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Heterogeneity induces cyclops states in Kuramoto networks with higher-mode coupling
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Disorder is often seen as detrimental to collective dynamics, yet recent work has shown that heterogeneity can
enhance network synchronization. However, its constructive role in stabilizing nontrivial cooperative patterns
remains largely unexplored. In this Letter, we show that frequency heterogeneity among oscillators can induce
stable cyclops and cluster states in Kuramoto networks with higher-mode coupling, even though these states
are unstable in the identical oscillator case. Cyclops states, introduced in [Munyaev et al., Phys. Rev. Lett. 130,
107201 (2023)], feature two synchronized clusters and a solitary oscillator, requiring a delicate phase balance.
Surprisingly, heterogeneity alone is sufficient to stabilize these patterns across a sizable range of detuning values
without needing to be compensated by other forms of disorder or external tuning. To explain this effect, we
introduce a mesoscopic collective coordinate approach that links microscopic frequency structure with mean-
field cluster-level stability. Importantly, we demonstrate that the same disorder-induced stabilization mechanism
also arises robustly in biologically and physically grounded networks of Winfree and Stuart-Landau oscillators,
pointing to its generality and opening directions for designing multistate dynamics in heterogeneous networks.

DOI: 10.1103/kvyt-6gyz

Introduction. Networks of coupled phase oscillators pro-
vide a canonical framework for studying emergent behavior
in complex systems [1–3]. The Kuramoto model [4–6] and
its generalizations have served as central tools for under-
standing synchronization and related phenomena [7,8], giving
rise to a wide range of collective dynamics, including full
and partial synchronization [9–15], explosive synchronization
[16–18], chimera patterns [19–24], solitary states [25–29],
clustered states [30–33], generalized splay [34], and re-
cently, cyclops states [35,36]. Historically, synchronization
was typically studied under the assumption of identical or
near-identical oscillators, treating heterogeneity and noise as
disruptive. Yet, a growing body of work reveals that disor-
der can instead promote coherence. Frequency dispersion,
delays, coupling variability, and noise have been shown to
suppress spatiotemporal chaos and facilitate synchronization
in a range of physical and biological systems [18,37–63]. For
example, in laser oscillator arrays, added disorder in delay
times can counteract the desynchronizing effects of frequency
heterogeneity and restore near-perfect phase locking [64]. A
particularly compelling concept is converse symmetry break-
ing [52,55,57–59], where the introduction of disorder enables
synchronous states that are inaccessible in fully symmetric
systems. For example, structural heterogeneity in the cou-
pling topology can stabilize complete synchronization [54],
and carefully tuned frequency distributions can optimize syn-
chrony in otherwise unfavorable networks [51]. In adaptively
coupled systems, the interaction of multiple disorder types,
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such as nodal heterogeneity and adaptive weights, can in-
duce two distinct nonequilibrium phase transitions en route
to synchrony [65]. Despite these advances, much of the prior
work has focused on disorder-induced global synchronization.
The ability of disorder to induce complex cooperative states,
such as multicluster or other higher-dimensional cooperative
dynamics, remains poorly understood, especially when such
states must persist under changes in the coupling strengths or
distribution of heterogeneity and without relying on additional
sources of disorder or parameter fine tuning.

In this Letter, we address this conceptual knowledge gap
and demonstrate that oscillator frequency heterogeneity can
robustly stabilize cyclops and cluster states in the second-
order Kuramoto model with higher-harmonic coupling, even
though these states are unstable in networks of identical
oscillators. In our previous work [35], we introduced cy-
clops states—a distinct class of three-cluster generalized splay
states [34]—formed by two coherent clusters and a soli-
tary oscillator with the relative phase positioned between the
clusters, evocative of the Cyclops’ eye. There, we showed
that higher-harmonic coupling can make these states global
attractors in repulsively coupled Kuramoto networks and
theta-neuron models with adaptive coupling. Here, we re-
port a counterintuitive finding that simple, nonengineered
frequency heterogeneity, such as a uniform distribution, is
sufficient to stabilize cyclops and related cluster states. These
patterns emerge from a wide set of initial conditions and
remain stable over a sizable range of oscillator heterogeneity.
To explain this disorder-induced stabilization, we introduce
a mesoscopic reduction based on the collective coordinate
framework [65–72]. Our approach captures the interplay be-
tween microscopic frequency heterogeneity and macroscopic
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cluster dynamics and adopts the linear ansatz [71] to track
the relative dynamics between synchronized clusters and
a solitary oscillator. This formulation is particularly suited
to multicluster patterns, such as cyclops states and net-
works with higher-mode coupling. It reveals the surprising
role of disorder in transforming unstable, seemingly fragile
configurations—which require a delicate phase balance—into
robust and prevalent regimes. Moreover, it provides a con-
structive means to identify favorable ranges of heterogeneity
and initial conditions that support such complex multistate
dynamics.

