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We study the role of network architecture in the formation of synchronous clusters in synaptically

coupled networks of bursting neurons. We give a simple combinatorial algorithm that finds the

largest synchronous clusters from the network topology. We demonstrate that networks with a

certain degree of internal symmetries are likely to have cluster decompositions with relatively large

clusters, leading potentially to cluster synchronization at the mesoscale network level. We also

address the asymptotic stability of cluster synchronization in excitatory networks of Hindmarsh–

Rose bursting neurons and derive explicit thresholds for the coupling strength that guarantees

stable cluster synchronization. VC 2011 American Institute of Physics. [doi:10.1063/1.3563581]

Patterns of neuronal activities can be described at several

levels of scale. Individual neurons and their dynamics

represent the microscale level, cooperative rhythms of

neuronal subpopulations define the mesoscale level, and

large-scale patterns of activity, such as an average mean

field dynamics or synchronization, correspond to the

macroscale. In this paper, we study the emergence of sta-

ble synchronous clusters in synaptically coupled net-

works as a mesoscale phenomenon. We show how to

effectively find clusters defined by subnetworks’ meso-

scopic architecture and symmetries and derive the condi-

tions on their stability using the Liapunov function

method. We also demonstrate that the same cluster syn-

chronization regime may have distinct mesoscopic and

macroscopic properties.

I. INTRODUCTION

Brain connectivity has an hierarchy of different levels,

ranging from the microscale via the mesoscale to the macro-

scale. The microscale is represented by individual synaptic

connections that couple individual neurons. The mesoscale

level includes networks of columns and minicolumns, con-

necting populations of neurons. At the macroscale, large

numbers of neuronal populations are arranged into large-

scale patterns of anatomical connectivity.1 The three scale

levels determine the functional properties of individual neu-

rons and neuronal networks. Therefore, patterns of coopera-

tive neuronal activity can possess microscopic, mesoscopic,

and macroscopic properties.

Cooperative behavior of complex dynamical networks

has received a great deal of attention in the literature.2–11

The most important questions about dynamical networks are

those of the interplay between network topology and dynam-

ics: How does network structure affect dynamical properties

and information capabilities of networks? Can a dynamical

partition of a network — be it a neuronal or gene regulatory

network — be inferred from purely topological criteria?

Until recently, most studies were concerned with the patterns

defined by a local microscale structure of the network or

with the macroscopic large-scale patterns of activity such as

the mean field dynamics and synchronization. However, the

interest has now shifted toward the analysis of cooperative

rhythms in subpopulations defined by the mesoscopic modu-

lar structure of the network.8 Different approaches to extract-

ing dynamical properties from topological and modular

structures in complex networks of different nature were

recently proposed.9–11

The simplest macroscopic rhythm in neuronal networks

is synchronization when all neurons fire in unison. Model

studies of neuronal synchronization can be separated in those

where spiking, relaxation oscillator-type models are used,

and bursting models are employed.12–24 Bursting occurs

when neuron activities alternate between a quiescent state

and fast repetitive spiking. There has been much work on

mechanisms that produce such bursting.25–32 In contrast to

coupled spiking neurons, whose synchronous dynamics is

relatively simple, interacting bursting neurons may exhibit

different forms of synchrony, including synchronization of

individual spikes, burst synchronization when only the enve-

lopes of the spikes synchronize, and complete syn-

chrony.17,19,21 Typically, burst synchronization arises at a

low coupling strength whereas complete synchrony, which

involves both burst and spike synchronization regimes,

requires a stronger coupling. The emergence of neuronal

synchronization heavily depends on the intrinsic properties

of the individual neurons and the synaptic coupling and its

network topology.14–24

Other important examples of cooperative rhythms are

clusters of synchrony33,34,36–38 when the neuronal network

splits into subpopulations, called clusters, such that all neu-

rons within one cluster fire in perfect synchrony. The exis-

tence of clusters of perfect synchrony is strictly defined by

the symmetries of the neuronal network35–38 and therefore

by a symmetric modular structure of the network. A
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symmetry of a coupled cell network is defined as a permuta-

tion of the cells that preserves all internal dynamics and all

couplings. The stability of synchronous clusters in networks

of bursting neurons is defined by different factors such as the

type of bursting in the individual neuron model and the neu-

ronal connections among and within the clusters.

In this paper, we study the existence and stability of syn-

chronous clusters in excitatory networks of Hindmarsh–Rose

(HR) neurons. We implement the concept of minimal bal-

anced coloring36–38 into a combinatorial algorithm for find-

ing synchronous clusters. The core of the minimal balanced

coloring concept is that every cluster of synchrony corre-

sponds to a coloring of the network cells in which two cells

have the same color if and only if their dynamical variables

are equal (completely synchronized). It is important to

emphasize that the vertex coloring36–38 used in this paper is

different from the one defined in graph theory. Graph theory

introduces a coloring of a graph as an assignment of colors

to the vertices, one color to each vertex, so that adjacent ver-

tices are assigned different colors.39 However, two adjacent

cells from our cluster partition may have the same color as

long as their dynamics are described by the same differential

equations, up to a permutation of the variables.36

We use progressive refinement of the coloring map36–38

to identify clusters in regular and random networks and

come to a natural conclusion that random networks rarely ex-

hibit clusters due to the lack of symmetrical network sub-

structures. We also prove the stability of specific clusters in

regular lattices of Hindmarsh–Rose neurons, starting with

the proof of synchronization in a pair of synaptically coupled

excitatory Hindmarsh–Rose neurons that exhibit square-

wave bursters. To the best of our knowledge, synchroniza-

tion of synaptically coupled square-wave bursters has not

previously been proven, and this paper presents a first proof

of this kind. In fact, the well developed theory of weakly

coupled oscillators had previously been applied to prove syn-

chronization of elliptic bursters17 that synchronize at very

weak coupling strengths, comparable to a small parameter in

the individual neuron system. At the same time, square-wave

bursters are notorious for their resistance to synchroniza-

tion21 and require a strong synaptic coupling, therefore the

reduction to phase models cannot be applied. These two

types of bursting were first identified by Rinzel.25,29 Square-

wave bursting was named after the shape of the voltage trace

during a burst which resembles a square wave due to fast

transitions between the quiescent state and fast repetitive

spiking. Similarly, elliptic bursting received its name due to

the shape of the voltage trace that looks like a half-ellipse.29

The layout of this paper is as follows. First, in Sec. II,

we introduce the Hindmarsh–Rose neuron model as an indi-

vidual unit of the network. We analyze its dynamics to find

the regions of parameters corresponding to square-wave

bursting. Then, we present and discuss the network model.

