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We study the synchronization of bursting cells that are coupled through both excitatory and
inhibitory connections. We extend our recent results on networks of Hindmarsh–Rose bursting
neurons [Belykh et al., 2014] to coupled Sherman β-cell models and show that the addition
of repulsive inhibition to an excitatory network can induce synchronization. We discuss the
mechanism of this purely synergenic phenomenon and demonstrate that the inhibition leads to
the disappearance of a homoclinic bifurcation that governs the type of synchronized bursting. As
a result, the inhibition causes the transition from square-wave to easier-to-synchronize plateau
bursting, so that weaker excitation is sufficient to induce bursting synchrony. We dedicate this
paper to the memory of Leonid P. Shilnikov, the pioneer of homoclinic bifurcation theory,
and emphasize the importance of homoclinic bifurcations for understanding the emergence of
synchronized rhythms in bursting networks.
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1. Introduction

Neurons can generate complex patterns of burst-
ing activity. Over the last thirty years, much work
has been dedicated to the classification of bursting
rhythms [Rinzel, 1987; Rinzel & Ermentrout, 1989;
Bertram et al., 1995; Izhikevich, 2000; Golubit-
sky et al., 2001] and the bifurcation transitions
between them (see [Terman, 1991, 1992; Wang,
1993; Belykh et al., 2000; Shilnikov et al., 2005;
Frohlich & Bazhenov, 2006] and references therein).
This includes chaotic bursting [Guckenheimer &
Oliva, 2002] and transitions between tonic spiking
and bursting, caused by homoclinic bifurcations of
a saddle-node periodic orbit and the blue sky catas-
trophe [Turaev & Shilnikov, 1995; Shilnikov & Cym-
baluyk, 2005].

When coupled in a network, bursting neurons
can attain different forms of synchrony: burst syn-
chronization when only the envelopes of the spikes
synchronize, complete synchrony, anti-phase burst-
ing, and other forms of phase-locking. The emer-
gence of a specific cooperative rhythm depends
on the intrinsic properties of the coupled neu-
rons, a type and strength of synaptic coupling,
and network circuitry [Wang & Rinzel, 1992; van
Vreeswijk et al., 1994; Kopell & Ermentrout, 2002;
Elson et al., 2002; Somers & Kopell, 1993; Sher-
man, 1994; Canavier et al., 1999; Rubin & Terman,
2002; Kopell & Ermentrout, 2004; Belykh et al.,
2005; Izhikevich, 2001; Belykh & Shilnikov, 2008;
Shilnikov et al., 2008; Wojcik et al., 2011; Wojcik
et al., 2014]. Fast excitatory synapses are known to
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facilitate bursting synchrony (see [Kopell & Ermen-
trout, 2004; Izhikevich, 2001; Belykh et al., 2005]).
However, fast inhibition typically leads to anti-
phase or asynchronous bursting [Wang & Rinzel,
1992; Rubin & Terman, 2002; Belykh & Shilnikov,
2008], unless the inhibitory connections are weak
and the initial conditions are chosen close enough
together within the spiking phase of bursting [Jalil
et al., 2012]. Making excitatory and inhibitory
synapses slower reverses their roles such that inhi-
bition, not excitation leads to bursting synchrony
[van Vreeswijk et al., 1994; Elson et al., 2002].

In a recent paper [Belykh et al., 2014], we
studied networks of phenomenological Hindmarsh–
Rose neuron models [Hindmarsh & Rose, 1984]
and discovered a counterintuitive effect that fast,
desynchronizing inhibition can induce synchronized
bursting when added to an excitatory network of
square-wave bursters. This nontrivial phenomenon
appears as a result of a synergetic interaction
between synchronizing excitation and desynchroniz-
ing inhibition. Its key component is the ability of
inhibition to effectively change the type of burst-
ing in the network, switching from square-wave to
plateau-type bursting. Consequently, significantly
less excitation is necessary to trigger network
synchronization. In this paper, we demonstrate
that a similar effect is observed in a network of
physiologically-based Hodgkin–Huxley-type models
such as the pancreatic β-cell Sherman model [Sher-
man, 1994], exhibiting square-wave and plateau-
type bursting. Square-wave bursting [Rinzel, 1987]
was named after the shape of the voltage trace
during a burst; it resembles a square wave due to
fast transitions between the quiescent state and
fast repetitive spiking (see Fig. 1). Square-wave
bursters are notorious for their resistance to syn-
chronization and require strong excitatory coupling
to synchronize them. In the Izhikevich classification
[Izhikevich, 2000], square-wave bursters, observed in
the Sherman model, correspond to an Andronov–
Hopf/homoclinic burster. Its main signature is the
presence of a homoclinic bifurcation of a saddle
in the 2-D fast subsystem. In the following, we
will show that the addition of inhibition induces
synchrony by making this homoclinic bifurcation
disappear and generating plateau-type bursting
(Andronov–Hopf/Andronov–Hopf bursting, accord-
ing to the Izhikevich classification).