The network model. We study a network of second-order
Kuramoto-Sakaguchi oscillators with two-harmonic coupling
[35,36]:

mθ̈n + θ̇n = ωn + 1

N

N∑
k=1

2∑
q=1

εq sin(q(θk − θn) − αq), (1)

where θn ∈ [−π, π ) is the phase of the nth oscillator, and
n = 1, . . . , N , with N assumed to be odd throughout the pa-
per. The coupling function H (θk − θn) = ∑2

q=1 εq sin (q(θk −
θn) − αq) includes first and second harmonics with strengths
εq and phase lags αq ∈ [−π/2, π/2), q = 1, 2, chosen to
ensure attractive interactions with H ′(0) > 0. Inertia is fixed
at m = 1 to enable breathing cluster dynamics [30], which
are absent in the first-order model. To highlight the gener-
ality of the disorder-induced effects, natural frequencies ωn

are drawn from a uniform distribution on [ω0 − ν, ω0 + ν],
where ν is the half-width of the distribution. No fine-tuning
or engineered frequency profile is required; we take ω0 = 0
without loss of generality.

For identical oscillators with ω1 = · · · = ωN = ω, the sys-
tem (1) supports cyclops states, in which the population splits
into two symmetric clusters of size K = (N − 1)/2 and a soli-
tary oscillator. Their phases take the form θ1 = · · · = θK =
x + �t , θK+1 = · · · = θ2K = y + �t , and θN = �t , where x
and y are constant phase differences relative to the nth solitary
oscillator. These states are also characterized by a vanishing
first-order Kuramoto order parameter R1(t ) =∑N

n=1eiθn/N =
r1ei	1 , and a second-order parameter R2(t ) =∑N

n=1ei2θn/N =
r2ei	2 , where r2 > 0 governs their stability [34,35,73]. Two-
cluster states also arise and play a central role here. They are
defined by θ1..K = 	1 + �t , θK+1..N = 	2 + �t , forming two
coherent groups of unequal size in odd-N networks. This con-
figuration is a degenerate cyclops state (y = 0), dynamically
compensated by cluster symmetry rather than the solitary
oscillator (see Fig. 1 for a direct comparison).

Depending on the coupling strengths ε1, ε2 and phase lags
α1, α2, system (1) can support up to 16 stationary cyclops
states with different ordered pairs (x, y). Their analytical
forms and stability analysis in the homogeneous case (ωn ≡
ω) were derived in [36], where cyclops states were shown to
arise as dominant attractors in repulsive networks and to co-
exist with global synchrony under attractive coupling. These
states lose stability either via an Andronov-Hopf bifurcation,
leading to breathing cyclops with oscillatory x(t ), y(t ), or
through structural instabilities that produce asymmetric two-
cluster states or switching cyclops, where the solitary and
cluster composition change recurrently, similarly to blinking

FIG. 1. Heterogeneity-induced stabilization. (a) Stability dia-
gram for identical oscillators showing stable (blue), unstable (breath-
ing) (green), and unstable (switching) (yellow) cyclops, and stable
two-cluster states (white). Red circle (α2 = 0.1, ε2 = 0.03) and cross
(α2 = 0.35, ε2 = 0.05) mark two representative points for unstable
cyclops and cluster regimes, respectively. (b), (c) Phase snapshots
(in the solitary oscillator-anchored rotating frame) comparing the
identical oscillator case (ν = 0, left) with the heterogeneous case
(ν = 0.005, right). Arrows indicate cluster oscillations; color en-
codes phase difference from the solitary oscillator. (b) Stabilization
of unstable cyclops states at α2 = 0.1, ε2 = 0.03. (c) Stabilization of
unstable two-cluster state at α2 = 0.35, ε2 = 0.05. Other parameters:
N = 101, α1 = 1.57, ε1 = 1.0.