In Sec. III, we present the algorithm for finding possible syn-

chronous clusters and apply it to specific networks. In Sec.

IV, we derive the variational equations for the stability of the

synchronous solution in the simplest network of two neu-

rons, mutually coupled by fast excitatory synapses. We give

the proof of the result on the stability of synchronization

announced in our recent paper21 and derive a bound on the

synaptic coupling strength sufficient for stable synchroniza-

tion. To prove the stability of synchronization, we construct

a Liapunov function for the difference variables that allows

us to analyze the synchronization properties of the networks

without resorting to computer simulation. We also prove the

stability of clusters in regular networks where each cluster of

cells is driven by the same driving neurons. Finally, in Sec.

V, a brief discussion of the obtained results is given.

II. THE MODEL AND PROBLEM STATEMENT

A. Single cell: Hindmarsh–Rose model
and its dynamics

We start off with the Hindmarsh–Rose neuron model40

which represents a class of phenomenological models of

spiking and bursting neurons. Without direct relation to con-

crete physiological mechanisms, these models aim at repro-

ducing the characteristic features of the bursting behavior.

To the extent that the assumptions underlying the phenome-

nological models are sufficiently general, these models may

be used to explain generic bifurcation scenarios that can also

be observed in the more realistic models.

The HR model is well-known for its chaotic behavior

and different types of bursting.16,21,41–43 The model takes the

form

_x ¼ yþ ax2 � x3 � zþ I;
_y ¼ 1� dx2 � y;
_z ¼ lðbðx� x0Þ � zÞ;

8<
: (1)

where x represents the membrane potential, and variables y
and z take into account the transport of ions across the mem-

brane through fast and slow ion channels, respectively. Fast

variable y describes the rate of change of the fast (e.g., so-

dium) current. Slow variable z controls the speed of variation

of the slow (e.g., potassium) current. This speed is in turn

controlled by a small parameter l. Parameter I describes an

external current that enters the neuron. Parameters a and d (b
and x0) describe activation and inactivation of the fast (slow)

ion channel. The presence of the small parameter l in the z-

equation makes the system (1) slow–fast, where the (x, y)-

equations and z-equation represent fast “spiking” and slow

“bursting” subsystems, respectively.

For the sake of simplicity, the original Hindmarsh–Rose

model (1) with the redundant set of parameters can be trans-

formed, using the substitution (y, z) ! (1� y, 1þ Iþ z),

d¼ aþ a, c¼ � 1 � I� bx0, into the form

_x ¼ ax2 � x3 � y� z;
_y ¼ ðaþ aÞx2 � y;
_z ¼ lðbxþ c� zÞ:

8<
: (2)

The model (2) can exhibit different types of bursting that

have different impacts on the stability of the synchronous so-

lution. Therefore, we shall first study the dynamics of the

individual model (2) and determine the regions of parameters

where square-wave bursting exists. A detailed numerical
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analysis of bifurcations in the original HR model (1) was

recently performed.42,43

Readers who are willing to accept the results of this sub-

section without proof can proceed without loss of continuity

to the description of the network model in the Sec. II B.

We use the standard decomposition of the system (2)

into fast and slow subsystems. The fast (x, y)-system has the

nullcline z¼ f(x)¼ � ax2� x3, obtained from solving the

system of equations 0¼ ax2 � x3 � y� z and 0¼ (aþ a)x2

� y. The nullcline z¼ f(x) has two critical points xC1

¼ � 2a=3 and xC2¼ 0 that correspond to two knees of the

graph (see Fig. 1). For simplicity, we shall limit our attention

to positive values of parameter a. The generalization to a <
0 is straightforward. For b> a2=3 the nullcline of the slow z-

equation z = g(x)¼ bxþ c crosses the graph of f(x) at a single

point xe such that the system (2) displays a unique equilib-

rium point E(xe,ye,ze).
The types of bursting that can exist in the system (2) are

defined by the z-parameter sequences of phase portraits of

the fast system

_x ¼ ax2 � x3 � y� z;
_y ¼ ðaþ aÞx2 � y; z ¼ const;

�
(3)

derived from Eq. (2) for l¼ 0. This represents the usual adi-

abatic approach in which the fast system accounts for the

fast dynamics (3), and variations of z describe the slow dy-

namics. Here, the parameters of the fast system a and a
determine the types of possible bursting behavior in the full

system (2).

I. Fast system: The x-nullcline of the fast system (3) is

the curve

nx : y ¼ ax2 � x3 � z; (4)

and the y-nullcline is

ny : y ¼ ða� aÞx2: (5)

Coinciding with the points of intersection between the

graphs of Eqs. (4) and (5), equilibria of the system (3) are

determined by the solutions of the equation

z ¼ f ðxÞ � �ax2 � x3: (6)

Hence, for � 4=27ð Þa3 � zc < z < 0; a > 0 the system (3)

has three equilibrium points N1(x1, y1), O(x0, y0), and N2(x2,
y2), where x0 and x1,2 are the roots of Eq. (6), ordered such

that x1 < � 2=3ð Þa < x0 < 0 < x2; and yi ¼ ða� aÞx2
i , i¼ 0,

1, 2. Their stability is defined by the characteristic equation

s2 � rðxiÞs� f 0ðxiÞ ¼ 0; i ¼ 0; 1; 2; (7)

where the divergence r¼ � (1� 2axþ 3x2) and the slope

f0 ¼ � 2ax� 3x2. Thus O is a saddle and N1 and N2 are sta-

ble nodes or foci. The divergence of the two-dimensional

vector field of the fast system (3) changes sign so that

rðxÞ > 0 for xAH1 < x < xAH2;

rðxÞ < 0 for x < xAH1; x > xAH2;

where the values xAH1;AH2 ¼ ða�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 3
p

Þ=3 correspond to

a pair of Andronov–Hopf bifurcations of the equilibrium

point N2 where r(x2 ¼ xAH1,AH2) ¼ 0.

