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Strange hyperbolic attractors are hard to find in real physical systems. This paper provides
the first example of a realistic system, a canonical three-dimensional (3D) model of bursting
neurons, that is likely to have a strange hyperbolic attractor. Using a geometrical approach
to the study of the neuron model, we derive a flow-defined Poincaré map giving an accurate
account of the system’s dynamics. In a parameter region where the neuron system undergoes
bifurcations causing transitions between tonic spiking and bursting, this two-dimensional map
becomes a map of a disk with several periodic holes. A particular case is the map of a disk with
three holes, matching the Plykin example of a planar hyperbolic attractor. The corresponding
attractor of the 3D neuron model appears to be hyperbolic (this property is not verified in the
present paper) and arises as a result of a two-loop (secondary) homoclinic bifurcation of a saddle.
This type of bifurcation, and the complex behavior it can produce, have not been previously
examined.
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1. Introduction

Dissipative dynamical systems with a unique
saddle-type equilibrium point play a significant
role in bifurcation theory [Shilnikov et al., 1998,
2001] and often exhibit dynamical chaos associ-
ated with funnel-like attractors. Such attractors can
arise, for example, in 3D systems where the unsta-
ble two-dimensional (2D) manifold of the saddle-
type equilibrium returns into the equilibrium’s

neighborhood along a one-dimensional (1D) stable
manifold. This leads to the formation of a funnel-
like trapping zone for the trajectories coming from
the outside. This construction was introduced by
Shilnikov [1984] for the saddle-focus case, and spi-
ral chaos inside the funnel was subsequently stud-
ied by Ovsyannikov and Shilnikov [1992]. In the
present paper, we consider the case where a 3D
system has a unique saddle equilibrium point, and
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study bifurcation sets and the emergence of strange
attractors.

As a first example of systems with the funnel-
like structure of the trapping zone, we consider
a slow–fast model of bursting neurons. Bursting
occurs when neuron activity alternates, on a slow
time scale, between a quiescent state and fast
repetitive spiking. Over the years, much work has
been devoted to the classification of various types
of bursting [Rinzel, 1987; Rinzel & Ermentrout,
1989; Izhikevich, 2000; Golubitsky et al., 2001].
Chaos in neuron models and routes describing pos-
sible transitions between tonic spiking and burst-
ing were extensively studied in a series of papers
[Terman, 1991, 1992; Wang, 1993; Belykh et al.,
2000; Guckenheimer & Oliva, 2002; Shilnikov et al.,
2005; Shilnikov & Cymbalyuk, 2005]. In particular,
it was shown [Belykh et al., 2000; Shilnikov et al.,
2005] that a homoclinic bifurcation of a saddle-
node periodic orbit leads to the spiking-bursting
transition. Neuron models can demonstrate surpris-
ing bifurcation phenomena: The first example of
the emergence of the blue-sky catastrophe [Palis &
Pugh, 1974; Turaev & Shilnikov, 1995] in real physi-
cal systems was discovered in a biologically relevant
neuron model [Shilnikov & Cymbalyuk, 2005].

Models of bursting neurons continue to sur-
prise us: In this paper, we show how a generic
neuron model undergoes new, unstudied homoclinic
bifurcations and that it can display the hyper-
bolic Plykin attractor [Plykin, 1974]. In fact, while
examples of structurally stable (hyperbolic) strange
attractors for two- and three-dimensional diffeo-
morphisms have been known for some time (see
an extensive review in [Guckenheimer & Holmes,
1990]), hyperbolic attractors in flows correspond-
ing to real physical systems have not previously
been observed. The Lorenz attractor contains only
unstable trajectories and, loosely speaking, has the
property of hyperbolicity, but this attractor is struc-
turally unstable (it does not persist under perturba-
tions) and only considered as quasi-hyperbolic. To
the best of our knowledge, there is only one exam-
ple of a system of differential equations admitting
a strange hyperbolic attractor. This example is due
to Hunt and Mac Kay [2003].

Using a geometrical approach to the study of
the global dynamics in a neuron model with a single
equilibrium and constructing the Poincaré return
map, we show that all the topological prerequisites
for the existence of a hyperbolic attractor are met,
and that the system has an attractor homotopic to

the Plykin one. This funnel-like attractor, defined
by the Poincaré map with three holes, occurs as a
result of a two-loop (secondary) homoclinic bifur-
cation of the saddle and shows the possibility for
the existence of a hyperbolic attractor in a realistic
neuron model. The question whether the discovered
attractor is hyperbolic in a strict mathematical
sense, requires a separate careful study and remains
open.

Subsequent bifurcations of multiloop homo-
clinic loops can lead to the emergence of even more
complicated attractors defined by mappings with k
(k > 3) holes. It is worth noticing that these Plykin-
like attractors occur in a parameter region where
the neuron system undergoes bifurcations caus-
ing transitions between tonic spiking and bursting.
Such attractors and bifurcations leading to their
emergence have not been studied yet within the
framework of the bifurcation theory. Consequently,
the classification of all possible routes of transitions
between tonic spiking and bursting seems to be
unrealistic and the details of this transition remain
a fundamental problem for the theory of dynamical
systems.

