
ρ(t) of F is defined.

Proof. Assuming F is ergodic with invariant density ρ(t), one can avoid computing
the Lyapunov exponent from a time series using Birkoff’s ergodic theorem to re-
place the averaging over time with averaging over the state. This amounts to replac-
ing the summation with integration in (34). Then, by virtue of (34) and the definition
of a Lyapunov exponent, stability of the stochastic system reduces to monitoring the
sign of this Lyapunov exponent. ut

Remark 4. We reduce studying the stability of synchronization in (29) to monitor-
ing the sign of the Lyapunov exponents in (35), with a different exponent for each
eigenvalue γ . If each of these Lyapunov exponents is negative, the dynamics of
the network in the original system (29) converges to the dynamics of the refer-
ence trajectory. Furthermore, this allows the stability of stochastic synchronization
to be studied explicitly in the network and broadcasting parameters µ , {γ1, . . . ,γN},
{ε1, . . . ,εn}, {p1, . . . , pn}, and m.
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Remark 5. There are two notable consequences of the Laplacian spectrum on the
stability conditions given by the sign of (35): (i) µγ = 0 is always an eigenvalue,
such that it is necessary that the nodes in the network pairwise synchronize to the
reference node in the absence of a network topology, and (ii) if the network is dis-
connected, fewer stability conditions need to be satisfied, whereby there will be
repeated zero eigenvalues. In light of these consequences, a network is inherently
resilient to broadcasting synchronization, in that it necessitates satisfying more sta-
bility conditions, and synchronization in the absence of a network is always one of
the stability conditions.

4.1 Tent Maps Revisited

To explore some of the theoretical implications of the general stability criterion (35),
we consider the broadcaster-network system (29) composed of chaotic tent maps. In
this context, the general criterion (35) can be written in a compact form that depends
only on the network and broadcasting parameters.

Proposition 4.2. A stochastic system (29) of chaotic tent maps is locally mean
square asymptotically stable if

λ =
1

2m

m

∑
i=0

(
m
i

)
ln

[
n

∑
l=1

plY (i,m,µγ,εl)

]
(36)

is less than zero, where Y (i,m,µγ,εl) is given by (2+µγ + εl)
2i(2−µγ− εl)

2(m−i)

and
(m

i

)
= m!

(m−i)!i! .

Remark 6. The closed-form analytical expression (36) for the Lyapunov exponents
indicates the explicit dependence of the stability of controlled synchronization on
the network coupling strength µ , the eigenvalues of the Laplacian matrix for the
network, the switching period m, the stochastically switching coupling strengths
{ε1, . . . ,εn}, and their respective probabilities {p1, . . . , pn}. For controlled synchro-
nization to be mean square stable, the Lyapunov exponent for each eigenvalue in the
Laplacian spectrum must be negative.

To illustrate the power of our explicit criterion (36) for controlled synchroniza-
tion and clearly demonstrate of the emergence of windows of opportunity, we limit
our attention to stochastic broadcasting between two coupling strengths ε1 (with
probability p) and ε2 (with probability 1− p).

To choose the coupling strengths ε1 and ε2, we consider two statically coupled
tent maps (26)

x(k+1) = f (x(k)),
y(k+1) = f (y(k))+ ε(x(k)− y(k)). (37)

This network (37) describes a pairwise, directed interaction between the dynamics
of the broadcasting map x(k) and a single, isolated map y(k) from the network where
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the switching broadcasting coupling is replaced with a static connection of strength
ε. The stability of synchronization in the static network (37) is controlled by the
sign of the transversal Lyapunov exponent[33] given in (27). Figure 5 indicates two
disjoint regions given by ε ∈

[
−
√

5,−
√

2
]

and ε ∈
[√

2,
√

5
]

in which λ st < 0 and
synchronization is stable.