Homoclinic bifurcation theory was primarily
developed by Leonid Pavlovich Shilnikov. By this

Fig. 1. Square-wave burster of the uncoupled Sherman
models (1). The fast system displays a supercritical
Andronov–Hopf bifurcation at S = SAH1 and a homoclinic
bifurcation (loop) at S = SHB. The spiking manifold is com-
posed of limit cycles in the fast system and terminates at
the homoclinic bifurcation HB. The intersection of the fast
(h(V )) and slow (S∞(V )) nullclines indicates a unique sad-
dle point O of the full system. The red dotted curve shows
the route for bursting in the full system. The plane V = Θs

displays the synaptic threshold above which the presynaptic
cell can influence the postsynaptic one.

paper, we pay tribute to his pioneering contribu-
tions [Shilnikov et al., 1998; Shilnikov et al., 2001]
and argue that homoclinic bifurcations continue to
be a source of unexpected phenomena in both single
and coupled bursting cell models.

The layout of this paper is as follows. First,
in Sec. 2, we introduce the network model and the
Sherman cell model as its individual unit. We show
that the uncoupled cell model exhibits square-wave
bursting and discuss the generation mechanism.
Then, in Sec. 3, we introduce the self-coupled sys-
tem that governs the type of synchronous bursting.
We show that the self-coupled system switches from
square-wave to plateau bursting with an increase
in the excitatory and/or inhibitory couplings. This
property is then used in Sec. 4 to analyze the vari-
ational equations for the transverse stability of the
synchronous bursting solution, defined through the
self-coupled system. Several stability arguments are
given to explain the synergetic, synchronizing effect
of combined excitation and inhibition. In Sec. 5,
similar transitions to synchronized plateau-bursting
are shown in a network with a varying reversal
potential. Finally, in Sec. 6, a brief discussion of
the obtained results is given.
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2. The Network Model

We consider the simplest network of two cou-
pled Sherman models with both excitatory and
inhibitory connections:

τ
dVi

dt
= F (Vi, ni, Si) + gexc(Eexc − Vi)Γ(Vj)

+ ginh(Einh − Vi)Γ(Vj),

τ
dni

dt
= G(Vi, ni) ≡ n∞(Vi) − ni,

τs
dSi

dt
= H(Vi, Si) ≡ S∞(Vi) − Si, i, j = 1, 2.

(1)

Here, Vi represents the membrane potential of
the ith cell. Function F (Vi, ni, Si) = −[ICa(Vi) +
IK(Vi, ni) + IS(Vi, Si)] defines three intrinsic cur-
rents: fast calcium, ICa, potassium, IK, and slow
potassium, IS, currents:

ICa = gCam∞(Vi)(Vi − ECa),

IK = gKni(Vi − EK),

IS = gSS1(Vi − EK).

The gating variables for ni and Si are the opening
probabilities of the fast and slow potassium cur-
rents, respectively, and

m∞(Vi) =
[
1 + exp

(−20 − Vi

12

)]−1

n∞(Vi) =
[
1 + exp

(−16 − Vi

5.6

)]−1

S∞(Vi) =
[
1 + exp

(−35.245 − Vi

10

)]−1

.

Other intrinsic parameters are τ = 20, τS = 10000,
gCa = 3.6, ECa = 25 mV, gK = 10, EK = −75 mV,
gS = 4.

