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Abstract. We present a novel approach for studying the global dynamics of a vibro-impact pair, that is, a ball
moving in a harmonically forced capsule. Motivated by a specific context of vibro-impact energy
harvesting, we develop the method with broader nonsmooth systems in mind. The traditional maps
between impacts of the ball with the capsule are implicit and transcendental and, therefore, not
amenable to global analysis. Nevertheless, we exploit the impacts as useful nonsmooth features
to select appropriate return maps that provide a path for studying global behavior. This choice
yields a computationally efficient framework for constructing return maps on short-time realizations
from the state space of possible initial conditions rather than via long-time simulations often used to
generate more traditional maps. The different dynamics in subregions in the state space yield a small
collection of reduced polynomial approximations. Combined into a piecewise composite map, these
capture transient and attracting behaviors and reproduce bifurcation sequences of the full system.
Further ``separable"" reductions of the composite map provide insight into both transient and global
dynamics. This composite map is valuable for cobweb analysis, which opens the door to computer-
assisted global analysis and is realized via conservative auxiliary maps based on the extreme bounds
of the maps in each subregion. We study the global dynamics of energetically favorable states and
illustrate the potential of this approach in broader classes of dynamics.
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1. Introduction. The prevalence of nonsmooth dynamics, characterized by switches, im-
pacts, sliding, and other abrupt alterations in behavior, permeates various fields, includ-
ing physics, biology, and engineering [3, 26, 19]. Nonsmooth dynamical models are essen-
tial for understanding phenomena such as body component interactions with nonsmooth
contacts; impacts, friction, and switching in mechanical systems [21, 62, 43, 5]; and relay
systems, switched power converters, and packet-switched networks in electrical and control

\ast Received by the editors April 8, 2024; accepted for publication (in revised form) January 26, 2025; published
electronically June 9, 2025.

https://doi.org/10.1137/24M1652763
Funding: This work was supported by the National Science Foundation (USA) under collaborative grants

CMMI-2009329 and CMMI-2009270 and by the Engineering and Physical Sciences Research Council (UK) under
grant EPSRC EP/V034391/1.

\dagger Department of Mathematics and Statistics, Georgia State University, Atlanta, GA 30302 USA (lbao1@
student.gsu.edu).

\ddagger School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332 USA (rachel@math.gatech.edu).
\S Institute of Sound and Vibration Research, University of Southampton, Southampton, SO17 1BJ, UK

(d.yurchenko@soton.ac.uk).
\P Department of Mathematics and Statistics and Neuroscience Institute, Georgia State University, Atlanta, GA

30302 USA (ibelykh@gsu.edu).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1891

D
ow

nl
oa

de
d 

06
/0

9/
25

 to
 1

31
.9

6.
43

.2
01

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1137/24M1652763
mailto:lbao1@student.gsu.edu
mailto:lbao1@student.gsu.edu
mailto:rachel@math.gatech.edu
mailto:d.yurchenko@soton.ac.uk
mailto:ibelykh@gsu.edu


1892 L. BAO, R. KUSKE, D. YURCHENKO, AND I. BELYKH

engineering [21, 22, 9, 33]. In the life sciences, nonsmooth dynamics are evident in diverse
systems such as gene regulatory networks [55, 1] and pulse-coupled neurons [25]. While piece-
wise smooth, nonsmooth, and vibro-impact dynamical systems represent vast research fields
in nonlinear science, they have historically received far less attention than their smooth coun-
terparts. In recent decades, increased efforts have pursued a comprehensive understanding of
nonsmooth bifurcations and related nonlinearities (see extensive reviews [19, 35, 36, 6] and
references therein). Nonsmooth systems and the vibro-impact systems we study here fall into
the larger class of hybrid systems, whose breadth is reflected in combinations of discrete and
continuous components with complementary features [14], dynamics obtained from combined
models and measured or experimental data [64], embedded control systems [10], and perhaps
even in the Wikipedia description of systems that ``can both flow and jump"" [72].

Vibro-impact (VI) systems constitute a distinct class of dynamical systems where impacts
substantially influence the nonlinear behavior. Typical classes of VI systems include a forced
mass and one or more stationary rigid barriers or, alternatively, a pair of moving impacting
masses, each of which may be subject to external forcing. Classic examples include balls
bouncing on moving surfaces [48, 43, 42], pendulums impacting barriers [63, 20, 68], and
VI pairs composed of two oscillating masses that impact each other [49]. Generally, both
masses in the VI pair may undergo forcing, complemented by elastic or inelastic impacts. A
canonical VI pair, considered in this paper, consists of a forced capsule, with an inner mass
moving freely within a cavity of a given length and impacting the ends of the capsule. This
concept has been explored as an effective vibration mitigation alternative to linear tuned mass
dampers or continuous nonlinear dampers [73, 69, 75, 51, 44, 45, 17, 50]. Recently, a VI pair
was proposed as an energy harvesting mechanism, where the impacts between the inner mass
and the capsule deform flexible dielectric polymer membranes on the capsule ends [74]. These
membranes serve as capacitors, as the impacts deform them and change their capacitance,
thus enabling energy harvesting [41]. Previously, VI pairs have been studied by approximate
methods, including averaging, multiple scales, and complexification averaging [23, 34, 45, 70],
but with limited applicability to nonsmooth systems with impacts.

Recently, VI pair systems have been studied precisely using maps, combining the system's
motion between the impacts and the impact conditions [32, 31, 27, 75, 47]. The semianalytical
solution of these exact equations can provide exhaustive information regarding the bifurca-
tion structure and local stability of different types of motion. In the case when the smaller
mass is negligible relative to the larger one, between impacts this two-degrees-of-freedom sys-
tem can be reduced to a single differential equation for the relative displacement of the two
masses [59, 49] used to explore, e.g., the interplay between classical and grazing bifurcations
[61] and comparisons of the influence of instantaneous and compliant impact conditions [16].
In settings where the smaller mass is nonnegligible, such as in targeted energy transfer, ex-
act maps for the full system allow bifurcation analyses over a large range of parameters for
modes with efficient energy transfer and loss of stability due to inefficient alternating chatter
behaviors [39].

These previous map-based results are primarily based on linear stability analyses, leaving
a critical gap in analyzing the global, possibly chaotic, dynamics of VI systems due to severe
limitations of the existing global stability methods in handling impacts. One limiting factor in
pursuing existing approaches of global analyses for the forced VI pair is the nonautonomous
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GLOBAL ANALYSIS FOR VIBRO-IMPACT DYNAMICS 1893

nature of the system. As a result, the maps traditionally used in its bifurcation analyses yield
analytically intractable coupled transcendental maps for the system response and impact time,
preventing explicit expressions for the system's state that one would normally use to study
global dynamics. This fact motivates the new approach we propose here.

In a broader context, global stability approaches for nonautonomous, nonsmooth systems
are few and far between, which appears to be true also for those hybrid systems described
with both continuous and discrete dynamics [37, 5, 13, 28, 12]. One notable example is
an extension of the Lyapunov function method to prove the global stability of the equilib-
rium state of a nonautonomous bouncing ball [42]. In this setting, the Lyapunov-type method
involves nonautonomous measure differential inclusions and constructs a decreasing step func-
tion above an oscillating Lyapunov function. However, its application to nontrivial dynamics
of VI pairs with two-sided impacts seems elusive. Another notable sample is an averaging
Lyapunov function approach developed to prove global convergence to absorbing domains
of nontrivial attractors in nonsmooth dynamical systems with a nonautonomous stochastic
switching parameter rule [33]. However, this approach is irrelevant for nonautonomous VI
systems as it is based on knowledge of the averaged autonomous system's attractor. Recently,
a computer-assisted proof of chaos in piecewise linear maps was obtained by explicitly con-
structing trapping regions and invariant cones based on word sets representing the dynamics
symbolically [66]. An area-preserving map-based analysis for the global behavior of the VI
pair's rare, restricted behavior was proposed in [11]. Yet, to date, there appear to be no global
analyses relevant to applications such as energy harvesting, for which the VI pair dynamics of
interest include sustained sequences of regular impacts on both barriers at the capsule ends,
observed over a large range of parameters. Then, we are faced with the challenge of global
analyses of behavior with at least two (alternating) impacts per forcing cycle. This feature is
in contrast with other studies of impacting systems that may consider the transition between
no impacts and a single impact [52], repeated impacts on a single barrier [67], or the global
attraction of a solution without impacts [42].

In this paper, we present a novel computer-assisted approach for studying the global dy-
namics of the VI pair, that is, a ball moving in a harmonically forced capsule. Motivated to
develop an analytical global analysis for this system, we prioritize approaches that include
explicit expressions wherever possible. As mentioned above, the repeated impacts of the ball
with the capsule yield transcendental maps that are analytically intractable within existing
global analyses. Yet, we exploit them as useful nonsmooth features in constructing novel two-
dimensional (2D) return maps that separate families of important sequences in the VI-pair
dynamics. These families are used to characterize global dynamics and can be related to bifur-
cations of the VI pair. Computationally efficient short-time realizations of these return maps
divide the state space according to the different dynamics of these families. Our definition
of return maps does not fall into standard choices for maps, such as Poincar\'e, stroboscopic,
all impacts, or all returns to a particular state [49, 52, 54, 65]. Instead, it divides the return
maps based on the sequence of impacts that do or do not occur before the system returns
to a particular impacting state. This innovative perspective is valuable for efficiently parti-
tioning the state space into a few regions corresponding to distinct surfaces formed by maps
from different families of the sequences of impacts. Identifying the regions with potentially
attracting and transient behavior is straightforward by inspecting the surfaces' geometry and
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1894 L. BAO, R. KUSKE, D. YURCHENKO, AND I. BELYKH

gradients relative to the diagonals in the phase planes for impact velocity and impact phase.
As a result, we can focus a more detailed analysis on smaller regions with potentially attrac-
tive behavior. These computationally realized return maps could be directly used for purely
numerical yet efficient cobweb analysis of the system's global behavior. However, toward our
goal of performing computer-assisted analysis and explicitly characterizing the system's global
dynamical properties, we go one step further and define reduced polynomial approximations
for the maps in each region.

Combining these polynomials into a piecewise smooth composite map, we demonstrate
that it captures transient behaviors throughout the state space while reproducing the attract-
ing behaviors. Furthermore, it reproduces an important sequence of period-doubling bifur-
cations and (apparently) chaotic behavior compared with the bifurcation sequences of the
exact systems. In constructing the composite map, we find that in some regions with strongly
transient dynamics, we can reduce the 2D return maps to a pair of 1D return maps without
sacrificing the integrity of the attracting dynamics. While this is not a necessary step, these
types of ``separable"" components of the composite map provide transparency for the overall
dynamics. Furthermore, this composite map derived from the non-smooth VI dynamics is
remarkably valuable for cobweb analysis, as it is based on simple return maps corresponding
to impacts on one end of the capsule rather than on compositions of map sequences. Specifi-
cally, the separable representations of the 2D map are convenient for visualizations within this
cobweb phase analysis that captures the different attracting behaviors for different parameter
regimes.

Notably, this cobweb analysis motivates a valuable definition of auxiliary maps on the re-
gions identified within the construction of the composite map, once the transient and attract-
ing characteristics have been identified. For regions with attracting dynamics, the auxiliary
map is conservatively based on the extreme bounds on the map for each region and thus can
be used to bound the attracting domain. A key feature of the auxiliary maps is that they sim-
plify the 2D return maps into a set of 1D equations using the bounds for each region. Then,
a cobweb phase space analysis is used to explore the system's long-term dynamics and yields
a limiting period-2 cycle that bounds the attracting domain that contains all the system's
nontrivial attractors. With the auxiliary maps based on the polynomial approximations, we
can obtain analytical expressions for the impact velocity map and, thus, for the attracting
domain. Repeated application of the auxiliary maps, each with updated bounds obtained
from the previous application, yields tighter bounds for the attracting domain.

We outline the process of generating the approximate composite map in terms of a general
algorithm adaptable for other nonsmooth dynamical systems. A key step in the algorithm
includes identifying families of short sequences of impacts that give the building blocks for
the return maps. The resulting division of the state space is relatively simple and compu-
tationally efficient compared to, e.g., the identification of basins of attraction, which require
long-time computations to find complex regions for dynamics sensitive to initial conditions.
Likewise, flow-defined Poincar\'e maps for the global dynamics of periodic and chaotic systems,
derived from long-time simulations over the entire state space, are often piecewise smooth
even though they originate from a smooth dynamical system. Geometrical piecewise smooth
Lorenz maps [2, 56, 30] representing the smooth chaotic dynamics of the Lorenz system are no-
table examples. Our approximate composite map constructed for only short-time realizations
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GLOBAL ANALYSIS FOR VIBRO-IMPACT DYNAMICS 1895

of the VI pair is conceptually different from classical piecewise smooth maps with regular and
chaotic dynamics appearing in various biological, social science, and engineering applications
[53, 4, 76, 8, 15, 29, 18]. However, it can still be interpreted as a geometrical model of the VI
pair as it depicts the dynamics and bifurcations remarkably well and derives from a polynomial
approximation of the state space partitions. The combination of the geometric interpretation
and the polynomial approximation facilitates our goal of obtaining analytical results for the
global dynamics directly related to the physical model. These results are in contrast to local
analyses and computational studies of higher dimensional maps [54, 58].

In this first development of the approach, we focus on parameter regimes for behaviors
that drive favorable energy output in a VI pair-based energy harvesting device, behaviors with
alternating impacts on either end of the capsule. The impact velocity and phase may repeat
periodically with period n\scrT , where \scrT is the period of the forcing, or the states may have
apparently chaotic behavior within the alternating behavior. Besides its physical relevance,
this choice of parameters facilitates a relatively straightforward presentation of the approach
while exploring several types of nontrivial dynamics. Nevertheless, as discussed further in
the conclusions, we expect that foundational concepts in this analysis are adaptable to other
(more complex) sequences of impacts.

The remainder of the paper is organized as follows. Section 2 gives details of the VI-pair
model, including the transcendental form of the maps [60, 61] that motivates the computer-
assisted analysis of global dynamics. Section 3 provides the return maps that form the building
blocks of the computer-assisted approach, illustrating their key properties. Section 4 provides
the general algorithm for constructing a composite map realized for the VI pair by approx-
imating the return maps with explicit piecewise polynomial maps over relevant regions that
comprise the state space. Section 5 compares the trajectories generated using the exact and
composite maps in the state space and the phase plane. Section 6 develops an auxiliary map
based on the composite map to identify the globally attracting dynamics and the correspond-
ing domain for three qualitatively different types of the VI pair system behavior. Section 7
contains conclusions and a brief illustration of the relevance of the approach for a VI pair-based
energy harvesting device with stochastic forcing. Finally, Appendix A provides additional de-
tails on the construction of the return map. The supplementary material (M165276 01.pdf
[local/web 240KB]) contains the exact map derivation and demonstrates its analytical in-
tractability. It also contains the coefficients of the polynomials used in the composite map.
Supplementary videos (M165276 02.gif [local/web 33.3MB]) provide additional visualizations
for constructing and iterating the composite map.

2. The model. The model takes the form of the canonical impact pair, comprised of an
externally forced capsule with a freely moving ball inside. The friction between the ball and
the capsule is neglected, so the ball's motion is driven purely by gravity and impacts one of
the membranes on the capsule's ends.

One application based on the impact pair is a nonlinear vibro-impact energy harvesting
device. Each end of the capsule is closed by a membrane of dielectric (DE) polymer material
with compliant electrodes [74]. The deformation of such a DE membrane is the vibro-impact
energy harvesting device's primary means of energy generation. When the ball collides with
the membrane, this action changes the ball's trajectory and deforms the membrane. The DE
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membrane's physical property, being a variable capacitance capacitor, allows the change of its
capacitance when it is deformed; meanwhile, a bias voltage is applied when the deformation
reaches its maximum state. After the collision, an extra voltage charge is harvested, and the
membrane returns to its undeformed state.

The schematic for the VI pair is given in Figure 1(a). Neglecting the friction, the system is
driven by forces generated at impact, gravity, and external harmonic excitation \^F (\omega \tau +\psi ) with
period 2\pi /\omega . Using Newton's second law of motion, the model is described by the following
differential equations:

d2X

d\tau 2
=

\^F (\omega \tau +\psi )

M
,(2.1)

d2x

d\tau 2
= - g sin\beta ,(2.2)

where X(\tau ) and x(\tau ) are the dependent variables for the absolute displacement for the capsule
and the ball, respectively. In addition, M and m are the mass of the capsule and the ball,
respectively. Also, \psi is the general phase of the forcing.

Treating the impact time as negligible compared to other time scales in the model, we use
an instantaneous impact model given by

\biggl( 
dx

d\tau 

\biggr) +

= - r
\biggl( 
dx

d\tau 

\biggr)  - 
+ (1+ r)

\biggl( 
dX

d\tau 

\biggr) 
.(2.3)

Note that this is a reduced model based on the condition M \gg m, as discussed in detail
in [60]. The superscripts + and  - signify the state of the ball after and before the impact,
respectively. The parameter r is the restitution coefficient, which is a quantitative measure of
the membrane's elasticity. The range of r is [0,1] with r= 1 being perfectly elastic and r= 0
being inelastic. In this paper, we consider moderate elasticity r = 0.5. Additionally, in (2.3),
we do not distinguish the states before and after the impact for the capsule dX/d\tau because
the mass of the ball (M \gg m) is negligible and does not change the state of the capsule at
impact.

To focus on the system's dependence on key parameters, we first nondimensionalize the
system. Following [60], the dimensionless variables X\ast (t), \.X\ast (t), t are the following:

X(\tau ) =
\| \^F \| \pi 2

M\omega 2
\cdot X\ast (t),

dX

d\tau 
=

\| \^F \| \pi 
M\omega 

\cdot \.X\ast (t), \tau =
\pi 

\omega 
\cdot t ,(2.4)

where \| \^F \| is an appropriately defined norm of the strength of the forcing \^F . Here, we also
use Newton's dot notation for differentiation when the derivative is calculated with respect to
dimensionless time t.