4.2 Stochastic Broadcasting: Fast Switching (m = 1)

When switching occurs at every time step, the condition described in Proposition
4.2 can be simplified to the following corollary, which we state without additional
proof.
Corollary 4.1. The Lyapunov exponent for the mean square stability of the syn-
chronous solution in the fast-switching system represented by (29) of chaotic tent
maps is

λ = ln
[
(2−µγ)2 +2(µγ−2)E[ε(k)]+E[ε2(k)]

]
·
[
(−2−µγ)2 +2(µγ +2)E[ε(k)]+E[ε2(k)]

]
, (38)

where E[ε(k)] = p1ε1 + p2ε2 and E[ε2(k)] = p1ε2
1 + p2ε2

2 .

4.2.1 Master Stability Function

The Lyapunov exponent (38) demonstrates the explicit dependence of the stability of
stochastic synchronization on the node-to-node coupling strength, the eigenvalues
of the Laplacian matrix, and the stochastically switching coupling strengths along
with their respective probabilities.

Figure 9 illustrates the dependence of λ on ε1 and µγ . The dashed curve in Fig.
9 indicates the boundary between positive and negative Lyapunov exponents, iden-
tifying the onset of mean square stability of the error dynamics. In order for the
network to synchronize to the reference node, the point (ε1,µγ) must fall within
the dashed curve for every eigenvalue in the spectrum of the Laplacian matrix. In
agreement with our predictions, we find that as µγ increases the range of values of
ε1 which affords stable synchronization becomes smaller and smaller. This suggests
that the resilience of the network to synchronize improves with µγ .

Remark 7. While the nonlinear dependence of the stability boundary on ε1 and µγ is
modulated by the nonlinearity in the individual dynamics, it should not be deemed
as a prerogative of nonlinear systems. As shown in Remark 4, the stochastic stability
of synchronization in the simplest case of a linear system is also nonlinearly related
to the spectrum of the Laplacian matrix and to the expectation and variance of the
broadcasting signal – even for classical consensus with α = 1 [16].
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Fig. 9: Master stability function for stochastic synchronization of chaotic tent maps,
for ε2 = 2.2,m = 1, and p1 = p2 = 0.5. For synchronization to be stable, each eigen-
value of the Laplacian matrix must correspond to a negative Lyapunov exponent (in-
dicated by the yellow color, isolated by the black dashed curve). For example, the
black vertical line shows the range of admissible values of µγ that would guarantee
stability at ε1 = 2.

Remark 8. In this example of a chaotic tent map, the stability boundary is a sin-
gle curve, defining a connected stability region. To ensure stable synchronization
of a generic network, it is thus sufficient to monitor the largest eigenvalue of the
Laplacian matrix, γN , such that (ε1,µγ) will fall within the stability region. This
is in contrast with the master stability function for uncontrolled, spontaneous syn-
chronization [57], which would typically require the consideration of the second
smallest eigenvalue, often referred to as the algebraic connectivity [25]. However,
similar to master stability functions for uncontrolled, spontaneous synchronization
[75], we would expect that for different maps, one may find several disjoint regions
in the (ε1,µγ)-plane where stable stochastic synchronization can be attained.

4.2.2 Role of Network Topology

The master stability function in Fig. 9 shows that both µ and γ contribute to the
resilience of the network to synchronization induced by stochastic broadcasting.
For a given value of the node-to-node coupling strength µ , different networks will
exhibit different residences based on their topology. Based on the lower bound by
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Grone and Merris [29] and the upper bound by Anderson and Morley [2], for a graph
with at least one edge, we can write max{di, i = 1, . . . ,N}+1 ≤ γN ≤ max{di +
d j, i j ∈ E }, where di is the degree of node i = 1, . . . ,N. While these bounds are
not tight, they suggest that the degree distribution has a key role on γN . For a given
number of edges, one may expect that networks with highly heterogeneous degree
distribution, such as scale-free networks [11], could lead to stronger resilience to
broadcasting as compared to regular or random networks, with more homogenous
degree distributions [11].

Fig. 10: Largest eigenvalue γN of the Laplacian matrix as a function of the number
of edges for three different types of networks of 100 nodes: a 2K-regular network
(navy curve), scale-free (light blue curve), and random Erdős-Rényi (red curve) net-
works. Scale-free and random networks are run 10000 times to compute means and
standard deviations, reported herein – note that error bars are only vertical for scale-
free networks since the number of edges is fully determined by q, while for random
networks also horizontal error bars can be seen due to the process of network as-
sembly.