The cells are identical and the symmetrical
synaptic connections are fast and instantaneous.
The parameters gexc and ginh are the excitatory and
inhibitory coupling strengths. The reversal poten-
tials Eexc = 10 mV and Einh = −75 mV make the
synapses excitatory and inhibitory, respectively as
Eexc > Vi (Einh < Vi) for all values of Vi(t). The
synaptic coupling function is modeled by the sig-
moidal function Γ(Vj) = 1/[1+exp{−10(Vj −Θs)}].
The synaptic threshold Θsyn = −40 mV is set to

ensure that every spike in the single cell burst can
reach the threshold (see Fig. 1). As a result, a
spike arriving from a presynaptic cell j activates
the synapse current (through Γ(Vj) switching from
0 to 1) entering the postsynaptic cell i. Unless
noticed otherwise, we will keep the above parame-
ters fixed and only vary the synaptic strengths gexc

and ginh.
The presence of the large parameter τS = 10000

on the left-hand side of the S-equation makes the
system (1) slow–fast such that the (Vi, ni)-equations
represent the 2-D fast “spiking” subsystem for the
ith cell; the Si-equation corresponds to the slow
1-D “bursting” system. Therefore, we use the stan-
dard decomposition into fast and slow subsystems;
the types of bursting that can exist in the uncou-
pled cell systems (1) with gexc = 0 and ginh = 0
are defined by the S-parameter sequences of phase
portraits of the 2-D fast system. This analysis
has been performed for a similar pancreatic cell
[Tsaneva-Atanasova et al., 2010] and revealed differ-
ent types of bursting such as square-wave, plateau
and pseudo-plateau bursting [Stern et al., 2008].
Figure 1 illustrates the standard sequence of phase
portraits in the uncoupled systems (1) with gexc = 0
and ginh = 0, giving rise to square-wave bursting.

The equilibrium point on the upper branch of
the nullcline h(V ) in the 2-D fast subsystem under-
goes a supercritical Andronov–Hopf bifurcation for
S = SAH1, softly giving rise to a stable limit cycle
that encircles the unstable point and forms the spik-
ing manifold for SAH1 < S < SHB. Its upper edge
is defined by a homoclinic bifurcation at S = SHB.
Here, the stable limit merges into a stable homo-
clinic loop and disappears. For the given location
of the slow nullcline S∞(V ), the trajectories jump
down to the lower branch of the fast nullcline, creat-
ing square-wave (fold/homoclinic) bursting. A more
detailed analysis of the phase portraits’ sequences
and bifurcations leading to square-wave bursting
in other cell models such as the Hindmarsh–Rose
model can be found in [Shilnikov & Kolomiets, 2008;
Belykh & Hasler, 2011].

3. Self-Coupled System and
Its Burster

Each cell in the network (1) receives one inhibitory
and one exciatory input from the other cell, there-
fore the network system (1) has an invariant man-
ifold D = {V1 = V2 = V (t), n1 = n2 = n(t),
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S1 = S2 = S(t)}, that defines complete synchro-
nization between the cells.

Synchronous dynamics on the manifold D is
defined by the self-coupled system:

τ
dV

dt
= F (V, n, S) + gexc(Eexc − V )Γ(V )

+ ginh(Einh − V )Γ(V ),

τ
dn

dt
= G(V, n)

τs
dS

dt
= H(V, S).

(2)

Note that the synchronous dynamics differs from
that of the uncoupled cell as the former is governed
by a system with extra coupling terms. Moreover,
the synchronous dynamics and the type of burst-
ing depend on the coupling strengths gexc and ginh.
There are critical coupling strengths gexc and ginh at
which square-wave bursting in the self-coupled sys-
tem (2) turns into plateau-type bursting, depicted
in Fig. 2. This happens through the disappearance
of the homoclinic bifurcation in the self-coupled
system (2) due to increased coupling strengths.

Fig. 2. Plateau-type burster of the self-coupled model (2),
governing the synchronous network dynamics. Note the dis-
appearance of a homoclinic bifurcation in the fast system due
to the synaptic coupling. The stable limit cycle of the fast
system disappears through a reverse Andronov–Hopf bifur-
cation at S = SAH2, ending the spiking manifold. The red
dotted curve shows the route for plateau-type bursting. The
nonsmooth part of the fast nullcline at V = Θs is due to the
synaptic coupling, turning on when the trajectory jumps up
to the spiking manifold and crosses the threshold Θs. The
coupling strengths gexc = 0.14 and ginh = 0.06 correspond to
the point b in the 2-D diagram of Fig. 3.