In addition to nondimensionalization, relative variables are used to focus on the system dy-
namics as a whole rather than the separate motion of the ball and capsule. Using the variables
X\ast , the relative displacement Z(t) and relative velocity \.Z(t) are given in the dimensionless
form
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GLOBAL ANALYSIS FOR VIBRO-IMPACT DYNAMICS 1897

Z =X\ast  - x\ast , \.Z = \.X\ast  - \.x\ast ,

\"Z = \"X\ast  - \"x\ast = F (\pi t+\psi ) +
Mg sin\beta 

\| \^F \| 
,(2.5)

where the nondimensional forcing F (\pi t+\psi ) =
\^F (\omega \tau +\psi )

| | \^F | | 
has the unit norm, i.e., \| F \| = 1. For

convenience, we define \=g= Mg \mathrm{s}\mathrm{i}\mathrm{n}\beta 

\| \^F\| 
.

Since we want to evaluate the system from one impact to the next, the system's state at
each impact is particularly important. Combining conditions (2.4), (2.5), the impact condition
(2.3) can be rewritten using Z and \.Z. For the jth impact occurring at time t= tj ,

Zj =X\ast (tj) - x\ast (tj) =\pm d
2
, for x\in \partial B (\partial T ) the sign is + ( - ),

\.Z+
j = - r \.Z - 

j , d=
sM\omega 2

\| \^F \| \pi 2
.(2.6)

The notations \partial B and \partial T denote the bottom and top membranes, respectively. The parameter
d is the dimensionless length of the system, used throughout this paper as the bifurcation
parameter. In contrast to the actual length of the capsule s, d varies with multiple factors,
including the device length (s), mass (M), angular velocity of the external force (\omega ), and
forcing strength (\| \^F \| ). As illustrated in Figure 1(b),(c), the relative position of the system
is bounded, Z(t) \in [ - d/2, d/2]. At the impacts, which is when Zj = \pm d/2, the relative
velocity \.Zj changes sign: when the impact is on \partial B (Zj = d/2), \.Z changes from positive to
negative; when the impact is on \partial T (Zj = - d/2), \.Z switches from negative to positive. Since
the displacement at each impact is known to be either Zj = d/2 or Zj =  - d/2, the relative
velocity and time ( \.Zj , tj) describe the system state at the jth impact.

We summarize results from [60] for calculating the exact maps for ( \.Zj , tj) between two
consecutive impacts. Between the impact at tj and the next impact at tj+1, the relative
velocity and displacement can be derived by integrating (2.5) for t \in (tj , tj+1) and applying
(2.6) as follows:

\.Z(t) = - r \.Z - 
j + \=g \cdot (t - tj) + F1(t) - F1(tj),(2.7)

Z(t) =Z+
j  - r \.Z - 

j \cdot (t - tj) +
\=g

2
\cdot (t - tj)

2 + F2(t) - F2(tj) - F1(tj) \cdot (t - tj),

where F1(t) =
\int 
F (\pi t+\psi ) dt and F2(t) =

\int 
F1(t) dt. At the jth impact, Z+

j =Z - 
j . Therefore,

the superscripts in \.Z\pm are omitted, since (2.7) are in terms of Z - and \.Z - only. Using the
equations (2.7), there are four basic nonlinear maps PBB, PBT , PTB, PTT corresponding to
motion between consecutive impacts, in terms of the four combinations of impact locations,
\partial B\rightarrow \partial B, \partial B\rightarrow \partial T, \partial T \rightarrow \partial B, \partial T \rightarrow \partial T . All four maps take the form

\.Zj+1 = - r \.Zj + \=g \cdot (tj+1  - tj) + F1(tj+1) - F1(tj),

(2.8)

\pm d
2
=\pm d

2
 - r \.Zj \cdot (tj+1  - tj) +

\=g

2
\cdot (tj+1  - tj)

2 + F2(tj+1) - F2(tj) - F1(tj) \cdot (tj+1  - tj).
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(a) (b)

(c)

Figure 1. (a) Illustration of the VI pair: A ball moves freely within a harmonically forced capsule enclosed
by deformable membranes on both ends. The capsule is positioned with an angle \beta relative to the horizontal
plane and is excited by an external harmonic excitation \^F (\omega \tau +\psi ). The mass, length of the capsule, and mass
of the ball are M,s, and m, respectively. (b) The two dashed black lines represent the displacement of the
top and bottom membranes, X(t)\ast \pm d/2. The green stars and blue dots indicate the impacts at \partial B and \partial T ,
respectively. The red solid lines connect each impact at \partial T and \partial B, representing the estimated ball movement
between each impact. (c) Phase plane in terms of relative variables. The relative displacement Z(t) oscillates
between  - d/2 and d/2, and the relative velocity \.Z(t) has a sign change at each impact. The arrows indicate
the direction of time. Parameters: d= 0.35, \.Z0 = 0.43 and \psi 0 = 0.26.

The maps derived above are based on the system (2.7), which gives the exact map when
evaluated at impact times t= tj ; specifically, P\ell : ( \.Zj , tj)\rightarrow ( \.Zj+1, tj+1) for \.Zj = \.Z(tj). Notice
that the sign for \pm d/2 is chosen depending on the impact locations of Zj ,Zj+1, + ( - ) for \partial B
(\partial T ).

Ideally, we would like to transform (2.8) into closed-form expressions for ( \.Zj+1, tj+1) in
terms of ( \.Zj , tj), which can be used to analyze stability and other (global) dynamic properties
of these maps and their compositions. Furthermore, if we wish to determine the map for the
first return to \partial B for sequences as shown in Figure 1(b),(c), we would seek the exact map
for the impact sequence \partial B \rightarrow \partial T \rightarrow \partial B, or for two consecutive impacts \partial B \rightarrow \partial B, which
we refer to as bottom-top-bottom (BTB) or bottom-bottom (BB) motion, respectively. Here,
we use the simpler case of BB motion to demonstrate the difficulties in deriving closed-form
expressions for such sequences. The map P\mathrm{B}\mathrm{B} is given by (2.8); using Zj+1 = Zj = d/2, we
have

\.Zj+1 = - r \.Zj + \=g \cdot (tj+1  - tj) + F1(tj+1) - F1(tj),(2.9)

d

2
=
d

2
 - r \.Zj \cdot (tj+1  - tj) +

\=g

2
\cdot (tj+1  - tj)

2 + F2(tj+1) - F2(tj) - F1(tj) \cdot (tj+1  - tj).

For concreteness, we take F (\pi t+ \psi ) = cos(\pi t+ \psi ). Then F1(t) =
1
\pi sin(\pi t+ \psi ) and F2(t) =

 - 1
\pi 2 cos(\pi t+\psi ). Substituting these into (2.9) and solving for ( \.Zj+1, tj+1), we have
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\.Zj+1 = - r \.Zj + \=gtj+1  - \=gtj +
1

\pi 
sin(\pi tj+1 +\psi ) - 1

\pi 
sin(\pi tj +\psi ),

(2.10)

0 = - r \.Zjtj+1 + r \.Zjtj +
\=g

2
t2j+1  - \=gtj+1tj +

\=g

2
t2j  - 

1

\pi 2
cos(\pi tj+1 +\psi ) +

1

\pi 2
cos(\pi tj +\psi )(2.11)

 - 1

\pi 
sin(\pi tj +\psi )tj+1 +

1

\pi 
sin(\pi tj +\psi )tj .

In (2.10), \.Zj+1 is a function of \.Zj , tj , as well as tj+1, determined from (2.11). Sorting terms
containing tj+1 to simplify (2.11) yields

\=g

2
t2j+1  - 

\Bigl( 
r \.Zj + \=gtj +

1

\pi 
sin(\pi tj +\psi )

\Bigr) 
tj+1

+
\Bigl( 
r \.Zjtj +

\=g

2
t2j +

1

\pi 2
cos(\pi tj +\psi ) +

tj
\pi 
sin(\pi tj +\psi )

\Bigr) 
=

1

\pi 2
cos(\pi tj+1 +\psi ).(2.12)

From these expressions, we see that it is impossible to get a closed-form expression for the state
( \.Zj+1, tj+1) from the state at the previous impact, ( \.Zj , tj). This motivates the new approach
that we discuss in detail in section 3. The formulation in (2.8) is useful when determining
conditions for periodic solutions with a fixed number of impacts, and the solutions' local
stability. For example, as in [60], a composition of a fixed number of maps provides the basis for
previous analyses of periodic solutions, and the corresponding linear stability analysis provides
information about whether the periodic solutions are stable under small perturbations. In this
previous work, different types of motion were generally categorized as n:m/p\scrT , where n and
m are the numbers of impacts on \partial B and \partial T , respectively, \scrT is the excitation period, and
p is an integer. Furthermore, the impact pair has been demonstrated to yield n:m/p\scrT and
n:m/C behaviors, with C indicating complex, aperiodic, or chaotic behavior.

In the remainder of this paper, we use \psi j =mod(\pi tj+\psi ,2\pi ) rather than tj to quantify the
impact timing within the forcing period of oscillation. Note that \psi j is distinct from the general
phase \psi in the forcing term F (\pi t+\psi ). This relative impact phase \psi j is more amenable than
tj for considering transients and (quasi-)periodic behavior. Figure 2 shows the relative impact
velocity \.Zk and relative impact phase \psi k on \partial B, corresponding to a sequence of bifurcations
with 1:1/\scrT , 1:1/p\scrT for p an even integer, and 1:1/C behavior over a range of the dimensionless
length d. (Note: \.Zk and \psi k on \partial T not shown.) We focus here on the parameters and the
range of d yielding 1:1-type behavior, with impacts alternating between \partial B and \partial T that are
typically favorable for energy output and observed for the system (2.1)--(2.3) over a large
range of parameters [60, 61].

Remark 2.1. The numerical results in the bifurcation diagram (Figure 2) are generated
by solving (2.1)--(2.3) over a long time, recording the limiting values for \.Zk and \psi k on \partial B for
each value of d. The attracting state then serves as the initial condition for the next value of d,
using a continuation-type method with decreasing d. Throughout this paper, the parameters
used to generate the simulations are the following: r = 0.5, \| \^F\| = 5, M = 124.5 g, \omega = 5\pi ,
\beta = \pi /3, g = 9.8 m/s2. Here, the nondimensional parameter d varies with the length of the
capsule s, as given in (2.6).
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(a) (b)

Figure 2. Bifurcation diagrams for \.Zk and \psi k generated using the exact map from system (2.7).

3. Identification and visualization of the return maps. While the previous analyses
capture the local stability of branches corresponding to periodic solutions, they do not provide
information about the global attraction of this behavior or the potential for other attracting
behavior. In contrast, here we seek to provide global stability results for the attraction of
different types of solutions, including periodic, nearly periodic, and chaotic behavior, as shown
in Figure 2. With that in mind, normally we would want to have the maps in an explicit form
for the system state ( \.Zj ,\psi j). Equation (2.12) has a solution if the quadratic function on the
left-hand side (LHS) and the cosine function on the right-hand side (RHS) intersect, but it is
impossible to get a closed-form expression for tj+1 or \psi j+1 and, similarly. for \.Zj+1. Further
details of the derivation of the equations for the maps can be found in section SM1 of the
supplementary material (M165276 01.pdf [local/web 240KB]).

For the BTB case, the same hurdle arises. In that case, the BTB motion is composed
of maps PTB \circ PBT , and therefore a closed-form first return map for \partial B would require the
composition of expressions for ( \.Zj+1, tj+1) and ( \.Zj+2, tj+2). The only difference in the equa-
tions for these quantities is the sign of \pm d/2 in (2.9), so the lack of closed-form expressions
follows as in (2.12). Therefore, we propose a computer-assisted method to transform these
nonautonomous, implicit maps into a composition of smooth maps using explicit polynomials.
To achieve this, we define a novel type of return map that can be combined with phase plane
analysis to identify regions of state space with potentially attracting or transient behavior.

There are three key elements to our generalizable approach to the maps:
1. We exploit the nonsmooth impact events in the dynamics, leading to the observation

that any transient behavior can be broken down into a sequence of a small number of
types of return maps to \partial B, as shown in Figure 1(b): those that impact \partial T between
sequential impacts on \partial B and those that do not.

2. The second key element is the ability to approximate these return maps with polyno-
mial functions, noting that there may be different choices for this approximation.

3. We focus on families of return maps for which a valuable phase plane analysis follows
naturally, in contrast to the maps between different impacts (2.7)--(2.8).

With sequential impacts on \partial B as a natural framework for defining the maps, we focus
on the first return maps to \partial B captured by P\mathrm{B}\mathrm{T}\mathrm{B} and P\mathrm{B}\mathrm{B}. Note that in order to capture
all possible transients, one would normally have to consider sequences with multiple impacts
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on \partial T before returning to \partial B, e.g., sequences such as BTTB, BTTTB, etc. While we could
include these in our analysis, we note that for \beta > 0 and for the values of the forcing amplitude
\^F and restitution coefficient r considered here, these sequences are generated in a limited
range of larger initial \.Zk and nearly in-phase \psi k. Furthermore, one can show by repeated
applications of the maps that the larger values of \.Zk cannot be sustained for the given \^F and
r [61, 24], so repeated impacts on \partial T are highly transient for these parameters. Therefore,
they play a negligible role in the global dynamics, particularly as we focus on potentially
attracting regions. Some detailed comments on this are included under Remark 3.2 below.

Our approach also allows for considering sequences such as BTBB and BBTB. As dis-
cussed in the conclusions, these sequences correspond to grazing bifurcations to 2:1 solutions.
Bifurcations to stable 2:1 behavior do not occur for the parameters considered here and can
be demonstrated as transient, so they are not considered here.

Remark 3.1. It is worth noting the distinction between this approach and that of a
Poincar\'e map with \partial B as the Poincar\'e section. Here, we divide all the sequences that return
to \partial B into different families, depending on which other impacts occur before the system
returns to \partial B, considering the maps for the different families separately.

While above we have used the subscripts j and k somewhat generically for impacts, for
clarity with respect to the maps in (2.7)--(2.8), we reserve the subscripts j, j + 1, . . . for se-
quential impacts on either \partial B or \partial T . Then, for the sequential impacts on \partial B only, in the
following we use the subscripts k, k + 1, . . ., so that for k = j and P\mathrm{B}\mathrm{T}\mathrm{B} (P\mathrm{B}\mathrm{B}), the (k + 1)th
impact on \partial B corresponds to the (j + 2)th ( (j + 1)th) impact when counting all impacts.
That is, for Zj \in \partial B,

P\mathrm{B}\mathrm{T}\mathrm{B} : ( \.Zj ,\psi j)\rightarrow \{ ( \.Zj+2,\psi j+2) | Zj+1 \in \partial T,Zj+2 \in \partial B\} ,(3.1)

P\mathrm{B}\mathrm{B} : ( \.Zj ,\psi j)\rightarrow \{ ( \.Zj+1,\psi j+1)| Zj+1 \in \partial B\} .

Note that for physical clarity, we have slightly abused notation in (3.1), using Zj \in \partial B and
Zj \in \partial T for impacts on either end of the capsule in place of Zj =\pm d/2 as discussed following
(2.6).

As illustrated in Figure 1(b), the sequence length, for example, to (nearly) periodic be-
havior is not uniform over the space of initial conditions and cannot be anticipated a priori.
The return map to \partial B gives a flexible construction that can be applied over any length of the
transient. This framework is well-suited for capturing global dynamics through phase plane
techniques and can also be applied in stochastic settings for the VI pair [40]. In identifying
potentially attracting dynamics, we use projections of the return maps in the \.Zk  - \.Zk+1 and
\psi k - \psi k+1 phase planes, relative to the corresponding diagonals (see section 3.1). The maps in
(2.7)--(2.8) do not lend themselves to these goals, as these are not (necessarily) return maps.

For the remainder of the paper, we track the first return maps for impact velocity and
impact phase ( \.Zk,\psi k) on \partial B, using the subscripts k, k+1, . . . to indicate sequential impacts on
\partial B, composed of the building blocks in (3.1). Figure 3 shows how the choice of these building
blocks divides the state space for ( \.Zk, \psi k) by viewing this pair as the initial condition, which
then yields one of these two return maps. Figure 3(a) shows how the ( \.Zk, \psi k) plane is
divided by tracking the return maps. Figure 3(b) illustrates a further division of the state
space, necessary for applying straightforward polynomial approximations of the return maps,
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(a) (b)

Figure 3. (a) Using the building blocks in (3.1), the state space \.Zk - \psi k can be partitioned based on two types
of first return maps: P\mathrm{B}\mathrm{B} (black regions) and P\mathrm{B}\mathrm{T}\mathrm{B} (magenta region). The blue square indicates the location of
\scrR 1, a region within the P\mathrm{B}\mathrm{T}\mathrm{B} region that has special properties as studied in detail in section 4. (b) A further
partition of the state space into five regions, convenient for approximation as determined by the algorithm in
section 4: Regions \scrR 1, \scrR 2, \scrR 4 divide the state space for the BTB motion, and regions \scrR 3, \scrR 5 divide the state
space for the BB motion. The partition in panel (b) shows an approximation to the exact solution in panel (a),
so the dividing boundaries between regions do not match exactly those based on the exact map. The parameter
used in (a) is d= 0.26.

as discussed in the context of the full algorithm described in section 4. Note that the building
blocks (3.1) are analogous to short words in the symbolic representations used for piecewise
linear maps in [66], which form the basis for invariant cones and trapping regions. We note
that the trapping region in [66] appears to be analogous to what we call the attracting domain
in this paper, which is a compact region that attracts all nontrivial trajectories of the map.