In Fig. 10, we illustrate this proposition by numerically computing the largest
eigenvalue of the graph Laplacian for three different network types:

(i) A 2K-regular network, in which each node is connected to 2K nearest neighbors,
such that the degree is equal to 2K. As K increases, the network approaches a
complete graph.

(ii) A scale-free network [4] which is grown from a small network of q nodes. At
each iteration of the graph generation algorithm, a node is added with q edges
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to nodes already in the network. The probability that an edge will be connected
to a specific node is given by the ratio of its degree to the total number of edges
in the network. Nodes are added until there are N nodes in the network. When q
is small, there are a few hub nodes that have a large degree and many secondary
nodes with small degree, whereas when q is large, the scale-free network is highly
connected and similar to a complete graph.

(iii) A random Erdős-Rényi network which takes as input the probability, p, of an
edge between any two nodes. When p is small, the network is almost surely
disconnected, and when p approaches 1, it is a complete graph.

We fix N to 100 and vary K, q, and p in (i), (ii), and (iii), respectively, to explore the
role of the number of edges.

As expected from the bounds in [29, 2], for a given number of edges, the scale-
free network tends to exhibit larger values of γN . This is particularly noticeable for
networks of intermediate size, whereby growing the number of edges will cause
the three network types to collapse on a complete graph of N nodes. As the largest
eigenvalue of the Laplacian matrix fully controls the resilience of the network to
broadcasting-induced synchronization (in the case of linear and chaotic tent maps),
we may argue that, given a fixed number of edges, the network can be configured
such that it is either more conducive (regular graph) or resistant (scale-free graph)
to synchronization. The increased resilience of scale-free networks should be at-
tributed to the process of broadcasting-induced synchronization, which globally acts
on all nodes simultaneously, without targeting critical nodes (low or high degree)
like in pinning control [16, 78].

4.3 Stochastic Broadcasting: Beyond Fast Switching (m > 1)

Returning to the stochastically switching broadcaster-network system, but without
the limitation of m = 1, we use the master stability function of Fig. 5 to choose
ε1 = −1.999 from a stability region and ε2 = −1.7 from an instability region such
that the connection from the broadcasting node to the network switches between the
two values where one value supports controlled synchronization whereas the other
destabilizes it. In this way, the broadcaster sends two conflicting messages to the
network to follow and not to follow its trajectory.

We pay particular attention to the case where the switching probability of the
stabilizing coupling, ε1 is higher (p > 0.5.) One’s intuition would suggest that fast-
switching between the stable and unstable states of controlled synchronization with
probability (p > 0.5), that makes the system spend more time in the stable state,
would favor the stability of synchronization. However, the master stability function
of Fig. 11 calculated through the analytical expression for the Lyapunov exponent
(36) shows that this is not the case. Our results reveal the presence of a stability zone
(black area) which, in terms of the switching periods m, yields a window of oppor-
tunity when non-fast switching favors controlled synchronization, whereas fast or
slow switching does not. The fact that slower switching at m > 25 at the switching
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Fig. 11: Analytical calculation of the master stability function (36) for controlled
synchronization of tent maps as a function of the switching probability p and switch-
ing period m for ε1 =−1.9999,ε2 = 1.7, and µ = 0.01. (Top). The black region in-
dicates the stability of controlled synchronization, and the dashed lines represent the
boundaries for the stability region for various eigenvalues γ of a network’s Laplacian
matrix. Notice that the size of the stability region is primarily controlled by only two
curves, corresponding to γ = 0 (red dashed) and γ = 10 (black dashed) such that the
addition of curves for eigenvalues γ ∈ (0,10) only affects the small cusp part of the
stability region (see the zoomed-in area). (Bottom). Zoom-in of the region marked
by the white rectangle in (top). Points A, B, and C indicate pairs (p,m) for which
synchronization is unstable, stable, and unstable, respectively for different values of
the switching period m. Note the window of favorable frequencies m which includes
point B in the vertical direction from A to C. Remarkably, the size of the stability
region remains persistent to changes of the intra-network coupling µ (not shown),
suggesting the existence of soft, lower and upper thresholds for favorable switching
frequencies between m = 20 and 30.
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probability p = 0.9 (see the transition from point A to B) desynchronizes the system
is somewhat unexpected, as the system is likely to stay most of the time in the stable
state, defined by ε1.