chimeras [74]. Figure 1(a) shows the corresponding stability
diagram for identical oscillators, which closely parallels Fig. 8
of [36] and highlights both bifurcation scenarios. The diagram
is truncated to α2 ∈ [−1, 1] for clarity, though the existence
regions extend beyond ±π/2, where rotobreathing cyclops
appear [36]. Within the cyclops region (blue), two-cluster
states (white) are destabilized; two representative points are
marked: a red circle (unstable cyclops) and a red cross (unsta-
ble two cluster). In the following, we show that introducing
frequency heterogeneity can stabilize both regimes.

In the presence of heterogeneous frequencies ωn, the
perfectly symmetric cyclops and two-cluster states of the
identical-oscillator case no longer exist, but their analogs
can still be defined. In a heterogeneous cyclops state,
phases within each cluster are no longer identical yet re-
main tightly grouped. Specifically, we write θn(t ) = ϕn +
θN (t ), where ϕn denotes the nth oscillator’s relative phase
with respect to the solitary unit (ϕN = 0). Within each clus-
ter, relative phase differences satisfy |ϕ j − ϕk| = Cjk < π

for all j, k ∈ 1, . . . , K or j, k ∈ K + 1, . . . , 2K , enforcing a
phase bound that prevents phase slips and cluster overlap.
Similarly, in a heterogeneous two-cluster state, phases sat-
isfy θn(t ) = ϕn + �t with bounded intracluster differences
|ϕ j − ϕk| = Cjk < π .

Heterogeneity-induced effects. Figures 1(b) and 1(c) show
that introducing frequency heterogeneity with ν = 0.005
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FIG. 2. Stabilization of the cyclops state by frequency hetero-
geneity for the parameter set corresponding to the red circle in
Fig. 1(a). (a) Real parts of the leading eigenvalues of the full system
(2) (λk ; dashed and dash-dotted lines) and the reduced model (4) (pk ;
solid transparent lines). Blue curves: complex-conjugate eigenvalues
λ1,2, p1,2 controlling stability; yellow curves: real eigenvalues λ3,
p3 associated with existence. Stability is achieved for ν ∈ [ν1, ν2] ≈
[0.0034, 0.0057], after which the cyclops state disappears. Insets:
phase snapshots of the corresponding cyclops states (unstable at
ν = 10−4 and stable at ν = 0.005). (b), (c) Comparison of individual
eigenvalues at ν = 10−4 (b) and ν = 0.005 (c); crosses: full model
(λk), circles: reduced model (pk). Blue: stable; red: unstable. Only
eigenvalues near the imaginary axis are shown. Parameters: N =
101, α1 = 1.57, ε1 = 1.0, α2 = 0.1, ε2 = 0.03.

stabilizes previously unstable cyclops and two-cluster states
[red markers in Fig. 1(a)]. Supplemental Material Movies 1
and 2 [75] illustrate the full dynamics of this stabilization
process. The mechanism behind this effect can be understood
as follows. In the identical oscillator case, the cyclops state
requires each oscillator within a cluster to maintain a fixed
phase difference (x or y) relative to the solitary oscillator.
Any deviation from this strict phase alignment may disrupt
the cluster structure and destabilize the cyclops state as a
whole. Frequency heterogeneity, however, introduces small
intracluster phase variations, broadening the clusters’ phase
width. While one might expect this to further disrupt the bal-
ance required for cyclops formation, the internal phase shifts
instead contribute to a compensating effect: oscillators with
slightly larger or smaller phase differences balance each other
out, allowing the cluster-average phase to satisfy the required
condition relative to the solitary node. Thus, the heterogene-
ity among oscillators directly induces a stable cyclops state
[Fig. 1(b)]. A similar mechanism applies to the stabilization
of two-cluster states, where broadened clusters maintain a
constant average phase separation. Strictly speaking, hetero-
geneity does not stabilize the perfectly symmetric states of
the identical oscillator system but instead gives rise to struc-
turally similar configurations with nonzero intra-cluster phase
spreads. Figure 2 shows that increasing ν initially produces an
unstable cyclops state with tightly grouped oscillators; further
increase stabilizes it over a broad range ν ∈ [ν1, ν2]. Similarly,