Remark 3.2. For the algorithm developed in this paper, we restrict our attention to the
range of 0 \leq \psi k \leq \pi , discussed further in the context of Figure 7 below. As can be shown
for the model (2.1)--(2.3) and the parameters considered in this paper, impacts with \psi k > \pi 
correspond to those where the ball and capsule are moving in the same direction, yielding
smaller impact velocities and thus transient behavior in both \psi k and \.Zk [59]. This point
is discussed in section 3.1 below, in the context of projections of the 2D maps for \.Zk,\psi k
into their corresponding phase planes. Likewise, for the parameter regimes considered in this
paper, focusing on a range of d with energetically favorable 1:1-type sequences of alternating
impacts, the impact velocities in the range \.Z > 1.0 are transient. Figure 22 in Appendix
A.1 illustrates the additional regions with transient BTTB behavior, which can appear for
\.Z > 1.0. While the approach proposed here can handle these values by including additional
transient regions, for \beta > 0 and the parameters considered here, these sequences are strongly
transient and essentially negligible in the global behavior. Then for simplicity of exposition,
we restrict our attention to 0\leq \psi k \leq \pi and 0< \.Z \leq 1.0.

Figure 4 illustrates the reduction of our representation within the dynamics, focused on
the impact velocity \.Zj and phase \psi j on \partial B (green stars), in contrast to Figure 1(b), which
shows the exact behavior solution at and between the impact time. The first return maps
in (3.1) are implicit in form and thus awkward to use directly in a global stability analysis.
Then, as a first step toward a more explicit approximation, we visualize the return maps in
(3.1).
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GLOBAL ANALYSIS FOR VIBRO-IMPACT DYNAMICS 1903

Figure 4. The values ( \.Zj ,\psi j) at impacts (both \partial B (green stars) and \partial T (blue circles)), starting with initial
conditions \.Z0 = 0.43 and \psi 0 = 0.26 with d = 0.35. Note that the location of the impact determines the sign of
the relative velocity: \.Zj > 0 for the impact on \partial B, and \.Zj < 0 for \partial T , and the dotted lines trace the order in
which the impacts happen. In this paper, we focus on the return map for \partial B, denoted ( \.Zk,\psi k).

Figure 5. Illustration of \.Zk+1 and \psi k+1, the first return maps on \partial B using (3.1) for fixed \psi k = 0.4 and
sweeping through initial values \.Zk \in (0,1.0) with d = 0.35. The magenta points correspond to the first returns
via BTB type, and the black points represent the first returns of BB type.

3.1. Visualization of the maps and projections in the phase planes. Given that the
return maps P\mathrm{B}\mathrm{T}\mathrm{B}, P\mathrm{B}\mathrm{B} are in terms of the 2D vector ( \.Zk,\psi k), we show two separate surfaces
for \.Zk+1 and \psi k+1 generated by them. To build these up, we first show the maps projected
in the phase planes \.Zk  - \.Zk+1 and \psi k  - \psi k+1, for a fixed value of 0 < \psi k < \pi , and sweeping
through \.Zk \in (0,1.0). In Figure 5(a), the resulting first return values ( \.Zk+1,\psi k+1) are sorted
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(a) (b)

Figure 6. Illustration of the 3D surfaces generated using the first return maps P\mathrm{B}\mathrm{T}\mathrm{B} (magenta) and P\mathrm{B}\mathrm{B}

(black) in (3.1), with d = 0.35. Each initial condition pair ( \.Zk,\psi k) has output ( \.Zk+1,\psi k+1), graphed on the
vertical axes in panels (a) and (b), respectively. Supplementary video 1 (M165276 02.gif [local/web 33.3MB])
provides a 360\circ rotating view of the surfaces.

according to BTB and BB motions, as indicated by different colors. In Figure 5(b), in this
projection, these two types of behavior can interweave for a single value of \psi k, as different
values of \.Zk yield a variety of \psi k+1 that appear in both the P\mathrm{B}\mathrm{T}\mathrm{B} and P\mathrm{B}\mathrm{B} return maps.

Repeating the application of the first return map (3.1) over the range of initial phase values
\psi k yields the surface visualized in Figure 6, over a range of initial values in the horizontal \.Zk - 
\psi k plane. For P\mathrm{B}\mathrm{B}, shown by the black points, in general, small values of \.Zk (approximately
\.Zk < 0.55) map into small values of \.Zk+1, while \psi k+1 tends toward values either near 0 or
above 2. In the case of P\mathrm{B}\mathrm{T}\mathrm{B}, shown by magenta points, larger \.Zk map into larger values
of \.Zk+1, with the corresponding \psi k+1 spread out between 0 and \pi . The visualization of the
return maps P\mathrm{B}\mathrm{B} and P\mathrm{B}\mathrm{T}\mathrm{B} indicates a few features that are important in approximating these
surfaces with polynomial maps. Not only are the surfaces disconnected, but the surfaces have
dramatically different gradients corresponding to different regions in the Zk  - \psi k state space,
which leads to the partitioning as shown in Figure 3(b). These regions are identified as part
of the algorithm for approximating the surfaces, as discussed in detail in section 4.

Comparison of the return maps with the diagonals in the \.Zk - \.Zk+1 and \psi k - \psi k+1 phase
planes is achieved via projections of the return map surfaces on the phase planes, as shown
in Figure 7 and Appendix A.3, Figure 23. This projection is valuable as we identify potential
regions for attracting and transient behaviors, following from comparisons of the map surfaces
with the diagonals in the phase planes.

Remark 3.3. To see the significance of the diagonals in the phase planes, recall the classic
example of the logistic map xn+1 = rxn(1  - xn). The dynamics of the logistic map vary
with the parameter r, directly related to the slope of the map rxn(1 - xn) at the fixed point
x\ast n = rx\ast n(1 - x\ast n), which by definition is at the intersection of the phase plane diagonal and
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the map. The fixed point is an attractor (repeller) if the absolute value of its slope is less
than (greater than) 1. This fact motivates us to look for potential attracting or transient
dynamics by studying the intersection between the projections of the maps \.Zk+1( \.Zk,\psi k) and
\psi k+1( \.Zk,\psi k) in their respective \.Zk  - \.Zk+1 and \psi k  - \psi k+1 phase planes and the diagonals in
those phase planes.

Figure 7 illustrates this comparison for the surfaces in the BTB region with the diagonals in
the phase planes. There the surfaces, projected into the phase planes, are shown with different
colors corresponding to different values of \psi k, i.e., a different color for each ``strand"" in the

Figure 7. The 2D projection of the PBTB maps (magenta surfaces in Figure 6) on the phase planes \.Zk - \.Zk+1

and \psi k  - \psi k+1. For all panels, d = 0.35. Different colors correspond to the maps for different values of \psi k.
Panels (a)--(b) show results for initial condition \psi k \in [0, \pi ]. Stars show cases where both maps take values near
the diagonals in both phase planes; for red stars the slopes of the surfaces are smaller, suggesting potentially
attracting dynamics near these values for \psi k < \pi /2, while for brown stars the surfaces have steep slopes,
suggesting transient dynamics for these values when \psi k >\pi /2. Panels (c)--(d) show results for initial condition
\psi k \in [\pi ,2\pi ]; there are no cases where both maps take values near the diagonals, indicating transient dynamics
over this range.
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map for fixed \psi k and sweeping over \.Zk as in Figure 5; e.g., the value of \psi = \pi /2 is the same
shade of blue, cyan blue, in both panels. Together, these form the complete surfaces for \.Zk+1

and \psi k+1 then projected into their respective phase planes. Then, we look for cases where
the same color strands cross the diagonals in both phase planes. These indicate potential
fixed point values of ( \.Zk,\psi k). To identify regions that contain these potentially attracting
values, we look for regions where both maps have points near the diagonals of \psi k  - \psi k+1 and
\.Zk  - \.Zk+1. Figures 7(a)--(b) show these values for the PBTB map for 0 < \psi < \pi , with these
points marked near the diagonals in both phase planes. There are two clusters of these points:
red for those with \psi k <\pi /2 and brown otherwise. In section 4.2, Iteration 2, step (iii) in the
algorithm discusses the specific criteria for defining values near the diagonals, which yields
the special region marked in blue in Figure 3(a) as a potentially attracting region. Similarly,
Figures 7(c)--(d) show the PBTB maps for \pi < \psi < 2\pi . While these points may satisfy the
criteria for being near the diagonals, the steep slope of the curves forming the map for \.Zk+1

leads us to conclude that these points are not in a potentially attracting region, as repeated
in section 4.2 Iteration 2, step (iii).

In Appendix A.3, Figure 23 shows these comparisons of the maps projected into the
phase planes for the PBB maps. The results of this comparison are discussed both there
and in section 4.2, Iteration 1, step (iii), leading to conclusions about the transient nature
of these regions. Section 4 further articulates these and other details in the application of
the algorithm, combining visualizations of Figures 6, 7, 23, and 22 to give further insight
into behavior on subdivisions of the return map surfaces together with approximating these
surfaces with polynomials.

4. Composition of the approximate map. We provide an algorithm for deriving a set of
explicit piecewise polynomial maps fn and gn for each region \scrR n in the state space \.Zk  - \psi k,
approximating the surfaces \.Zk+1 and \psi k+1 as shown in Figure 6. The approximate return
maps are given in terms of the variables (vk, \phi k) that denote the approximate relative impact
velocity on \partial B and the corresponding impact phase, respectively, at the kth return to \partial B.
We define the composite approximate map \scrM that combines the continuous maps fn, gn for
the regions \scrR n in Figure 3(b), taking the form

(vk+1, \phi k+1) =\scrM (vk, \phi k)\equiv (fn(vk, \phi k), gn(vk, \phi k)), where (vk, \phi k)\in \scrR n.(4.1)

Given the complex nature of the surfaces for \.Zk+1 and \psi k+1, the algorithm for constructing
the maps (fn, gn) leads to refining the regions shown in Figure 3(a), resulting in the regions
\scrR n for n= 1,2,3,4,5 in Figure 3(b).

Before constructing \scrM in (4.1) (derived below, with specifics given in Appendix A.8),
we give a first illustration that shows it captures the critical features of (2.7)--(2.8) in the
parameter range of interest, using \scrM to obtain the bifurcation diagram analogous to Figure 2.
Figure 8 shows the results for vk, \phi k vs. d, generated using \scrM via the continuation-type
method described in Remark 2.1. Comparing with the corresponding bifurcation diagram for
the exact map in Figure 2, we see that the results from \scrM capture a number of features of the
original system, including d values for the period-doubling bifurcations, the attracting values
of vk and \phi k for the different branches, and the approximate range of values of vk and \phi k for
the chaotic behavior obtained for smaller d in the range shown in Figures 2 and 8.
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GLOBAL ANALYSIS FOR VIBRO-IMPACT DYNAMICS 1907

(a) (b)

Figure 8. Bifurcation diagrams generated using the composite approximate map \scrM , defined in (4.1) and
Appendix A.8, with coefficients as given in supplementary section SM2. The bifurcation structure obtained
using \scrM reproduces remarkably well that obtained for the exact map (2.7)--(2.8) presented in Figure 2.

Figure 9. Illustration of the general algorithm for constructing the composite map.

4.1. General Algorithm: Construction of the composite map \bfscrM . Illustrated in Fig-
ure 9, the general algorithm consists of three main activities: identifying an initial partition
of the state space based on the return map building blocks, iterating approximations of the
return maps on these regions, and including updates of the regions as necessary to improve
the critical approximations.

\bfI \bfn \bfi \bft \bfi \bfa \bfl \bfi \bfz \bfe : \bfS \bft \bfe \bfp \bfs (\bfzero )--(\bfi \bfi ): Partition state space for the definition of the composite map.
(0) Choose a state as the basis for return behavior.
(i) Generate surfaces ( \.Zk+1,\psi k+1) corresponding to the different families of the first return

maps for this state.
(ii) Partition regions in the state space based on these different families of first returns.

Label these regions as \scrR n.1, denoting region n defined on Iteration 1.

\bfI \bft \bfe \bfr \bfa \bft \bfe \bfo \bfn \bfs \bft \bfe \bfp \bfs (\bfi \bfi \bfi )--(\bfv \bfi ) until appropriate fit for surfaces corresponding to first return
map for all regions \scrR n.m, region n on mth iteration.
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1908 L. BAO, R. KUSKE, D. YURCHENKO, AND I. BELYKH

(iii) Identify potential regions of attraction or transient behavior, e.g., via comparison of
the surfaces with diagonals in the phase planes.

(iv) Choose an appropriate order of polynomial fit for the surface(s) in each region, via
testing different orders of polynomials and, depending on the resolution needed, to
identify fn and gn for each \scrR n.m.

(v) If the fit of the polynomial is unsatisfactory, adjust the size of the regions and/or
locate new regions for additional partitions.

(vi) Optional reduction: for regions that yield immediate transitions to other regions,
replace with appropriate resetting conditions.

\bfF \bfi \bfn \bfa \bfl \bfi \bfz \bfe 
(vii) Once the polynomial approximations are defined for maps for all regions, finalize defini-
tions of regions, labeled as \scrR n, dropping the .m label, together with their corresponding maps
(fn, gn). This final step includes a definition of the range for each map, as discussed further
in the demonstration in section 5.

Steps (iii)--(vi) depend on the computer-assisted analysis of several different features of the
first return map surfaces found in (ii). In (iii) we compute quantities relevant to the dynamics
and geometric characteristics of the maps as we make comparisons with the corresponding
phase planes (see Remark 3.3). Keeping the user-defined constants to a minimum, we must
define a level of accuracy and order of the polynomial when fitting any of the surfaces in
step (iv). There is also some flexibility in the size of the region defined for the potentially
attracting region(s), as used in step (v). In section 4.2, we illustrate the implementation of
these steps and parameter choices in the concrete context of (2.1)--(2.3) and the corresponding
nondimensional form (2.6). There, we also highlight the points about computational efficiency
and adjustments of any user-defined parameters related to the accuracy of the polynomial
approximations.

Remark 4.1. As demonstrated below, in certain regions \scrR n where the shape of the map
clearly indicates transient dynamics, we look for a simple approximation that takes the form
of a single variable polynomial for each of the variables of interest, e.g., vk+1 = fn(vk) and
\phi k+1 = gn(\phi k). We refer to these as separable maps since we approximate the 2D map for
(vk, \phi k) with two 1D maps, each depending on a single variable. Such an approximation
supports a cleaner visualization in the phase plane by simplifying the details of the transient
behavior while approximating it as dictated by the shape of the exact map.

4.2. Algorithm implementation: A composite map for the VI-pair model. We apply the
general algorithm outlined above---Initialize, Iterate, and Finalize--- to identify appropriate
partitions of the state space and the approximations for the return maps on these regions for
the nondimensionalized VI-pair model as in (2.7). Here, we present this application step by
step, with the specific details of the composite map \scrM given in Appendix A.8.

\bfI \bfn \bfi \bft \bfi \bfa \bfl \bfi \bfz \bfe the partition of the state space.
(0) Choose Z \in \partial B as the state for the basis of the first return maps.
(i) Generate surfaces \.Zk+1 and \psi k+1 for BTB and BB behaviors as first return maps

(2.8) over the range of possible initial conditions in the state space ( \.Zk,\psi k) (see, e.g.,
Figure 3(a)).
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GLOBAL ANALYSIS FOR VIBRO-IMPACT DYNAMICS 1909

(ii) Partition the state space into regions \scrR n.1 according to building blocks BTB and BB:
\scrR 1.1 corresponds to BTB, \scrR 3.1 corresponds to BB behavior for smaller \psi k, and \scrR 5.1

corresponds to BB behavior with larger \psi k.

\bfI \bft \bfe \bfr \bfa \bft \bfi \bfo \bfn \bfone : \bfS \bft \bfe \bfp \bfs (\bfi \bfi \bfi )--(\bfv \bfi ):
(iii) Identify regions of potential attraction and transients as follows.

\bullet \scrR 1.1: Entire region of BTB behavior, including both transient regions and po-
tential attracting dynamics near the diagonals in the \.Zk  - \.Zk+1 and \psi k  - \psi k+1

planes.
\bullet \scrR 3.1: The surfaces for BB behavior with sharp gradients in the map near the

diagonals. Thus, transient BB behavior is expected (see Figure 23).
\bullet \scrR 5.1: The surfaces for BB behavior are away from the diagonal in the \psi k-\psi k+1

plane; thus transient BB behavior is expected (see Figure 23).
(iv) Polynomial approximation of surfaces for \.Zk+1 and \psi k+1 in \scrR 1.1, \scrR 3.1, and \scrR 5.1 (see

Figure 6):
\bullet \scrR 1.1, BTB behavior: The surface in this region is a combination of subregions

where the surfaces for \.Zk+1 and \psi k+1 have more gradual variation, contrasted
with others with sharp gradients. Thus, an accurate polynomial fit is challenging,
which also limits an accurate approximation of potentially attracting dynamics
near the diagonals in the \.Zk - \.Zk+1 and \psi k - \psi k+1 phase planes. This motivates
a further partitioning of the BTB region, as described in step (v).

\bullet \scrR 3.1, BB behavior: As can be observed in Figure 6, there are two disjoint sur-
faces for \.Zk+1. One is a curved surface with sharp gradients for which we use
fifth/fourth order polynomials in vk/\phi k for the approximate map (f3, g3) (see Ap-
pendix A.6). There is a second segment, nearly vertical in \.Zk+1, discussed in (vi)
below.

\bullet \scrR 5.1: As the surfaces for \.Zk+1 and \psi k+1 in \scrR 5.1 are away from the diagonal, we
use a ``separable"" approximation, as discussed in Remark 4.1. See Appendix A.7
for a discussion of the resulting approximate map (f5, g5).

(v) Update regions in terms of additional partitions for \scrR 1.1. The different features of the
\.Zk+1 and \psi k+1 surfaces in \scrR 1.1 motivates subdividing into two regions:
\bullet \scrR 1.2: Identify potentially attracting states, e.g., states for which the repeated

images of the return map PBTB are near the diagonals in the \.Zk  - \.Zk+1 and
\psi k  - \psi k+1 phase planes. This choice of \scrR 1.2 is limited to cases where the slopes
of the surfaces near the diagonals are primarily small, e.g., less than unity for
some values of d. The details for defining \scrR 1.2 are given in Iteration 2, step (iii),
including a quantitative characterization of proximity to the diagonals.

\bullet \scrR 2.2: These are remaining states that produce clearly transient BTB behavior.
This region includes sections of the PBTB map located away from the phase plane
diagonals and sections near the diagonals with sharp gradients.

(vi) From physical considerations, some maps are replaced with resetting functions and/or
approximate maps in nearby regions.