In the following, we will show that the disappear-
ance of the homoclinic bifurcation (HBD) practi-
cally coincides with the onset of stable synchrony
in the system (1). While excitation alone is able
to transform square-wave into plateau-type burst-
ing at some high values of gexc, inhibition does so
more effectively and its addition lowers the com-
bined coupling strength gexc + ginh.

4. Stability of Synchronization:
A Synergetic Effect of Inhibition
and Excitation

The stability of synchronization in the network (1)
is equivalent to the stability of the invariant mani-
fold D. The variational equations for its infinitesi-
mal transverse perturbations ∆V = V1 − V2, ∆n =
n1−n2, and ∆S = S1−S2 read [Belykh et al., 2005;
Belykh et al., 2014]:

τ
d

dt
∆V = FV (V, n, S)∆V + Fn(V, n, S)∆n

+ FS(V, n, S)∆S − Ω(V )∆V

τ
d

dt
∆n = GV (V, n)∆V + Gn(V, n)∆n

τ
d

dt
∆S = HV (V, S)∆V + HS(V, S)∆S,

(3)

where

Ω(V ) = (gexc + ginh)Γ(V ) + (gexc(Eexc − V )

+ ginh(Einh − V ))ΓV (V ). (4)

Here, the partial derivatives are calculated at the
point {∆V = 0,∆n = 0,∆S = 0}; and {V (t), n(t),
S(t)} is the synchronous bursting solution defined
through the system (2). Note that the synaptic
coupling function Γ(V ) along with its derivative
ΓV (V ) = λ exp{−λ(V −Θs)}

(1+exp{−λ(V −Θs)})2 is non-negative. Hence,
the contribution of the first term in (4), −(gexc +
ginh)Γ(V )∆V is stabilizing for the zero fixed
point of the variational system (3), correspond-
ing to synchronous bursting. On the other hand,
the contribution of the second coupling term
in (4) can be destabilizing when ginh(Einh − V )
exceeds gexc(Einh − V ), making the second term
overall negative. Note that increasing the inhibitory
coupling ginh makes this term more negative
and, therefore, promoting desynchronization as one
would expect. However, Fig. 3(a) indicates that
the addition of inhibition to an excitatory network
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(a) (b)

Fig. 3. (a) The stability diagram for synchronization in the two-cell network (1). The color bar indicates the maximum
voltage difference V1 − V2, calculated over the last two bursts in the established rhythm. Blue (dark) zone corresponds to the
zero voltage difference and shows the synchronization region. Note the unexpected effect when an increase of the inhibitory
coupling from 0 to 0.07 significantly lowers the synchronization threshold from about 0.18 to 0.07. Notice that the inhibition
desynchronizes the cells in the absence of excitation (gexc = 0). The red dashed curve indicates the disappearance of the
homoclinic bifurcation (HBD) in the 2-D fast subsystem; it corresponds to the transition from square-wave to plateau bursting
and practically coincides with the stability boundary between asynchronized and synchronized bursting. (b) (Top) Typical
out-of-phase voltage traces, corresponding to the red (“out-of-phase”) zone. (Bottom) Synchronization of plateau bursting in
the blue (“sync”) parameter region.

induces synchronization in a fairly wide range of
the inhibitory strength ginh. Note that increasing
ginh first lowers the synchronization threshold and
weaker excitation synchronizes the cells (e.g. from
gexc = 0.18 in the absence of inhibition to gexc =
0.07 for ginh = 0.07). At the same time, the inhibi-
tion cannot induce robust synchronization by itself
(see the x-axis in Fig. 3(a), which corresponds to the
desynchronizing role of inhibition in the absence of
excitation).

What is the cause of this highly unexpected
phenomenon? It is worth noticing that when com-
plete (spike) synchronization occurs in the purely
excitatory network (1) with ginh = 0, square-wave
bursting, observed in the unsynchronized net-
work (1) at lower values of gexc, turns into plateau
bursting [see Fig. 3(b)]. This happens when the
excitatory coupling is strong enough to change the
type of bursting via the disappearance of the homo-
clinic bifurcation in the fast subsystem of (2). The
important ingredient of the inhibition-induced syn-
chronization in the network is that the inhibition
changes the type of bursting much more effectively
than the excitation [see Fig. 3(a)]. Consequently, a

much smaller amount of the combined force (gexc +
ginh) is necessary for synchronization.