Using explicit formulas given by Bautin,44 we calculate

the first Liapunov coefficient for the Andronov–Hopf bifur-

cation of the equilibrium N2(x2, y2) as follows:

L1 ¼ �
p
4
j f 0ðx2Þj�3=2ð3þ 2aaÞ: (8)

This value is negative for a >� 3a=2 which is true for any

positive values of a and a. Hence, as z decreases for xAH1 (or

increases for xAH2), the equilibrium N2 undergoes a super-

critical Andronov–Hopf bifurcation such that a unique stable

cycle appears softly from N2.

Using the nullclines nx and ny together with the flows

shown in Fig. 2, we can deduce the following general proper-

ties of the vector field.

Property 2.1: All trajectories of the system (3) leave the

region {y< 0}.

Property 2.2: The system has the absorbing domain

Ab¼ {|x|< |xp|, 0 � y � yp}, where yp ¼ ðaþ aÞx2
p and xp is

either the largest root of equation x3 � ax2 þ z¼ 0 or the

coordinate of the equilibrium point N1.

Property 2.3: For x0 < xAH1 the limit cycles of the sys-

tem (3) can only encircle the equilibrium point N2, i.e., the

fast HR model cannot produce cycles encircling only equi-

librium point N1 nor can it have cycles enclosing all three

equilibrium points. This property follows from the orienta-

tion of the vector field as cycles encircling either the equilib-

rium N1 or all three equilibria would have to wind against

the vector field (cf. the vector field around N1).

Property 2.4: A homoclinic orbit of O may exist only in

the region x> x0 as it is constrained by the vector field, simi-

lar to Property 2.3.

II. Square-wave bursting: According to the above

analysis, the behavior of the fast system is essentially differ-

ent for a �
ffiffiffi
3
p

and a >
ffiffiffi
3
p

.

FIG. 1. (Color online) Square-wave burster of the Hindmarsh–Rose model

(2). Parameters a¼ 2.8, a¼ 1.6, c¼ 5, b¼ 9, l¼ 0.001. The right stable

branch of the fast nullcline z¼ f(x) contains two points AH1 and AH2 corre-

sponding to supercritical Andronov–Hopf bifurcations. The second point

AH2 with xAH2 � 1.666 lies on a much lower part of the nullcline and is not

shown.
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Region 1: a �
ffiffiffi
3
p

. As the divergence r(x) � 0 every-

where, the fast system has no cycles. The equilibrium points

N1 and N2 are stable, and the stable manifold of the saddle O
(when it exists) divides the (x, y) plane into the basins of

attraction of N1 and N2. As a result, the dynamics of the full

system (2) is qualitatively similar to that of the FitzHugh–

Nagumo system. That is, with a proper location of the slow

nullcline z¼ g(x), intersecting the middle branch of the fast

nullcline z¼ f(x), the system has an unstable equilibrium

encircled by a stable relaxation oscillator-type cycle defining

the simplest form of bursting.

Region 2: a >
ffiffiffi
3
p

. The equilibrium point N2 of the fast

system undergoes a supercritical Andronov–Hopf bifurcation

for x2 ¼ xAH1, and the homoclinic orbit of the saddle O is

always stable (the corresponding saddle value is negative).

In this case, the dynamics of the fast system is as follows.

For z< zAH2 the equilibrium point N2 is globally stable. For

ZAH2< z< zc, there exists a stable cycle encircling the unsta-

ble equilibrium point N2. For zc< z< zh, the unstable mani-

fold Wu of the saddle O consists of two separatrices so that

one of them approaches the stable cycle and the other is

attracted by the stable equilibrium point N1. At z¼ zh, the

stable cycle turns into a homoclinic loop, and for z> zh, the

separatrices of O change their arrangement so that all trajec-

tories of the system (3), except the stable manifold of O and

the unstable equilibrium point N2, approach the stable equi-

librium N1. The result is a spiking manifold that is composed

of the limit cycles of the fast system. Its upper edge is

defined by the homoclinic bifurcation at z¼ zh. Depending

on the location of the slow nullcline z¼ g(x), intersecting the

middle branch of the fast nullcline f(x), the full system can

generate either square-wave bursting (see. Fig. 1) or tonic

spiking. In the Izhikevich classification,29 this scenario

describes the mechanism of formation of the fold/homoclinic

burster which is referred to as being square-wave bursting

due to the voltage amplitude profile.29 Bifurcations and com-

plicated sets associated with the transition from tonic spiking

into square-wave bursting in various neuronal models have

been extensively studied.26,28,30–32,42

In the following, we will concentrate on the parameters

from Region 2 where the individual HR model (2) can gener-

ate square-wave bursting. Hereafter, the parameters are cho-

sen and fixed as follows: a¼ 2.8, a¼ 1.6, c¼ 5, b¼ 9,

l¼ 0.001.

B. Network of synaptically coupled neurons

Consider now a network of n synaptically coupled HR

models (2). The equations of motion read

_xi ¼ ax2
i � x3

i � yi � zi � gsðxi � VsÞ
Xn

j¼1

cijCðxjÞ;

_yi ¼ ðaþ aÞx2
i � yi; _zi ¼ lðbxi þ c� ziÞ; i; j ¼ 1; n:

(9)

Here, each neuron is represented by the HR model (2), and

the neurons are identical. The synapses are fast and instanta-

neous, i.e., time delays and internal synaptic variables are

ignored. The parameter gs is the synaptic coupling strength.

The reversal potential Vs > xi(t) for all xi and all times t, i.e.,

the synapse is excitatory. The synaptic coupling function is

modeled by the sigmoidal nonlinear input–output function

C(xJ)¼ l=[lþ exp{–k(xj�Hs)}]. This oft-used coupling

form was called fast threshold modulation by Somers and

Kopell.45 The threshold Hs is chosen such that every spike in

the single neuron burst can reach the threshold (see Fig. 4).

Hereafter, Hs¼ � 0.25 and Vs¼ 2.