\bullet \pi < \phi < 2\pi : The transient behavior for this range of \phi k is discussed in Remark 3.2
above. Then, we employ the reset: \phi k+1 = 1.2 and vk+1 = vk if \phi k > \pi or \phi k < 0
(see Appendix A.8). The results are not sensitive to the choice of the user-supplied
reset value of \phi k+1 = 1.2. The shape of the surfaces in Figure 6, consistent with
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1910 L. BAO, R. KUSKE, D. YURCHENKO, AND I. BELYKH

observations from other studies [24, 61], suggests that the system moves toward
values \phi < \pi /2. At the same time, for the sake of generality, we want to choose
a value in a transient region consistent with the definition of \scrR 2.2 obtained in
Iteration 2 below.

\bullet The nearly vertical surface in \scrR 3.1 mentioned above represents strongly transient
behavior, consisting of transitions to BTB behavior or other states in \scrR 3. This
transient behavior is captured by using equations (A.2) throughout \scrR 3.1, without
approximating the vertical surface. Likewise, there is a small vertical section of
the surface \psi k+1 in \scrR 5.1, also discussed in Appendix A.7.

\bfI \bft \bfe \bfr \bfa \bft \bfi \bfo \bfn \bftwo : \bfS \bft \bfe \bfp \bfs (\bfi \bfi \bfi )--(\bfv \bfi ):
Iteration 2 is focused on the newly defined \scrR 1.2 and \scrR 2.2.

(iii) Considering attracting and transient BTB behavior:
\bullet To identify \scrR 1.2 as described in Iteration 1, step (v), we introduce a filter \scrR 1.2(d)

for a given d that selects states ( \.Zk,\psi k) near the diagonals ( \.Zk,\psi k) in the \.Zk  - 
\.Zk+1 and \psi k  - \psi k+1 phase planes with images ( \.Zk+1,\psi k+1) from PBTB near the
same diagonals. We then take the union of these regions to obtain a region valid
for the full range of d of interest. Then, \scrR 1.2 is given by

\scrR 1.2(d) =

\Biggl\{ 
( \.Zk,\psi k) :

1

\delta 
<

\bigm| \bigm| \bigm| \bigm| \psi k+1

\psi k

\bigm| \bigm| \bigm| \bigm| < \delta and
1

\delta 
<

\bigm| \bigm| \bigm| \bigm| \bigm| \.Zk+1

\.Zk

\bigm| \bigm| \bigm| \bigm| \bigm| < \delta 
\Biggr\} 
,(4.2)

\scrR 1.2 =\cup d\in [0.26,0.35]\scrR 1.2(d).

Of course, the size of \scrR 1.2 depends on the choice of the user-defined parameter \delta ,
which characterizes proximity to the diagonals. As discussed further in Appen-
dix A.3, the choice of \delta , together with the choice of polynomial order, influences
the error of the approximation of the surface in the region \scrR 1.2. Figure 10 shows
an example of the definition of \scrR 1.2.

(a) (b)

Figure 10. The surface corresponding to P\mathrm{B}\mathrm{T}\mathrm{B} (magenta and blue combined), with d = 0.35, where \scrR 1.2

(blue region) is obtained by using the filter (4.2) (\delta = 1.2) to identify return maps located near diagonals in both
the \.Zk+1 - \.Zk and \psi k+1 - \psi k phase planes.
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GLOBAL ANALYSIS FOR VIBRO-IMPACT DYNAMICS 1911

\bullet \scrR 2.2 is defined as the remainder of the BTB region, with transient behavior. This
conclusion follows from Figure 7, where the remainder of ( \.Zk, \phi k) in the BTB
region either does not correspond to points near the diagonals in both \.Zk+1 - \.Zk
and \psi k+1 - \psi k phase planes, and/or is located on parts of the surfaces with steep
slopes.

(iv) Polynomial approximation of surfaces \.Zk+1 and \psi k+1.
\bullet \scrR 1.2: To capture subtle changes in the attracting behavior near the diagonals,

the surfaces for \.Zk+1 and \psi k+1 are approximated with polynomials of degree 3
in vk and degree 2 in \phi k,

vk+1(vk, \phi k) = f1(vk, \phi k)(4.3)

= b0 + b1\phi k + b2vk + b3\phi 
2
k + b4\phi kvk + b5v

2
k + b6\phi 

2
kvk

+ b7\phi kv
2
k + b8v

3
k,

\phi k+1(vk, \phi k) = g1(vk, \phi k)(4.4)

= a0 + a1\phi k + a2vk + a3\phi 
2
k + a4\phi kvk + a5v

2
k + a6\phi 

2
kvk

+ a7\phi kv
2
k + a8v

3
k.

\bullet \scrR 2.2: We use a ``separable"" approximation (see Remark 4.1) that takes the form

vk+1(vk) = f2(vk) = b20v
5
k + b21v

4
k + b22v

3
k + b23v

2
k + b24vk + b25,(4.5)

\phi k+1(\phi k) = g2(\phi k) = a20\phi 
5
k + a21\phi 

4
k + a22\phi 

3
k + a23\phi 

2
k + a24\phi k + a25.

Figures 11(a)--(c) show (green) curves representative of the transient behavior for
this region, following from the shape of the surfaces for \.Zk+1 and \psi k+1 shown
in panel (c) for \scrR 2.2. The orange curves, showing the separable map in (4.5),
approximate this green curve. See further discussion in Appendix A.4.

(v) Update regions/additional partitions for \scrR 2.2: As seen from the curve shown in Fig-
ure 11, which forms the basis of the separable map, the map is not defined on smaller
values of \.Zk in \scrR 2.2. This suggests a further partition of \scrR 2.2 into \scrR 2.3 and \scrR 4.3 to
capture all values of \.Zk+1, as described in Appendices A.4 and A.5.

(vi) No further updates are needed on this optional step.

Remark 4.2. Here, we note that the individual curves vk+1 = f2(vk) and \phi k+1 = g2(\phi k)
shown for \scrR 2.2 overlap with the intervals for vk and \phi k in \scrR 1.2. At first glance, this may
seem to cause indeterminacy in the application of the map. In particular, since \scrR 2 surrounds
\scrR 1, it is possible that one of vk or \phi k in \scrR 2.2 can take a value that also appears in the
range for \scrR 1.2. However, for (vk, \phi k) to be in \scrR 1.2, both vk and \phi k must be in the intervals
corresponding to \scrR 1.2. Then we have (vk+1, \phi k+1) = (f1, g1), as in (4.3)--(4.4), and not the
separable approximation (f2(vk), g2(\phi k)).

We note that while the separable approximation requires some user choice of representative
curves, this step is not necessary for determining the composite map \scrM . We include it here
as it aids in visualizing the dynamics in cobweb phase portraits in section 5. Furthermore,
the separable approximations inspire the auxiliary map applied in section 6 to complete the
global analysis.

\bfI \bft \bfe \bfr \bfa \bft \bfi \bfo \bfn \bfthree : \bfS \bft \bfe \bfp \bfs (\bfi \bfi \bfi )--(\bfv \bfi ).
This iteration focuses on \scrR 2.3 and \scrR 4.3.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

06
/0

9/
25

 to
 1

31
.9

6.
43

.2
01

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



1912 L. BAO, R. KUSKE, D. YURCHENKO, AND I. BELYKH

(a) (b) (c)

(d) (e) (f)

Figure 11. Illustration of the P\mathrm{B}\mathrm{T}\mathrm{B} surface (magenta surfaces in panels (c) and (f)) and its corresponding
separable approximation (green and orange curves) for \scrR 2 (panels (a), (b), (c)) and \scrR 4 (panels (d), (e), (f)),
with d = 0.35. Generated using the exact map (3.1), the green curves are chosen to represent the variation of
the surface for fixed \psi k or \.Zk. Specifically, for (c), \psi k = 0.35 (left) and \.Zk = 0.85 (right); for (f), \psi k = 1.35
(left) \.Zk = 0.12 (right). Panels (a)--(b) and (d)--(e) compare the green curves and the orange curves for the
approximate separable map (4.5) in the phase planes. See Appendices A.4 and A.5 for details.

(iii) Considering transient dynamics for \scrR 4.3: For values of small vk not covered by the
approximate map (4.5) in \scrR 2.2, we consider surfaces as shown in Figure 11(f).

(iv) Polynomial approximations of \scrR 4.3: Similar to the separable maps defined for \scrR 2.2,
we use separable single variable approximations (f4, g4) for the transient dynamics,
given in equation (A.1) and shown in Figures 11(d) and (e).

(v) No additional partitions are needed.
(vi) No further updates needed.

\bfF \bfi \bfn \bfa \bfl \bfi \bfz \bfe 
(vii) We finalize definitions of the regions \scrR n, n = 1,2, . . . ,5, dropping the .m label. The

corresponding maps (fn, gn) that define the composite map\scrM are given in the detailed
algorithm in Appendix A.8.

We add some remarks about computational efficiency. In this framework, the main com-
putation identifies surfaces in regions based on short-time realizations of the impact pair over
the state space of initial conditions. These contrast with long-time simulations over the entire
state space traditionally used in deriving flow-defined Poincar\'e maps for global dynamics of
limit-cycle or chaotic systems [30] or for computing basins of attraction [57, 38]. A second
feature that contributes to efficiency is the comparison of projections of the surfaces with the
diagonals in the phase planes, as in Figures 7 and 23. As we seek globally attracting dynamics,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

06
/0

9/
25

 to
 1

31
.9

6.
43

.2
01

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



GLOBAL ANALYSIS FOR VIBRO-IMPACT DYNAMICS 1913

this division allows us to focus on accurate approximate maps in those regions with attracting
dynamics, while relatively cheap approximations are sufficient for transient dynamics.

There are user-defined parameters---polynomial order, surface approximation accuracy,
and surface values' proximity to the diagonals in the phase plane, as in determining \scrR 1

in (4.2)--(4.4) and Appendix A.3. These require some iteration to improve the fit of the
polynomial approximation to the surface for the region(s) containing the attracting dynamics,
but this is not the main computational cost. Furthermore, defining \scrR 1 as a union over the
parameter d of surfaces from (4.2) also aids in the efficiency of this fit.

As discussed above, here we have made some additional parameter choices to apply sepa-
rable maps for convenience in visualization, but they are not a necessary part of the algorithm.
Appendix A.8 includes further discussion on values appearing in the algorithm. While certain
aspects of the computation-based analysis do not rely on finding polynomial approximations
for the return maps, we pursue them with the goal of explicit expressions for the global analysis
obtained in section 6.3.

5. Validation of the composite map. In this section, the composite map \scrM is validated
using three distinct types of solutions, showing that it can reproduce the dynamics of different
types of solutions. The first type of solution is the fixed point of \scrM , which we call case FP,
corresponding to the 1:1/\scrT solution of the full system (2.1)--(2.3). The second type is the
period doubled case, i.e., the period-2 cycle of \scrM , called case PD, corresponding to the 1:1/2T
behavior in the full system. Lastly, the chaotic dynamics of \scrM , called case CD, corresponds to
the chaotic 1:1/C behavior in the full system. These different dynamics can be observed from
the bifurcation diagrams in Figures 2 and 8 for d= 0.35, d= 0.30, and d= 0.26, respectively.

Figure 12 shows the implementation of the composite map \scrM (dashed green line), with
the corresponding pseudocode given in Appendix A.8. Initial condition pairs (vk, \phi k) are
selected from transient regions \scrR 3 and \scrR 4 to demonstrate that \scrM can reliably predict the
long-term system behavior, reaching a potentially attracting region after traveling through
other transient regions \scrR n. Similar results were obtained for other randomly selected initial
pairs (not shown here). Trajectories for\scrM are plotted together with the trajectories generated
with the exact map (3.1) (solid orange line). Panels (a) and (b) correspond to case FP. Panels
(c) and (d) correspond to case PD and case CD, respectively. In all cases, both \scrM and
the exact map (3.1) trajectories follow each other to reach the same attracting dynamics.
Of course, the transient dynamics are not reproduced exactly, e.g., given the less accurate
separable approximations used in \scrM to facilitate visualization of the maps.

Complementary to the validation of \scrM in Figures 12 and 13 demonstrates the attracting
behavior in the projected vk - vk+1 and \phi k - \phi k+1 phase planes with initial conditions for small
vk and \phi k (v0 = 0.2, \phi 0 = 0.1). Repeated application of the composite map is demonstrated
via cobweb phase portraits, indicating the steps toward the attracting behavior. The dynamic
behavior is shown for the three types of solutions listed above. In both cases FP and PD,
the trajectories are limited to values within \scrR 1, while in case CD the long-term trajectory
takes values in \scrR 1 and \scrR 2. All of these are consistent with the bifurcation structure shown
in Figure 8 (and in Figure 2).

For the cobweb analysis using the maps (fn, gn) in the vk  - vk+1 and \phi k  - \phi k+1 phase
planes shown in Figure 13, it is possible to visualize the curves for the maps in \scrR 2, \scrR 4, and
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1914 L. BAO, R. KUSKE, D. YURCHENKO, AND I. BELYKH

(a) (b)

(c) (d)

Figure 12. Comparison of trajectories in state space from the exact map (3.1) (orange) and the composite
map \scrM (4.1) (green), superimposed on regions \scrR n used in the definition of \scrM as specified in Appendix A.8.
(a) and (b) correspond to case FP, also shown in cobweb phase portraits in Figures 13(a),(b); (c) corresponds
to case PD, also shown in Figures 13(c),(d); (d) corresponds to case CD, also shown in Figures 13(e),(f).
Parameters and initial conditions: (a) d = 0.35, \phi 0 = \pi /2, v0 = 0.35; (b) d = 0.35, \phi 0 = 0.1, v0 = 0.2; (c)
d = 0.30, \phi 0 = 0.1, v0 = 0.2; (d) d = 0.26, \phi 0 = 0.1, v0 = 0.2. Here, we show representative results for initial
conditions in the transient regions \scrR 3 and \scrR 4.

\scrR 5, as we use separable (1D) approximations in those regions. For \scrR 1 and \scrR 3 we cannot
show a single curve in this projection, given the 2D polynomial map used in (4.3)--(4.4) and
(A.2), respectively. Instead, shaded regions show the range of vk and \phi k in \scrR 1 (gray) and \scrR 3

(light blue). Then, the cobweb steps in these regions follow the (surface) maps (4.3)--(4.4) and
(A.2) for \scrR 1 and \scrR 3, respectively, for (vk, \phi k) in these regions, even though specific curves
are not shown. Given the width of these shaded regions, it is possible to give a maximum and
minimum for vk+1 and \phi k+1, which also motivates the auxiliary map defined and applied in
section 6 for \scrR 1.

We provide some navigation in order to trace the cobweb behavior for \scrM as shown in
Figure 13. A more detailed step-by-step navigation is provided in Appendix A.9 and supple-
mentary video 2 (Supplements Fig13ab animation3.mp4 [local/web 728KB]). Since the panels
show projections of the higher dimensional maps (fj , gj) in the phase planes, there is an over-
lap in these projections, and thus one must take care to use the correct map for vk and \phi k
in the overlap region. Specifically, for each cobweb step, (vk+1, \phi k+1) takes a value according
to the map for the region that is common for both (vk, \phi k). In all cases shown, the initial
condition (vk, \phi k) for k= 0 takes small values in \scrR 3. We observe that \scrR 3, \scrR 4, and \scrR 5 overlap
in the vk - vk+1 phase plane for these smaller values of vk, while in the \phi k - \phi k+1 phase plane
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Figure 13. Application of \scrM (4.1) projected on the vk and \phi k phase planes, with step navigation for (fn, gn)
discussed in the text. Curves show (separable) maps for regions \scrR 2 (green), \scrR 4 (red), and \scrR 5 (olive). Shaded re-
gions are for approximate 2D maps for\scrR 1 (gray) and\scrR 3 (light blue), which cannot be drawn in these projections.
Black dashed lines show the respective diagonals. Parameters: Case FP (a),(b): d = 0.35, v0 = 0.2, \phi 0 = 0.1;
case PD (c),(d): d= 0.30, v0 = 0.2, \phi 0 = 0.1; case CD (e),(f): d= 0.26, v0 = 0.1, \phi 0 = 0.2. Supplementary video 2
(Supplements Fig13ab animation3.mp4 [local/web 728KB]) provides a step-by-step demonstration of using the
overlapped curves in cobwebbing.
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the curve for \scrR 2 and region \scrR 3 overlap for smaller \phi k. Since \scrR 3 is the only region in common
for vk and \phi k for these small values, we conclude that (vk, \phi k)\in \scrR 3, and the first step follows
(vk+1, \phi k+1) = (f3(vk, \phi k), g3(vk, \phi k)) in (A.2), as shown in Figure 13. The result gives the
new (vk, \phi k), for the next step with k = 1, for which vk remains small while \phi k has increased
(before reaching the attracting dynamics observed for later steps in \scrR 1). Again \scrR 3, \scrR 4, and
\scrR 5 overlap in the vk  - vk+1 phase plane for these smaller values of vk, while in the \phi k  - \phi k+1

plane, \phi k takes a value corresponding to the range for \scrR 4 only. Then (vk+1, \phi k+1) follows the
map (f4, g4) for \scrR 4. Note that the approximate maps for \scrR 3 and \scrR 5 are not applied for vk,
even though vk takes values in their range, since \phi k is not in either \scrR 3 or \scrR 5. Eventually, for
a larger k > 1, vk has increased to a range with an overlap between \scrR 2 and \scrR 1, while \phi k has
decreased back to the region with overlap among \scrR 2, \scrR 1, and \scrR 3. Then, the cobweb steps are
governed by (f2, g2) for (vk, \phi k)\in \scrR 2 and by (f1, g1) in (4.3)--(4.4) for (vk, \phi k)\in \scrR 1, as already
discussed in Remark 4.2 about the overlap between the green curves and the grey shaded \scrR 1

region. From there, the dynamics are dictated by the attracting dynamics of \scrR 1 for panels
(a),(b) and (c),(d) corresponding to cases FP and PD, respectively. In panels (e) and (f),
the attracting chaotic dynamics for case CD alternate between \scrR 1 and \scrR 2, as described in
Remark 4.2.