Our analysis proceeds along the following
scheme: The basic model and the corresponding
assumptions are presented in Sec. 2. We consider
a conductance-based neuron model in the form of
a 3D system of differential equations with two fast
and one slow variable. Section 3 presents the con-
struction of the global cross-section and a geomet-
rical analysis of the flow-defined Poincaré map. We
show that depending on the bifurcation parameter,
this mapping is (i) a map of a disk into itself; (ii) a
map of the disk into an annulus; (iii) a map of the
disk with several periodic holes. In the latter case,
where complicated spiking-bursting transitions are
possible, there exists a family of Plykin-like attrac-
tors. Based on these results, in Sec. 4, we present
an argument for the existence of a Plykin attractor
and discuss a series of new loop-adding homoclinic
bifurcations leading to its emergence and disappear-
ance. We show that the destruction of the simplest
one-loop homoclinic loop can already lead to the
emergence of a complex limit set associated with a
Smale horseshoe.

2. The Model

Models of bursting neurons can often be represented
by the following singular perturbed system (see, e.g.
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[Hindmarsh & Rose, 1984; Rinzel, 1987])

ẋ = X(x, z), ż = µ(Z(x) − z − δ), (1)

where x = (x1, x2) corresponds to two fast vari-
ables and represents the membrane potential and
a fast current, respectively. The scalar variable z
is associated with a slow current. The functions
Z : R2 → R1 and X : R2 → R2 are assumed to be
smooth enough. The function Z(0) = 0, the param-
eter µ is small and δ is a bifurcation parameter.

For µ = 0, the fast reduced subsystem

ẋ = X(x, z), z = const (2)

defines a z-parameter family of two-dimensional
phase portraits. This represents the usual adiabatic
approach in which the reduced system (µ = 0)
accounts for the fast dynamics, and variations of
z describe the slow dynamics for µ > 0.

The functions X(x, z) and Z(x) satisfy the fol-
lowing typical assumptions.

(i) The fast subsystem (2) has three branches of
equilibrium points {X(x, z) = 0}: bl

0 = {x =
xl(z)}, bm

0 = {x = xm(z)} and br
0 = {x =

xr(z)} (see Fig. 1). In the region of interest,
the right branch corresponds to a family of

z=Z(x)-δ
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0
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Fig. 1. Assumed arrangement of the trajectories in the neu-
ron model. The family of phase portraits of the fast system
is shown as a z-parameter bifurcation diagram. The blue
z-shaped curve represents the equilibria of the fast system
and consists of three branches: bl

0, bm
0 and br

0. The cyclic
(parabolic) surface is composed of stable limit cycles lc0 of
the fast system. The intersection between the surface κ and
bm
0 defines the coordinates of the full system saddle equilib-

rium Eδ. The red dotted curve schematically illustrates the
route for bursting that exists in the slow–fast system.

unstable equilibria of system (2) and meets
the middle branch at the point zc2 > 0 :
xm(zc2) = xr(zc2). The middle and the left
branches merge at the point zc1 < 0, xl(zc1) =
xm(zc1), corresponding to a saddle-node equi-
librium. The middle branch, defined for z ∈
(zc1, zc2), passes zero, xm(0) = 0, and consists
of a family of saddles. The left branch is a
curve of stable equilibria. Without loss of gen-
erality, we may assume that the left branch
is composed from stable foci with a counter-
clockwise rotation direction. This is consistent,
for example, with the arrangement of trajecto-
ries in the Hindmarsh–Rose model [Hindmarsh
& Rose, 1984].

(ii) For z < 0, the fast subsystem (2) has a sta-
ble limit cycle lc0 = {x = x0(t, z)} of the
period τ(z) = 2π/ω(z). The cycle lc0 encloses
the unstable equilibrium branch br

0 and consti-
tutes a cyclic surface for z ∈ (z1, 0), z1 < 0.
For definiteness, we assume that the cycle lc0 is
born through a supercritical Andronov–Hopf
bifurcation at z = zAH . However, our analysis
is directly applicable to any other reduced sys-
tem family of limit cycles, displaying a homo-
clinic bifurcation to the saddle E0. This results
in the following assumption.

(iii) For z = 0, the saddle point E0(xm = 0, z = 0)
of the fast subsystem (2) has a homoclinic
orbit h0 = {x = x0(t, 0)}, which is the topo-
logical limit of the stable limit cycle. This
cycle merges with the manifolds of E0 as
the parameter z approaches zero from below.
The corresponding saddle value of E0 is neg-
ative: σ0 = λ0

1 + λ0
2 < 0, where λ0

1 < 0 <
λ0

2 are the eigenvalues of the fast system’s
saddle.

(iv) The arrangement of the family of saddle sep-
aratrices for the fast system is assumed to be
as illustrated in Figs. 1 and 2. The stable and
unstable separatrices constitute the surfaces
W s

0 and W u
0 , respectively (see Fig. 2).