In Eq. (9), C¼ (cij) is the n � n connectivity matrix:

cij¼ 1 if neuron i receives synaptic input from neuron j,
cij¼ 0 otherwise, and cii¼ 0. Matrix C can be asymmetric

such that both mutual and unidirectional couplings are

allowed. We require the connectivity matrix C to have at

least some rows with equal row-sums ki ¼
Pn

j¼1 cij;
i ¼ 1; …; n. This requirement is a necessary condition for

the existence of synchronous clusters of neurons whose

states are equal. The existence of clusters yields a decompo-

sition of the network (9) into the disjoint subsets of vertices

(neurons) V ¼ V1 [ … [ Vd; Vc \ Vv ¼ ; given by the

equalities of the neuron states. If the decomposition is flow-

invariant with respect to the vector field of the system (9),

then the corresponding linear subspace M(d) is invariant and

defines d synchronous clusters.

III. EXISTENCE OF SYNCHRONOUS CLUSTERS

Synchronous clusters exist if the graph vertices have a

corresponding balanced coloring.36–38 Every cluster of syn-

chrony corresponds to a coloring of the graph vertices in

which two vertices have the same color if and only if their

states are equal (completely synchronized). Vertices colored

in this way create a coloring map.

Definition 3.1: A coloring of the vertices is balanced, if

each vertex of color i gets the same number of inputs from

the vertices of color j, for all i and j.
That is, we color the vertices from the cluster decompo-

sition V according to the following rule. We assign the same

FIG. 2. (Color online) Nullclines nx and ny of the fast system (3). Increasing

(decreasing) z shifts the cubic nullcline nx down (up). For � 4=27ð Þa3

� zc < z < 0, there are three equilibrium points N1, O, and N2. While z
changes, the three points trace out the left, middle, and right branches of the

nullcline z¼ f(x) of the full system (2), respectively (cf. Fig. 1). Further

increase (decrease) of z makes the saddle O and the equilibrium point N2

(N1) disappear.
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color to vertices (neurons) if their coordinates in the corre-

sponding linear subspace M(d) are equal. Coloring is bal-

anced if all cells with the same color receive equal number

of inputs from cells of a given color. The linear subspace

M(d) is flow-invariant if and only if the chosen coloring is

balanced.36

Definition 3.2: A minimal balanced coloring is a bal-

anced coloring with the minimal number of colors.

Note that the above coloring differs from the classical

definition used in graph theory. Indeed, graph theory defines

a coloring of a graph as an assignment of colors to the verti-

ces, one color to each vertex, so that adjacent vertices are

assigned different colors. The minimum integer k for which

a graph is k-colorable is called the chromatic number.39

However, our cluster partition and the associated balanced

coloring allow two adjacent cells (vertices) to have the same

color, provided that the two cells are input isomorphic,35 i.e.,

their dynamics are described by the same differential equa-

tions, up to a permutation of the variables.36

In the following, we will use this concept to identify par-

titions with minimum number of clusters in networks (9)

with regular and random structures. Finding a minimal bal-

anced coloring in a given complex network is a nontrivial

task. In this section, we propose a simple combinatorial algo-

rithm that finds the minimal balanced coloring, and therefore

identifies the largest synchronous clusters in the given (com-

plex) network. In Sec. IV, we will address the stability of the

clusters.

We shall first establish a few properties of balanced col-

orings before introducing an algorithm that allows finding a

minimal balanced coloring.

Definition 3.3: A coloring C2 is a refinement of a color-

ing C1 if two vertices that have the same color in C2 have the

same color also in C1.

Remark 3.1:

(a) We do not distinguish colorings where the subsets of ver-

tices with the same color are the same, but the colors are

different.

(b) Any coloring is a refinement of the coloring where all

vertices have the same color.

(c) The coloring where all vertices have a different color is

balanced and it is a refinement of any other coloring.

(d) The set V1m of vertices with color c1m in C1 is a union of

sets V2p, where V2p is the set of all vertices with the same

color c2p in C2.

(e) If C2 is a refinement of C1, and C1 is a refinement of C2,

the two colorings are the same [modulo the colors, cf.

Remark 3.1(a)].

We now introduce a special refinement in view of

balancing.

Definition 3.4: The input driven refinement C2 of a col-

oring C1 is obtained as follows. Consider all vertices that

have color cm in C1. Color them with the same color cmj if

they have the same number of inputs from all vertices of the

same color cm0 in C1, for every color Cm0.

Property 3.1:

(a) Either the input driven refinement C2 of C1 has more col-

ors than C1 or C2 is equal to C1 (modulo the colors) and

balanced.

(b) Suppose that a balanced coloring C2 is a refinement of a

(not necessarily balanced) coloring C1. Let C3 be the input

driven refinement of C1. Then C2 is also a refinement of C3.

Proof:
Property 3.1(a) follows immediately from Definition

3.4. For the proof of Property 3.1(b) suppose that two verti-

ces v and w have the same color in C2. We have to show that

they also have the same color in C3. Since C2 is a refinement

of C1, v and w also have the same color in C1. Now consider

the set V2p that have the color c2p in C2. Again, they must

also have the same color in C1. Furthermore, since C2 is a

balanced coloring, the number of inputs from V2p to v is the

same as the number of inputs from V2p to w. This is true for

any color c2p of C2. Now consider the set V1m of vertices that

FIG. 3. (Color online) Clusters of synchrony in random networks of 30 neu-

rons. Top: Network generated by randomly choosing a link between any two

nodes with probability p¼ 0.045. There are 30 independent clusters, each

represented by one distinct neuron. Neurons do not form clusters of syn-

chrony due to the lack of symmetry. Bottom: Random network with 23 clus-

ters. Links are generated with uneven probabilities. Note clusters formed by

vertices with the same index.
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have color C1m. Then according to the above remark, V1m is

a union of sets V2p. From each of the sets V2p, there is the

same number of inputs to the vertices v and w and therefore

there is also the same number of inputs from V1m to v and w.
As this holds for any color C1m, by the construction of C3, v
and w must have the same color in C3. h

Property 3.1 and Remark 3.1(b) suggest the following

algorithm to obtain a minimal balanced coloring:

Algorithm for finding synchronous clusters:

Initialization: Start with the coloring where all vertices
are colored with the same color. Repeat: Replace the current
coloring with the input driven refinement of the current col-
oring until no new refinement is obtained.

The following property follows immediately from Prop-

erty 3.1.