6. The auxiliary map method for global dynamics. It is worth noting that a computa-
tionally realized implicit composite map could have been employed up to this point, bypassing
the need for polynomial approximations of the surfaces in Figure 6. While such a map could
still offer insights into the system's global dynamics, it would not allow the explicit computer-
assisted analysis of the system's attracting domain. This limitation underscores the value of
our explicit composite map, which is an analytical tool for deriving tight bounds on the size
of the system's nontrivial attractors through analyzing the auxiliary maps, as demonstrated
in section 6.3.

The trajectories above indicate visually that regions \scrR 1 and \scrR 2 contain an attracting
domain that attracts all nontrivial trajectories in \scrR 1 and \scrR 2 for the considered range of
parameter d. In particular, the magenta orbits in Figure 13 highlight the last 10\% of the
cobweb trajectories, and the stable orbits correspond to the solution given by the composite
map \scrM (3.1). In case FP, the solution is a fixed point, shown in panels (a) and (b), and is
contained in \scrR 1. In case PD, the solution has period 2 and is also contained in \scrR 1, as shown
in panels (c) and (d). In Case CD, the solution is chaotic but also contained within \scrR 1 and
\scrR 2, shown in panels (e) and (f). Therefore, the stable orbits shown in Figure 13 indicate
the existence of an attracting domain. However, determining the bounds for the attracting
domain as a subset of regions \scrR 1 and \scrR 2 directly from the 2D composite map is out of reach,
especially for multiperiod and chaotic dynamics. In Figure 13, iterations of the closed-form
composite map visualize the system's long-term behavior, with explicit curves shown only
for regions \scrR 2, \scrR 4, and \scrR 5 when projected onto the \.Zk+1  - \.Zk and \phi k+1  - \phi k planes. In
contrast, for \scrR 1 and \scrR 3 the maps cannot be visualized under this projection, suggesting
that an alternate approach is needed to capture global attraction using these cobweb phase
portraits. The difference among the regions follows from the separable form of the maps in
\scrR 2, \scrR 4, and \scrR 5, in contrast to the 2D maps of \scrR 1 and \scrR 3. This observation inspires the
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GLOBAL ANALYSIS FOR VIBRO-IMPACT DYNAMICS 1917

design of an auxiliary map, in which we dissect each 2D map into a pair of 1D maps based on
the lower and upper bounds of the 2D map domain. This definition can then take advantage
of the separable form and lead to bounds on the composite map's attracting domain.

6.1. Constructing the auxiliary maps. The auxiliary map is constructed using the bounds
on the approximate maps (fn, gn) for each region \scrR n, where (fn, gn) depends on both variables
vk and \phi k. In our case, these regions are R1 and R3. We define the auxiliary maps in terms
of the maxima and minima of (fn, gn), yielding the following form for the upper bound:
\xi U (vk) : vk \rightarrow vk+1 and \eta U (\phi k) : \phi k \rightarrow \phi k+1. A similar form is obtained for the lower bound.
This decouples the two 2D equations into two separable 1D equations for each \scrR n. The
advantage of this formulation is its ability to track the dynamics of velocity vk and the phase
\phi k separately, thus facilitating a 1D cobweb phase portrait for each. At the same time,
it captures the worst-case scenario and provides conservative bounds on the maximum and
minimum ranges of (fn, gn) at each iterate. Furthermore, we show that a repeated application
of this auxiliary definition hones in on the attracting solutions or regions of the full map.
While here we give the construction in terms of general region number n, we emphasize that
below, it is applied for \scrR 1 only, as we focus on the attracting behavior.

The construction of the auxiliary map begins with the bounds for vk and \phi k for a given
\scrR n: vk \in [v\mathrm{m}\mathrm{i}\mathrm{n}

0 , v\mathrm{m}\mathrm{a}\mathrm{x}
0 ] and \phi k \in [\phi \mathrm{m}\mathrm{i}\mathrm{n}

0 , \phi \mathrm{m}\mathrm{a}\mathrm{x}
0 ]. Then two curves \xi U (vk) and \xi L(vk) are determined

for vk+1 in terms of the max and min of fn over the range of possible \phi k values,

\xi (N)
n =

\left\{     
vk+1 = \xi 

(N)
U (vk), where \xi 

(N)
U := max

\phi \in \scrA (N)
n

\{ fn(vk, \phi )\} ,

vk+1 = \xi 
(N)
L (vk), where \xi 

(N)
L := min

\phi \in \scrA (N)
n

\{ fn(vk, \phi )\} .
(6.1)

The auxiliary maps, \xi 
(N)
n and \eta 

(N)
n defined similarly below, alternate between the two curves in

order to provide a sequence of bounds on the maximum and minimum ranges of (fn, gn). Here,
we use a generic initial vk, with refinements discussed below and in section 6.2. The superscript
N gives the index of updates of the auxiliary map after the first and subsequent applications.
The results obtained from the updates are particularly valuable when the auxiliary map is
contracting, as demonstrated below for the specific cases considered in section 6.2. Likewise,

the auxiliary map \eta 
(N)
n is given in terms of two maps \eta U , \eta L that bound \phi k+1 for vk \in 

[v\mathrm{m}\mathrm{i}\mathrm{n}
0 , v\mathrm{m}\mathrm{a}\mathrm{x}

0 ]:

\eta (N)
n =

\Biggl\{ 
\phi k+1 = \eta 

(N)
U (\phi k), where \eta 

(N)
\mathrm{m}\mathrm{a}\mathrm{x} :=maxv\in \scrA (N)

n
\{ gn(v,\phi k)\} ,

\phi k+1 = \eta 
(N)
L (\phi k), where \eta 

(N)
\mathrm{m}\mathrm{i}\mathrm{n} :=minv\in \scrA (N)

n
\{ gn(v,\phi k)\} .

(6.2)

To track the (possible) contraction of the region for each update, we define \scrA (N)
n in (6.4)--

(6.5) below. There \scrA (N)
n =\scrR n for all N if the region does not contract, while \scrA (1)

n =\scrR n and

\scrA (N)
n \subseteq \scrR n for N > 1 for a contracting region, updated as the auxiliary map is updated. For

the system studied here, it is only for n= 1 that \scrA (N)
n contracts.

We then write the full auxiliary map, replacing \scrM in (4.1) with \scrM (N)
\scrA , which is composed

of a combination of maps (fn, gn) and (\xi 
(N)
n , \eta 

(N)
n ), with vk, \phi k corresponding to impact veloc-

ities on \partial B as in (4.1). For our system it is only \scrA (N)
1 that contracts as N increases, so we

define the full auxiliary map as
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1918 L. BAO, R. KUSKE, D. YURCHENKO, AND I. BELYKH

(vk+1, \phi k+1) =\scrM (N)
\scrA (vk, \phi k),

\scrM (N)
\scrA (vk, \phi k)\equiv 

\left\{     
(\xi 

(N)
1 (vk), \eta 

(N)
1 (\phi k)) for (vk, \phi k)\in \scrA (N)

1 ,

(\xi 
(N)
3 (vk), \eta 

(N)
3 (\phi k)) for (vk, \phi k)\in \scrR 3,

(fn(vk, \phi k), gn(vk, \phi k)) for (vk, \phi k)\in \scrR n, n= 2,4,5.

(6.3)

We define region \scrA (N)
1 \subseteq \scrR 1 to allow a change in its size over the N updates of the

auxiliary construction,

\scrA (N)
1 =\scrA (N)

1v \times \scrA (N)
1\phi =

\Biggl\{ 
\scrR 1 for N = 1,

\scrB (N)
1 otherwise,

(6.4)

\scrB (N)
1 =\scrB (N)

1v \times \scrB (N)
1\phi \equiv [v\mathrm{m}\mathrm{i}\mathrm{n}

\ell , v\mathrm{m}\mathrm{a}\mathrm{x}
\ell ]\times [\phi \mathrm{m}\mathrm{i}\mathrm{n}

\ell , \phi \mathrm{m}\mathrm{a}\mathrm{x}
\ell ](6.5)

for (v\ell , \phi \ell ) =
\Bigl( 
\scrM (N - 1)

\scrA 

\Bigr) \ell 
(v0, \phi 0), \ell \gg 1.

Stated in words, (6.4)--(6.5) simply indicate that for the Nth (N > 1) update of (\xi 
(N)
1 (vk),

\eta 
(N)
1 (\phi k)), the region \scrA (N)

1 is updated to the limiting range of (vk, \phi k) obtained from a large

number of iterations of (\xi 
(N - 1)
1 (vk), \eta 

(N - 1)
1 (\phi k)) using (6.1)--(6.2). Given the separable form

of (6.1)--(6.2), both \scrA and \scrB are defined in terms of the ranges of v and \phi .
The iteration of (6.1)--(6.2) is particularly valuable for region(s) in which the dynamics

are contracting since these iterations identify a relaxation within the extremes imposed by

the defined maxima and minima, leading to an update of the regions \scrA (N+1)
1 and \scrM (N+1)

\scrA as
in (6.4)--(6.5). Here, we have proposed (6.1)--(6.2) starting from generic values of (vk, \phi k). In
section 6.2, we refine the iterative cobwebbing-type application of the auxiliary maps based on
a choice of (vk, \phi k) that ensures improvements within the worst-case scenario. Then, repeated
updates for increasingN give conservative bounds on the limiting size of the attracting domain.

6.2. Application of the auxiliary map \bfscrM (\bfitN )
\bfscrA . In section 5, the application of \scrM via

cobweb phase portraits indicates that the attracting dynamics are concentrated in \scrR 1 for
the larger values of d considered in this study. Specifically, in Figure 13, we see attracting
solutions contained in \scrR 1 in cases FP and PD, while the trajectories oscillate between \scrR 1 and
\scrR 2 in case CD.

While we could construct an auxiliary map in the setting where the dynamics revisit
regions with transient dynamics (e.g., \scrR 2), this would require a different construction to
be useful in demonstrating global stability; instead, the attracting dynamics suggest a more
efficient approach. From Figure 13, the attracting domain covers values in \scrR 1 for Cases
FP and PD and in a region just outside of \scrR 1 for case CD. This suggests constructing the
auxiliary map on a slightly expanded region \scrR +

1 \supseteq \scrR 1, noting that this does not reduce the
accuracy of the approximation as it uses the more accurate 2D approximation over a larger
region, reducing the region over which the separable approximation (f2, g2) is used. Then we
can expand the size of region \scrR 1 to \scrR +

1 sufficiently so that the long-term dynamics remain in
\scrR +

1 and \scrR +
1 \supseteq \scrR 1, and here we consider the auxiliary map for \scrR +

1 only.

The following are the ranges of the initial region \scrA (1)
1 =\scrR +

1 for the three cases, the fixed
point (FP) case, the period-doubling (PD) case, and the chaotic dynamics (CD) case of the
composite map \scrM :
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Case FP: \scrR +
1 := \{ (vk, \phi k) : vk \in [0.7,1] and \phi k \in [0.2, \pi /3]\} ,(6.6)

Case PD: \scrR +
1 := \{ (vk, \phi k) : vk \in [0.65,1] and \phi k \in [0.13, \pi /3]\} ,(6.7)

Case CD: \scrR +
1 := \{ (vk, \phi k) : vk \in [0.64,1] and \phi k \in [0.08, \pi /3]\} .(6.8)

Here, \scrR +
1 is typically an overestimate of the attracting domain, given that it is based on

the approximation obtained by comparing the projection of the exact maps with diagonals in
the phase planes shown in section 3.

By iterating the auxiliary maps (6.1)--(6.2), under a ``worst-case-scenario"" (WCS) cob-
webbing application described below, we can improve the lower and upper bounds for all
trajectories of the composite map \scrM in (4.1) within repeated updates for the bounds on the
attracting domain.

Figures 14(a)--(b) illustrate the construction of \xi 
(1)
U/L and \eta 

(1)
U/L used in (6.1) and (6.2) for

case FP, with \scrA (1)
1 = \scrR +

1 and N = 1. In the vk  - vk+1 phase plane, the family of curves

f1(vk, \phi k) do not cross each other, so \xi 
(1)
U := f1(vk,min(\phi k)) and \xi 

(1)
L := f1(vk,max(\phi k)) for

\phi k \in [0.2, \pi /3], thus yielding closed-form expressions for \xi 
(1)
U/L in terms of f1. In contrast, for

\phi k the family of curves g1(vk, \phi k) with fixed vk cross each other so that the envelope for g1 is

found computationally from the definitions of \eta 
(1)
U and \eta 

(1)
L in (6.2). Auxiliary maps for \scrR 3

can also be constructed using the method described in section 6.1. However, since \scrR 3 is a
transient region, we do not pursue its construction here but focus on using the auxiliary map
in \scrR +

1 .
We break the WCS cobwebbing process into three steps.
Step 1. We start by considering the evolution over one WCS iterate, using the lower and

upper bounds \xi 
(1)
U/L and \eta 

(1)
U/L in (6.1)--(6.2) for the v and \phi components. We apply these maps

to the maximum and minimum of the upper bound curve \xi 
(1)
U (vk) and lower bound curve

\xi 
(1)
L (vk), respectively, over the full range of v in \scrA (1)

1 , i.e., I
(1)
0v = [v\mathrm{m}\mathrm{i}\mathrm{n}

0 , v\mathrm{m}\mathrm{a}\mathrm{x}
0 ],

\xi 
(1)
U (P ) for P = argmaxv \xi 

(1)
U (v), \xi 

(1)
L (Q) for Q= argminv \xi 

(1)
L (v) .(6.9)

Reflecting these through the diagonal gives us the first WCS iterates v1, which define a new

interval I
(1)
1v = [v\mathrm{m}\mathrm{i}\mathrm{n}

1 , v\mathrm{m}\mathrm{a}\mathrm{x}
1 ]. By the definition (6.9), the first-iterate images of any other point

from I
(1)
0v via the auxiliary maps also fall inside the updated interval I

(1)
1v . This process and the

analogous iteration for \eta U and \eta L are illustrated in Figure 14, including I
(1)
1v and the analogous

I
(1)
1\phi shown in green. We notice that both of these intervals fall within the ranges of v and \phi 

for \scrA (1)
1 =\scrR +

1 .

Remark 6.1. A single application of the WCS as in Step 1 to the initial region [v\mathrm{m}\mathrm{i}\mathrm{n}
0 , v\mathrm{m}\mathrm{a}\mathrm{x}

0 ]\times 
[\phi \mathrm{m}\mathrm{i}\mathrm{n}

0 , \phi \mathrm{m}\mathrm{a}\mathrm{x}
0 ] = \scrR +

1 gives bounds for the attracting domain, given by I
(1)
1v \times I

(1)
1\phi , that is,

v\mathrm{m}\mathrm{i}\mathrm{n}
1 < vk < v

\mathrm{m}\mathrm{a}\mathrm{x}
1 and \phi \mathrm{m}\mathrm{i}\mathrm{n}

1 <\phi k <\phi 
\mathrm{m}\mathrm{a}\mathrm{x}
1 .

This result from Step 1 represents a conservative bound for the region that attracts all
trajectories of the 2D composite map \scrM , since the other regions \scrR \ell , \ell \not = 1, are demonstrated
as transient, as discussed further following Statement 6.1 below. This observation motivates
further iterations of this type, seeking additional reductions of the attracting domain in Steps
2 and 3.
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Figure 14. (a)--(b): Visualization of the auxiliary maps \xi 
(1)

U/L and \eta 
(1)

U/L from (6.1) and (6.2) for \scrR +
1 and

d= 0.35. Here, we dropped the superscript on \xi U/L and \eta U/L for clarity of visualization. In (a)--(b) f1 and g1
are graphed for fixed \phi k and vk values, respectively, confined between their respective lower, \xi L(vk) and \eta L(\phi k)
(orange diamonds), and upper, \xi U (vk) and \eta U (\phi k) (blue diamonds) bounds. (c) The points P and Q are the
location of the respective maximum and minimum of the maps \xi U (blue) and \xi L (orange) over the entire interval

I
(1)
0v for v \in \scrR +

1 . The images \xi U (P ) and \xi L(Q) define the reduced interval I
(1)
1v (green). The black dotted line

indicates the successive application of (6.10), each time applying \xi U and \xi L to the points corresponding to their

max and min, respectively, over the interval I
(1)
jv , j = 1,2, . . .. In panel (d) iterations are similar to those in

(c), shown for \phi k, \eta U/L, and the auxiliary map (6.11). The first iterate applies (6.11) to the points R and

O, corresponding to the max and min of \eta U and \eta L on the full interval I
(1)
0\phi for \phi \in \scrR +

1 , whose image yields

the reduced interval I
(1)
1\phi (green). The black dotted line indicates successive application of (6.11) to the points

corresponding to the max and min of \eta U and \eta L, respectively, over the interval I
(1)
j\phi , j = 1,2, . . ..

Step 2. We repeat the procedure of Step 1 under the WCS scenario, applying (6.1)--(6.2)

to the max and min of the curves \xi 
(1)
U , \xi 

(1)
L within consecutive intervals I

(1)
kv , k= 1,2, . . ., as in

(6.9). This repeated application can be expressed mathematically as

v\mathrm{m}\mathrm{i}\mathrm{n}
k+1 = min

vk\in I(N)
kv

\{ \xi (N)
L (vk)\} ,

v\mathrm{m}\mathrm{a}\mathrm{x}
k+1 = max

vk\in I(N)
kv

\{ \xi (N)
U (vk)\} , where I

(N)
kv = [v\mathrm{m}\mathrm{i}\mathrm{n}

k , v\mathrm{m}\mathrm{a}\mathrm{x}
k ], k= 0,1,2, . . . ,

(6.10)

for N = 1. These iterations are illustrated in Figures 14(c)--(d) by the dotted black curves.