Why is plateau bursting easier to synchronize?
Why does inhibition not desynchronize plateau
oscillations as it seems to have an apparent desta-
bilizing effect due to the second term in (4)?

These questions have been answered for net-
works of Hindmarsh–Rose models in our recent
paper [Belykh et al., 2014]; here, we give additional
details and adapt the main arguments to the net-
work of Sherman models (1), representing realistic
Hodgkin–Huxley-type cell models. Figure 4 answers
these questions by revealing the dynamics and sta-
bility of synchronous bursting via the variational
system (3) and self-coupled system (2), describing
the synchronous solution V (t), whether stable or
unstable. Figure 4(a)(top) shows the synchronous
solution of the self-coupled system (2), which is
unstable as the coupling is not sufficiently strong
[see the corresponding point a in Fig. 3(a)]. The
contribution of the coupling term Ω(V ) to the sta-
bilization of the synchronous solution is depicted in
Fig. 4(a)(bottom). When the voltage is above the
synaptic threshold Θs, only the first (stabilizing)
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(a) (b) (c)

Fig. 4. The role of inhibition in the stability and type of synchronous bursting. Cases (a), (b), and (c) correspond to points
a, b, and c in Fig. 3. (a) (Top) The unstable synchronous solution and the fast nullcline h(V ) of the self-coupled system (4).
(Bottom) The coupling term Ω is not strong enough to stabilize the synchronous solution, especially the subthreshold part of
the spikes where the coupling is absent. (b) Increasing the inhibition shifts the part of the nullcline h(V ) above the threshold
closer to the threshold V = Θs. However, it makes the amplitude of spikes smaller and leaves the spikes in the region above the
threshold where the coupling effectively synchronizes the spikes. Notice the transition from square bursting to plateau bursting.
(c) Excessively strong inhibition dominating over excitation has a desynchronizing effect. It still forms plateau bursting in
the self-coupled system, governing synchronous bursting, but it creates a vertical part of the nullcline h(v) at V = Θs. The
bursting trajectory has to follow this part of the nullcline for a while when the cells experience a strong desynchronizing impact
(notice the negative peak of Ω at V = Θs) and get desynchronized.

term (gexc + ginh)Γ(V ) matters as Γ(V ) becomes
close to 1. The second term is only essential for
the values of V, close to the threshold Θs as the
derivative ΓV (V ) is close to the delta function at
V = Θs. There is practically no coupling between
the cells when V is below the synaptic threshold Θs.
The previous analysis of synchronization in exci-
tatory networks of square-wave bursting cells by
means of Lyapunov functions [Belykh et al., 2005;
Belykh & Hasler, 2011] suggests that the stabiliza-
tion of spikes via the coupling Ω(V ) amounts to sta-
bilizing the entire synchronous trajectory, including
its subthreshold part.

Notice that the lower part of the spikes lies
below the synaptic threshold Θs [to the left from Θs

in Fig. 4(a)(top)] where the synchronizing impact of
Ω(V ) is insignificant. Therefore, there is no synchro-
nization for these values of gexc and ginh. Figure 4(b)
corresponds to synchronized bursting, induced by
stronger inhibition [point b in Fig. 3(a)]. In fact,
increasing the inhibition has a two-fold effect. It
lowers the peak of Ω at V = Θs [Fig. 4(b)], making
the contribution of the coupling smaller. However,
at the same time it is capable of changing the type
of bursting such that the spikes of plateau bursting
almost entirely lie in the region above the threshold
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where the coupling term Ω stabilizes the (most
unstable) spiking part of the trajectory. Hence, the
inhibition-induced transition to plateau bursting
makes synchronization stable. When the inhibition
becomes stronger than the excitation, synchroniza-
tion loses its stability [see, for example, point c in
Fig. 3(a)]. Note that the coupling Ω no longer favors
the stability of synchronization at V = Θs as it has
a negative peak [Fig. 4(c)]. Moreover, the excessive
inhibition pushes the right branch of the nullcline
h(V ) to the left so that the synchronous trajectory
experiences this negative, desynchronizing impact
for a long time while crawling along the nullcline
up to the right upper knee [see the nonsmooth part
of the nullcline in Fig. 4(c)]. This results in desyn-
chronization and the onset of asynchronous bursting
in the network.