Property 3.2:

(a) The algorithm stops in a finite number of steps. The maxi-

mum number of steps is the number of vertices in the graph.

(b) The coloring, obtained when the algorithm stops, is balanced.

Corollary 3.1: Given a directed graph, the minimal bal-

anced coloring is unique and it is obtained by the above

algorithm.

Proof:
According to Property 3.1(b) any balanced coloring Cb

is a refinement of all colorings obtained during the execution

of the algorithm. It is in particular a refinement of the bal-

anced coloring Cmin obtained when the algorithm stops.

Therefore, Cmin is minimal. Furthermore, if there was

another minimal balanced coloring Cm, it would also have to

be a refinement of Cmin. But since Cm is minimal, it must be

equal to Cmin (modulo the colors). h

We have applied our combinatorial algorithm to a number

of regular and random networks. Three of them are shown in

Fig. 3 and 5. The application of our algorithm has shown that

random networks generated with uniform probability per link

appearance rarely have clusters of synchrony, whereas pseudor-

andom networks [cf. Fig. 3 (bottom)] may have a hidden sub-

network modular structure that yields clusters of synchrony.

The stability of clusters in networks of bursting neurons

(9) depends on various factors, including the individual neu-

ron dynamics and network topology. In Sec. IV, we prove

the stability of specific clusters of synchrony in networks (9).

The stability conditions for irregular cluster configurations

are often tedious and will be reported elsewhere.

IV. STABILITY OF SYNCHRONOUS CLUSTERS

A. Two-cell network

We first consider the simplest two-cell network (9) with

symmetrical connections

_xi ¼ ax2
i � x3

i � yi � zi � gsðxi � VsÞCðxjÞ;
_yi ¼ ðaþ aÞx2

i � yi; _zi ¼ lðbxi þ c� ziÞ; i; j ¼ 1; 2:

(10)

This system has the invariant linear subspace M(1)

¼ {n1(t)¼ n2(t)}, n2¼ (xi, yi, zi), i¼ 1, 2, corresponding to

complete synchronization between the neurons. Synchronous

behavior on the manifold M(1) is generated by the self-

coupled system

_x ¼ ax2 � x3 � y� z� kgsðx� VsÞCðxÞ;
_y ¼ ðaþ aÞx2 � y; _z ¼ lðbxþ c� zÞ; (11)

where k¼ 1 as each neuron in the two-cell network receives

only one input. Consequently, the synchronous behavior dif-

fers from the behavior of the uncoupled neuron and depends

on the coupling strength gs. The analysis of the slow–fast

individual Hindmarsh–Rose system, performed in Sec. II A,

carries over to the self-coupled system. The main difference

is that the fast subsystem of the self-coupled system under-

goes Andronov–Hopf bifurcations at new points xself
AH1;AH2

¼ ða�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 3ðgs þ 1ÞÞ

p
=3. Hence, increasing the coupling

gs makes the points xAH1 and xAH2 move toward each other

along the fast nullcline h(x) of the self-coupled system (cf.

Figs. 4 and 1). Hence, for gs ¼ a2=3� 1, the two points

merge together such that for gs > a2=3� 1, there is no oscil-

latory (spiking) dynamics on the right branch of the fast null-

cline as the Andronov–Hopf points have disappeared. Thus,

there is no square bursting for gs > a2=3� 1, and the syn-

chronous dynamics defined by the self-coupled system (11)

is of relaxation oscillator-type.

Adding and subtracting an additional term

gs(xi�Vs)C(xi) from the x-equation of system (10), and

introducing the differences between the neural oscillator

coordinates X12¼ x2 � x1, Y12 ¼ y2 � y1, Z12 ¼ z2 � z1 in

the limit when these differences are infinitesimal, we derive

the stability equations for the transverse perturbations to the

synchronization manifold M(1)21

_X12 ¼ ð2ax� 3x2ÞX12 � Y12 � Z12 � XðxÞX12;

_Y12 ¼ 2ðaþ aÞxX12 � Y12;

_Z12 ¼ lðbX12 � Z12 ;Þ (12)

where

XðxÞ ¼ gsCðxÞ þ gsðVs � xÞCxðxÞ

¼ gs

1þ expf�kðx�HsÞg
þ gsðVs � xÞ

� k expf�kðx�HsÞg
ð1þ expf�kðx�HsÞgÞ2

: (13)

The derivatives are calculated at the point X12¼ 0, Y12¼ 0,

Z12¼ 0, and {x(t), y(t), z(t)} corresponds to the synchronous

bursting solution defined via system (11). The function C(x)

together with its derivative Cx(x) is non-negative, and

(Vs� x) is always positive (the synapses are excitatory).

Therefore X(x) is always non-negative and the coupling

term�X(x)X12 aims at stabilizing the zero equilibrium of

system (12), corresponding to the synchronous solution. The

function X(x) strongly depends on whether the membrane

potential x(t) exceeds the threshold Hs or not (see Fig. 4). To

have a bell-shape graph X(x) whose lowest bound in the

region x�H is gs (see Fig. 4), we require k> 4=(Vs�Hs).
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Under this condition, the function X(x) strongly contributes

to the stability in the region x(t)�Hs. At the same time,

when x(t) is below Hs, the first term in X(x) rapidly

decreases to zero, and the second coupling term becomes de-

cisive in a small region close to x¼ Hs. This region is

defined by the parameter k. For our results concerning the

stability of synchronization, it is also necessary to assume

that k is only moderately large. Our stability approach does

not carry over to the case where the function C(x) is

approaching the Heaviside function when k approaches

infinity. At the same time, to prove synchronization of bur-

sters, we do not require l to be a singular perturbation pa-

rameter. Applying the Liapunov function method to the

stability of system (12), we prove the following theorem

that synchronization in the two-neuron network can be

made stable, provided that the coupling gs is sufficiently

strong.