To proceed with the study of the dynamics of
the full system, we must first construct a global
cross-section D0 of the fast system, by connecting
the left and right branches of equilibria, bl

0 and br
0,

as shown in Fig. 2. The unstable and stable mani-
folds, W u

0 and W s
0 , transversally intersect the global

cross-section D0 by the green and blue lines wu1
0 ,

wu2
0 , and by the violet line ws

0, respectively (see
Fig. 2).
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Fig. 2. Unstable and stable manifolds of the saddle E0 inter-
sect the cross-section D0 of the fast system by the green and
blue lines wu

0 1, wu
0 2, and by the violet line ws

0, respectively.
The homoclinic orbit h0 is formed by the transversal inter-
section between W s

0 and W u
0 .

(v) This assumption is related to the full system
(1). The surface κ = {z = Z(x) − δ} inter-
sects the middle branch of equilibria and sep-
arates the phase space of system (1) into two
domains: Ph+, where ż > 0 and the vari-
able z(t) increases with time, and Ph−, where
ż < 0 and z(t) is decreasing along the tra-
jectories of system (1). Let the slow–fast sys-
tem (1) have a unique equilibrium point Eδ.
Therefore, we assume that the scalar product
of the vector tangent to bm

0 and of the gradient
of (Z(x) − z − δ) is positive at Eδ, i.e. λ0 =
(Zxx′

m − 1)|Eδ
> 0. This implies that the mid-

dle branch bm
0 of saddles transversally enters

into the region Ph+ when z increases. For con-
venience, we assume that the z-coordinate of
the saddle Eδ satisfies the conditions: z0(0) = 0
and z′0(δ) > 0.

As illustrated in Fig. 3(a), the equilibrium Eδ

has three real eigenvalues: λ1, λ2 and λ3. Two of
them, λ1 < 0 < λ2, are induced by the fast system’s
saddle, λ1,2 = λ0

1,2 + O(µ). The third eigenvalue
λ3 = λ0µ + O(µ2) is positive due to (V). The pair
(λ2, λ3) corresponds to the unstable manifold W u

µ ,
the pair (λ1, λ3) defines the leading manifold W l

µ,
and the pair (λ1, λ2) is related to the nonleading
manifold W n

µ . The single eigenvalue λ1 determines
a 1D stable manifold W u

µ . All these manifolds will
approach the corresponding manifolds of the fast
system while the parameter µ decreases.

The dynamics of the full system essentially
depends on the position of the separating surface
κ = {z = Z(x) − δ} and the small parameter µ.

(a)

(b)

Fig. 3. (a) The leading and nonleading manifolds, W l
µ and

W n
µ , of the full system’s saddle Eδ intersect the global cross-

section D by the green and violet lines, wl and wn, respec-
tively. (b) Construction of the Poincaré map. See the text for
a detailed explanation.

It is well known [Terman, 1991; Belykh et al.,
2000; Shilnikov et al., 2005a] that there exist sev-
eral important regions of the bifurcation parameter
δ = δj(µ), j = b, h1, s : δb(µ) < δh1(µ) < δs(µ) such
that the following properties hold:

(1) For δ < δb(µ), the full system (1) has only
bursting oscillations. In this case, the surface
κ intersects the middle branch of equilibria bm

0

such as shown in Fig. 1. The cyclic manifold of
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the full system (called below the cyclic bun-
dle bc

µ) is transient for the trajectories, and the
bursting oscillation follows the route shown by
the red dotted curve in Fig. 1.

(2) For δ > δs(µ), the full system (1) has only
tonic spiking defined by a stable fast limit
cycle. Here, the full system saddle Eδ lies on
an upper part of bm

0 , close to the critical point
(xr, zc2), such that the limit cycle is far from
bifurcations.

(3) For δb(µ) < δ(µ) < δs(µ), both spiking and
bursting solutions are possible, and variations
of δ can cause transitions between them. The
bifurcation playing a crucial role in such transi-
tions is a homoclinic bifurcation to the full sys-
tem saddle Eδ. The corresponding homoclinic
orbit hµ = W u

µ ∩ W s
µ [see Fig. 3(a)] exists for

δ = δh1(µ). It is worth noticing that in con-
trast to the homoclinic h0 of the fast system
[also depicted in Fig. 3(a)], giving rise to a sta-
ble cycle (σ0 < 0), the homoclinic hµ gives
birth to a saddle limit cycle (the saddle value
σ = λ1 + λ3 < 0 and λ2 > 0,) with an increase
of the parameter δ from δh1 .

Our main objective is to construct a flow-
defined 2D map describing the dynamics on the
attractors existing in the three above mentioned
regions of parameters and the corresponding bifur-
cation transitions.

3. Poincaré Return Map

We start our study of the system’s limit sets by
choosing a cross-section D to the trajectories of the
full system (1). This cross-section must be global,
i.e. the vector field must be transversal to D and
any trajectory starting from D must return to this
cross-section.