For example, since \xi 
(1)
U (vk) is monotonically decreasing on I

(1)
0v , while \xi 

(1)
L (vk) is not, the point
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P falls outside I
(1)
1v , while Q is inside. Then, \xi L(Q), and Q give the points to use in the

application of (6.10). Then I
(1)
2v = [v\mathrm{m}\mathrm{i}\mathrm{n}

2 = \xi 
(1)
L (Q), v\mathrm{m}\mathrm{a}\mathrm{x}

2 = \xi 
(1)
U (\xi 

(1)
L (Q))]. Note that the

application of (6.10) yields v\mathrm{m}\mathrm{i}\mathrm{n}
1 and v\mathrm{m}\mathrm{i}\mathrm{n}

2 that are identical to the previous iterate, which

implies that I
(1)
2v is the final estimate for the attracting domain for v, \scrB (2)

1v , starting with initial

domain \scrR +
1 . Likewise, iterating for \phi k from I

(1)
1\phi , using

\phi \mathrm{m}\mathrm{i}\mathrm{n}
k+1 = min

\phi k\in I(N)
k\phi 

\{ \eta (N)
L (\phi k)\} ,

\phi \mathrm{m}\mathrm{a}\mathrm{x}
k+1 = max

\phi k\in I(N)
k\phi 

\{ \eta (N)
U (\phi k)\} , where I

(N)
k\phi = [\phi \mathrm{m}\mathrm{i}\mathrm{n}

k , \phi \mathrm{m}\mathrm{a}\mathrm{x}
k ], k= 0,1,2, . . . ,

(6.11)

for N = 1, yields I
(1)
2\phi = [\phi \mathrm{m}\mathrm{i}\mathrm{n}

2 = \eta 
(1)
L (\eta 

(1)
U (R)), \phi \mathrm{m}\mathrm{a}\mathrm{x}

2 = \eta 
(1)
U (\eta 

(1)
L (O))]\subset I

(1)
1\phi , following from the

shape of the curves \eta 
(1)
U and \eta 

(1)
L . The repeated application of (6.11) converges to its period-2

cycle that yields the approximation for the size of the attracting domain for \phi given by \scrB (1)
1\phi .

Then, the reduction of \scrR +
1 obtained through WCS cobwebbing is \scrB (2)

1 =\scrB (2)
1v \times \scrB (2)

1\phi .

The results of Step 2 are specific to starting with an initial domain \scrA (1)
1 =\scrR +

1 which defines

\xi 
(1)
U and \xi 

(1)
L , used at each iteration in (6.10) and (6.11). Since the iterations yield \scrB (2)

1 \subset \scrR +
1 ,

this suggests that additional reductions for the bounds on the attracting domain may be

obtained by updating the bounds \xi 
(2)
U,L and \eta 

(2)
U,L, using (6.4)--(6.5), i.e., using \scrA (2)

1 =\scrB (2)
1 \subset \scrR +

1 .
This leads to Step 3, which we write generically for the Nth update.

Step 3. Define an updated initial region \scrA (N)
1 = \scrB N1 , obtained via (6.4)--(6.5), with cor-

responding updates for \xi 
(N)
U,L and \eta 

(N)
U,L . Then, repeated application of (6.10) and (6.11) yields

iterates that converge to a 2-cycle. The values of this 2-cycle then give new bounds on the
attracting domain, denoted by \scrB N+1

1 .
In the remainder of this section, Steps 1--3 are applied to the FP, PD, and CD cases

to illustrate the results of the WCS auxiliary map (6.10)--(6.11). The implications for the
attracting domain are discussed in section 6.3.

While (6.10)--(6.11) refine the generic (6.1)--(6.2) with a WCS choice of (vk, \phi k) on each
iteration, the two cobwebbing approaches are equivalent in some cases. This property is

determined by the shape of \xi 
(N)
U,L and \eta 

(N)
U,L (blue and orange curves in Figure 14). For example,

if v\mathrm{m}\mathrm{i}\mathrm{n}
k+1 > v\mathrm{m}\mathrm{i}\mathrm{n}

k and v\mathrm{m}\mathrm{a}\mathrm{x}
k+1 < v\mathrm{m}\mathrm{a}\mathrm{x}

k , as in the case of monotonically decreasing \xi 
(N)
U,L and \eta 

(N)
U,L ,

then both yield the same result. This observation is useful, since cobwebbing based on the
generic auxiliary map (6.1)--(6.2) is more straightforward to implement computationally since

it does not restrict its application to the maximum or minimum on \xi 
(N)
U,L and \eta 

(N)
U,L curves, as

in the WCS approach (6.10)--(6.11). However, in the WCS treatment of general functions

\xi 
(N)
U,L and \eta 

(N)
U,L , the bounds v

\mathrm{m}\mathrm{i}\mathrm{n}/\mathrm{m}\mathrm{a}\mathrm{x}
1 and/or \phi 

\mathrm{m}\mathrm{i}\mathrm{n}/\mathrm{m}\mathrm{a}\mathrm{x}
1 might not be improved with further

iterates of (6.10) and/or (6.11) for fixed N . In such cases, (6.1)--(6.2) may underestimate the
size of the attracting domain, since it does not restrict its application to the maximum or
minimum on the upper or lower curves, which the WCS approach takes into account. For
example, Figure 15(a) shows results from (6.1)--(6.2) iterating from a generic vk, obtained
from a random initial condition, with a limiting period-2 cycle, shown in red. This is slightly
smaller than the limiting results from WCS cobwebbing (6.10) and/or (6.11) (yellow bar).
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1922 L. BAO, R. KUSKE, D. YURCHENKO, AND I. BELYKH

Figure 15. Illustration of the 1st,2nd, and 11th update of the auxiliary map \scrM (N)
\scrA (6.3) for case FP (d=

0.35). The blue and orange curves show (\xi 
(N)
U , \eta 

(N)
U ) and (\xi 

(N)
L , \eta 

(N)
L ), respectively, for \scrR +

1 and (6.1)--(6.2).
The blue shaded areas between these curves represent the possible values of vk and \phi k in \scrR +

1 . For each N ,

400 steps are taken, and the last 40 steps are highlighted in red. (a)--(b) N = 1 and \scrA (1)
1 = \scrR +

1 , defined in
(6.6). Generic cobwebbing (thin black line) via (6.1)--(6.2) with initial conditions (v0, \phi 0) in \scrR 2. The first few
steps are governed by (f2, g2) (4.5) (green line). In (a), the limiting behavior of (6.1) (red square) is a slight

underestimate for size of \scrA (2)
1v (yellow) obtained via the WCS cobwebbing (6.10). In contrast, in (b), results

from (6.2) and (6.11) are identical. (c)--(d) N = 2, with the attracting domain from N = 1, \scrA (2)
1v , and \scrA (2)

1\phi used
as the initial domain size. (e)--(f) N = 11, with the attracting domain from N = 10 (not shown) used as the
initial condition. The generic cobwebbing trajectory converges to a period-2 cycle (pv, qv in (e) and p\phi , q\phi in (f))

that determines the sizes of the attracting domain: \scrA (11)
1v : vk \in [0.8488,0.8490] and \scrA (11)

1\phi : \phi k \in [0.3804,0.3811].

Note its negligible size and the overall reduction from the original size \scrA (1)
1 . Results from (6.1)--(6.2) in (c)--(f)

yield the same attracting domain as the WCS cobwebbing (6.10)--(6.11).
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In contrast, in Figure 15(b), the intervals are identical, due to the property that \eta 
(1)
L (\phi k) and

\eta 
(1)
U (\phi k) are monotonically decreasing outside \scrA (2)

1\phi , so that the WCS cobwebbing procedure

repeatedly excludes the previous global maximum and minimum over \scrA (1)
1\phi . As discussed

further below, the generic approach achieves the same result as WCS in most of the FP,
PD, and CD cases considered here, particularly when applying Step 3, that is, additional N

updates of the interval \scrA (N)
1 .

Figures 15(c)--(f) illustrate these updates of regions \scrA (N)
1 and \scrM (N)

\scrA . Each row shows
results for a different update, specifically for N = 2 and N = 11. The red box highlights the

last 10\% of the cobweb iterations, indicating the limiting dynamics for \scrM (N)
\scrA . The size of

the corresponding attracting domain (indicated by the yellow interval) shrinks with N , and

\scrA (N)
1 for N > 1 is updated accordingly, as in (6.4)--(6.5). For example, in Figures 15(a)--(b),

\scrA (1)
1 = \scrR +

1 for N = 1 with vk \in [0.7,1] and \phi k \in [0.2, \pi /3], and the limiting ranges shown
by the yellow intervals are vk \in [0.771,0.909] and \phi k \in [0.297,0.791]. Continuing with this
process for increasing N , Figures 15(c),(d) and (e),(f) illustrate the smaller range of vk and

\phi k given by \xi 
(N)
U/L and \eta 

(N)
U/L, mirroring the smaller size of \scrA (N)

1 with increasing N . As shown at

N = 11, \scrA (11)
1 is significantly smaller than \scrA (1)

1 . This contraction property with increasing N
is summarized in Figure 16, which shows how the length and width of the attracting domain
for vk and \phi k decreases with increasing N . Thus, even though the max/min characteristics of
the auxiliary map do not allow the limiting behavior of \scrM \scrA to be a fixed point, nevertheless,

for case FP, we see that region \scrA (N)
1 shrinks to a negligible size for large N .

We also apply the auxiliary map method to estimate the attracting domain for nontrivial
dynamics in case PD and case CD and observe the contraction property from Figures 17--19
for cases PD and CD.

Similar to the cobweb illustration of the updates in the case FP, Figure 17 and Figure 19

illustrate the updates of the regions \scrA (N)
1 and \scrM (N)

\scrA in case PD and case CD, respectively.
The setup in Figure 17 and Figure 19 is the same as in Figure 15, with each row showing

Figure 16. Illustration of the size of the domain \scrA N for each N , showing that the attracting domain size
decreases monotonically for case FP, reaching 0.000185 and 0.0001867 in the vk, \phi k directions, respectively.
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1924 L. BAO, R. KUSKE, D. YURCHENKO, AND I. BELYKH

Figure 17. Illustration of the 1st,2nd, and 11th updates of the auxiliary map \scrM (N)
\scrA (6.3), for case PD

(d= 0.30), using the same procedure as in Figure 15. (a)--(b) N = 1 and \scrA (1)
1 =\scrR +

1 (6.7). Generic cobwebbing
(thin black line) via (6.1)--(6.2) with initial conditions (v0, \phi 0) in \scrR 2. Similar to Figure 15(a), in (a) the limiting

behavior via (6.1)--(6.2) (red square) is a slight underestimate of the actual size of \scrA (2)
1v (yellow), obtained via

the WCS cobwebbing (6.10). In (b), the limiting behavior and the actual size of \scrA (2)
1v are identical. (c)--(d)

N = 2 and \scrA (2)
1 : vk \in [0.666,0.850] and \phi k \in [0.146,0.977]. (e)--(f) N = 11 and \scrA (11)

1 : vk \in [0.684,0.832] and

\phi k \in [0.156,0.758], where the size of \scrA (N)
1 for N > 1 follows directly from the limiting (yellow) behavior in the

(N  - 1)th update ((6.4)--(6.5)). The stars with (pv, qv) and (p\phi , q\phi ) in panels (e) and (f) indicate the min and
max of the period-2 cycle.
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GLOBAL ANALYSIS FOR VIBRO-IMPACT DYNAMICS 1925

Figure 18. Illustration of the attracting domain size for case PD that decreases to a limiting size, with the
final limiting sizes as 0.1472 and 0.5991 for v and \phi , respectively.

results from updates of \scrA (N)
1 . In case PD, N = 1,N = 2, and N = 11 are shown, while case

CD demonstrates the cobwebbing diagrams for N = 1 and N = 6. Moreover, in contrast to
case FP, where the limiting dynamics approaches a point for N large, for cases PD and CD,
the attracting domain follows from the attracting period-2 cycle, with a limiting size at a
finite N dictated by | pv  - qv| and | p\phi  - q\phi | . The pairs of points (pv, qv) and (p\phi , q\phi ) shown in
Figures 15, 17, and 19 for the largest value of N indicate the maximum q\bullet and minimum p\bullet 
of the period-2 cycle for v and \phi . Likewise, these values can be used to explicitly determine
the size of the globally attracting domain via constructing second-iterate maps, as discussed
in the next section.

In case PD, the limiting dynamics converge to an attracting period-2 cycle for both vk and

\phi k when N is large, with much of the size reduction of \scrA (N)
1 occurring in the first two updates,

as shown in Figure 18. Similar to case PD, Figure 19 shows that the limiting dynamics of
case CD for sufficiently large N yield cycles that bound a relatively larger range of vk and
\phi k. Case CD does not allow using the generic cobwebbing via (6.1)--(6.2) since the lower

bounds \xi 
(N)
L (vk) and \eta 

(N)
L (\phi k) are not monotonically decreasing functions on any updated

interval.

6.3. Second-iterate maps for the attracting domain. The auxiliary map method de-
veloped in the previous subsection opens the door to explicitly characterizing the global
dynamics of the composite map. Figures 15--19 demonstrate that the final size of the at-
tracting domain is always bounded by a period-2 cycle. In the scenarios where the WCS
cobwebbing was applied (Figure 15(a) for the FP case, Figure 17(a) for the PD case, and
Fig. 19(a)-(d) for the CD case), this orbit is a 2-cycle of the WCS cobwebbing iterative proce-
dure (6.10)--(6.11). In the scenarios where the generic cobwebbing (6.1)--(6.2) yields the same
result as WCS (Figures 15(b)--(f) for the FP case, Figures 17(b)--(f) for the PD case), this
orbit is a 2-cycle of the auxiliary map based on alternating upper and lower bound curves in
(6.1)--(6.2).

Since these 2-cycles bound a subset of the auxiliary map's phase space, their existence
and global stability imply the existence of a globally stable attracting domain for the trajec-
tories of the composite map \scrM (4.1). The bounds on the attracting domain are indicated
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Figure 19. Illustration of the 1st and 6th update of the auxiliary map \scrM (N)
\scrA (6.3), for d= 0.26, correspond-

ing to case CD, using the same procedure as in Figure 15. In panels (a)--(b), the attracting domain (dashed

line) is calculated using one iterate of the WCS cobwebbing (6.10)--(6.11) to obtain \scrA (N)
1v and \scrA (N)

1\phi (yellow
interval). Further updates over N offer a slight reduction, with the limiting size shown in (c) and (d). Here,

\scrA (2)
1 : vk \in [0.673,0.789]; \phi k \in [0.093,0.725] and \scrA (6)

1 : vk \in [0.638,0.803]; \phi k \in [0.088,0.868]. The stars with
(pv, qv) and (p\phi , q\phi ) in panels (c) and (d) indicate the min and max of the period-2 cycle of the WCS iterative
procedure (6.10)--(6.11). Panels (e) and (f) show the decrease of the attracting domain size to a limiting size
equal to 0.166 and 0.780 for v and \phi , respectively.

as qv, pv, q\phi , and p\phi in Figures 15, 17, and 19 for the largest value of N shown. When ap-
plicable, computing these values as the roots of m iterations of the maps (6.1) and (6.2) for
appropriate m, we obtain their stability and thus bounds on the attracting domain for the
dynamics.

First, to obtain the bounds on vk and \phi k used in the (N + 1)th update, we consider the
general second-iterate WCS maps for v\mathrm{m}\mathrm{a}\mathrm{x}

k+2 and \phi \mathrm{m}\mathrm{a}\mathrm{x}
k+2, defined via (6.10) and (6.11), respec-

tively:
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v\mathrm{m}\mathrm{i}\mathrm{n}
k+2 = v\mathrm{m}\mathrm{a}\mathrm{x}

k+1(v
\mathrm{m}\mathrm{i}\mathrm{n}
k ), where v\mathrm{m}\mathrm{i}\mathrm{n}

k = min
vk - 1\in I(N)

(k - 1)v

\Bigl\{ 
\xi 
(N)
L (vk - 1)

\Bigr\} 
and v\mathrm{m}\mathrm{a}\mathrm{x}

k+1 = max
vk\in I(N)

kv

\Bigl\{ 
\xi 
(N)
U (vk)

\Bigr\} 
,

(6.12)

\phi \mathrm{m}\mathrm{i}\mathrm{n}
k+2 = \phi \mathrm{m}\mathrm{a}\mathrm{x}

k+1(\phi 
\mathrm{m}\mathrm{i}\mathrm{n}
k ), where \phi \mathrm{m}\mathrm{i}\mathrm{n}

k = min
\phi k - 1\in I(N)

(k - 1)\phi 

\Bigl\{ 
\eta 
(N)
L (\phi k - 1)

\Bigr\} 
and \phi \mathrm{m}\mathrm{a}\mathrm{x}

k+1 = max
\phi k\in I(N)

k\phi 

\Bigl\{ 
\eta 
(N)
U (\phi k)

\Bigr\} 
.

(6.13)

In cases where the WCS cobwebbing via (6.10) is equivalent to the generic cobwebbing us-
ing (6.1) as detailed in subsection 6.2, the second-iterate WCS map (6.12) for v\mathrm{m}\mathrm{i}\mathrm{n}

k+2 transforms
into the second-iterate map,

vk+2(vk) = \xi 
(N)
L (\xi 

(N)
U (vk)).(6.14)

The maps \xi 
(N)
L/U are written explicitly in terms of f1 evaluated at \phi 

\mathrm{m}\mathrm{i}\mathrm{n}/\mathrm{m}\mathrm{a}\mathrm{x}
0 . They do not

cross each other, analogous to f1 shown in Figure 14(a). Then, we have the closed-form
expression for the first-iterate (6.1) and second-iterate map (6.14), where the latter for vk+2

is a 9th-order polynomial of the form

vk+2(vk) = f1(f1(vk, \phi 
\mathrm{m}\mathrm{a}\mathrm{x}
0 ), \phi \mathrm{m}\mathrm{i}\mathrm{n}

0 )

= \alpha 0 + \alpha 1v
1
k + \alpha 2v

2
k + \alpha 3v

3
k + \alpha 4v

4
k + \alpha 5v

5
k + \alpha 6v

6
k + \alpha 7v

7
k + \alpha 8v

8
k + \alpha 9v

9
k .(6.15)

Here, \alpha i, i= 1, . . . ,9 are polynomials that depend on d and on \phi \mathrm{m}\mathrm{i}\mathrm{n}
0 and \phi \mathrm{m}\mathrm{a}\mathrm{x}

0 , whose coefficients
b0, b1, . . . , b9 are listed in supplementary section SM3. The (stable) root vk+2 = vk = pv of

(6.15) corresponds to the minimum on the limiting behavior of \xi 
(N)
1 (6.1), with the maximum

qv obtained by

vk = pv, vk+1 = qv = f1(vk, \phi 
\mathrm{m}\mathrm{i}\mathrm{n}
0 ) = f1(pv, \phi 

\mathrm{m}\mathrm{i}\mathrm{n}
0 ) = \xi 

(\mathrm{N})
U (pv),(6.16)

=\Rightarrow vk+2 = pv = f1(vk+1, \phi 
\mathrm{m}\mathrm{a}\mathrm{x}
0 ) = f1(qv, \phi 

\mathrm{m}\mathrm{a}\mathrm{x}
0 ) = f1(f1(pv, \phi 

\mathrm{m}\mathrm{i}\mathrm{n}
0 ), \phi \mathrm{m}\mathrm{a}\mathrm{x}

0 ) = \xi 
(\mathrm{N})
L (pv) .