Theorem 4.1: (sufficient conditions) Complete synchro-
nization in the coupled system (10) is locally stable if the
coupling gs exceeds the critical value

g	s ¼ maxfD1;D2;D3g; (14)

where

D1 ¼
a2

3
; D2 ¼

ða� aÞ2

4ð3� cðaþ aÞ2Þ
þ 1

4c
; c < 3=ðaþ aÞ2;

D3 ¼
pð1þ e�kðb�HsÞÞ2

c½ð1þ e�kðb�HsÞÞ þ ðVs � bÞke�kðb�HsÞ
 ; k>
4

Vs �Hs

;

b ¼
ða� aÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� aÞ2 þ ð3=c� ðaþ aÞ2Þ

q
2ð3� cðaþ aÞ2Þ

for a � a : p ¼ 1

4
and for a < a : p ¼ 1

4
þ cða� aÞ2

4ð3� cðaþ aÞ2Þ
:

(15)

Proof: Consider the Liapunov function

U ¼ X2
12=2þ cY2

12=2þ 1

2lb
Z2

12; (16)

where c is a positive auxiliary parameter to be defined.

The derivative of the Liapunov function (16) with

respect to the variational equations (12) is calculated as

follows:

_U ¼ �fAX2
12 � BX12Y12 þ cY2

12 þ Z2
12=bg; (17)

where A¼ [3x2� 2axþX(x)] and B¼ (2c(aþ a)x� 1).

Our goal is to prove the negative definiteness of the

quadratic form _U and to obtain conditions under which solu-

tions of the variational equation (12) converge to 0 as t !
1, and its trivial equilibrium, corresponding to the synchro-

nization manifold of system (10), is locally asymptotically

stable.

The quadratic form _U is negative definite as long as the

quadratic form

W ¼ �fAX2
12 � BX12Y12 þ cY2

12g

is negative.

Applying Sylvester’s criterion for the negative definite-

ness of the quadratic form W, we obtain the following two

conditions.

Condition I: A > 0.

Part 1: If x � Hs, then the condition A > 0 is true

if 3x2� 2axþ gs > 0. Here, we have taken the lowest

bound (gs) of the function X(x) in the region x � Hs (cf.

Fig. 4). The roots of the quadratic equation are xr
1;2

¼ ða6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 3gs

p
Þ=3. Therefore, this equation has no solu-

tions for

gs >
a2

3
: (18)

Part 2: For x � Hs and for the given Hs¼ � 0.25, A is

always positive.

Condition II: The second condition of Sylvester’s crite-

rion is cA – B2=4> 0. This leads to the inequality

QðxÞ � uðxÞ þ XðxÞ > 0; (19)

where u(x)¼ c(3� c (aþ a)2)x2� c(a� a)x� 1=4.

The function X(x) is non-negative for any x(t) while the

parabola u(x) can be negative in some interval of x(t). To

satisfy the condition (19), we should increase the values of

the function X by increasing the coupling gs such that the

superposition of the two functions becomes positive.

First of all, we require (3� c(aþ a)2)> 0 to keep the pa-

rabola u(x) concave up. This constrains the choice of the

auxiliary parameter c. As the region of parameters where

square-wave bursters can exist in the individual Hindmarsh–

Rose model (2) is defined by the condition fa �
ffiffiffi
3
p
g

(Region 2), we have to choose c< 1 for synchronization of

square-wave bursters.

FIG. 4. (Color online) The function X(x) and the corresponding synchro-

nous bursting in the two-cell network. Parameters a¼ 2.8, a¼ 1.6, c¼ 5,

b¼ 9, l¼ 0.001, Hs¼ � 0.25, Vs¼ 2, and gs¼ 1.28.
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The roots of the parabola u(x) are

xr
1;2 ¼

ða� aÞ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� aÞ2 þ ð3=c� ðaþ aÞ2Þ

q
2ð3� cðaþ aÞ2Þ

;

such that the function u(x) is positive outside the region

½xr
1; xr

2
.
We derive the conditions for Eq. (19) in two steps, con-

sidering two parts of the bursting solution (11): x � Hs and x
< Hs.

Part 1: x � Hs.

As before, we take the lowest bound (gs) of X(x) in the

region x � Hs such that the condition (19) becomes

ð3� cðaþ aÞ2Þx2 � ða� aÞx� 1

4c
þ gs > 0:

This is true under the conditions

gs > g	s ¼
ða� aÞ2

4ð3� cðaþ aÞ2Þ
þ 1

4c

" #
; c < 3=ðaþ aÞ2: (20)

Part 2: x < Hs.

The minimum of the parabola u(x) is reached at

x	 ¼ a� a
.

2ð3� cðaþ aÞ2Þ, If a< a, then x* lies in the

region x < Hs< 0 and the minimum of the function u is

uðx	Þ � �m ¼ �1=4� cða� aÞ2
.

4ð3� cðaþ aÞ2Þ. If

a> a, then the minimum value of u(x) in the region

x < Hs< 0 becomes

uðHsÞ ¼ cð3� cðaþ aÞ2ÞH2
s þ cða� aÞjHsj � 1=4:

Therefore, we take u(Hs)¼ � 1=4 as the ultimate bound for

the case a> a.
To compensate these negative minimum values of u(x),

we should make the coupling strength gs sufficiently strong

such that the minimum value of the positive function cX(x)

in the interval ½xr
2;Hs
 is greater than -m and� 1=4 for a< a

and a> a, respectively.

The function X(x) reaches its minimum on the interval

½xr
2;Hs
 at the point

b ¼ xr
2 ¼
ða� aÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� aÞ2 þ ð3=c� ðaþ aÞ2Þ

q
2ð3� cðaþ aÞ2Þ

:

Hence, the stability condition (19) for the region x < Hs

becomes

gs > g	s ¼
pð1þ e�kðb�HsÞÞ2

c½ð1þ e�kðb�HsÞÞ þ ðVs � bÞke�kðb�HsÞ
 ;

p ¼ m for a < a; p ¼ 1=4 for a > a; c < 3=ðaþ aÞ2:
(21)

Combining the conditions (18), (20), and (21), we obtain an

upper bound for the negative definiteness of the quadratic

form _U and come to the conditions of Theorem 4.1. h

Remark 4.1: Condition for D3 in Theorem 4.1 gives a

large overestimate. This is due to the simplifications made in

estimating the positiveness of the function Q(x). To obtain a

tighter bound for the coupling threshold g	s that would

replace the constant D3, we should resolve the transcendental

equation (19) with respect to gs

QðxÞ ¼ cð3� cðaþ aÞ2Þx2� cða� aÞx� 1=4

þ c
g	s

1þ e�kðx�HsÞ
þ cg	s ðVs� xÞ ke�kðx�HsÞ

ð1þ e�kðx�HsÞÞ2
¼ 0;

(22)

taking into account the condition c< 3=(aþ a)2. We shall

find the solution of Eq. (22) only in the region x < Hs. In

fact, the bound D2 (cf. Theorem 4.1) for the region x > Hs is

close to an optimum.