3.1. Global section construction

Denote z1 = zc1 + ε1(µ), z2 = zc2 − ε2(µ), where
ε1,2 → 0 for µ → 0, and introduce four neighbor-
hoods Uki

= {‖xk(zi) − x‖ < εki
(µ)}, k = (l, r),

i = 1, 2. As shown in Fig. 3(b), the disk Ur2 gen-
erates an unstable bundle br

µ by the flow in reverse
time, and the disk Ul2 generates a stable bundle
bl
µ in direct time. This invariant bundle contains a

set of trajectories that are all equivalent and con-
verge to the line of equilibria bl

0, for µ → 0. Intro-
duce a vicinity of the fast system limit cycle lc(z1),

Uc = {‖x0(t, z1) − x‖ < εc(µ)}. Consequently, the
flow generates a cyclic bundle bc

µ, starting from
Uc. This bundle is continued up to the surface
{z = ε′c(µ) < 0}, where εc(µ) and ε′c(µ) vanish for
µ = 0.

To construct the global section of the full sys-
tem, close to the fast system global section D0, we
connect the left and right bundles bl

µ and br
µ by the

following procedure. Starting from Ur2 , we continue
the bundle br

µ by the flow until it terminates in the
neighborhood Ul2 , generating the left bundle. The
size of Ul2 is being chosen to match the transient
bundle bt2

µ [see Fig. 3(b)].
Trying to directly complete the loop of the

bundle neighborhoods related to the global cross-
section, one encounters the following problem: The
set of trajectories, coming from the basin of attrac-
tion located below the cycle lc(z1) and entering into
the cyclic bundle interior bc

µ, is encompassed by the
left bundle flow prolongation to the right branch.
Therefore, the corresponding low edge of the cross-
section D, that would be mapped back by the flow
into D, is difficult to imagine. To resolve this prob-
lem, we formally perform a “surgical attack” on this
part of the basin. Namely, instead of this part of
the low basin we introduce a new flow mapping Ul1

onto Ur2 and form the transient bundle bt1
µ . This

completes the loop and does not affect attractors of
the full system.

We can now introduce the global section D as
follows: The section D is µ-close to the fast system
cross-section D0. Its right edge is shifted to the left
from the bundle br

µ [cf. Fig. 3(b)]. This is a neces-
sary condition for this edge to be mapped onto D.
The left edge of D is chosen arbitrarily inside the
left bundle bl

µ. Two remaining parts of the bound-
ary of D are assumed to connect the left and right
edges of D as shown in Fig. 3(b). The two lines are
assumed to be mapped by the flow into D. Under
these assumptions, D is the global cross-section that
allows us to simplify the study of bursting dynamics
in the singular perturbed system (1) by considering
the Poincaré map f of D into itself. The limit sets
and bifurcations of the map f correspond to spiking
and bursting attractors, and to transitions between
bursting and spiking.

Denote by O, the point of intersection between
the 1D stable manifold W s

µ of the saddle Eδ and
the global cross-section D; and the intersection lines
wl = W l

µ ∩ D, wn = W n
µ ∩ D [cf. Fig. 3(a)]. The

map f has a singularity at the point O, such that a
flow-defined image of the point O is the equilibrium
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point Eδ. To eliminate this singularity, we apply
the standard method of extension by continuity
[Shilnikov et al., 1998]. In this way, the image fO,
depicted by the blue closed curve lµ in Fig. 3(b), is
generated by all trajectories of the unstable man-
ifold W u, intersecting the cross-section D. Conse-
quently, the topological disk D is mapped by the
map f into itself, such that the image fD is an annu-
lus A with the hole H1. The annulus is bounded
by the following curves: The inner line is lµ, the
border of the hole H1, and the outer curve is the

image fD of the cross-section edge [the violet
dashed line in Fig. 3(b)]. The part of the 2D unsta-
ble manifold W u

µ , connecting the saddle Eδ to the
hole boundary lµ, together with the hole H1 forms a
heart shape trapping zone G for the trajectories of
system (1). All trajectories starting from G will stay
there forever. Trajectories from the outside enter
into G through the hole H1 [see Fig. 4(a)]. Conse-
quently, the map f is a global Poincaré return map
and represents the complete set of attractors and
bifurcations of system (1).

1H

O

D
A

fA2H

A

O

δE

fAA

1H

2HfA

u
µW

(a)

A
1H

O

fA

2H

A
O

δE

1H

(b)

O

fA A

1H
2H

(c1)

1H1H

3H

fAA

O

2H

(c2)

O

fA A

1H
2H

(c3)

Fig. 4. Schematic pictures illustrating possible positions of the point O with respect to the annulus A and the hole H1.
(a) Case 1: δ < δh1 . Bursting is depicted by the blue dashed line (left). Schematic sketch for the system’s projection onto a
plane perpendicular to the disk D. The 2D unstable manifold W u

µ forms a funnel-type trapping zone G. Trajectories from the
outside enter into G through the hole H1 (right). (b) Case 2: δ > δs. (c1)–(c3) Case 3: δh1 < δ < δs: (c2) The formation of a
map with two periodic holes H1 and H2.
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3.2. Limit sets of the map f

Let u ∈ R2 be the vector coordinate in D, then the
one-to-one map f of the disk D into the annulus
A reads: u(i + 1) = f(u(i)), i ∈ Z. The map f
has a closed invariant limit set of discrete trajecto-
ries Ω, such that all the attractors of f lie in Ω. Let
u = ua(i) be an attracting trajectory of f .