The exact cause of this effect remains to be studied; however, we hypothesize
that this instability originates from a large disparity between the time scale of weak
convergence in the vicinity of the synchronization state during the (long) time lapse
when the stabilizing coupling ε1 is on and the time scale of strong divergence from
the synchronization solution far away from it when the destabilizing coupling ε2
finally switches on. As a result, this unbalance between the convergence and diver-
gence makes synchronization unstable.

The window of opportunity displayed in Fig. 11 appears as a result of inter-
sections between the boundaries (dashed curves) of the stability zones where each
boundary is calculated from the criterion (36) when the Lyapunov exponent is zero
for each eigenvalue of the Laplacian matrix. The red curve for γ1 = 0 shows the
stability region in the absence of a network, and is therefore a necessary condition
for controlled synchronization in the presence of the network. In the general case
of N distinct eigenvalues, there will be N curves. Each curve adds a constraint and,
therefore, one would expect each eigenvalue γ1, . . . ,γN to play a role in reducing the
size of the stability zone and shaping the window of opportunity as a function of
network topology.

In contrast to these expectations, Fig. 11 provides a convincing argument that the
stability zone is essentially defined by two curves, corresponding to the zero eigen-
value, γ1 (red dashed curve) and the largest eigenvalue, γN (black dashed curve).
All the other curves offer a very minor contribution to shaping the stability region.
As a consequence, windows of opportunity should be relatively robust to topologi-
cal changes, preserving the maximum largest eigenvalue of the Laplacian spectrum.
For example, the set of four distinct eigenvalues (0,1,3,10) in Fig. 11 corresponds
to a star network of 10 nodes with an additional edge connecting two outer nodes.
In this case, the removal of the additional link reduces the spectrum to three distinct
eigenvalues (0,1,10) and eliminates the curve for γ = 3 which, however, does not
essentially change the stability region. This observation suggests that the addition of
an edge to a controlled network, which would be expected to help a network better
shield from the external influence of the broadcasting node, might not necessarily
improve network resilience to synchronization.

Similarly, the removal of an edge from an all-to-all network with two distinct
eigenvalues (0,N) changes the spectrum to (0,N−1,N), which according to Fig. 11
does not significantly alter the stability region either. For general topologies, one
may look at the degree distribution to gather insight on the largest eigenvalue[2, 29],
thereby drawing conclusions on the switching periods that guarantee the success
of the broadcaster to synchronize the network. Put simply, “you can run but you
cannot hide:” the broadcaster will identify suitable switching rates to overcome the
resilience of the network.
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5 Conclusions

While the study of stochastically switching networks has gained significant mo-
mentum, most analytical results have been obtained under the assumption that the
characteristic time scales of the intrinsic oscillators and evolving connections are
drastically different, enabling the use of averaging and perturbation methods. In re-
gard to on-off stochastically switching systems, these assumptions typically yield
two extremes, fast or slow (dwell-time [35]) switching, for which rigorous theory
has been developed [31, 32, 5, 7, 70, 69, 67, 63]. However, our understanding of dy-
namical networks with non-fast switching connections is elusive, and the problem of
an analytical treatment of the dynamics and synchronization in non-fast switching
network remains practically untouched.