FIG. 3. Stabilization of the two-cluster state by frequency het-
erogeneity for the parameter set corresponding to the red cross in
Fig. 1(a). (a) Real parts of the leading eigenvalue of the full system
(2) (λ1; dashed line) and reduced model (4) (p1; solid transparent
line). Blue curves: λ1 and p1, which govern the stability of the
two-cluster state. Stability emerges in the interval ν ∈ [ν1, ν2] ≈
[0.00244, 0.0305]. Insets: phase snapshots of the corresponding two-
cluster regimes (unstable at ν = 10−4 and stable at ν = 0.005). (b),
(c) Comparison of eigenvalues at ν = 10−4 (b) and ν = 0.005 (c);
crosses: full model (λk), circles: reduced model (pk). Blue: stable;
red: unstable. Only eigenvalues near the imaginary axis are shown.
Parameters: N = 101, α1 = 1.57, ε1 = 1.0, α2 = 0.35, ε2 = 0.05.

Fig. 3 demonstrates that for the two-cluster regime, small
ν first destroys the unstable two-cluster symmetric state at
ν = 0, then induces a misaligned two-cluster configuration,
which remains stable over ν ∈ [ν1, ν2].

Reduction via collective coordinates. To track the evolution
of relative phase differences ϕn = θn − θN with respect to the
solitary oscillator, we transform the original system (1) into
the phase difference system for n = 1, . . . , N−1. Using the
identity sin φ = Im[eiφ], we write the phase difference system
compactly in complex form:

mϕ̈n + ϕ̇n

= 
n +
2∑

q=1

Im

[
εqe−iαq

N

(
N−1∑
k=1

eiqϕk + 1

)
(e−iqϕn − 1)

]
,

(2)
where 
n = ωn − ωN is the detuning relative to the solitary
oscillator. Stable fixed points of Eq. (2) correspond to stable
distributions of constant relative phases ϕn, including cyclops
states and two-cluster configurations.

Directly identifying such states in large heterogeneous
networks is computationally demanding and often elusive.
To address this, we employ a mesoscopic reduction via the
collective coordinate approach [65–72]. Given uniformly dis-
tributed natural frequencies ωn, we approximate the phase
profile within each cluster by a linear ansatz:

ϕn(t ) ≈ ϕ̂n(t ) = ψ1(t ) + χ1(t )
n, n = 1, . . . , K,

ϕn(t ) ≈ ϕ̂n(t ) = ψ2(t ) + χ2(t )
n, n = K + 1, . . . , 2K,

(3)
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where ψμ(t ) represents the average phase of cluster μ = 1, 2,
and χμ(t ) describes the phase drift within each cluster. The
product χμ(t )
n accounts for deviations from the collective
phase due to oscillator detuning. In simple terms, the ansatz
expresses each oscillator’s phase as the sum of a macroscopic
cluster phase and a frequency-dependent drift. This drift cap-
tures the microscopic frequency-induced spread of phases
within each cluster, relative to the solitary oscillator, yielding
a mesoscopic description of the collective dynamics.