It follows from the map construction that if
two subsequent iterates of f , ua(i1) and ua(i1 + 1),
lie in a neighborhood of the cyclic bundle bc

µ then
the trajectory of the slow–fast system (1), con-
necting these points, makes a turn around the
bundle bc

µ, corresponding to one spike, as shown in
Fig. 4(a). If ua(i1) and ua(i1 +1) fall in a neighbor-
hood of the left bundle bl

µ, then the corresponding
trajectory of system (1) slowly drifts down along bl

µ

and corresponds to a quiescent part of the bursting
trajectory. If ua(i1) lies near the bundle bl

µ (bc
µ), and

the next iterate ua(i1 +1) jumps to a neighborhood
of the bundle bc

µ (bl
µ, respectively), then the trajec-

tory connecting the two points corresponds to the
transition from the quiescent mode to fast repetitive
spiking, and vice versa.

Therefore, bursting is defined by the attracting
trajectories of the map f visiting both the neigh-
borhoods of bl

µ and bc
µ. Naturally, the trajectories

remaining in the neighborhood of the cyclic bundle
bc
µ, correspond to tonic spiking.

In terms of the map f, the existence of burst-
ing and spiking-type attractors of system (1) and
the transitions between them, essentially depend
on the position of the point O with respect to the
annulus A and the hole H1. This position depends
on the bifurcation parameter δ. Consider separately
three nondegenerate cases of the mutual positions
between O and A, related to the following regions
of the bifurcation parameter δ : (1) δ < δh1(µ);
(2) δ > δs(µ); (3) δh1(µ) < δ < δs(µ), where δh1(µ)
and δs(µ) are the above mentioned values of the
parameter δ. Note that if the point O lies on the
border of the hole H1, then system (1) undergoes a
homoclinic bifurcation for δ = δh1(µ), providing the
transition from cases 1 to 3 with an increase in δ.

3.2.1. Case 1: δ < δh1(µ)

The point O lies inside the hole H1 [see Fig. 4(a)].
In terms of system (1), this situation corresponds to
the existence of bursting-type attractors in the sub-
region δ < δb < δh1 and to possible spiking-bursting
transitions in the subregion δb < δ < δh1.

When the point O lies inside the hole H1, the
map f is a smooth diffeomorphism of the annulus A
into itself, such that H1 ⊂ fH1 = H2, fA ⊂ A, and
H2 is the hole of the annulus fA. Further iterates
of the map f give the embedding: H1 ⊂ H2 ⊂ · · · ⊂
Hk = fk−1H1, fkA ⊂ fk−1A. In other words, the
size of the holes increases from iteration to iteration,
and the width of the iterated annulus fkA decreases
and approaches to an attracting set for k → ∞.
The theory of such maps is intensively studied by
Shilnikov and collaborators (see the comprehensive
review in [Shilnikov et al., 2004]). This theory is
related to the existence of closed invariant curves
J ⊂ A with the dynamics of f |J defined by the
unique Poincaré rotation number, and to the torus
breakdown bifurcations. Let us specify the rotation
number for the map f .

Definition 1. Let u = ξ(θ, ρ) be a map of a lifted
ring: {θ ∈ R1, ρ1 < ρ < ρ2} onto the annulus A. Let
u∗(i) be a trajectory from the limit set of f , such
that u∗(i) = ξ(θ∗(i), ρ∗(i)). The rotation number is
defined as

r(u∗) = limi→∞
θ∗(i)
2πi

.

When system (1) displays a bursting solution
(surely, for δ < δb(µ)), the bursting trajectories
rotate along the annulus A, therefore the rotation
number r(Ω) > 0. When the point O is far from
the border lµ of the hole H1, i.e. |δ| is large, the
rotation number is often unique, and the slow–fast
system (1) is far from bifurcations and exhibits peri-
odic regular bursting. On the other hand, when the
difference δ − δh1 < 0 is small (O is close to the
border of H1), the shape of the first annulus image
changes as follows.

Statement 1. If O ∈ H1, and O is close to the
boundary lµ, then the image of the annulus fA ⊂ A
has a Z-shape fold [see Fig. 4(a)]. The closer the
point O approaches lµ, the larger the fold becomes.

Proof. The point O is the intersection of the curves
wl = W l

µ ∩ D, and wn = W n
µ ∩ D [see Fig. 3(a)].