One can see that the Eq. (22) has a unique solution with

respect to g	s in the region x < Hs that can be found numeri-

cally. Therefore, we can formally substitute D3 in Theorem

4.1 by Dnew
3 ¼ gcr

s , where gcr
s is the solution of Eq. (22) in the

region x < Hs. Note that for a relatively sharp saturating cou-

pling function (k is relatively large), the constant D3 (or the

corresponding Dnew
3 ) often dominates over D1 and D2.

Theorem 4.1 guarantees the stability of the synchronized

solution, where the solution could be an equilibrium, a limit

cycle defining periodic bursting, or a chaotic attractor corre-

sponding to a chaotic bursting rhythm. The type of the syn-

chronous dynamics is determined by the self-coupled system

(11), possessing the additional coupling-dependent term. Let

us calculate the synchronization threshold g	s (14) with Dnew
3

for the specific parameters of the Hindmarsh–Rose model (2)

given in Fig. 4. The auxiliary parameter c is chosen from the

condition c< 3=(aþ a)2 and set equal to 0.14. Therefore, the

upper synchronization bounds D1 and D2 calculated from

Eq. (14) become D1¼ 2.61 and D2¼ 2.7. The bound Dnew
3

that we calculate from the transcendental equation (Q(x)¼ 0)

(22) becomes gs ¼ Dnew
3 ¼ 2:94. Therefore, the final upper

bound is g	s ¼ maxfD1;D2;D
new
3 g ¼ 2:94. Numerical simu-

lation shows that complete synchronization arises in the sys-

tem (10) at a relatively strong coupling g	s ¼ 1:28. Our

bound g	s ¼ 2:94 clearly gives an overestimate as it comes

from sufficient conditions of stability; however, it is consist-

ent with nontrivial relaxation oscillator-type synchronous

behavior.

B. Multilayer networks

We use the pyramidal-shape network of Fig. 5 as a rep-

resentative example of multilayer networks where the cells

from each layer receive a common input from the same driv-

ing neurons. The network of Fig. 5 with uniform symmetri-

cal connections has a four-color partition, corresponding to

four clusters of synchrony that are defined by M(4)¼
{n2(t)¼ n3(t), n4(t)¼ n5(t)¼ n6, n7(t)¼ n8(t)¼ n9(t)¼ n10(t)},

ni¼ (xi, yi, zi).

In the following, we will derive stability conditions for

the four clusters in the network (2) with the above four-layer

structure. The stability equations (2) for the transverse

perturbations to the linear invariant manifold M(4) take

the form
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_Xc2¼ð2axc2�3x2
c2ÞXc2�Yc2�Zc2�gs½Cðxc1Þþ3Cðxc3Þ
Xc2;

_Yc2¼2ðaþaÞxc2Xc2�Yc2;

_Zc2¼lðbXc2�Zc2Þ;
_Xc3¼ð2axc3�3x2

c3ÞXc3�Yc3�Zc3�gs½2Cðxc2Þþ4Cðxc4Þ
Xc3;

_Yc3¼2ðaþaÞxc3Xc3�Yc3;

_Zc3¼lðbXc3�Zc3Þ;
_Xc4¼ð2axc4�3x2

c4ÞXc4�Yc4�Zc4�3gsCðxc3ÞXc4;

_Yc4¼2ðaþaÞxc4Xc4�Yc4;

_Zc4¼lðbXc4�Zc4Þ: (23)

Here, {Xc2, Yc2, Zc2}, {Xc3, Yc3, Zc3}, and {Xc4, Yc4, Zc4} are

infinitesimal differences between the coordinates of the neu-

rons from clusters {C2: n2¼ n3}, {C3: n4¼ n5¼ n6}, and

{C4: n7¼ n8¼ n9¼ n10}, respectively. The first cluster C1 is

represented by one, unsynchronized neuron from layer 1.

Technically, we should have considered the difference sta-

bility equations for any pair of neurons from the same clus-

ter. However, due to the layer-structure of the network in

which each neuron from a given cluster receives inputs

from the same neurons, these stability equations are identi-

cal and can be replaced by a system of only three stability

equations for each cluster. In Eq. (23), the variables (xci),

i¼ 1, …, 4 are governed by the M(4)-manifold-constrained

system (9).

System (23) is an analog of the master stability (MS)

function4 for the stability of the cluster synchronization. MS

functions of this kind are usually analyzed numerically.

Completely rigorous derivation of an upper bound for the

coupling threshold sufficient for cluster synchronization is

complicated as the X stability equation of each cluster is also

driven by neurons from other clusters. To get around this dif-

ficulty, we make the following simplification. Numerical

simulations show that when cluster synchronization takes

place and neurons split into clusters of perfect synchrony, all

neurons of the network also become synchronized at the

level of bursts but there is no spike synchrony among the

clusters [see Fig. 5 (bottom)]. As a result, the network behav-

ior possesses two distinct mesoscopic and macroscopic prop-

erties: synchronization within the clusters representing the

mesoscale and burst synchronization of the entire network at

the macroscale. Burst synchronization implies that all the

neurons start and cease bursting at the same time instant.