These values pv and qv determine explicit bounds for the attracting domain for vk indicated
by the red boxes for sufficiently large N in Figures 15(e) and 17(e) for the FP and PD cases
that allow using (6.15). Note that deriving such tight bounds for global dynamics directly
from the 2D composite map \scrM \scrA via a Lyapunov function or similar approaches without the
constructive use of the explicit auxiliary maps seems elusive.

Similarly, the periodic solutions for \phi k are based on the definition of \eta 
(N)
1 in (6.2). For

the FP and PD cases, we consider

\phi k+2(\phi k) = \eta 
(N)
L (\eta 

(N)
U (\phi k)).(6.17)

In contrast to (6.15) for vk, the family of curves g1(vk, \phi k), in the definition of \eta L/U (6.2),
cross each other for different fixed vk \in [v\mathrm{m}\mathrm{i}\mathrm{n}

0 , v\mathrm{m}\mathrm{a}\mathrm{x}
0 ], analogous to Figure 14(b). Then, there is

no closed-form expression for the first- and second-iterate maps \phi k+1 and \phi k+2, and \eta L/U are
determined numerically in (6.17).
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1928 L. BAO, R. KUSKE, D. YURCHENKO, AND I. BELYKH

For the FP and PD cases, we calculate p\phi and q\phi , which give the minimum and maximum
of the limiting behavior shown by the red boxes in Figures 15(f) and 17(f) for sufficiently
large N . They are given by

\phi k = p\phi , \phi k+1 = q\phi =max
vk

g1(vk, \phi k) =max
vk

g1(vk, p\phi ) = \eta 
(\mathrm{N})
U (p\phi )(6.18)

=\Rightarrow \phi k+2 = p\phi =min
vk

g1(vk, \phi k+1) =min
vk

g1(vk, q\phi )

=min
vk

g1(vk,max
vk

g1(vk, p\phi )) = \eta 
(\mathrm{N})
L (\eta 

(\mathrm{N})
U (p\phi )).

The curves obtained from applying the iterates given in (6.15) and (6.17) are shown in Fig-
ures 20(a)--(d) in the FP and PD cases. Panels (a)--(d) illustrate the stability of the fixed
points pv and p\phi for the period-2 cycle. There, the curves show the limiting behavior of

the second iterate of \scrM (N)
\scrA , given by (6.14) and (6.17). They intersect the diagonals in the

vk+2 - vk and \phi k+2 - \phi k phase planes with a slope less than unity. Then, for sufficiently large
N we obtain the stable fixed points pv and p\phi , likewise implying the stability of the fixed

points qv and q\phi , which all together provide the range of the attracting domain for \scrM (N)
\scrA in

Figures 15 and 17.

In the CD case where the lower bound function \xi 
(N)
L (vk) does not allow using (6.15) and

(6.17) even for sufficiently large updates N , the WCS iterations (6.12) and (6.13) yield a
2-cycle for v\mathrm{m}\mathrm{i}\mathrm{n}

k+2 and \phi \mathrm{m}\mathrm{i}\mathrm{n}
k+2, respectively:

v\mathrm{m}\mathrm{i}\mathrm{n}
k+2 = pv =min

vk+1

\{ f1(vk+1, \phi 
\mathrm{m}\mathrm{a}\mathrm{x}
0 )\} , v\mathrm{m}\mathrm{a}\mathrm{x}

k+1 = qv =max
vk

\{ f1(vk, \phi \mathrm{m}\mathrm{i}\mathrm{n}
0 )\} ,(6.19)

\phi \mathrm{m}\mathrm{i}\mathrm{n}
k+2 = p\phi =min

\phi k+1

\{ \eta (N)
L (\phi k+1)\} ; \phi \mathrm{m}\mathrm{a}\mathrm{x}

k+1 = q\phi =max
\phi k

\{ \eta (N)
U (\phi k)\} .(6.20)

Figures 19(c),(d) illustrates the 2-cycle for v\mathrm{m}\mathrm{i}\mathrm{n}
k and \phi \mathrm{m}\mathrm{i}\mathrm{n}

k , respectively. Additionally, Fig-
ures 20(e),(f) shows the fixed points pv and p\phi of the second-iterate WCS map (6.12) and
(6.13) that provide the lower bound for the attracting domain whose upper bounds, qv and
q\phi , can similarly be identified from (6.19)--(6.20).

The following statement summarizes the results for the existence of a globally attracting

domain for the auxiliary composite map \scrM (N)
\scrA highlighting cases where the generic and WCS

iterations provide the same results.

Statement 6.1 (bounds for the attracting domain).
(1) The generic (6.1)--(6.2) and WCS (6.10)--(6.11) iterates yield the same upper and lower

bound functions \xi 
(N)
U,L and \eta 

(N)
U,L in the case when the auxiliary map \scrM (N)

\scrA in A
(N)
1 \in R+

1

satisfies the property on each kth iterate,

argmaxvk - 1\in I(N)

(k - 1)v

\xi U (vk - 1) /\in I
(N)
kv = [v\mathrm{m}\mathrm{i}\mathrm{n}

k , v\mathrm{m}\mathrm{a}\mathrm{x}
k ],

argminvk - 1\in I(N)

(k - 1)v

\xi L(vk - 1) /\in I
(N)
kv ,

(6.21)

argmax\phi k - 1\in I(N)

(k - 1)\phi 

\eta U (\phi k - 1) /\in I
(N)
k\phi = [\phi \mathrm{m}\mathrm{i}\mathrm{n}

k , \phi \mathrm{m}\mathrm{a}\mathrm{x}
k ],

argmin\phi k - 1\in I(N)

(k - 1)\phi 

\eta L(\phi k - 1) /\in I
(N)
k\phi .

(6.22)
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GLOBAL ANALYSIS FOR VIBRO-IMPACT DYNAMICS 1929

Figure 20. Second-iterate maps for the N th update of the auxiliary maps. The curves are obtained from
(6.14) and (6.17). (a)--(b) The FP case for N = 2,11. The blue curve corresponds to the 2nd update. The purple
curve for the 11th update is invisible due to the strong contraction of the attracting domain after the updates.
(c)--(d) The PD case for N = 2,11. (e)--(f) The CD case for N = 6. The purple (red) points pv and p\phi are fixed
points of the second-iterate maps (6.14) and (6.17) in the FP (PD) case and correspond to 2-cycles, defined
in (6.16)--(6.18) and depicted in Figures 15(e)--(f) and Figures 17(e)--(f), respectively. The blue fixed points in
(e)--(f) correspond to 2-cycles of the WCS auxiliary maps (6.12)--(6.13), also shown in Figures 19(c)--(d).
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1930 L. BAO, R. KUSKE, D. YURCHENKO, AND I. BELYKH

Then, each successive application of either of these auxiliary maps yields new global

maxima of \xi 
(N)
U and \eta 

(N)
U and global minima of \xi 

(N)
L and \eta 

(N)
L on the updated v- and

\phi -intervals, I
(N)
k\phi and I

(N)
k\phi . Then, the auxiliary map \scrM (N)

\scrA can be defined by (6.1)--
(6.2) and has a stable 2-cycle with alternating values pv and qv for vk and p\phi and q\phi 
for \phi k, given in (6.16)--(6.18). These values determine the bounds for the attracting

domain A
(N+1)
1 = \{ pv < vk < qv, p\phi < \phi k < q\phi \} in the composite 22D map \scrM (6.3) in

region \scrR +
1 .

(2) The auxiliary map \scrM (N)
\scrA is defined by the WCS map (6.10)--(6.11) if the kth iterate of

the upper and lower bound functions \xi 
(N)
U/L and \eta 

(N)
U/L in A

(N)
1 \in R+

1 does not shrink (or

expand) the v-interval and \phi -interval, i.e., I
(N)
kv = I

(N)
(k+1)v and I

(N)
k\phi = I

(N)
(k+1)\phi . Again,

the auxiliary map \scrM (N)
\scrA defined via the WCS map has a stable 2-cycle with alternating

values pv and qv for vk and p\phi and q\phi for \phi k, given in (6.19)--(6.20). These values

determine the bounds for the attracting domain A
(N+1)
1 in the composite 2D map \scrM 

(6.3) in the region \scrR +
1 .

Remark 6.2. Parts (1) and (2) follow directly from the construction of the auxiliary map

\scrM (N)
\scrA via either the generic (6.1)--(6.2) or WCS iterates (6.10)--(6.11). When (6.21)--(6.22)

holds, e.g., when upper and lower bound functions \xi 
(N)
U/L and \eta 

(N)
U/L are monotonically decreasing

in A
(N)
1 \in R+

1 , the generic (6.1)--(6.2) suffices. In the more general setting of attracting\scrR +
1 , the

most conservative one-iterate bound for \scrA (N)
1 (see Remark 6.1) may be improved by further

WCS iterates, i.e., updates via Steps 2--3 in section 6.2. In either case, the iterates converge

to a stable 2-cycle, alternating between \xi 
(N)
U/L and between \eta 

(N)
U/L, preventing the emergence

of higher-period orbits due to either the contraction condition (6.21)--(6.22) or the WCS
formulation (6.19)--(6.20).

Note that the FP and PD cases at N \geq 2 satisfy the condition (6.21)--(6.22) of Statement
6.1 (Figures 15(c)--(f) for the FP case, Figures 17(c)--(f) for the PD case). In contrast, the
upper and lower bound functions in the CD case do not obey (6.21)--(6.22) (Figure 19), so the
attracting domain in the CD case is determined by the conditions of part (2) in Statement 6.1.

As described in section 6.1, one can apply the auxiliary approach for all regions \scrR j for
j = 2,3,4,5, which confirms the transient behavior for regions outside of \scrR 1. Combining this
transient behavior with the results of this section, we have the complete confirmation of the
bounds on the attracting domains for \scrM for different d, obtained via the limiting regions of
the auxiliary map as applied in sections 6.2 and 6.3.

7. Conclusion. While studying VI systems through local stability analysis has gained
significant momentum, understanding their global dynamics and bifurcations remains chal-
lenging due to the limited applicability of classical global stability methods developed for
smooth dynamical systems. In particular, the engineering literature has focused on linear
stability and bifurcations, yet global behavior is important in design.

In this paper, we propose a computer-assisted analysis based on reduced smooth maps
for studying the global dynamics of the VI pair. The framework is designed to be generic,
ideally for application to other nonsmooth dynamical systems. The global stability analysis
is facilitated by an approximation of the exact map for the states at impact, specifically
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GLOBAL ANALYSIS FOR VIBRO-IMPACT DYNAMICS 1931

the relative impact velocity \.Zk between the outer (the capsule) and the inner (the ball)
masses and the impact phase \psi k relative to the forcing. The exact nonsmooth maps for these
quantities are given by complex coupled transcendental equations for \.Zk and \psi k. While the
nonsmooth dynamics present a challenge in using commonly defined maps, they also provide
an opportunity for designing a new approach for impacting systems. Specifically, we use short
sequences of returns to one side of the capsule to define building blocks for the maps. The
output of such a return map yields surfaces for \.Zk+1 and \psi k+1 in terms of \.Zk and \psi k. Return
maps based on these building blocks give the foundation for dividing the state space into a few
regions with potentially attracting or transient behavior, thus yielding valuable, distinguishing
features that can be used for global stability results. Generating polynomial approximations
of the exact return maps for \.Zk and \psi k on each region in state space, we combine these to
obtain a piecewise smooth approximate composite map to reconstruct the system's dynamics.
This framework is computationally efficient. It reduces the main computation to constructing
polynomial return maps for only short-time realizations of the impact pair over the space
of initial conditions. The method calculates a single return, which is a sequence of only a
few impacts. This requires limited computation, as compared to, e.g., computing basins of
attraction or cell mapping [57, 38, 71], and in contrast to long-time simulations over the entire
state space traditionally used in deriving flow-defined Poincar\'e maps for global dynamics of
limit-cycle or chaotic systems. Yet, our approximate return maps can be viewed as geometrical
models of VI pair systems, analogous to geometrical Lorenz maps used to analyze global
dynamics and bifurcations in the chaotic Lorenz system [2, 56, 30] and its more analytically
tractable piecewise smooth counterpart [7]. Certain aspects of our computation-based analysis
do not rely on finding polynomial approximations for the return maps; for example, the
efficient comparison of the surfaces projected in the phase planes already identifies potential
regions for attracting behavior on which to focus the computer-assisted analysis. Then, we
also pursue polynomial approximations, aiming for explicit expressions for the global analysis.

Anchored in relatively simple return maps, our framework is valuable for cobweb analysis in
the phase planes of the state variables. The relevant global analysis is facilitated by introducing
1D auxiliary maps based on the extreme bounds of the 2D maps in the regions with different
types of dynamics. Repeated updates of these auxiliary maps within regions with attracting
dynamics yield attraction basins for limit-cycle and chaotic dynamics. Thus, our computer-
assisted method of reducing nonsmooth systems to a composite piecewise smooth map provides
a framework for studying the global dynamics of nonsmooth systems with impacts. Here, we
have focused on parameter regions corresponding to energetically favorable states in VI pair-
based energy harvesting systems, so that the results are relevant for recent designs of VI-based
energy harvesters [74] and nonlinear energy transfer [39]. While motivated by a specific vibro-
impact energy harvester, nevertheless, our approach uses generic return maps composed of
short sequences of impacts that, in turn, decompose the full dynamics. Thus, the paradigm
can be generalized for application in other nonsmooth systems. It may also be interesting to
see if this approach, motivated by a particular class of applied models, is relevant for 2D maps
considered in generic mathematical settings [46].

Adapting these findings to realistic external environments remains critical for future ex-
ploration. Future work will focus on refining these theoretical frameworks and methodologies
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1932 L. BAO, R. KUSKE, D. YURCHENKO, AND I. BELYKH

Figure 21. Bifurcation diagrams for \.Zj from (2.6) based on continuation-type methods for decreasing d
(top) and increasing d (bottom). Blue and black open circles correspond to deterministic forcing, and green
and red dots correspond to additive noise forcing via an Ornstein--Uhlenbeck process \zeta , with limiting behavior
\zeta \sim N(0,0.002). Parameters: r= 0.25, \beta = \pi /6.

to effectively integrate vibro-impact systems into practical applications. This pursuit involves
enhancing our understanding of the underlying dynamics and engineering solutions that can
withstand and thrive in realistic external environments.

One example of a realistic external setting is the consideration of the VI energy harvester,
illustrated in Figure 1(a), under stochastic external forcing. Figure 21 gives the bifurcation
structure with two different types of periodic behavior for the system (2.1)--(2.3), shown via
the impact velocity \.Zj vs. the nondimensional capsule length parameter d. Both panels
show deterministic (open circles) vs. stochastic (dots) results for \.Zj . The top and bottom
panels show bifurcation diagrams obtained via a continuation-type method for decreasing
and increasing d, respectively. Comparing these indicates bistability of two different periodic
behaviors. For larger d, we observe 1:1 periodic behavior with alternating impacts on \partial T with
\.Zj < 0 and \partial B with \.Zj > 0 per forcing period. For smaller d, we observe 2:1 behavior with two
impacts on \partial B followed by a single impact on \partial T per forcing period. The bistability is apparent
from the coexistence of branches for the 1:1 and 2:1 solutions in a range of d, approximately
0.221 < d < .216. At the same time, the stochastic results shown by the green and red
points indicate the regular appearance of 2:1 behavior, even for larger values of d beyond the
region of bistability. A preliminary analysis, based on the algorithm from section 4 with an
augmented set of return maps analogous to (3.1), includes both \scrP BTB to capture 1:1 behavior
and a new map \scrP BBTB to capture 2:1 behavior. These maps capture the attraction to either
one of or both of the 1:1 and 2:1 behaviors. Furthermore, this novel return map framework
also provides critical information about the stochastic sensitivity of the 1:1 behavior. This
information can be generated quickly since the surfaces for the maps are generated from
short-time simulations. Furthermore, we can again compare the shape of these surfaces and
their projections in the phase planes to focus on smaller regions with potentially attracting
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GLOBAL ANALYSIS FOR VIBRO-IMPACT DYNAMICS 1933

dynamics after eliminating larger transient regions. These results, together with the geometry
of the surfaces of these maps, analogous to those shown in Figure 6, efficiently suggest how
the noise can bias the dynamics toward 2:1 behavior when combined with the phase plane
analysis. We leave the details of that analysis to future work, noting that the algorithm's
combined flexibility and efficiency allow for a straightforward augmentation that includes new
return maps representing the 2:1 behavior. Then, within the dynamical characterization of
the state space provided by our algorithm, we can study nonsmooth dynamics in a stochastic
setting.

This paper has focused on the development of a novel return map formulation as the
basis for a computer-assisted global analysis, obtaining explicit expressions wherever possible.
There are a number of other features that we expect are valuable for future generalizations
that we have not pursued here. For example, we expect that more steps of the algorithm
could be automated, such as integrating defined criteria to aid in partitioning and comparing
approximations for different orders of polynomials for the composite map. Furthermore, while
we have given the algorithm in terms of 2D maps for simplicity of exposition, we expect that
the ideas of this approach can be adapted to higher dimensions. In addition, if we relax the
demand for a nearly explicit global analysis, we anticipate that accurate auxiliary maps that
are purely computation-based could be used to approximate the attracting domain(s).