In a neighborhood of the saddle Eδ, the unstable
node on the surface W u

µ generates a foliation of the
integral surfaces spanning along the 1D stable man-
ifold W s

µ. The intersection of this foliation and the
global cross-section D has a similar unstable node
foliation structure of the lines for which wl and wn

play the role of leading and nonleading directions.
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The line lµ is tangent to a curve γc ⊂ fl at
the point ζc. Curves of the foliation, located below
this curve, have no intersections with lµ, and each
curve of the foliation above this tangent curve has
two points of intersection ζ1, ζ2 with lµ. Therefore,
the image f(ζc) is a critical point of f(lµ), and
the images f(ζ1) and f(ζ2) are the points on the
opposite leaves of the fold. The image of the exter-
nal edge of A has a similar shape. Consequently,
the annulus image has a fold, and Statement 1
holds. �

Subsequent images f2A, f3A, . . . , fkA preserv-
ing their original Z-shape are shifted along the
annulus, when iterated. Therefore, if we chose a
rectangular P (not depicted in Fig. 4) on the cross-
section D such that P lies in a vicinity of O and
joins the leading line wl by its large part, then
the k-iterate fkP can reach and overlap its original
preimage P. This leads to the formation of either a
transversal complete Smale horseshoe, first discov-
ered in bursting transitions by Terman [1991, 1992],
or of a tangent horseshoe in formation. In either
case, complex dynamics arises. More precisely, in
the first case, the saddle chaotic component of the
limit set Ω is always present, and all the trajecto-
ries generated by the horseshoe are unstable. In the
second case, the control parameter δ enters into the
Newhouse regions, corresponding to the coexistence
of an infinite number of stable bursting attractors
with infinitely small basins of attraction [Gavrilov &
Shilnikov, 1972; Newhouse, 1974; Gonchenko et al.,
1996]. This results in rotation number scattering
[Belykh et al., 1977] together with an uncertainty
in bursting–bursting transitions. In other words, a
tiny change of δ leads to jumps from one attracting
state of bursting to another with a different rota-
tion number. Moreover, the attracting states can
also have the same rotation number. For example,
all the stable bursting solutions coexisting in the
Newhouse regions have the same rotation number.
The realization of a particular bursting attractor
depends on the initial conditions.

3.2.2. Case 2: δ > δs(µ)

The point O lies outside both the hole H1 and the
annulus A, i.e. O ∈ D\D1; D1 = A ∪ H1 [see
Fig. 4(b)]. This is possible if δ > δs(µ) : the limit set
Ω = Ωs has only tonic spiking oscillations. In this
case, the saddle Eδ lies essentially above the cyclic
bundle bc

µ such that the point O is located between

the right upper edge of the disk D and the edge of
the annulus A [cf. Figs. 3(b) and 4(b)].

In this case, the map f becomes a diffeomor-
phism of the disk D. The hole H1 is mapped into
a sequence of nonoverlapping holes Hk = fk−1

H1,
k = 1, 2, . . . indicating an extended area of the
basin. fD ⊂ D and the map f has the limiting set
Ωs, inclusive of at least one fixed point. The set Ωs

is located in the vicinity of the cycle bundle bc
µ and

corresponds to a fast limit cycle with zero rotation
number r(Ωs). The map f has a similar property
in the case, where the singularity point O, stay-
ing inside the annulus A, lies outside the k-iterate
image of D.

The tonic spiking dynamics in the consid-
ered region can also be complicated. As shown in
[Terman, 1991; Wang, 1993], there exists a hyper-
bolic structure (the chaotic saddle) similar in many
respects to a Smale horseshoe. The typical transi-
tion from simple to complex spiking occurs along
the following scheme. The fast one-period cycle
undergoes a period-doubling cascade of bifurca-
tions, finally reaching the Newhouse regions and
transversal Smale horseshoes with an attracting
complement. All the coexisting spiking solutions
have the zero rotation number r(Ω) = 0. The
description of this spiking transition is due to Wang
[1993].

3.2.3. Case 3: δh1(µ) < δ < δs(µ)

The point O lies inside the annulus A and is not
located in the hole H1 [see Fig. 4(c)]. This is
the most interesting case corresponding to spiking–
bursting transitions, where the Plykin-like attrac-
tors can occur.

After the first iterate of the map f , three non-
degenerate possibilities arise for the mutual position
between O, fA, and fH1 = H2.

(1) O ∈ A, but O �∈ fD1 [Fig. 4(c1)]. The fur-
ther application of the map f to the disk D2 =
fA∪H1 ∪H2, leads to the picture from Case 2.
Here, f : D2 → D2 is a diffeomorphism of a
disk with the property that fH1 = H2, and
fk−1

H1 = Hk, k = 1, 2, . . . are nonoverlap-
ping disks belonging to the basin of attrac-
tion. The main property of this map is that
the diffeomorphism f has at least one fixed
point.