Consequently, the variables defining the four clusters of per-

fect synchrony: xc1, xc2, xc3, and xc4 cannot be equal. How-

ever, the corresponding synaptic functions C(xc1), C(xc2),

C(xc3), and C(xc4) become approximately equal as the neu-

rons states cross the synaptic threshold Hs and therefore acti-

vate the synaptic functions C(xci) at approximately same

times. Using this approximation that C(xc1)¼C(xc2)¼
C(xc3)¼C(xc4), we can transform the stability equation (23)

as follows:

_Xc2 ¼ ð2axc2 � 3x2
c2ÞXc2 � Yc2 � Zc2 � 4gsCðxc2ÞXc2;

_Yc2 ¼ 2ðaþ aÞxc2Xc2 � Yc2;

_Zc2 ¼ lðbXc2 � Zc2Þ;
_Xc3 ¼ ð2axc3 � 3x2

c3ÞXc3 � Yc3 � Zc3 � 6gsCðxc3ÞXc3;

_Yc3 ¼ 2ðaþ aÞxc3Xc3 � Yc3;

_Zc3 ¼ lðbXc3 � Zc3Þ;
_Xc4 ¼ ð2axc4 � 3x2

c4ÞXc4 � Yc4 � Zc4 � 3gsCðxc4ÞXc4;

_Yc4 ¼ 2ðaþ aÞxc4Xc4 � Yc4;

_Zc4 ¼ lðbXc4 � Zc4Þ: (24)

Note that three subsystems for the stability of clusters C2,

C3, and C4 are independent. The new stability system (24)

is stabilized as long as its weakest subsystem, correspond-

ing to the cluster C4 that receives the fewest number of

inputs, becomes stable. This statement can be verified by

constructing a Liapunov function similar to the function

(16), written for all nine coordinates of the system (24) and

showing that its derivative splits into three independent

quadratic forms. Each quadratic form corresponds to the

stability of each cluster, and the negativeness of the form

corresponding to the cluster C4 with the fewest number of

inputs ensures the negativeness of the other two quadratic

forms. For the sake of brevity, we have omitted this proof.

In short, the linear invariant manifold M(4) defining the

FIG. 5. (Color online) Multilayer network with symmetrical connections

(top). Cells with the same color belong to the same cluster. Time-series of

four synchronous clusters. Note that the time-series are synchronized at the

level of bursts but there is spike asynchrony between the clusters. Neurons

within the clusters are synchronized completely.
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cluster partition is locally stable as long as the origin of the

following system is stable

_Xc4 ¼ ð2axc4 � 3x2
c4ÞXc4 � Yc4 � Zc4 � 3gsCðxc4ÞXc4;

_Yc4 ¼ 2ðaþ aÞxc4Xc4 � Yc4;

_Zc4 ¼ lðbXc4 � Zc4Þ: (25)

Statement 4.1: Under the numerically validated approxima-
tion that C(xc1) ¼C(xc2) ¼C(xc3)¼C(xc4) in the regime of
cluster synchronization, an upper bound for the coupling
threshold that guarantees local stability of cluster synchroni-
zation in the network (2) with the structure of Fig. 5 becomes

g	s ¼ maxf2D1=3; 2D2=3;Dcl
3 g; (26)

where constants D1 and D2 are given in the condition (14) of
Theorem 4.1. The new constant Dcl

3 ¼ p=3cð1þ e�kðb�HsÞÞ
and parameters p, b, and c are also given in (14).

Proof: The stability system (25) is similar to the varia-

tional equations (12) for the stability of complete synchroni-

zation in the simplest two-neuron network (2). Use the

Liapunov function (16) and follow the steps of the proof of

Theorem 4.1, replacing the function X(x) with 3gsC(x). Note

that the lowest bound of 3gsC(x) in the region x � Hs is 3=2.

Therefore, Conditions I and II (Part 1) of the above proof

yield the bounds 2D1=3 and 2D2=3. The stability condition

(19) for the part of the synchronous trajectory xc4<Hs turns

into gs ¼ Dcl
3 ¼ p=3cð1þ e�kðb�HsÞÞ. h

Note that the obtained bound (26) is not completely rig-

orous as the above approximation only holds to a certain

degree of precision and comes from numerical simulations.

However, it clearly shows that the stability of cluster syn-

chronization in the multilayer network (2) is determined by

the stability of the cluster with the fewest number of inputs.

In our case, this is cluster C4, representing layer 4 of the net-

work in which the neurons receive three inputs.

V. CONCLUSIONS

Networks of synaptically coupled neurons have very dif-

ferent synchronization properties from linearly (gap-junc-

tion) coupled neurons. In the case of identical neurons with

identical excitatory coupling functions and coupling con-

stants, complete synchronization is only possible when each

neuron receives the same number of inputs from other neu-

rons.21 If this is not the case, then the neurons may still syn-

chronize in clusters. The possible cluster decompositions of

the network can be identified from the network topology

alone through a so-called balanced coloring of the verti-

ces.36–38 Among the balanced colorings there is a unique col-

oring that uses the minimal number of colors, corresponding

to a cluster decomposition with the smallest number of clus-

ters and, therefore, the largest clusters. With sufficiently

strong coupling, in general the neurons within these clusters

will synchronize. We have given a simple algorithm that

finds this cluster decomposition from the network topology.

Networks with a certain degree of internal symmetries are

likely to have cluster decompositions with relatively large

clusters, leading potentially to synchronization at mesoscale,

whereas random graphs rarely admit clusters composed of

more than two or three neurons. We have also addressed the

important question of the (local) asymptotic stability of clus-

ter synchronization. This property depends not only on the

network topology but also on the neuron models themselves.

We have concentrated on the Hindmarsh–Rose model in the

range of parameters where square-wave bursting takes place.

Synchronizing square-wave bursters is known to be difficult.

For the simplest case of two symmetrically coupled Hind-

marsh–Rose neurons, we have given an explicit rigorous

threshold for the coupling strength that guarantees the as-

ymptotic stability of local synchronization. To the best of

our knowledge, this is the first rigorous proof of synchroniza-

tion in networks of synaptically coupled square-wave bur-

sters. We have then used a similar stability argument to

establish thresholds for the stability of cluster synchronization

in well-structured networks where each cluster receives the

same inputs from other neurons. Our analysis demonstrates that

the stability of the cluster synchronization in the entire network

is determined by the stability of the cluster composed of two or

more neurons with the fewest number of inputs. The stability

conditions of cluster synchronization in bursting networks with

irregular structures remain a subject of future work.

The synaptic strengths in biologically relevant networks

with a complex structure can change as a result of pre- and

postsynaptic neuron activity. This may result in temporally

approximate cluster synchronization when the total input to

groups of neurons becomes color balanced only for a specific

interval of time. The proposed algorithm promises to allow

finding temporal clusters of synchrony in networks with

time-varying synapses. Its extension to adaptive networks

with the ability to privilege clusters of synchrony is a subject

of separate study.
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