Appendix A. Return maps and composite map construction.

A.1. Division of state space for the return maps. We show the regions in the state space
( \.Zk,\psi k) whose images correspond to BB, BTB, and BTTB motions, with PBB and PBTB as
defined in (3.1) in section 3, and PBTTB. Figure 22 shows the full range of \psi k, from 0 to 2\pi ,
and a larger range of \.Zk as compared to Figure 3. The region with \phi k > \pi is comprised of
mostly BB motion and, as discussed in Remark 3.2 and shown in Figure 7, is strongly transient.
Likewise, the yellow regions, corresponding to BTTB motion, are strongly transient for \beta > 0,
which drives the motion away from multiple impacts on the top membrane \partial T . Therefore,
we restrict our attention to the state space with range \psi k \in [0, \pi ] and \.Zk \leq 1.0 (below the
yellow regions) when constructing the composite map \scrM , with a focus on understanding the
attracting domain and those regions in state space in close proximity to it.

A.2. Phase plane projection of the exact maps. Figure 23 shows the projections of the
exact maps, defined by (3.1) in section 3, on the \.Zk  - \.Zk+1 and \psi k  - \psi k+1 phase planes, as
referenced in Remark 3.2. This 2D projection of Figure 6 gives separate views of the dynamics
for \.Zk and \psi k in their respective phase planes. The points delineate curves for \.Zk+1 and \psi k+1

in the image of the return map, some of which cross both diagonals in the \.Zk  - \.Zk+1 and
\psi k  - \psi k+1 planes. The slopes of the curves that intercept the diagonals suggest that there is
a smaller subregion of the state space ( \.Zk,\psi k) that is attracting.

A.3. Comments on region \bfscrR \bfone . In the next six sections of the appendix, we further
comment on the details of the algorithm implementation for the specific VI pair model, as
discussed in section 4.2.

In order to capture the full dynamics for all d near the diagonals of both phase planes
\.Zk  - \.Zk+1 and \psi k  - \psi k+1, we define region \scrR 1 as the union of the subregions obtained using
(4.2). Figure 24 illustrates the location of the subregion (green) based on the filter in (4.2)
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1934 L. BAO, R. KUSKE, D. YURCHENKO, AND I. BELYKH

Figure 22. Division of the ( \.Zk,\psi k) state space, corresponding to exact return maps with BTB motion (blue
and magenta regions), BB motion (black regions), and BTTB motion (yellow regions). Parameter: d= 0.26.

corresponding to one d value. These are shown relative to the union of the subregions over
all d in the range of interest (blue). Through this definition, we can use the same map for \scrR 1

for all d considered rather than finding different approximate maps for each d.
We have explored a range of \delta values, \delta = 1.2,1.3,1.4, which is the filter parameter in

(4.2). In summary, a smaller \delta yields a smaller \scrR 1 which allows a more accurate approxi-
mation of f1 and g1 to the surface of the exact map. On the other hand, a larger \scrR 1 can
capture more dynamics near this region, which is desirable. In that case, one can compensate
for the increased error associated with larger \delta by increasing the polynomial orders in the
approximation. Here, we chose \delta = 1.2 for the benefit of a simpler expression to construct the
approximate map.

In considering the choice for the order of polynomials, we note that higher-order polyno-
mials give more accurate approximations, but this will increase the complexity of the 2D map.
Hence, we choose the lowest-order polynomial such that the approximation can also reproduce
similar dynamics to the exact map. In this case, the polynomial map is quadratic in \phi k and
cubic in vk. Specifically, the polynomials given in the map (f1(vk, \phi k), g1(vk, \phi k)) (4.3)--(4.4)
in \scrR 1.2 approximate the surface using the MATLAB function fit([x,y],z,fitType) with
argument fitType set to poly23. A detailed comparison between the order of the polynomials
used in the approximation and the associated error is given in Table 1 and Figure 25.

Table 1 compares different types of approximation error statistics, R2, and the summation
squared error (SSE), using different \delta and different orders of polynomials. Figure 25 indicates
that a smaller \delta gives a better approximation for a given polynomial order, as a larger \delta 
includes more variability of the surfaces for ( \.Z+1,\psi k+1). Table 1 shows that the combination
of \delta = 1.2 and the polynomial order poly23 gives the best result.

A.4. Comments on region \bfscrR \bftwo . The surfaces generated over \scrR 2 correspond to the BTB
behavior. As described in Remark 4.1, we use separable maps to represent the dynamics of
region \scrR 2. Recall that the separable map takes the form of a single variable polynomial, e.g.,
vk+1 = f2(vk) and \phi k+1 = g2(\phi k), (4.5) in this case. Given the strongly transient nature of the
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GLOBAL ANALYSIS FOR VIBRO-IMPACT DYNAMICS 1935

Figure 23. Similar to Figure 7 we show the 2D projection of the PBB maps (black surfaces in Figure 6) on
the phase planes \.Zk  - \.Zk+1 and \psi k  - \psi k+1 with d= 0.35. Different colors correspond to the maps for different
values of \psi k. (a)--(b) show results for initial condition \psi k \in [0, \pi ], while (c)--(d) show \psi k \in [\pi ,2\pi ]. Stars show
cases where both maps take values near the diagonals in both phase planes; red stars in (a)--(b) correspond to
values on steep slopes of the surfaces, while blue stars \psi k < 3\pi /2 in (c)--(d), also on surfaces with steep slopes,
do not cross the diagonals. These properties indicate transient dynamics for these regions marked with stars.

dynamics in \scrR 2, also indicated by the steep surfaces shown in Figure 6, this 1D approximation
with separable maps is sufficient to represent the dynamics of \scrR 2.

A.5. Comments on region \bfscrR \bffour . Similar to region \scrR 2, the surfaces over \scrR 4 also correspond
to the BTB behavior. However, the surfaces in this region must be approximated separately
because of its steep descending surfaces over smaller values of \.Zk, making it difficult to obtain
a good approximation over the combined regions of \scrR 2 and \scrR 4. The approximate location of
\scrR 4 is given by \{ ( \.Z,\psi k) : \.Zk < 0.55, 1.1<\psi k < 2.5, and \.Zk > 0.63 - 0.53\psi k\} .

Similar to \scrR 2, we use separable maps for the approximation in \scrR 4, choosing two 1D maps
that represent the dynamics given by the surfaces for \.Zk+1 and \psi k+1,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

06
/0

9/
25

 to
 1

31
.9

6.
43

.2
01

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



1936 L. BAO, R. KUSKE, D. YURCHENKO, AND I. BELYKH

Figure 24. Illustration of the location change of the subregions filtered by (4.2), as shown in green. The
blue region surrounding it is the union of all such regions \cup d\in [0.26,0.35]\scrR 1.2, as described in (4.2). Parameters:
(a)--(b) d= 0.35; (c)--(d) d= 0.30; (e)--(f) d= 0.26.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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Table 1
Comparison of the approximation error R2 and SSE in \scrR 1 for different \delta and different polynomial orders.

Here, R2 = 1 - SSE
SST

, where the summation squared error and the summation squared total are given by SSE =\sum n
i (yi  - \^yi)

2 and SST =
\sum n

i (yi  - y)2, respectively. Here, yi is the exact value corresponding to \.Zk+1 or \psi k+1,

and \^yi is the estimation vk+1 or \phi k+1, and y is the average of all exact values \.Zk+1 or \psi k+1.

vk+1 \phi k+1

\delta Poly degree R2 SSE R2 SSE

1.2 poly23 0.9992 2.2705\times 10 - 5 0.9998 2.2181\times 10 - 5

1.3 poly23 0.99827 0.0025092 0.99984 0.0032939
1.3 poly33 0.99827 0.0025055 0.99994 0.0011577
1.4 poly23 0.99735 0.0055033 0.99981 0.0055713
1.4 poly33 0.99735 0.0054874 0.9999 0.0031359

vk+1(vk) = f4(vk) = b40v
8
k + b41v

7
k + b42v

6
k + b43v

5
k + b44v

4
k + b45v

3
k + b46v

2
k + b47vk + b48,(A.1)

\phi k+1(\phi k) = g4(vk) = a40\phi 
4
k + a41\phi 

3
k + a42\phi 

2
k + a43\phi k + a44.

The steep drop of the surface for smaller values of \.Zk+1, as shown in Figure 11(f), indicates
that the dynamics in \scrR 4 is also strongly transient. That is, at the fixed point of vk+1 = f4(vk)
the slope is | f \prime 4(vk)| > 1, as shown in Figure 11(e).

A.6. Comments on region \bfscrR \bfthree . The approximation for \scrR 3 covers the surfaces in Figure 6
over the region \{ ( \.Zk,\psi k) : 0 < \.Zk < 0.63  - 0.53\psi k\} within the state space considered. The
approximations for the lower triangular surfaces in this region are given by

vk+1(vk, \phi k) = f3(vk, \phi k) = b300 + b301\phi k + b302vk + b303\phi 
2
k + b304\phi kvk + b305v

2
k + b306\phi 

3
k

(A.2)

+ b307\phi 
2
kvk + b308\phi kv

2
k + b309v

3
k + b310\phi 

3
kvk + b311\phi 

2
kv

2
k + b312\phi kv

3
k + b313v

4
k

+ b314\phi 
3
kv

2
k + b315\phi 

2
kv

3
k + b316\phi kv

4
k + b317v

5
k,

\phi k+1(vk, \phi k) = g3(vk, \phi k) = a300 + a301\phi k + a302vk + a303\phi 
2
k + a304\phi kvk + a305v

2
k + a306\phi 

3
k

+ a307\phi 
2
kvk + a308\phi kv

2
k + a309v

3
k + a310\phi 

4
k + a311\phi 

3
kvk + a312\phi 

2
kv

2
k + a313\phi kv

3
k

+ a314v
4
k + a315\phi 

4
kvk + a316\phi 

3
kv

2
k + a317\phi 

2
kv

3
k + a318\phi kv

4
k + a319v

5
k.

As discussed in section 4.1, Iteration 1 steps (iv) and (vi), there is also a nearly vertical sur-
face in this region, shown in Figure 6. It represents strongly transient dynamics corresponding
to rapid transitions from BB to BTB behavior, so we treat this as immediately transient. As
a result, we use the lower triangular surface to capture the dynamics of this region, taking
the map (A.2) over all of \scrR 3. We find that these surfaces do not shift or change shape with
varying d. Therefore, the coefficients in (A.2) are constant instead of being functions of d.

A.7. Comments on region \bfscrR \bffive . Region \scrR 5 corresponds to smaller \.Zk < 0.55, as in \scrR 4,
and for larger \psi : 2.5 < \psi k < \pi . The dynamics in this region are BB motion instead of BTB
motion, with the map (f5, g5) based on a separable approximation as in \scrR 2 and \scrR 4. The
green curves in Fig. 26(a),(b) capture the dynamics on the surfaces for \.Zk+1 and \psi k+1, and
are approximated with orange curves that give the separable maps

vk+1(vk) = f5(vk) = | b50v4k + b51v
3
k + b52v

2
k + b53vk + b54| ,(A.3)

\phi k+1(\phi k) = g5(\phi k) = a50\phi 
3
k + a51\phi 

2
k + a52\phi k + a53.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

06
/0

9/
25

 to
 1

31
.9

6.
43

.2
01

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



1938 L. BAO, R. KUSKE, D. YURCHENKO, AND I. BELYKH

Figure 25. Heat maps corresponding to the approximation error in region \scrR 1 with different \delta in (4.2).
The approximation errors \epsilon v = | \.Zk+1  - vk+1| are shown in (a),(c),(e), and \epsilon \phi = | \psi k+1  - \phi k+1| are shown in
(b),(d),(f) for ( \.Zk+1, \phi k+1) in the exact map and (vk+1, \phi k+1) in the coupled 2D approximate map (4.3)--(4.4)
for \scrR 1. Note that lighter colors indicate larger errors \epsilon . As \delta increases, the size of \scrR 1 increases, which includes
more variation that yields the larger approximation error. Parameters: d= 0.35 in all panels; (a)--(b) \delta = 1.2;
(c)--(d) \delta = 1.3; (e)--(f) \delta = 1.4.

The coefficients a5i, b5i, i= 0,1, . . . ,4, are functions of d, with a54 = 0 in \phi k+1.
Note there is a small nearly vertical area in the surface for \psi k+1, similar to that observed

in \scrR 3 mentioned in Appendix A.6. As discussed in step (vi) of Iteration 1 of the algorithm
(section 4), we treat this as immediately transient, taking the map (A.3) over all of \scrR 5.

A.8. The pseudocode used in the programming of the composite map. Here, we provide
the pseudocode for the approximate composite map for (vn, \phi n), as used in Figure 12, with
references to the bounds and maps for each region \scrR n.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

06
/0

9/
25

 to
 1

31
.9

6.
43

.2
01

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



GLOBAL ANALYSIS FOR VIBRO-IMPACT DYNAMICS 1939

(a) (b) (c)

Figure 26. Approximation of (Zk+1,\psi k+1) in \scrR 5 for d= 0.35, which has ranges \.Zk < 0.55 and 2.5<\psi k <\pi .
Panels (a),(b) compare the orange curves for the approximate separable map (A.3) with the green curves in the
corresponding phase planes. In panel (c), the green curves are generated with the exact map (3.1), giving a
separable representation of the variation of the surface for fixed \psi k = 3.05 (left) and \.Zk = 0.12 (right).

\bfA \bfl \bfg \bfo \bfr \bfi \bft \bfh \bfm : \bfC \bfo \bfm \bfp \bfo \bfs \bfi \bft \bfe \bfm \bfa \bfp \bff \bfo \bfr (\bfitv \bfitn , \bfitphi \bfitn ).

\bfi \bff \phi k >\pi OR \phi k < 0, \bft \bfh \bfe \bfn 
Reset as in section 4.2, Iteration 1, step (vi): \phi k+1 = 1.2 and vk+1 = vk
\bfe \bfl \bfs \bfe \bfi \bff 0.63\leq vk \leq 0.94 AND 0.15\leq \phi k \leq 0.45. \bft \bfh \bfe \bfn 
Use region \scrR 1 approximate maps (4.3)--(4.4):

\bfe \bfl \bfs \bfe \bfi \bff vk > 0.63 - 0.53\phi k AND vk > 0.55 AND (vk, \phi k) /\in \scrR 1, \bft \bfh \bfe \bfn 
Use \scrR 2 approximate map (4.5):

\bfe \bfl \bfs \bfe \bfi \bff vk > 0.63 - 0.53\phi k AND 1.1<\phi k < 2.5 and vk < 0.55, \bft \bfh \bfe \bfn 
Use \scrR 4 approximate map (A.1):

\bfe \bfl \bfs \bfe \bfi \bff 2.5<\phi k <\pi AND vk < 0.55, \bft \bfh \bfe \bfn 
Use \scrR 5 approximate map (A.3):

\bfe \bfl \bfs \bfe \bfi \bff vk < 0.63 - 0.53\phi k, \bft \bfh \bfe \bfn 
Use \scrR 3 approximate map (A.2):

\bfe \bfn \bfd \bfi \bff 

As discussed in section 4.2, Iteration 1, step (iv), the reset value of \phi k+1 = 1.2 can be
identified based on the shape of the return maps, indicating that the system moves toward
\phi < \pi /2. To allow all possible behaviors, a reset value is chosen in a transient region. There
could be other values or distributions of values that would give the same results. The remaining
constants in the algorithms are not user defined but follow from the definition of the maps.
R3 and R5 are obtained in the first definition of the return map (section 4.2, Iteration 1, step
(iii), and R2 is obtained from the part of the BTB region outside of R1 and R4, with the range
of R4 based on the slope of the surface in R2. The bounds for R1 depend on the choice of \delta 
and the order of the polynomial approximation in (f1, g1) as described in Appendix A.3.

A.9. Navigation for Figure 13. We will use case FP, shown in Figures 13(a)--(b), to
demonstrate how the orbits are drawn in Figure 13.

Step 1: In panel (a), the initial condition is v0 = 0.2. This has possible images in regions
\scrR 3 and \scrR 4 since maps for these two regions overlap. In panel (b), the initial condition is
\phi 0 = 0.1. This has possible images in regions \scrR 2 and \scrR 3 since maps for these two regions

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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overlap. Then, the step is taken using the map that is common to both of these, which is
region \scrR 3. Then this map gives us (v1, \phi 1) = (0.093,2.116).

We repeat this process for each k. Here we provide the next steps for both vk and \phi k until
the system reaches region \scrR 1.

Step 2: We observe from (a) that v1 = 0.093 has possible images in regions \scrR 3, \scrR 4, and
\scrR 5 since maps for these three regions overlap. From (b), \phi 1 has possible images in regions
\scrR 2 and \scrR 4. Since the region in common is \scrR 4, we apply (f4, g4) in this step. This gives us
the output (v2, \phi 2) = (0.799,1.150).

Step 3: We observe from (a) that v2 = 0.799 has possible images in regions \scrR 1 and \scrR 2,
and \phi 2 = 1.150 has possible images in regions \scrR 2 and \scrR 4. Therefore, the region in common is
\scrR 2. In this case, we apply maps (f2, g2) to (v2, \phi 2) and have output (v3, \phi 3) = (0.843,0.298).

Step 4: We observe from (a) that v3 = 0.843 has possible images in regions \scrR 1 and \scrR 2,
and \phi 3 = 0.298 has possible images in regions \scrR 1, \scrR 2, and \scrR 3. In this case, since both v3 and
\phi 3 have reached \scrR 1, we apply maps (f1, g1) to (v3, \phi 3). The output is (v4, \phi 4) = (0.844,0.396),
and we observe that it is still in the attraction region \scrR 1.

From this step forward, we observe that the outputs remain in\scrR 1, and hence we repeatedly
apply maps (f1, g1).
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