(2) O ∈ H2. The image of H1, the hole H2, covers
the singularity point O outside the hole H1 such
as shown in Fig. 4(c2). The second image of H1,
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the hole H3, covers H1. The next iterate of H3,
the hole H4 covers the hole H2, and the pro-
cess becomes cyclic. In other words, after two
iterates of the disk D, the map f |f2D becomes
a map of a disk with two periodic holes that
increase in size under each consequent iterate.

(3) O ∈ fA [Fig. 4(c3)]. The second iterate of the
map f again gives three possibilities for the
mutual arrangement between O and fD2:
(i) If O �∈ fD2, then f2D is the map from

Case 2, and generates an infinite number
of holes.

(ii) If the image fH2 = H3 covers the point O,
then we obtain the map f |f3D of the disk
with three periodic holes H1, H2, H3. This
number of holes remains constant under
further iterates of the map, and the holes
are cyclic (periodic) such that fH3 = H4 ⊃
H1, fH4 = H5 ⊃ H2, fH5 ⊃ H3, . . . .

(iii) If O ∈ f2A, then this case is similar to
the above considered possibility (3) and
one can obtain a map of the disk with four
holes.

Further consideration leads to the following
assertion: If O ∈ Hk = fk−1(H1) and O �∈ Hi,
i = 1, 2, . . . , k − 1, then the map f is a map of
the disk having k holes. As in the previous case
of three holes, these holes are periodic: H1 ⊃ H2,
H2 ⊃ H3, . . . ,Hk−1 ⊃ Hk, Hk ⊃ H1. It is worth
noticing that one can “insert” a period-k unstable
orbit in the holes Hi i = 1, . . . , k and the holes may
be thought of as the repelling domains of this orbit.

The transition between maps with k − 1 and k
holes is caused by a k-loop homoclinic bifurcation of
the saddle Eδ. In terms of the map f , this amounts
to the situation where the point O hits the border
of the hole Hk−1, ∂Hk−1, from the inside, giving
rise to the hole Hk. At the bifurcation moment, the

hole Hk is joined to the hole Hk−1. Figure 5 gives
the details for the birth of the second hole H2 via
the one-loop homoclinic bifurcation.

It is worth noticing that the map f of the disk
with k > 1 holes belongs to a family of mappings
that are not studied in the theory of dynamical sys-
tems in terms of the rotation properties of their
limit sets around the holes. The only known exam-
ple of attractors existing in such maps is the hyper-
bolic Plykin attractor [Plykin, 1974], arising in a
two-dimensional map with three holes. A general
construction of the vector field admitting the Plykin
attractor was first presented by Belykh [2000]. Here,
we will give the conditions under which an attractor
homotopic to the Plykin attractor occurs in the neu-
ron model (1). We will also discuss new homoclinic
bifurcations leading to the emergence of Plykin-like
attractors.

3.3. Plykin-like attractors and new
homoclinic bifurcations

Denote δ = δhk
(µ), k = 1, 2, . . . , the values of

the bifurcation parameter δ corresponding to the
k-loop homoclinic bifurcation of the saddle Eδ.
These values are ordered as follows: δh1(µ) <
δh2(µ) < δh3(µ) < · · · < δs. Let us consider
the bifurcation transitions and the appearance of
attractors with increasing δ from δ < δh1 .

3.3.1. One-loop homoclinic bifurcation

Let δ − δh1 < 0 be small. This implies for the
map f , that the point O lies in the hole H1 (Case 1).
It follows from the bifurcation theory [Shilnikov,
1998] that there exists a saddle limit cycle pass-
ing by a small neighborhood of the saddle Eδ. This
cycle merges into the homoclinic loop for δ = δh1 .
At this moment, O is located at the point where

O

δE

1HA A
O

δE

1H

2H O

δE

1H

2H

h1 h1 h1δ<δ δ=δ δ>δ
Fig. 5. Schematic pictures showing the formation of periodic holes H1 and H2. The one-loop homoclinic bifurcation arising
at δ = δh1 gives rise to the two holes and leads to the emergence of a Smale horseshoe (cf. Fig. 6).
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two holes H1 and H2 = f(H1) join each other.
Note that the saddle cycle had appeared through a
saddle-node cycle bifurcation preceding the homo-
clinic bifurcation. As illustrated in Fig. 5, a further
increase in δ leads to the destruction of the homo-
clinic and to the separation of the holes H1 and H2.
There are two possibilities for the position of the
point O.

(a) O �∈ H2. This leads to the formation of an infi-
nite sequence of holes H3,H4, . . . ,H∞, when
iterating and, according to standard bifurcation
theory, does not give birth to any limiting set.