Following the collective coordinate approach [71], we sub-
stitute the ansatz into Eq. (2), and we compute the residual
(error vector) between the exact and approximate dynam-
ics. The evolution equations for the collective coordinates
are obtained by requiring this residual to be orthogonal to
the tangent space of the ansatz manifold, spanned by the
gradients ∂ϕ̂n/∂ψμ and ∂ϕ̂n/∂χμ. This Galerkin projection
yields the closed system (4), governing the evolution of meso-
scopic cluster parameters under heterogeneous detuning. Full
derivation details are provided in the Supplemental Material
[75]. These equations for ψμ(t ) and χμ(t ) approximate the
macroscopic evolution of cluster-averaged phase positions
and internal phase spreads in a finite oscillator network with
heterogeneous detuning values 
n:

mψ̈μ + ψ̇μ =
2∑

q=1

Im

[
εqe−iαq

N

(
1 + KS(q)

1 eiqψ1

+ KS(q)
2 eiqψ2

)(σ 2
μS(q)∗

μ − δμJ (q)∗
μ

σ 2
μ − δ2

μ

e−iqψμ − 1

)]
,

mχ̈μ + χ̇μ = 1 + 1

σ 2
μ + δ2

μ

2∑
q=1

Im

[
εqe−iαq

N

(
1 + KS(q)

1 eiqψ1

+ KS(q)
2 eiqψ2

)(
J (q)∗
μ − δμS(q)∗

μ

)
e−iqψμ

]
, (4)

δμ =
μK∑

k=(μ−1)K+1


k

/
K, S(q)

μ =
μK∑

k=(μ−1)K+1

eiqχμ
k

/
K,

(5)

σ 2
μ =

μK∑
k=(μ−1)K+1


2
k

/
K, J (q)

μ =
μK∑

k=(μ−1)K+1


keiqχμ
k

/
K,

(6)

where δμ is the average frequency detuning, σ 2
μ is the second

moment of the frequency distribution, S(q)
μ is the qth order

parameter of phase deviations from the average collective
phase, and J (q)

μ is the corresponding frequency-weighted order
parameter, all computed within the μth cluster. Stationary
solutions of the reduced system (4), given by vector ���∗ =
(ψ∗

1 , ψ∗
2 , χ∗

1 , χ∗
2 ), can be used to reconstruct cyclops states of

the full system (2) via the ansatz (3), offering a computation-
ally efficient way to identify candidate cyclops configurations.
As shown in Fig. 1 in the Supplemental Material [75], the
agreement between the reduced and full models is remark-
ably close, with deviations on the order of 10−3 for typical
parameter values. Once candidate cyclops states are identified
via the stationary solutions ���∗, their linear stability can be
readily assessed. This is done by evaluating the eigenvalues

p1, . . . , p8 of the linearized eight-dimensional system around
���∗, derived from Eq. (4) (see the Supplemental Material [75]).
These eigenvalues determine the local stability of the reduced
mesoscopic dynamics and serve as a computationally efficient
proxy for the full system, whose Jacobian has 2(N−1) eigen-
values λ1, . . . , λ2(N−1). Figure 2 shows that the eigenvalues
λk of the full system (2) and pk of the reduced model (4)
match remarkably well, confirming the predictive accuracy
of the mesoscopic approach. In particular, the blue curves
in Fig. 2(a) show that the leading complex-conjugate eigen-
value pairs (λ1,2) and (p1,2), which govern the stability of the
cyclops state, evolve nearly identically in both models as ν

varies.
The reduced system (4) also applies to two-cluster states,

which, unlike cyclops states, do not involve a solitary os-
cillator. In this case, all relative phases can be defined with
respect to a common zero reference phase, and the nth oscil-
lator is simply included in one of the two clusters. While the
reduced system (4) provides a close match to the two-cluster
phase distributions observed in the full system, its eigenvalue
predictions are less accurate. Figure 3 shows good agree-
ment near the stability boundaries, slightly below [Fig. 3(b)]
and just above [Fig. 3(c)] the stabilization onset at ν1 but
the correspondence degrades toward the middle of the sta-
ble ν ∈ [ν1, ν2] interval. Both cyclops and two-cluster states
induced by frequency heterogeneity possess sizable basins
of attraction (Fig. 2 in the Supplemental Material) [75]. For
intermediate two-cluster initial phase spreads, the system con-
verges to stationary regimes with high probability, up to 70%
for two-cluster states and up to 40% for cyclops states, even
though the solitary oscillator is absent from the initial con-
ditions. At the same time, in the remaining realizations, it
evolves into multicluster or switching states.