In this chapter, we sought to close this gap by presenting an analytical approach
to characterize the stability of synchronization in stochastically switching networks
of discrete-time oscillators as a function of network topology and switching period.
We first focused on the simplest stochastic network composed of two maps and stud-
ied the stability of synchronization by analyzing the linear stability of an augmented
system, associated with the linear mean square transverse dynamics. We performed
a detailed analysis of the Lyapunov exponent of the transverse dynamics, based on
the knowledge of the probability density function for the synchronized trajectory.
We established a necessary condition for stochastic synchronization in terms of the
synchronizability of the coupled maps with a static coupling. The necessary condi-
tion can be used to demonstrate that switching between configurations which do not
individually support synchronization will not stabilize stochastic synchronization
for any switching frequencies. This is in contrast with networks of continuous-time
oscillators where windows of opportunity for stable synchronization may appear as
a result of switching between unstable states [40, 41]. Through closed-form and
numerical findings, we have demonstrated the emergence of windows of opportu-
nity and elucidated their nontrivial relationship with the stability of synchronization
under static coupling.

While the details of the mechanisms for the appearance of windows of oppor-
tunity in stochastically switching networks are yet to be clarified, it is tenable to
hypothesize that this effect is related to the dynamic stabilization of an unstable
state. From a mechanics perspective, this can be loosely explained by an analogy
to the dynamics of Kapitza’s pendulum. Kapitza’s pendulum is a rigid pendulum in
which the pivot point vibrates in a vertical direction, up and down [43]. Stochastic
vibrations of the suspension are known to stabilize Kapitza’s pendulum in an up-
right vertical position, which corresponds to an otherwise unstable equilibrium in
the absence of suspension vibrations. By this analogy, stochastic switching between
stable and unstable configurations can be proposed to perform a similar stabilizing
role.

Extending our analysis of synchronization of two maps, we then established a rig-
orous toolbox for assessing the mean-square stability of controlled synchronization
in a static network of coupled maps induced by stochastic broadcasting from a sin-
gle, external node. We studied the conditions under which a reference broadcasting
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node can synchronize a target network by stochastically transmitting sporadic, pos-
sibly conflicting signals. We demonstrated that manipulating the rate at which the
connections between the broadcasting node and the network stochastically switch
can overcome network resilience to synchronization. Through a rigorous mathe-
matical treatment, we discovered a nontrivial interplay between the network prop-
erties that control this resilience and the switching rate of stochastic broadcasting
that should be adapted to induce synchronization. Unexpectedly, non-fast switching
rates controlling the so-called windows of opportunity guarantee stable synchrony,
whereas fast or slow switching leads to desynchronization, even though the net-
worked system spends more time in a state favorable to synchronization.

In contrast to classical master stability functions for uncontrolled synchroniza-
tion, where both the algebraic connectivity and the largest eigenvalue of the Lapla-
cian matrix determine the onset of synchronization, we report that the algebraic
connectivity has no role on broadcasting-induced synchronization of chaotic tent
maps. Specifically, the resilience of the network to broadcasting synchronization
increases with the value of the largest eigenvalue of the Laplacian matrix. Heteroge-
nous topologies with hubs of large degree should be preferred over homogenous
topologies, when designing networks that should be resilient to influence from a
broadcasting oscillator. On the contrary, homogenous topologies, such as regular or
random topologies, should be preferred when seeking networks that could be easily
tamed through an external broadcasting oscillator. Interestingly, these predictions
would be hampered by a simplified analysis based on averaging, which could lead
to false claims regarding the stability of synchronous solutions.

Our approach is directly applicable to high-dimensional maps whose invariant
density measure can calculated explicitly. These systems include two-dimensional
diffeomorphisms on tori such as Anosov maps [34], for which the invariant den-
sity measure can be calculated analytically, and volume-preserving two-dimensional
standard maps whose invariant density function can be assessed through computer-
assisted calculations [45]. Although our work provides an unprecedented under-
standing of network synchronization beyond the fast switching limit, we have hardly
scratched the surface of temporal dynamical networks theory. This work immedi-
ately raises the following questions: (i). What if the i.i.d process underlying the
switching was relaxed to be a more general Markov process? (ii). What if the under-
lying topology of the broadcasting was more complex? Both of these questions are
of interest, but provide their own technical challenges and require further study. We
anticipate that combining our recent work on synchronization of two maps under
Markovian switching with memory [62] with the approach presented in this chap-
ter should make progress toward unraveling a complex interplay between switching
memory and network topology for controlled synchronization.
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