(b) The point O falls into the hole H2 right away
after the bifurcation. As discussed before, this
results in the formation of two periodic holes H1

and H2 (see Fig. 5) and leads to the birth of a
new limiting set. In terms of the original sys-
tem (2), this situation amounts to the destruc-
tion of the homoclinic loop hµ [cf. Fig. 3(a)] in
a way where the trajectories from a neighbor-
hood of the nonleading manifold W n

µ intersect
the cross-section D to the left from the lead-
ing line wl. This bifurcation has not previously
been studied, and the structure of the limiting
set as well the properties of the attractor asso-
ciated with a map with two holes are unknown.
However, we can prove that this bifurcation
at least leads to the formation of a chaotic
saddle, arising far from the homoclinic loop’s
neighborhood. Figure 6 gives a geometrical sup-
port for the proof. Note that this bifurcation is
similar in some respects to the codimension-two

2H

1H
fA

O
lw

P

a

a

b

b

c
d

e

c

d

e

P

Fig. 6. Appearance of a Smale horseshoe. Two periodic
holes H1 and H2 are generated through the one-loop homo-
clinic bifurcation. Five points (a, b, c, d, e) located on the
border of H1 are mapped into five points (a, b, c, d, e) on the
border of H2, respectively. The rectangular P is mapped into
the horseshoe P .

bifurcation giving rise to the cusp horseshoe
[Homburg et al., 1994].

3.3.2. Two-loop homoclinic bifurcation

The secondary (two-loop) homoclinic bifurcation
arising at δh2 leads to the generation of the third
hole H3. As before, there exist two equal possi-
bilities for the position of O. The first situation
when the point O does not belong to the hole H3

is not interesting and, similar to (a), it does not
lead to the emergence of any attractor. The sec-
ond possibility on the contrary, when O falls into
the third hole H3 (see Fig. 7) and the three holes
becomes periodic, is of great interest for our study.
Here, the flow-defined map f becomes a map with
three holes, matching the Plykin example [Plykin,
1974] of a planar hyperbolic attractor. The map
f has a limit set containing horseshoes (directly
from its geometrical properties) and corresponds to
a strange attractor Φ of the slow–fast system (1),
obtained by the embedding of the three-hole attrac-
tor of f into the 3D phase space. The existence of
the attractor Φ is ensured by the existence of the
global section and trapping zone G. Consequently,
the attractor Φ is homotopic to the Plykin attractor
and has the possibility to be hyperbolic. However,
the question of attractor Φ’s hyperbolicity remains
unstudied.

The topology of the attractor Φ is complicated:
Existing in the spiking–bursting transition region,
it more likely corresponds to a regime of bursting

δE

1H

O

3H

2H

u
µW

s
µW

AD

Fig. 7. Schematic sketch for the Plykin-like attractor,
defined by the map with three periodic holes H1, H2 and H3.
The point O falls into the third hole H3 after the two-loop
homoclinic bifurcation (not shown in this figure). The attrac-
tor occurs in the parameter region δh2 < δ < δh3 and lies in

the phase space, corresponding to the region A\S3
i=1 Hi on

the cross-section D.
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where chaotic fast repetitive spiking sporadically
alternates with an irregular quiescent state. It is
hard (if at all possible) to say which sequence of
(unstudied) bifurcations leads to the transition from
tonic spiking, as existing in the region δ < δs, to this
type of bursting.

Subsequent (k−1)-loop homoclinic bifurcations
can lead to the formation of maps with k (k > 3)
holes. The topology and bifurcation scenarios lead-
ing to the occurrence of the corresponding Plykin-
like attractors can even be more complicated than
those for the three-hole attractor A. This shows
that a complete description of possible bifurca-
tion transitions between tonic spiking and bursting
remains open.

4. Conclusions

Introducing a global cross-section for trajectories
of a generic neuron model (1), we have con-
structed a Poincaré return map which gives an
accurate account for the dynamics, bifurcations and
attractors existing in the neuron model. This map
constitutes a nontrivial link between the Wang’s
description [Wang, 1993] of neuron dynamics in
terms of the map of a disk into itself and Terman’s
concept [Terman, 1991, 1992] of winding numbers
related to the map of the disk into an annulus.

Surprisingly, we have discovered that the
Poincaré map can be a map of the disk with k
periodic holes. A particular case is the map with
three holes, matching the Plykin example of a pla-
nar hyperbolic attractor. Therefore, we have shown
that the neuron model is expected to have a hyper-
bolic attractor. However, we have not performed
the analysis of the discovered attractor’s hyper-
bolic properties. The Plykin-like attractor exists in
a parameter region between two- and three-loop
homoclinic bifurcations of the saddle and can be
found and studied numerically in concrete neuron
models. The 3D Hindmarsh–Rose model satisfies
all the assumptions on the system topology and is
a first candidate for the existence of a Plykin-like
attractor. In our study, we have restricted our atten-
tion to 3D systems having a single saddle equilib-
rium with a 2D unstable and 1D stable manifold.
However, similar attractors may occur in 4D models
having a unique saddle equilibrium point with 2D
stable and 2D unstable manifolds. Possible exam-
ples include 4D Hodgkin–Huxley-type models.

We have shown that multiloop homoclinic
bifurcations can lead to the emergence of strange

attractors corresponding to planar attractors of the
Poincaré map with many periodic holes. The homo-
clinic bifurcations that we are facing do not appear
to have been previously analyzed. The analysis of
such bifurcation transitions remains a fundamental
problem for bifurcation theory.
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