Beyond Kuramoto networks. To demonstrate the generality
of heterogeneity-induced stabilization in more biologically
relevant settings, we consider a globally coupled Winfree
network [76,77] (a canonical neuronal model) with two-
harmonic phase response and narrow pulse coupling. Each
oscillator evolves as θ̇n = ωn + Q(θn) κ

N

∑N
k=1 P(θk ), where

ωn ∈ [ω0 − ν, ω0 + ν]. The sensitivity function is Q(ϑ ) =
ς0 + ς1 sin(ϑ + β1) + ς2 sin(2ϑ + β2), and the pulse func-
tion is P(ϑ ) = ps(1 + cos ϑ )s with s = 20 (narrow pulses)
and ps normalized so that

∫ 2π

0 P(ϑ ) dϑ = 2π .
Figure 4(a) demonstrates the emergence of a dominant

breathing cyclops state in the identical Winfree oscillator
network with ν = 0. Because Winfree oscillators inherently
spike, the state combines small-amplitude, high-frequency
oscillations within clusters with slow, large-amplitude in-
tercluster modulations—closely paralleling the breathing
cyclops observed in the Kuramoto case [Fig. 1(b)]. The
order parameter r1 thus displays clear two-time scale os-
cillations around zero. Introducing even slight heterogeneity
(ν = 5 × 10−4) suppresses the slow intercluster dynamics, ef-
fectively acting as a low-pass filter on the macroscopic signal.
The network then stabilizes into two dominant, nonbreathing
patterns: either a cyclops state or a two-cluster state [Figs. 4(b)
and 4(c)]. Both stabilized regimes, observed separately in the
Kuramoto model, now emerge robustly from random initial
conditions, underscoring the generality of the effect. Beyond
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FIG. 4. Heterogeneity-induced stabilization in the Winfree net-
work. Dynamics of the order parameter r1 = | 1

N

∑N
k=1 eiθk | for (a) a

breathing cyclops state (P = 1.0, ν = 0.0), (b) a nonbreathing cy-
clops state (P = 0.27, ν = 5 × 10−4), and (c) a two-cluster state
(P = 0.73, ν = 5 × 10−4). Probabilities P quantify the fraction of
runs converging to each state, estimated over 100 trials with random
initial phases uniformly distributed in [−π, π ]. Left insets: low-
frequency power spectrum of r1(t ) (� : frequency, r̂1: magnitude).
Note the disappearance of the low-frequency peaks under hetero-
geneity. Right insets: final phase distributions θn. Dotted arrows
highlight large-amplitude, low-frequency intercluster oscillations;
solid arrows mark small-amplitude, high-frequency intracluster os-
cillations. Parameters: N = 101, ω0 = 3.0, κ = 1.0, ς0 = 0.0, ς1 =
0.13125, ς2 = −0.00456, β1 = 1.57, β2 = 0.1.

phase models, the stabilization mechanism also robustly man-
ifests in networks of Stuart-Landau oscillators, widely used in
laser physics [78], under higher-order coupling (Fig. 3 in the
Supplemental Material [75]).

Conclusions. We have revealed a counterintuitive effect
whereby oscillator frequency heterogeneity can stabilize cy-
clops and cluster states that are unstable in identical-oscillator
networks. This disorder-induced mechanism transforms con-
figurations that would otherwise require precise phase balance
into robust, dynamically accessible regimes across a broad
range of initial conditions and heterogeneity sizes. Using
a simple uniform frequency distribution, without fine tun-
ing, we demonstrated that heterogeneity alone can induce
stability. Beyond Kuramoto networks, we showed that the
same mechanism arises in Winfree and Stuart-Landau oscil-
lators, extending its relevance to biologically and physically
grounded systems. These results demonstrate that stabi-
lization of multicluster dynamics stems from the interplay
between higher-order coupling and frequency heterogeneity,
rather than model-specific details. Since Winfree oscillators
are equivalent to canonical theta neurons under transforma-
tion [79–82], we expect this stabilization mechanism, where
frequency heterogeneity acts as a macroscopic low-pass filter,
to emerge in heterogeneous neuronal circuits broadly.
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