5. The Role of the Reversal
Potential

In this section, we show that similar transitions
from square-wave to plateau bursting and windows
of induced synchronization also can be observed
in the network (1) where the excitatory and

Fig. 5. The stability diagram for synchronization in the
network (1) with synaptic connections Ii

syn = gsyn(Esyn −
Vi)Γ(Vj), i, j = 1, 2. The color bar indicates the maxi-
mum voltage difference V1 − V2, calculated over the last two
bursts in the established rhythm. Similar to Fig. 3(a), the
red dashed curve displays the transition from square-wave
to plateau bursting via the disappearance of the homoclinic
bifurcation in the fast subsystem. This transition bound-
ary coincides remarkably well with the onset of synchro-
nized bursting. Notice the drop in the coupling strength gsyn,
necessary for inducing synchronization in a window around
Esyn = −40mV. This window corresponds to the window of
induced synchronization in Fig. 3(a).

inhibitory connections Ii
syn = gexc(Eexc−Vi)Γ(Vj)+

ginh(Einh−Vi)Γ(Vj), i, j = 1, 2 are replaced with two
synaptic connections Ii

syn = gsyn(Esyn − Vi)Γ(Vj),
i, j = 1, 2. Depending on the value of the rever-
sal potential Esyn, these synaptic connections can
be excitatory or inhibitory or be of a mixed type
when Esyn lies somewhere in between the two
extremes 10 mV and −75mV. To some extent,
decreasing Esyn from 10 mV amounts to increas-
ing the inhibitory connections in the original net-
work (1). Figure 5 shows the dependence of the
synchronization threshold coupling gsyn on the
reversal potential Esyn. There is an optimal range of
Esyn close to the synaptic threshold Θsyn = −40 mV
and corresponding to significantly improved syn-
chronizability of the network. The vertical bound-
ary of this synchronization region around Θsyn =
−40 mV corresponds to the 45◦ line in Fig. 3(a).
In fact, the coupling becomes purely inhibitory
for the values Vi > Esyn = Θsyn as the factor
(Esyn − Vi) < 0, and therefore the spikes cannot
be robustly synchronized.

6. Conclusions

Different types of bursting have significantly differ-
ent synchronization properties. While square-wave
bursters are known for their high resistance to spike
synchronization, elliptic and plateau-like bursters
are much easier to synchronize and require a weaker
coupling strength. Typically, fast nondelayed exci-
tation promotes synchronization of bursters while
fast nondelayed inhibition desynchronizes them.
Although, counterexamples of synchronizing fast
nondelayed inhibition in the weak coupling case
have been reported [Jalil et al., 2012]. In this paper,
we have shown that the onset of spike synchroniza-
tion in a network of bursting cells is accompanied
by transitions from square-wave to plateau burst-
ing. These transitions can be effectively enhanced
by the addition of inhibition to a bursting network
with excitatory connections. As a result, the inhi-
bition, that desynchronizes the cells in the absence
of excitation, plays a synergetic role and helps the
excitation to make synchronization stable. In our
study, we have chosen the pancreatic β-cell Sher-
man model, which exhibits various types of burst-
ing and is capable of switching between them as a
building block for the two-cell network. Our pre-
liminary study shows that the reported synergetic
effect of combined excitation and inhibition is also
present in larger networks of bursting Sherman
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models with network topologies admitting complete
synchronization. The role of network topology on
synchronization of other bursting cell models such
as the Hindmarsh–Rose models has been previ-
ously studied for excitatory networks [Belykh et al.,
2005; Belykh & Hasler, 2011] and for excitatory–
inhibitory networks [Belykh et al., 2014], indicat-
ing that the number of incoming excitatory and
inhibitory connections is often the crucial quantity.
A detailed stability analysis of complete synchro-
nization and other phase-locked rhythms in large
excitatory–inhibitory networks of Sherman models
remains a subject of future work.
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